1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include <linux/dma-fence-array.h>
7
8 #include "xe_pt.h"
9
10 #include "regs/xe_gtt_defs.h"
11 #include "xe_bo.h"
12 #include "xe_device.h"
13 #include "xe_drm_client.h"
14 #include "xe_exec_queue.h"
15 #include "xe_gt.h"
16 #include "xe_migrate.h"
17 #include "xe_pt_types.h"
18 #include "xe_pt_walk.h"
19 #include "xe_res_cursor.h"
20 #include "xe_sched_job.h"
21 #include "xe_svm.h"
22 #include "xe_sync.h"
23 #include "xe_tlb_inval_job.h"
24 #include "xe_trace.h"
25 #include "xe_ttm_stolen_mgr.h"
26 #include "xe_userptr.h"
27 #include "xe_vm.h"
28
29 struct xe_pt_dir {
30 struct xe_pt pt;
31 /** @children: Array of page-table child nodes */
32 struct xe_ptw *children[XE_PDES];
33 /** @staging: Array of page-table staging nodes */
34 struct xe_ptw *staging[XE_PDES];
35 };
36
37 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
38 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
39 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
40 #else
41 #define xe_pt_set_addr(__xe_pt, __addr)
42 #define xe_pt_addr(__xe_pt) 0ull
43 #endif
44
45 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
46 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
47
48 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
49
as_xe_pt_dir(struct xe_pt * pt)50 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
51 {
52 return container_of(pt, struct xe_pt_dir, pt);
53 }
54
55 static struct xe_pt *
xe_pt_entry_staging(struct xe_pt_dir * pt_dir,unsigned int index)56 xe_pt_entry_staging(struct xe_pt_dir *pt_dir, unsigned int index)
57 {
58 return container_of(pt_dir->staging[index], struct xe_pt, base);
59 }
60
__xe_pt_empty_pte(struct xe_tile * tile,struct xe_vm * vm,unsigned int level)61 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
62 unsigned int level)
63 {
64 struct xe_device *xe = tile_to_xe(tile);
65 u16 pat_index = xe->pat.idx[XE_CACHE_WB];
66 u8 id = tile->id;
67
68 if (!xe_vm_has_scratch(vm))
69 return 0;
70
71 if (level > MAX_HUGEPTE_LEVEL)
72 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
73 0);
74
75 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
76 XE_PTE_NULL;
77 }
78
xe_pt_free(struct xe_pt * pt)79 static void xe_pt_free(struct xe_pt *pt)
80 {
81 if (pt->level)
82 kfree(as_xe_pt_dir(pt));
83 else
84 kfree(pt);
85 }
86
87 /**
88 * xe_pt_create() - Create a page-table.
89 * @vm: The vm to create for.
90 * @tile: The tile to create for.
91 * @level: The page-table level.
92 * @exec: The drm_exec object used to lock the vm.
93 *
94 * Allocate and initialize a single struct xe_pt metadata structure. Also
95 * create the corresponding page-table bo, but don't initialize it. If the
96 * level is grater than zero, then it's assumed to be a directory page-
97 * table and the directory structure is also allocated and initialized to
98 * NULL pointers.
99 *
100 * Return: A valid struct xe_pt pointer on success, Pointer error code on
101 * error.
102 */
xe_pt_create(struct xe_vm * vm,struct xe_tile * tile,unsigned int level,struct drm_exec * exec)103 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
104 unsigned int level, struct drm_exec *exec)
105 {
106 struct xe_pt *pt;
107 struct xe_bo *bo;
108 u32 bo_flags;
109 int err;
110
111 if (level) {
112 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
113
114 pt = (dir) ? &dir->pt : NULL;
115 } else {
116 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
117 }
118 if (!pt)
119 return ERR_PTR(-ENOMEM);
120
121 bo_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) |
122 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE |
123 XE_BO_FLAG_NO_RESV_EVICT | XE_BO_FLAG_PAGETABLE;
124 if (vm->xef) /* userspace */
125 bo_flags |= XE_BO_FLAG_PINNED_LATE_RESTORE;
126
127 pt->level = level;
128
129 drm_WARN_ON(&vm->xe->drm, IS_ERR_OR_NULL(exec));
130 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
131 ttm_bo_type_kernel,
132 bo_flags, exec);
133 if (IS_ERR(bo)) {
134 err = PTR_ERR(bo);
135 goto err_kfree;
136 }
137 pt->bo = bo;
138 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
139 pt->base.staging = level ? as_xe_pt_dir(pt)->staging : NULL;
140
141 if (vm->xef)
142 xe_drm_client_add_bo(vm->xef->client, pt->bo);
143 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
144
145 return pt;
146
147 err_kfree:
148 xe_pt_free(pt);
149 return ERR_PTR(err);
150 }
151 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO);
152
153 /**
154 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
155 * entries.
156 * @tile: The tile the scratch pagetable of which to use.
157 * @vm: The vm we populate for.
158 * @pt: The pagetable the bo of which to initialize.
159 *
160 * Populate the page-table bo of @pt with entries pointing into the tile's
161 * scratch page-table tree if any. Otherwise populate with zeros.
162 */
xe_pt_populate_empty(struct xe_tile * tile,struct xe_vm * vm,struct xe_pt * pt)163 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
164 struct xe_pt *pt)
165 {
166 struct iosys_map *map = &pt->bo->vmap;
167 u64 empty;
168 int i;
169
170 if (!xe_vm_has_scratch(vm)) {
171 /*
172 * FIXME: Some memory is allocated already allocated to zero?
173 * Find out which memory that is and avoid this memset...
174 */
175 xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
176 } else {
177 empty = __xe_pt_empty_pte(tile, vm, pt->level);
178 for (i = 0; i < XE_PDES; i++)
179 xe_pt_write(vm->xe, map, i, empty);
180 }
181 }
182
183 /**
184 * xe_pt_shift() - Return the ilog2 value of the size of the address range of
185 * a page-table at a certain level.
186 * @level: The level.
187 *
188 * Return: The ilog2 value of the size of the address range of a page-table
189 * at level @level.
190 */
xe_pt_shift(unsigned int level)191 unsigned int xe_pt_shift(unsigned int level)
192 {
193 return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
194 }
195
196 /**
197 * xe_pt_destroy() - Destroy a page-table tree.
198 * @pt: The root of the page-table tree to destroy.
199 * @flags: vm flags. Currently unused.
200 * @deferred: List head of lockless list for deferred putting. NULL for
201 * immediate putting.
202 *
203 * Puts the page-table bo, recursively calls xe_pt_destroy on all children
204 * and finally frees @pt. TODO: Can we remove the @flags argument?
205 */
xe_pt_destroy(struct xe_pt * pt,u32 flags,struct llist_head * deferred)206 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
207 {
208 int i;
209
210 if (!pt)
211 return;
212
213 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
214 xe_bo_unpin(pt->bo);
215 xe_bo_put_deferred(pt->bo, deferred);
216
217 if (pt->level > 0 && pt->num_live) {
218 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
219
220 for (i = 0; i < XE_PDES; i++) {
221 if (xe_pt_entry_staging(pt_dir, i))
222 xe_pt_destroy(xe_pt_entry_staging(pt_dir, i), flags,
223 deferred);
224 }
225 }
226 xe_pt_free(pt);
227 }
228
229 /**
230 * xe_pt_clear() - Clear a page-table.
231 * @xe: xe device.
232 * @pt: The page-table.
233 *
234 * Clears page-table by setting to zero.
235 */
xe_pt_clear(struct xe_device * xe,struct xe_pt * pt)236 void xe_pt_clear(struct xe_device *xe, struct xe_pt *pt)
237 {
238 struct iosys_map *map = &pt->bo->vmap;
239
240 xe_map_memset(xe, map, 0, 0, SZ_4K);
241 }
242
243 /**
244 * DOC: Pagetable building
245 *
246 * Below we use the term "page-table" for both page-directories, containing
247 * pointers to lower level page-directories or page-tables, and level 0
248 * page-tables that contain only page-table-entries pointing to memory pages.
249 *
250 * When inserting an address range in an already existing page-table tree
251 * there will typically be a set of page-tables that are shared with other
252 * address ranges, and a set that are private to this address range.
253 * The set of shared page-tables can be at most two per level,
254 * and those can't be updated immediately because the entries of those
255 * page-tables may still be in use by the gpu for other mappings. Therefore
256 * when inserting entries into those, we instead stage those insertions by
257 * adding insertion data into struct xe_vm_pgtable_update structures. This
258 * data, (subtrees for the cpu and page-table-entries for the gpu) is then
259 * added in a separate commit step. CPU-data is committed while still under the
260 * vm lock, the object lock and for userptr, the notifier lock in read mode.
261 * The GPU async data is committed either by the GPU or CPU after fulfilling
262 * relevant dependencies.
263 * For non-shared page-tables (and, in fact, for shared ones that aren't
264 * existing at the time of staging), we add the data in-place without the
265 * special update structures. This private part of the page-table tree will
266 * remain disconnected from the vm page-table tree until data is committed to
267 * the shared page tables of the vm tree in the commit phase.
268 */
269
270 struct xe_pt_update {
271 /** @update: The update structure we're building for this parent. */
272 struct xe_vm_pgtable_update *update;
273 /** @parent: The parent. Used to detect a parent change. */
274 struct xe_pt *parent;
275 /** @preexisting: Whether the parent was pre-existing or allocated */
276 bool preexisting;
277 };
278
279 /**
280 * struct xe_pt_stage_bind_walk - Walk state for the stage_bind walk.
281 */
282 struct xe_pt_stage_bind_walk {
283 /** @base: The base class. */
284 struct xe_pt_walk base;
285
286 /* Input parameters for the walk */
287 /** @vm: The vm we're building for. */
288 struct xe_vm *vm;
289 /** @tile: The tile we're building for. */
290 struct xe_tile *tile;
291 /** @default_vram_pte: PTE flag only template for VRAM. No address is associated */
292 u64 default_vram_pte;
293 /** @default_system_pte: PTE flag only template for System. No address is associated */
294 u64 default_system_pte;
295 /** @dma_offset: DMA offset to add to the PTE. */
296 u64 dma_offset;
297 /**
298 * @needs_64K: This address range enforces 64K alignment and
299 * granularity on VRAM.
300 */
301 bool needs_64K;
302 /** @clear_pt: clear page table entries during the bind walk */
303 bool clear_pt;
304 /**
305 * @vma: VMA being mapped
306 */
307 struct xe_vma *vma;
308
309 /* Also input, but is updated during the walk*/
310 /** @curs: The DMA address cursor. */
311 struct xe_res_cursor *curs;
312 /** @va_curs_start: The Virtual address corresponding to @curs->start */
313 u64 va_curs_start;
314
315 /* Output */
316 /** @wupd: Walk output data for page-table updates. */
317 struct xe_walk_update {
318 /** @wupd.entries: Caller provided storage. */
319 struct xe_vm_pgtable_update *entries;
320 /** @wupd.num_used_entries: Number of update @entries used. */
321 unsigned int num_used_entries;
322 /** @wupd.updates: Tracks the update entry at a given level */
323 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
324 } wupd;
325
326 /* Walk state */
327 /**
328 * @l0_end_addr: The end address of the current l0 leaf. Used for
329 * 64K granularity detection.
330 */
331 u64 l0_end_addr;
332 /** @addr_64K: The start address of the current 64K chunk. */
333 u64 addr_64K;
334 /** @found_64K: Whether @add_64K actually points to a 64K chunk. */
335 bool found_64K;
336 };
337
338 static int
xe_pt_new_shared(struct xe_walk_update * wupd,struct xe_pt * parent,pgoff_t offset,bool alloc_entries)339 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
340 pgoff_t offset, bool alloc_entries)
341 {
342 struct xe_pt_update *upd = &wupd->updates[parent->level];
343 struct xe_vm_pgtable_update *entry;
344
345 /*
346 * For *each level*, we could only have one active
347 * struct xt_pt_update at any one time. Once we move on to a
348 * new parent and page-directory, the old one is complete, and
349 * updates are either already stored in the build tree or in
350 * @wupd->entries
351 */
352 if (likely(upd->parent == parent))
353 return 0;
354
355 upd->parent = parent;
356 upd->preexisting = true;
357
358 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
359 return -EINVAL;
360
361 entry = wupd->entries + wupd->num_used_entries++;
362 upd->update = entry;
363 entry->ofs = offset;
364 entry->pt_bo = parent->bo;
365 entry->pt = parent;
366 entry->flags = 0;
367 entry->qwords = 0;
368 entry->pt_bo->update_index = -1;
369
370 if (alloc_entries) {
371 entry->pt_entries = kmalloc_array(XE_PDES,
372 sizeof(*entry->pt_entries),
373 GFP_KERNEL);
374 if (!entry->pt_entries)
375 return -ENOMEM;
376 }
377
378 return 0;
379 }
380
381 /*
382 * NOTE: This is a very frequently called function so we allow ourselves
383 * to annotate (using branch prediction hints) the fastpath of updating a
384 * non-pre-existing pagetable with leaf ptes.
385 */
386 static int
xe_pt_insert_entry(struct xe_pt_stage_bind_walk * xe_walk,struct xe_pt * parent,pgoff_t offset,struct xe_pt * xe_child,u64 pte)387 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
388 pgoff_t offset, struct xe_pt *xe_child, u64 pte)
389 {
390 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
391 struct xe_pt_update *child_upd = xe_child ?
392 &xe_walk->wupd.updates[xe_child->level] : NULL;
393 int ret;
394
395 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
396 if (unlikely(ret))
397 return ret;
398
399 /*
400 * Register this new pagetable so that it won't be recognized as
401 * a shared pagetable by a subsequent insertion.
402 */
403 if (unlikely(child_upd)) {
404 child_upd->update = NULL;
405 child_upd->parent = xe_child;
406 child_upd->preexisting = false;
407 }
408
409 if (likely(!upd->preexisting)) {
410 /* Continue building a non-connected subtree. */
411 struct iosys_map *map = &parent->bo->vmap;
412
413 if (unlikely(xe_child)) {
414 parent->base.children[offset] = &xe_child->base;
415 parent->base.staging[offset] = &xe_child->base;
416 }
417
418 xe_pt_write(xe_walk->vm->xe, map, offset, pte);
419 parent->num_live++;
420 } else {
421 /* Shared pt. Stage update. */
422 unsigned int idx;
423 struct xe_vm_pgtable_update *entry = upd->update;
424
425 idx = offset - entry->ofs;
426 entry->pt_entries[idx].pt = xe_child;
427 entry->pt_entries[idx].pte = pte;
428 entry->qwords++;
429 }
430
431 return 0;
432 }
433
xe_pt_hugepte_possible(u64 addr,u64 next,unsigned int level,struct xe_pt_stage_bind_walk * xe_walk)434 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
435 struct xe_pt_stage_bind_walk *xe_walk)
436 {
437 u64 size, dma;
438
439 if (level > MAX_HUGEPTE_LEVEL)
440 return false;
441
442 /* Does the virtual range requested cover a huge pte? */
443 if (!xe_pt_covers(addr, next, level, &xe_walk->base))
444 return false;
445
446 /* Does the DMA segment cover the whole pte? */
447 if (next - xe_walk->va_curs_start > xe_walk->curs->size)
448 return false;
449
450 /* null VMA's do not have dma addresses */
451 if (xe_vma_is_null(xe_walk->vma))
452 return true;
453
454 /* if we are clearing page table, no dma addresses*/
455 if (xe_walk->clear_pt)
456 return true;
457
458 /* Is the DMA address huge PTE size aligned? */
459 size = next - addr;
460 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
461
462 return IS_ALIGNED(dma, size);
463 }
464
465 /*
466 * Scan the requested mapping to check whether it can be done entirely
467 * with 64K PTEs.
468 */
469 static bool
xe_pt_scan_64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)470 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
471 {
472 struct xe_res_cursor curs = *xe_walk->curs;
473
474 if (!IS_ALIGNED(addr, SZ_64K))
475 return false;
476
477 if (next > xe_walk->l0_end_addr)
478 return false;
479
480 /* null VMA's do not have dma addresses */
481 if (xe_vma_is_null(xe_walk->vma))
482 return true;
483
484 xe_res_next(&curs, addr - xe_walk->va_curs_start);
485 for (; addr < next; addr += SZ_64K) {
486 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
487 return false;
488
489 xe_res_next(&curs, SZ_64K);
490 }
491
492 return addr == next;
493 }
494
495 /*
496 * For non-compact "normal" 4K level-0 pagetables, we want to try to group
497 * addresses together in 64K-contigous regions to add a 64K TLB hint for the
498 * device to the PTE.
499 * This function determines whether the address is part of such a
500 * segment. For VRAM in normal pagetables, this is strictly necessary on
501 * some devices.
502 */
503 static bool
xe_pt_is_pte_ps64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)504 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
505 {
506 /* Address is within an already found 64k region */
507 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
508 return true;
509
510 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
511 xe_walk->addr_64K = addr;
512
513 return xe_walk->found_64K;
514 }
515
516 static int
xe_pt_stage_bind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)517 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
518 unsigned int level, u64 addr, u64 next,
519 struct xe_ptw **child,
520 enum page_walk_action *action,
521 struct xe_pt_walk *walk)
522 {
523 struct xe_pt_stage_bind_walk *xe_walk =
524 container_of(walk, typeof(*xe_walk), base);
525 u16 pat_index = xe_walk->vma->attr.pat_index;
526 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
527 struct xe_vm *vm = xe_walk->vm;
528 struct xe_pt *xe_child;
529 bool covers;
530 int ret = 0;
531 u64 pte;
532
533 /* Is this a leaf entry ?*/
534 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
535 struct xe_res_cursor *curs = xe_walk->curs;
536 bool is_null = xe_vma_is_null(xe_walk->vma);
537 bool is_vram = is_null ? false : xe_res_is_vram(curs);
538
539 XE_WARN_ON(xe_walk->va_curs_start != addr);
540
541 if (xe_walk->clear_pt) {
542 pte = 0;
543 } else {
544 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
545 xe_res_dma(curs) +
546 xe_walk->dma_offset,
547 xe_walk->vma,
548 pat_index, level);
549 if (!is_null)
550 pte |= is_vram ? xe_walk->default_vram_pte :
551 xe_walk->default_system_pte;
552
553 /*
554 * Set the XE_PTE_PS64 hint if possible, otherwise if
555 * this device *requires* 64K PTE size for VRAM, fail.
556 */
557 if (level == 0 && !xe_parent->is_compact) {
558 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
559 xe_walk->vma->gpuva.flags |=
560 XE_VMA_PTE_64K;
561 pte |= XE_PTE_PS64;
562 } else if (XE_WARN_ON(xe_walk->needs_64K &&
563 is_vram)) {
564 return -EINVAL;
565 }
566 }
567 }
568
569 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
570 if (unlikely(ret))
571 return ret;
572
573 if (!is_null && !xe_walk->clear_pt)
574 xe_res_next(curs, next - addr);
575 xe_walk->va_curs_start = next;
576 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
577 *action = ACTION_CONTINUE;
578
579 return ret;
580 }
581
582 /*
583 * Descending to lower level. Determine if we need to allocate a
584 * new page table or -directory, which we do if there is no
585 * previous one or there is one we can completely replace.
586 */
587 if (level == 1) {
588 walk->shifts = xe_normal_pt_shifts;
589 xe_walk->l0_end_addr = next;
590 }
591
592 covers = xe_pt_covers(addr, next, level, &xe_walk->base);
593 if (covers || !*child) {
594 u64 flags = 0;
595
596 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1,
597 xe_vm_validation_exec(vm));
598 if (IS_ERR(xe_child))
599 return PTR_ERR(xe_child);
600
601 xe_pt_set_addr(xe_child,
602 round_down(addr, 1ull << walk->shifts[level]));
603
604 if (!covers)
605 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
606
607 *child = &xe_child->base;
608
609 /*
610 * Prefer the compact pagetable layout for L0 if possible. Only
611 * possible if VMA covers entire 2MB region as compact 64k and
612 * 4k pages cannot be mixed within a 2MB region.
613 * TODO: Suballocate the pt bo to avoid wasting a lot of
614 * memory.
615 */
616 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
617 covers && xe_pt_scan_64K(addr, next, xe_walk)) {
618 walk->shifts = xe_compact_pt_shifts;
619 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
620 flags |= XE_PDE_64K;
621 xe_child->is_compact = true;
622 }
623
624 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0) | flags;
625 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
626 pte);
627 }
628
629 *action = ACTION_SUBTREE;
630 return ret;
631 }
632
633 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
634 .pt_entry = xe_pt_stage_bind_entry,
635 };
636
637 /*
638 * Default atomic expectations for different allocation scenarios are as follows:
639 *
640 * 1. Traditional API: When the VM is not in LR mode:
641 * - Device atomics are expected to function with all allocations.
642 *
643 * 2. Compute/SVM API: When the VM is in LR mode:
644 * - Device atomics are the default behavior when the bo is placed in a single region.
645 * - In all other cases device atomics will be disabled with AE=0 until an application
646 * request differently using a ioctl like madvise.
647 */
xe_atomic_for_vram(struct xe_vm * vm,struct xe_vma * vma)648 static bool xe_atomic_for_vram(struct xe_vm *vm, struct xe_vma *vma)
649 {
650 if (vma->attr.atomic_access == DRM_XE_ATOMIC_CPU)
651 return false;
652
653 return true;
654 }
655
xe_atomic_for_system(struct xe_vm * vm,struct xe_vma * vma)656 static bool xe_atomic_for_system(struct xe_vm *vm, struct xe_vma *vma)
657 {
658 struct xe_device *xe = vm->xe;
659 struct xe_bo *bo = xe_vma_bo(vma);
660
661 if (!xe->info.has_device_atomics_on_smem ||
662 vma->attr.atomic_access == DRM_XE_ATOMIC_CPU)
663 return false;
664
665 if (vma->attr.atomic_access == DRM_XE_ATOMIC_DEVICE)
666 return true;
667
668 /*
669 * If a SMEM+LMEM allocation is backed by SMEM, a device
670 * atomics will cause a gpu page fault and which then
671 * gets migrated to LMEM, bind such allocations with
672 * device atomics enabled.
673 */
674 return (!IS_DGFX(xe) || (!xe_vm_in_lr_mode(vm) ||
675 (bo && xe_bo_has_single_placement(bo))));
676 }
677
678 /**
679 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
680 * range.
681 * @tile: The tile we're building for.
682 * @vma: The vma indicating the address range.
683 * @range: The range indicating the address range.
684 * @entries: Storage for the update entries used for connecting the tree to
685 * the main tree at commit time.
686 * @num_entries: On output contains the number of @entries used.
687 * @clear_pt: Clear the page table entries.
688 *
689 * This function builds a disconnected page-table tree for a given address
690 * range. The tree is connected to the main vm tree for the gpu using
691 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
692 * The function builds xe_vm_pgtable_update structures for already existing
693 * shared page-tables, and non-existing shared and non-shared page-tables
694 * are built and populated directly.
695 *
696 * Return 0 on success, negative error code on error.
697 */
698 static int
xe_pt_stage_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_svm_range * range,struct xe_vm_pgtable_update * entries,u32 * num_entries,bool clear_pt)699 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
700 struct xe_svm_range *range,
701 struct xe_vm_pgtable_update *entries,
702 u32 *num_entries, bool clear_pt)
703 {
704 struct xe_device *xe = tile_to_xe(tile);
705 struct xe_bo *bo = xe_vma_bo(vma);
706 struct xe_res_cursor curs;
707 struct xe_vm *vm = xe_vma_vm(vma);
708 struct xe_pt_stage_bind_walk xe_walk = {
709 .base = {
710 .ops = &xe_pt_stage_bind_ops,
711 .shifts = xe_normal_pt_shifts,
712 .max_level = XE_PT_HIGHEST_LEVEL,
713 .staging = true,
714 },
715 .vm = vm,
716 .tile = tile,
717 .curs = &curs,
718 .va_curs_start = range ? range->base.itree.start :
719 xe_vma_start(vma),
720 .vma = vma,
721 .wupd.entries = entries,
722 .clear_pt = clear_pt,
723 };
724 struct xe_pt *pt = vm->pt_root[tile->id];
725 int ret;
726
727 if (range) {
728 /* Move this entire thing to xe_svm.c? */
729 xe_svm_notifier_lock(vm);
730 if (!xe_svm_range_pages_valid(range)) {
731 xe_svm_range_debug(range, "BIND PREPARE - RETRY");
732 xe_svm_notifier_unlock(vm);
733 return -EAGAIN;
734 }
735 if (xe_svm_range_has_dma_mapping(range)) {
736 xe_res_first_dma(range->base.pages.dma_addr, 0,
737 range->base.itree.last + 1 - range->base.itree.start,
738 &curs);
739 xe_svm_range_debug(range, "BIND PREPARE - MIXED");
740 } else {
741 xe_assert(xe, false);
742 }
743 /*
744 * Note, when unlocking the resource cursor dma addresses may become
745 * stale, but the bind will be aborted anyway at commit time.
746 */
747 xe_svm_notifier_unlock(vm);
748 }
749
750 xe_walk.needs_64K = (vm->flags & XE_VM_FLAG_64K);
751 if (clear_pt)
752 goto walk_pt;
753
754 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) {
755 xe_walk.default_vram_pte = xe_atomic_for_vram(vm, vma) ? XE_USM_PPGTT_PTE_AE : 0;
756 xe_walk.default_system_pte = xe_atomic_for_system(vm, vma) ?
757 XE_USM_PPGTT_PTE_AE : 0;
758 }
759
760 xe_walk.default_vram_pte |= XE_PPGTT_PTE_DM;
761 xe_walk.dma_offset = bo ? vram_region_gpu_offset(bo->ttm.resource) : 0;
762 if (!range)
763 xe_bo_assert_held(bo);
764
765 if (!xe_vma_is_null(vma) && !range) {
766 if (xe_vma_is_userptr(vma))
767 xe_res_first_dma(to_userptr_vma(vma)->userptr.pages.dma_addr, 0,
768 xe_vma_size(vma), &curs);
769 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
770 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
771 xe_vma_size(vma), &curs);
772 else
773 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
774 xe_vma_size(vma), &curs);
775 } else if (!range) {
776 curs.size = xe_vma_size(vma);
777 }
778
779 walk_pt:
780 ret = xe_pt_walk_range(&pt->base, pt->level,
781 range ? range->base.itree.start : xe_vma_start(vma),
782 range ? range->base.itree.last + 1 : xe_vma_end(vma),
783 &xe_walk.base);
784
785 *num_entries = xe_walk.wupd.num_used_entries;
786 return ret;
787 }
788
789 /**
790 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
791 * shared pagetable.
792 * @addr: The start address within the non-shared pagetable.
793 * @end: The end address within the non-shared pagetable.
794 * @level: The level of the non-shared pagetable.
795 * @walk: Walk info. The function adjusts the walk action.
796 * @action: next action to perform (see enum page_walk_action)
797 * @offset: Ignored on input, First non-shared entry on output.
798 * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
799 *
800 * A non-shared page-table has some entries that belong to the address range
801 * and others that don't. This function determines the entries that belong
802 * fully to the address range. Depending on level, some entries may
803 * partially belong to the address range (that can't happen at level 0).
804 * The function detects that and adjust those offsets to not include those
805 * partial entries. Iff it does detect partial entries, we know that there must
806 * be shared page tables also at lower levels, so it adjusts the walk action
807 * accordingly.
808 *
809 * Return: true if there were non-shared entries, false otherwise.
810 */
xe_pt_nonshared_offsets(u64 addr,u64 end,unsigned int level,struct xe_pt_walk * walk,enum page_walk_action * action,pgoff_t * offset,pgoff_t * end_offset)811 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
812 struct xe_pt_walk *walk,
813 enum page_walk_action *action,
814 pgoff_t *offset, pgoff_t *end_offset)
815 {
816 u64 size = 1ull << walk->shifts[level];
817
818 *offset = xe_pt_offset(addr, level, walk);
819 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
820
821 if (!level)
822 return true;
823
824 /*
825 * If addr or next are not size aligned, there are shared pts at lower
826 * level, so in that case traverse down the subtree
827 */
828 *action = ACTION_CONTINUE;
829 if (!IS_ALIGNED(addr, size)) {
830 *action = ACTION_SUBTREE;
831 (*offset)++;
832 }
833
834 if (!IS_ALIGNED(end, size)) {
835 *action = ACTION_SUBTREE;
836 (*end_offset)--;
837 }
838
839 return *end_offset > *offset;
840 }
841
842 struct xe_pt_zap_ptes_walk {
843 /** @base: The walk base-class */
844 struct xe_pt_walk base;
845
846 /* Input parameters for the walk */
847 /** @tile: The tile we're building for */
848 struct xe_tile *tile;
849
850 /* Output */
851 /** @needs_invalidate: Whether we need to invalidate TLB*/
852 bool needs_invalidate;
853 };
854
xe_pt_zap_ptes_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)855 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
856 unsigned int level, u64 addr, u64 next,
857 struct xe_ptw **child,
858 enum page_walk_action *action,
859 struct xe_pt_walk *walk)
860 {
861 struct xe_pt_zap_ptes_walk *xe_walk =
862 container_of(walk, typeof(*xe_walk), base);
863 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
864 pgoff_t end_offset;
865
866 XE_WARN_ON(!*child);
867 XE_WARN_ON(!level);
868
869 /*
870 * Note that we're called from an entry callback, and we're dealing
871 * with the child of that entry rather than the parent, so need to
872 * adjust level down.
873 */
874 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
875 &end_offset)) {
876 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
877 offset * sizeof(u64), 0,
878 (end_offset - offset) * sizeof(u64));
879 xe_walk->needs_invalidate = true;
880 }
881
882 return 0;
883 }
884
885 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
886 .pt_entry = xe_pt_zap_ptes_entry,
887 };
888
889 /**
890 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
891 * @tile: The tile we're zapping for.
892 * @vma: GPU VMA detailing address range.
893 *
894 * Eviction and Userptr invalidation needs to be able to zap the
895 * gpu ptes of a given address range in pagefaulting mode.
896 * In order to be able to do that, that function needs access to the shared
897 * page-table entrieaso it can either clear the leaf PTEs or
898 * clear the pointers to lower-level page-tables. The caller is required
899 * to hold the necessary locks to ensure neither the page-table connectivity
900 * nor the page-table entries of the range is updated from under us.
901 *
902 * Return: Whether ptes were actually updated and a TLB invalidation is
903 * required.
904 */
xe_pt_zap_ptes(struct xe_tile * tile,struct xe_vma * vma)905 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
906 {
907 struct xe_pt_zap_ptes_walk xe_walk = {
908 .base = {
909 .ops = &xe_pt_zap_ptes_ops,
910 .shifts = xe_normal_pt_shifts,
911 .max_level = XE_PT_HIGHEST_LEVEL,
912 },
913 .tile = tile,
914 };
915 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
916 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated);
917
918 if (xe_vma_bo(vma))
919 xe_bo_assert_held(xe_vma_bo(vma));
920 else if (xe_vma_is_userptr(vma))
921 lockdep_assert_held(&xe_vma_vm(vma)->svm.gpusvm.notifier_lock);
922
923 if (!(pt_mask & BIT(tile->id)))
924 return false;
925
926 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
927 xe_vma_end(vma), &xe_walk.base);
928
929 return xe_walk.needs_invalidate;
930 }
931
932 /**
933 * xe_pt_zap_ptes_range() - Zap (zero) gpu ptes of a SVM range
934 * @tile: The tile we're zapping for.
935 * @vm: The VM we're zapping for.
936 * @range: The SVM range we're zapping for.
937 *
938 * SVM invalidation needs to be able to zap the gpu ptes of a given address
939 * range. In order to be able to do that, that function needs access to the
940 * shared page-table entries so it can either clear the leaf PTEs or
941 * clear the pointers to lower-level page-tables. The caller is required
942 * to hold the SVM notifier lock.
943 *
944 * Return: Whether ptes were actually updated and a TLB invalidation is
945 * required.
946 */
xe_pt_zap_ptes_range(struct xe_tile * tile,struct xe_vm * vm,struct xe_svm_range * range)947 bool xe_pt_zap_ptes_range(struct xe_tile *tile, struct xe_vm *vm,
948 struct xe_svm_range *range)
949 {
950 struct xe_pt_zap_ptes_walk xe_walk = {
951 .base = {
952 .ops = &xe_pt_zap_ptes_ops,
953 .shifts = xe_normal_pt_shifts,
954 .max_level = XE_PT_HIGHEST_LEVEL,
955 },
956 .tile = tile,
957 };
958 struct xe_pt *pt = vm->pt_root[tile->id];
959 u8 pt_mask = (range->tile_present & ~range->tile_invalidated);
960
961 /*
962 * Locking rules:
963 *
964 * - notifier_lock (write): full protection against page table changes
965 * and MMU notifier invalidations.
966 *
967 * - notifier_lock (read) + vm_lock (write): combined protection against
968 * invalidations and concurrent page table modifications. (e.g., madvise)
969 *
970 */
971 lockdep_assert(lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 0) ||
972 (lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 1) &&
973 lockdep_is_held_type(&vm->lock, 0)));
974
975 if (!(pt_mask & BIT(tile->id)))
976 return false;
977
978 (void)xe_pt_walk_shared(&pt->base, pt->level, range->base.itree.start,
979 range->base.itree.last + 1, &xe_walk.base);
980
981 return xe_walk.needs_invalidate;
982 }
983
984 static void
xe_vm_populate_pgtable(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * data,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)985 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
986 struct iosys_map *map, void *data,
987 u32 qword_ofs, u32 num_qwords,
988 const struct xe_vm_pgtable_update *update)
989 {
990 struct xe_pt_entry *ptes = update->pt_entries;
991 u64 *ptr = data;
992 u32 i;
993
994 for (i = 0; i < num_qwords; i++) {
995 if (map)
996 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
997 sizeof(u64), u64, ptes[i].pte);
998 else
999 ptr[i] = ptes[i].pte;
1000 }
1001 }
1002
xe_pt_cancel_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)1003 static void xe_pt_cancel_bind(struct xe_vma *vma,
1004 struct xe_vm_pgtable_update *entries,
1005 u32 num_entries)
1006 {
1007 u32 i, j;
1008
1009 for (i = 0; i < num_entries; i++) {
1010 struct xe_pt *pt = entries[i].pt;
1011
1012 if (!pt)
1013 continue;
1014
1015 if (pt->level) {
1016 for (j = 0; j < entries[i].qwords; j++)
1017 xe_pt_destroy(entries[i].pt_entries[j].pt,
1018 xe_vma_vm(vma)->flags, NULL);
1019 }
1020
1021 kfree(entries[i].pt_entries);
1022 entries[i].pt_entries = NULL;
1023 entries[i].qwords = 0;
1024 }
1025 }
1026
1027 #define XE_INVALID_VMA ((struct xe_vma *)(0xdeaddeadull))
1028
xe_pt_commit_prepare_locks_assert(struct xe_vma * vma)1029 static void xe_pt_commit_prepare_locks_assert(struct xe_vma *vma)
1030 {
1031 struct xe_vm *vm;
1032
1033 if (vma == XE_INVALID_VMA)
1034 return;
1035
1036 vm = xe_vma_vm(vma);
1037 lockdep_assert_held(&vm->lock);
1038
1039 if (!xe_vma_has_no_bo(vma))
1040 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
1041
1042 xe_vm_assert_held(vm);
1043 }
1044
xe_pt_commit_locks_assert(struct xe_vma * vma)1045 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
1046 {
1047 struct xe_vm *vm;
1048
1049 if (vma == XE_INVALID_VMA)
1050 return;
1051
1052 vm = xe_vma_vm(vma);
1053 xe_pt_commit_prepare_locks_assert(vma);
1054
1055 if (xe_vma_is_userptr(vma))
1056 xe_svm_assert_held_read(vm);
1057 }
1058
xe_pt_commit(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,struct llist_head * deferred)1059 static void xe_pt_commit(struct xe_vma *vma,
1060 struct xe_vm_pgtable_update *entries,
1061 u32 num_entries, struct llist_head *deferred)
1062 {
1063 u32 i, j;
1064
1065 xe_pt_commit_locks_assert(vma);
1066
1067 for (i = 0; i < num_entries; i++) {
1068 struct xe_pt *pt = entries[i].pt;
1069 struct xe_pt_dir *pt_dir;
1070
1071 if (!pt->level)
1072 continue;
1073
1074 pt_dir = as_xe_pt_dir(pt);
1075 for (j = 0; j < entries[i].qwords; j++) {
1076 struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
1077 int j_ = j + entries[i].ofs;
1078
1079 pt_dir->children[j_] = pt_dir->staging[j_];
1080 xe_pt_destroy(oldpte, (vma == XE_INVALID_VMA) ? 0 :
1081 xe_vma_vm(vma)->flags, deferred);
1082 }
1083 }
1084 }
1085
xe_pt_abort_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,bool rebind)1086 static void xe_pt_abort_bind(struct xe_vma *vma,
1087 struct xe_vm_pgtable_update *entries,
1088 u32 num_entries, bool rebind)
1089 {
1090 int i, j;
1091
1092 xe_pt_commit_prepare_locks_assert(vma);
1093
1094 for (i = num_entries - 1; i >= 0; --i) {
1095 struct xe_pt *pt = entries[i].pt;
1096 struct xe_pt_dir *pt_dir;
1097
1098 if (!rebind)
1099 pt->num_live -= entries[i].qwords;
1100
1101 if (!pt->level)
1102 continue;
1103
1104 pt_dir = as_xe_pt_dir(pt);
1105 for (j = 0; j < entries[i].qwords; j++) {
1106 u32 j_ = j + entries[i].ofs;
1107 struct xe_pt *newpte = xe_pt_entry_staging(pt_dir, j_);
1108 struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
1109
1110 pt_dir->staging[j_] = oldpte ? &oldpte->base : 0;
1111 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL);
1112 }
1113 }
1114 }
1115
xe_pt_commit_prepare_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,bool rebind)1116 static void xe_pt_commit_prepare_bind(struct xe_vma *vma,
1117 struct xe_vm_pgtable_update *entries,
1118 u32 num_entries, bool rebind)
1119 {
1120 u32 i, j;
1121
1122 xe_pt_commit_prepare_locks_assert(vma);
1123
1124 for (i = 0; i < num_entries; i++) {
1125 struct xe_pt *pt = entries[i].pt;
1126 struct xe_pt_dir *pt_dir;
1127
1128 if (!rebind)
1129 pt->num_live += entries[i].qwords;
1130
1131 if (!pt->level)
1132 continue;
1133
1134 pt_dir = as_xe_pt_dir(pt);
1135 for (j = 0; j < entries[i].qwords; j++) {
1136 u32 j_ = j + entries[i].ofs;
1137 struct xe_pt *newpte = entries[i].pt_entries[j].pt;
1138 struct xe_pt *oldpte = NULL;
1139
1140 if (xe_pt_entry_staging(pt_dir, j_))
1141 oldpte = xe_pt_entry_staging(pt_dir, j_);
1142
1143 pt_dir->staging[j_] = &newpte->base;
1144 entries[i].pt_entries[j].pt = oldpte;
1145 }
1146 }
1147 }
1148
xe_pt_free_bind(struct xe_vm_pgtable_update * entries,u32 num_entries)1149 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries,
1150 u32 num_entries)
1151 {
1152 u32 i;
1153
1154 for (i = 0; i < num_entries; i++)
1155 kfree(entries[i].pt_entries);
1156 }
1157
1158 static int
xe_pt_prepare_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_svm_range * range,struct xe_vm_pgtable_update * entries,u32 * num_entries,bool invalidate_on_bind)1159 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
1160 struct xe_svm_range *range,
1161 struct xe_vm_pgtable_update *entries,
1162 u32 *num_entries, bool invalidate_on_bind)
1163 {
1164 int err;
1165
1166 *num_entries = 0;
1167 err = xe_pt_stage_bind(tile, vma, range, entries, num_entries,
1168 invalidate_on_bind);
1169 if (!err)
1170 xe_tile_assert(tile, *num_entries);
1171
1172 return err;
1173 }
1174
xe_vm_dbg_print_entries(struct xe_device * xe,const struct xe_vm_pgtable_update * entries,unsigned int num_entries,bool bind)1175 static void xe_vm_dbg_print_entries(struct xe_device *xe,
1176 const struct xe_vm_pgtable_update *entries,
1177 unsigned int num_entries, bool bind)
1178 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
1179 {
1180 unsigned int i;
1181
1182 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind",
1183 num_entries);
1184 for (i = 0; i < num_entries; i++) {
1185 const struct xe_vm_pgtable_update *entry = &entries[i];
1186 struct xe_pt *xe_pt = entry->pt;
1187 u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
1188 u64 end;
1189 u64 start;
1190
1191 xe_assert(xe, !entry->pt->is_compact);
1192 start = entry->ofs * page_size;
1193 end = start + page_size * entry->qwords;
1194 vm_dbg(&xe->drm,
1195 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
1196 i, xe_pt->level, entry->ofs, entry->qwords,
1197 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
1198 }
1199 }
1200 #else
1201 {}
1202 #endif
1203
no_in_syncs(struct xe_sync_entry * syncs,u32 num_syncs)1204 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs)
1205 {
1206 int i;
1207
1208 for (i = 0; i < num_syncs; i++) {
1209 struct dma_fence *fence = syncs[i].fence;
1210
1211 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1212 &fence->flags))
1213 return false;
1214 }
1215
1216 return true;
1217 }
1218
job_test_add_deps(struct xe_sched_job * job,struct dma_resv * resv,enum dma_resv_usage usage)1219 static int job_test_add_deps(struct xe_sched_job *job,
1220 struct dma_resv *resv,
1221 enum dma_resv_usage usage)
1222 {
1223 if (!job) {
1224 if (!dma_resv_test_signaled(resv, usage))
1225 return -ETIME;
1226
1227 return 0;
1228 }
1229
1230 return xe_sched_job_add_deps(job, resv, usage);
1231 }
1232
vma_add_deps(struct xe_vma * vma,struct xe_sched_job * job)1233 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job)
1234 {
1235 struct xe_bo *bo = xe_vma_bo(vma);
1236
1237 xe_bo_assert_held(bo);
1238
1239 if (bo && !bo->vm)
1240 return job_test_add_deps(job, bo->ttm.base.resv,
1241 DMA_RESV_USAGE_KERNEL);
1242
1243 return 0;
1244 }
1245
op_add_deps(struct xe_vm * vm,struct xe_vma_op * op,struct xe_sched_job * job)1246 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op,
1247 struct xe_sched_job *job)
1248 {
1249 int err = 0;
1250
1251 /*
1252 * No need to check for is_cpu_addr_mirror here as vma_add_deps is a
1253 * NOP if VMA is_cpu_addr_mirror
1254 */
1255
1256 switch (op->base.op) {
1257 case DRM_GPUVA_OP_MAP:
1258 if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1259 break;
1260
1261 err = vma_add_deps(op->map.vma, job);
1262 break;
1263 case DRM_GPUVA_OP_REMAP:
1264 if (op->remap.prev)
1265 err = vma_add_deps(op->remap.prev, job);
1266 if (!err && op->remap.next)
1267 err = vma_add_deps(op->remap.next, job);
1268 break;
1269 case DRM_GPUVA_OP_UNMAP:
1270 break;
1271 case DRM_GPUVA_OP_PREFETCH:
1272 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job);
1273 break;
1274 case DRM_GPUVA_OP_DRIVER:
1275 break;
1276 default:
1277 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1278 }
1279
1280 return err;
1281 }
1282
xe_pt_vm_dependencies(struct xe_sched_job * job,struct xe_tlb_inval_job * ijob,struct xe_tlb_inval_job * mjob,struct xe_vm * vm,struct xe_vma_ops * vops,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_range_fence_tree * rftree)1283 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
1284 struct xe_tlb_inval_job *ijob,
1285 struct xe_tlb_inval_job *mjob,
1286 struct xe_vm *vm,
1287 struct xe_vma_ops *vops,
1288 struct xe_vm_pgtable_update_ops *pt_update_ops,
1289 struct xe_range_fence_tree *rftree)
1290 {
1291 struct xe_range_fence *rtfence;
1292 struct dma_fence *fence;
1293 struct xe_vma_op *op;
1294 int err = 0, i;
1295
1296 xe_vm_assert_held(vm);
1297
1298 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs))
1299 return -ETIME;
1300
1301 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q))
1302 return -ETIME;
1303
1304 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) {
1305 err = job_test_add_deps(job, xe_vm_resv(vm),
1306 pt_update_ops->wait_vm_bookkeep ?
1307 DMA_RESV_USAGE_BOOKKEEP :
1308 DMA_RESV_USAGE_KERNEL);
1309 if (err)
1310 return err;
1311 }
1312
1313 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start,
1314 pt_update_ops->last);
1315 while (rtfence) {
1316 fence = rtfence->fence;
1317
1318 if (!dma_fence_is_signaled(fence)) {
1319 /*
1320 * Is this a CPU update? GPU is busy updating, so return
1321 * an error
1322 */
1323 if (!job)
1324 return -ETIME;
1325
1326 dma_fence_get(fence);
1327 err = drm_sched_job_add_dependency(&job->drm, fence);
1328 if (err)
1329 return err;
1330 }
1331
1332 rtfence = xe_range_fence_tree_next(rtfence,
1333 pt_update_ops->start,
1334 pt_update_ops->last);
1335 }
1336
1337 list_for_each_entry(op, &vops->list, link) {
1338 err = op_add_deps(vm, op, job);
1339 if (err)
1340 return err;
1341 }
1342
1343 if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) {
1344 if (job)
1345 err = xe_sched_job_last_fence_add_dep(job, vm);
1346 else
1347 err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm);
1348 }
1349
1350 for (i = 0; job && !err && i < vops->num_syncs; i++)
1351 err = xe_sync_entry_add_deps(&vops->syncs[i], job);
1352
1353 if (job) {
1354 if (ijob) {
1355 err = xe_tlb_inval_job_alloc_dep(ijob);
1356 if (err)
1357 return err;
1358 }
1359
1360 if (mjob) {
1361 err = xe_tlb_inval_job_alloc_dep(mjob);
1362 if (err)
1363 return err;
1364 }
1365 }
1366
1367 return err;
1368 }
1369
xe_pt_pre_commit(struct xe_migrate_pt_update * pt_update)1370 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1371 {
1372 struct xe_vma_ops *vops = pt_update->vops;
1373 struct xe_vm *vm = vops->vm;
1374 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id];
1375 struct xe_vm_pgtable_update_ops *pt_update_ops =
1376 &vops->pt_update_ops[pt_update->tile_id];
1377
1378 return xe_pt_vm_dependencies(pt_update->job, pt_update->ijob,
1379 pt_update->mjob, vm, pt_update->vops,
1380 pt_update_ops, rftree);
1381 }
1382
1383 #if IS_ENABLED(CONFIG_DRM_GPUSVM)
1384 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
1385
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)1386 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1387 {
1388 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
1389 static u32 count;
1390
1391 if (count++ % divisor == divisor - 1) {
1392 uvma->userptr.divisor = divisor << 1;
1393 return true;
1394 }
1395
1396 return false;
1397 }
1398
1399 #else
1400
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)1401 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1402 {
1403 return false;
1404 }
1405
1406 #endif
1407
vma_check_userptr(struct xe_vm * vm,struct xe_vma * vma,struct xe_vm_pgtable_update_ops * pt_update)1408 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma,
1409 struct xe_vm_pgtable_update_ops *pt_update)
1410 {
1411 struct xe_userptr_vma *uvma;
1412 unsigned long notifier_seq;
1413
1414 xe_svm_assert_held_read(vm);
1415
1416 if (!xe_vma_is_userptr(vma))
1417 return 0;
1418
1419 uvma = to_userptr_vma(vma);
1420 if (xe_pt_userptr_inject_eagain(uvma))
1421 xe_vma_userptr_force_invalidate(uvma);
1422
1423 notifier_seq = uvma->userptr.pages.notifier_seq;
1424
1425 if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1426 notifier_seq))
1427 return 0;
1428
1429 if (xe_vm_in_fault_mode(vm))
1430 return -EAGAIN;
1431
1432 /*
1433 * Just continue the operation since exec or rebind worker
1434 * will take care of rebinding.
1435 */
1436 return 0;
1437 }
1438
op_check_svm_userptr(struct xe_vm * vm,struct xe_vma_op * op,struct xe_vm_pgtable_update_ops * pt_update)1439 static int op_check_svm_userptr(struct xe_vm *vm, struct xe_vma_op *op,
1440 struct xe_vm_pgtable_update_ops *pt_update)
1441 {
1442 int err = 0;
1443
1444 xe_svm_assert_held_read(vm);
1445
1446 switch (op->base.op) {
1447 case DRM_GPUVA_OP_MAP:
1448 if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1449 break;
1450
1451 err = vma_check_userptr(vm, op->map.vma, pt_update);
1452 break;
1453 case DRM_GPUVA_OP_REMAP:
1454 if (op->remap.prev)
1455 err = vma_check_userptr(vm, op->remap.prev, pt_update);
1456 if (!err && op->remap.next)
1457 err = vma_check_userptr(vm, op->remap.next, pt_update);
1458 break;
1459 case DRM_GPUVA_OP_UNMAP:
1460 break;
1461 case DRM_GPUVA_OP_PREFETCH:
1462 if (xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va))) {
1463 struct xe_svm_range *range = op->map_range.range;
1464 unsigned long i;
1465
1466 xe_assert(vm->xe,
1467 xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va)));
1468 xa_for_each(&op->prefetch_range.range, i, range) {
1469 xe_svm_range_debug(range, "PRE-COMMIT");
1470
1471 if (!xe_svm_range_pages_valid(range)) {
1472 xe_svm_range_debug(range, "PRE-COMMIT - RETRY");
1473 return -ENODATA;
1474 }
1475 }
1476 } else {
1477 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va), pt_update);
1478 }
1479 break;
1480 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM)
1481 case DRM_GPUVA_OP_DRIVER:
1482 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) {
1483 struct xe_svm_range *range = op->map_range.range;
1484
1485 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma));
1486
1487 xe_svm_range_debug(range, "PRE-COMMIT");
1488
1489 if (!xe_svm_range_pages_valid(range)) {
1490 xe_svm_range_debug(range, "PRE-COMMIT - RETRY");
1491 return -EAGAIN;
1492 }
1493 }
1494 break;
1495 #endif
1496 default:
1497 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1498 }
1499
1500 return err;
1501 }
1502
xe_pt_svm_userptr_pre_commit(struct xe_migrate_pt_update * pt_update)1503 static int xe_pt_svm_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1504 {
1505 struct xe_vm *vm = pt_update->vops->vm;
1506 struct xe_vma_ops *vops = pt_update->vops;
1507 struct xe_vm_pgtable_update_ops *pt_update_ops =
1508 &vops->pt_update_ops[pt_update->tile_id];
1509 struct xe_vma_op *op;
1510 int err;
1511
1512 err = xe_pt_pre_commit(pt_update);
1513 if (err)
1514 return err;
1515
1516 xe_svm_notifier_lock(vm);
1517
1518 list_for_each_entry(op, &vops->list, link) {
1519 err = op_check_svm_userptr(vm, op, pt_update_ops);
1520 if (err) {
1521 xe_svm_notifier_unlock(vm);
1522 break;
1523 }
1524 }
1525
1526 return err;
1527 }
1528 #endif
1529
1530 struct xe_pt_stage_unbind_walk {
1531 /** @base: The pagewalk base-class. */
1532 struct xe_pt_walk base;
1533
1534 /* Input parameters for the walk */
1535 /** @tile: The tile we're unbinding from. */
1536 struct xe_tile *tile;
1537
1538 /**
1539 * @modified_start: Walk range start, modified to include any
1540 * shared pagetables that we're the only user of and can thus
1541 * treat as private.
1542 */
1543 u64 modified_start;
1544 /** @modified_end: Walk range start, modified like @modified_start. */
1545 u64 modified_end;
1546
1547 /* Output */
1548 /* @wupd: Structure to track the page-table updates we're building */
1549 struct xe_walk_update wupd;
1550 };
1551
1552 /*
1553 * Check whether this range is the only one populating this pagetable,
1554 * and in that case, update the walk range checks so that higher levels don't
1555 * view us as a shared pagetable.
1556 */
xe_pt_check_kill(u64 addr,u64 next,unsigned int level,const struct xe_pt * child,enum page_walk_action * action,struct xe_pt_walk * walk)1557 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1558 const struct xe_pt *child,
1559 enum page_walk_action *action,
1560 struct xe_pt_walk *walk)
1561 {
1562 struct xe_pt_stage_unbind_walk *xe_walk =
1563 container_of(walk, typeof(*xe_walk), base);
1564 unsigned int shift = walk->shifts[level];
1565 u64 size = 1ull << shift;
1566
1567 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1568 ((next - addr) >> shift) == child->num_live) {
1569 u64 size = 1ull << walk->shifts[level + 1];
1570
1571 *action = ACTION_CONTINUE;
1572
1573 if (xe_walk->modified_start >= addr)
1574 xe_walk->modified_start = round_down(addr, size);
1575 if (xe_walk->modified_end <= next)
1576 xe_walk->modified_end = round_up(next, size);
1577
1578 return true;
1579 }
1580
1581 return false;
1582 }
1583
xe_pt_stage_unbind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1584 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1585 unsigned int level, u64 addr, u64 next,
1586 struct xe_ptw **child,
1587 enum page_walk_action *action,
1588 struct xe_pt_walk *walk)
1589 {
1590 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1591
1592 XE_WARN_ON(!*child);
1593 XE_WARN_ON(!level);
1594
1595 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1596
1597 return 0;
1598 }
1599
1600 static int
xe_pt_stage_unbind_post_descend(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1601 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1602 unsigned int level, u64 addr, u64 next,
1603 struct xe_ptw **child,
1604 enum page_walk_action *action,
1605 struct xe_pt_walk *walk)
1606 {
1607 struct xe_pt_stage_unbind_walk *xe_walk =
1608 container_of(walk, typeof(*xe_walk), base);
1609 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1610 pgoff_t end_offset;
1611 u64 size = 1ull << walk->shifts[--level];
1612 int err;
1613
1614 if (!IS_ALIGNED(addr, size))
1615 addr = xe_walk->modified_start;
1616 if (!IS_ALIGNED(next, size))
1617 next = xe_walk->modified_end;
1618
1619 /* Parent == *child is the root pt. Don't kill it. */
1620 if (parent != *child &&
1621 xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1622 return 0;
1623
1624 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1625 &end_offset))
1626 return 0;
1627
1628 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true);
1629 if (err)
1630 return err;
1631
1632 xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1633
1634 return 0;
1635 }
1636
1637 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1638 .pt_entry = xe_pt_stage_unbind_entry,
1639 .pt_post_descend = xe_pt_stage_unbind_post_descend,
1640 };
1641
1642 /**
1643 * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1644 * operation
1645 * @tile: The tile we're unbinding for.
1646 * @vm: The vm
1647 * @vma: The vma we're unbinding.
1648 * @range: The range we're unbinding.
1649 * @entries: Caller-provided storage for the update structures.
1650 *
1651 * Builds page-table update structures for an unbind operation. The function
1652 * will attempt to remove all page-tables that we're the only user
1653 * of, and for that to work, the unbind operation must be committed in the
1654 * same critical section that blocks racing binds to the same page-table tree.
1655 *
1656 * Return: The number of entries used.
1657 */
xe_pt_stage_unbind(struct xe_tile * tile,struct xe_vm * vm,struct xe_vma * vma,struct xe_svm_range * range,struct xe_vm_pgtable_update * entries)1658 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile,
1659 struct xe_vm *vm,
1660 struct xe_vma *vma,
1661 struct xe_svm_range *range,
1662 struct xe_vm_pgtable_update *entries)
1663 {
1664 u64 start = range ? range->base.itree.start : xe_vma_start(vma);
1665 u64 end = range ? range->base.itree.last + 1 : xe_vma_end(vma);
1666 struct xe_pt_stage_unbind_walk xe_walk = {
1667 .base = {
1668 .ops = &xe_pt_stage_unbind_ops,
1669 .shifts = xe_normal_pt_shifts,
1670 .max_level = XE_PT_HIGHEST_LEVEL,
1671 .staging = true,
1672 },
1673 .tile = tile,
1674 .modified_start = start,
1675 .modified_end = end,
1676 .wupd.entries = entries,
1677 };
1678 struct xe_pt *pt = vm->pt_root[tile->id];
1679
1680 (void)xe_pt_walk_shared(&pt->base, pt->level, start, end,
1681 &xe_walk.base);
1682
1683 return xe_walk.wupd.num_used_entries;
1684 }
1685
1686 static void
xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * ptr,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)1687 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1688 struct xe_tile *tile, struct iosys_map *map,
1689 void *ptr, u32 qword_ofs, u32 num_qwords,
1690 const struct xe_vm_pgtable_update *update)
1691 {
1692 struct xe_vm *vm = pt_update->vops->vm;
1693 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level);
1694 int i;
1695
1696 if (map && map->is_iomem)
1697 for (i = 0; i < num_qwords; ++i)
1698 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1699 sizeof(u64), u64, empty);
1700 else if (map)
1701 memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1702 num_qwords);
1703 else
1704 memset64(ptr, empty, num_qwords);
1705 }
1706
xe_pt_abort_unbind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)1707 static void xe_pt_abort_unbind(struct xe_vma *vma,
1708 struct xe_vm_pgtable_update *entries,
1709 u32 num_entries)
1710 {
1711 int i, j;
1712
1713 xe_pt_commit_prepare_locks_assert(vma);
1714
1715 for (i = num_entries - 1; i >= 0; --i) {
1716 struct xe_vm_pgtable_update *entry = &entries[i];
1717 struct xe_pt *pt = entry->pt;
1718 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1719
1720 pt->num_live += entry->qwords;
1721
1722 if (!pt->level)
1723 continue;
1724
1725 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++)
1726 pt_dir->staging[j] =
1727 entries[i].pt_entries[j - entry->ofs].pt ?
1728 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL;
1729 }
1730 }
1731
1732 static void
xe_pt_commit_prepare_unbind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)1733 xe_pt_commit_prepare_unbind(struct xe_vma *vma,
1734 struct xe_vm_pgtable_update *entries,
1735 u32 num_entries)
1736 {
1737 int i, j;
1738
1739 xe_pt_commit_prepare_locks_assert(vma);
1740
1741 for (i = 0; i < num_entries; ++i) {
1742 struct xe_vm_pgtable_update *entry = &entries[i];
1743 struct xe_pt *pt = entry->pt;
1744 struct xe_pt_dir *pt_dir;
1745
1746 pt->num_live -= entry->qwords;
1747 if (!pt->level)
1748 continue;
1749
1750 pt_dir = as_xe_pt_dir(pt);
1751 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) {
1752 entry->pt_entries[j - entry->ofs].pt =
1753 xe_pt_entry_staging(pt_dir, j);
1754 pt_dir->staging[j] = NULL;
1755 }
1756 }
1757 }
1758
1759 static void
xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops * pt_update_ops,u64 start,u64 end)1760 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops,
1761 u64 start, u64 end)
1762 {
1763 u64 last;
1764 u32 current_op = pt_update_ops->current_op;
1765 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1766 int i, level = 0;
1767
1768 for (i = 0; i < pt_op->num_entries; i++) {
1769 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i];
1770
1771 if (entry->pt->level > level)
1772 level = entry->pt->level;
1773 }
1774
1775 /* Greedy (non-optimal) calculation but simple */
1776 start = ALIGN_DOWN(start, 0x1ull << xe_pt_shift(level));
1777 last = ALIGN(end, 0x1ull << xe_pt_shift(level)) - 1;
1778
1779 if (start < pt_update_ops->start)
1780 pt_update_ops->start = start;
1781 if (last > pt_update_ops->last)
1782 pt_update_ops->last = last;
1783 }
1784
vma_reserve_fences(struct xe_device * xe,struct xe_vma * vma)1785 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma)
1786 {
1787 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0;
1788
1789 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1790 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv,
1791 xe->info.tile_count << shift);
1792
1793 return 0;
1794 }
1795
bind_op_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,bool invalidate_on_bind)1796 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile,
1797 struct xe_vm_pgtable_update_ops *pt_update_ops,
1798 struct xe_vma *vma, bool invalidate_on_bind)
1799 {
1800 u32 current_op = pt_update_ops->current_op;
1801 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1802 int err;
1803
1804 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
1805 xe_bo_assert_held(xe_vma_bo(vma));
1806
1807 vm_dbg(&xe_vma_vm(vma)->xe->drm,
1808 "Preparing bind, with range [%llx...%llx)\n",
1809 xe_vma_start(vma), xe_vma_end(vma) - 1);
1810
1811 pt_op->vma = NULL;
1812 pt_op->bind = true;
1813 pt_op->rebind = BIT(tile->id) & vma->tile_present;
1814
1815 err = vma_reserve_fences(tile_to_xe(tile), vma);
1816 if (err)
1817 return err;
1818
1819 err = xe_pt_prepare_bind(tile, vma, NULL, pt_op->entries,
1820 &pt_op->num_entries, invalidate_on_bind);
1821 if (!err) {
1822 xe_tile_assert(tile, pt_op->num_entries <=
1823 ARRAY_SIZE(pt_op->entries));
1824 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1825 pt_op->num_entries, true);
1826
1827 xe_pt_update_ops_rfence_interval(pt_update_ops,
1828 xe_vma_start(vma),
1829 xe_vma_end(vma));
1830 ++pt_update_ops->current_op;
1831 pt_update_ops->needs_svm_lock |= xe_vma_is_userptr(vma);
1832
1833 /*
1834 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1835 * cached PTEs point to freed memory. On LR vms this is done
1836 * automatically when the context is re-enabled by the rebind worker,
1837 * or in fault mode it was invalidated on PTE zapping.
1838 *
1839 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1840 * PTE is already cached in the TLB so it needs to be invalidated.
1841 * On !LR VMs this is done in the ring ops preceding a batch, but on
1842 * LR, in particular on user-space batch buffer chaining, it needs to
1843 * be done here.
1844 */
1845 if ((!pt_op->rebind && xe_vm_has_scratch(vm) &&
1846 xe_vm_in_lr_mode(vm)))
1847 pt_update_ops->needs_invalidation = true;
1848 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm))
1849 /* We bump also if batch_invalidate_tlb is true */
1850 vm->tlb_flush_seqno++;
1851
1852 vma->tile_staged |= BIT(tile->id);
1853 pt_op->vma = vma;
1854 xe_pt_commit_prepare_bind(vma, pt_op->entries,
1855 pt_op->num_entries, pt_op->rebind);
1856 } else {
1857 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1858 }
1859
1860 return err;
1861 }
1862
bind_range_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct xe_svm_range * range)1863 static int bind_range_prepare(struct xe_vm *vm, struct xe_tile *tile,
1864 struct xe_vm_pgtable_update_ops *pt_update_ops,
1865 struct xe_vma *vma, struct xe_svm_range *range)
1866 {
1867 u32 current_op = pt_update_ops->current_op;
1868 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1869 int err;
1870
1871 xe_tile_assert(tile, xe_vma_is_cpu_addr_mirror(vma));
1872
1873 vm_dbg(&xe_vma_vm(vma)->xe->drm,
1874 "Preparing bind, with range [%lx...%lx)\n",
1875 range->base.itree.start, range->base.itree.last);
1876
1877 pt_op->vma = NULL;
1878 pt_op->bind = true;
1879 pt_op->rebind = BIT(tile->id) & range->tile_present;
1880
1881 err = xe_pt_prepare_bind(tile, vma, range, pt_op->entries,
1882 &pt_op->num_entries, false);
1883 if (!err) {
1884 xe_tile_assert(tile, pt_op->num_entries <=
1885 ARRAY_SIZE(pt_op->entries));
1886 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1887 pt_op->num_entries, true);
1888
1889 xe_pt_update_ops_rfence_interval(pt_update_ops,
1890 range->base.itree.start,
1891 range->base.itree.last + 1);
1892 ++pt_update_ops->current_op;
1893 pt_update_ops->needs_svm_lock = true;
1894
1895 pt_op->vma = vma;
1896 xe_pt_commit_prepare_bind(vma, pt_op->entries,
1897 pt_op->num_entries, pt_op->rebind);
1898 } else {
1899 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1900 }
1901
1902 return err;
1903 }
1904
unbind_op_prepare(struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma)1905 static int unbind_op_prepare(struct xe_tile *tile,
1906 struct xe_vm_pgtable_update_ops *pt_update_ops,
1907 struct xe_vma *vma)
1908 {
1909 u32 current_op = pt_update_ops->current_op;
1910 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1911 int err;
1912
1913 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id)))
1914 return 0;
1915
1916 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
1917 xe_bo_assert_held(xe_vma_bo(vma));
1918
1919 vm_dbg(&xe_vma_vm(vma)->xe->drm,
1920 "Preparing unbind, with range [%llx...%llx)\n",
1921 xe_vma_start(vma), xe_vma_end(vma) - 1);
1922
1923 pt_op->vma = vma;
1924 pt_op->bind = false;
1925 pt_op->rebind = false;
1926
1927 err = vma_reserve_fences(tile_to_xe(tile), vma);
1928 if (err)
1929 return err;
1930
1931 pt_op->num_entries = xe_pt_stage_unbind(tile, xe_vma_vm(vma),
1932 vma, NULL, pt_op->entries);
1933
1934 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1935 pt_op->num_entries, false);
1936 xe_pt_update_ops_rfence_interval(pt_update_ops, xe_vma_start(vma),
1937 xe_vma_end(vma));
1938 ++pt_update_ops->current_op;
1939 pt_update_ops->needs_svm_lock |= xe_vma_is_userptr(vma);
1940 pt_update_ops->needs_invalidation = true;
1941
1942 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries);
1943
1944 return 0;
1945 }
1946
1947 static bool
xe_pt_op_check_range_skip_invalidation(struct xe_vm_pgtable_update_op * pt_op,struct xe_svm_range * range)1948 xe_pt_op_check_range_skip_invalidation(struct xe_vm_pgtable_update_op *pt_op,
1949 struct xe_svm_range *range)
1950 {
1951 struct xe_vm_pgtable_update *update = pt_op->entries;
1952
1953 XE_WARN_ON(!pt_op->num_entries);
1954
1955 /*
1956 * We can't skip the invalidation if we are removing PTEs that span more
1957 * than the range, do some checks to ensure we are removing PTEs that
1958 * are invalid.
1959 */
1960
1961 if (pt_op->num_entries > 1)
1962 return false;
1963
1964 if (update->pt->level == 0)
1965 return true;
1966
1967 if (update->pt->level == 1)
1968 return xe_svm_range_size(range) >= SZ_2M;
1969
1970 return false;
1971 }
1972
unbind_range_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_svm_range * range)1973 static int unbind_range_prepare(struct xe_vm *vm,
1974 struct xe_tile *tile,
1975 struct xe_vm_pgtable_update_ops *pt_update_ops,
1976 struct xe_svm_range *range)
1977 {
1978 u32 current_op = pt_update_ops->current_op;
1979 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1980
1981 if (!(range->tile_present & BIT(tile->id)))
1982 return 0;
1983
1984 vm_dbg(&vm->xe->drm,
1985 "Preparing unbind, with range [%lx...%lx)\n",
1986 range->base.itree.start, range->base.itree.last);
1987
1988 pt_op->vma = XE_INVALID_VMA;
1989 pt_op->bind = false;
1990 pt_op->rebind = false;
1991
1992 pt_op->num_entries = xe_pt_stage_unbind(tile, vm, NULL, range,
1993 pt_op->entries);
1994
1995 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1996 pt_op->num_entries, false);
1997 xe_pt_update_ops_rfence_interval(pt_update_ops, range->base.itree.start,
1998 range->base.itree.last + 1);
1999 ++pt_update_ops->current_op;
2000 pt_update_ops->needs_svm_lock = true;
2001 pt_update_ops->needs_invalidation |= xe_vm_has_scratch(vm) ||
2002 xe_vm_has_valid_gpu_mapping(tile, range->tile_present,
2003 range->tile_invalidated) ||
2004 !xe_pt_op_check_range_skip_invalidation(pt_op, range);
2005
2006 xe_pt_commit_prepare_unbind(XE_INVALID_VMA, pt_op->entries,
2007 pt_op->num_entries);
2008
2009 return 0;
2010 }
2011
op_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma_op * op)2012 static int op_prepare(struct xe_vm *vm,
2013 struct xe_tile *tile,
2014 struct xe_vm_pgtable_update_ops *pt_update_ops,
2015 struct xe_vma_op *op)
2016 {
2017 int err = 0;
2018
2019 xe_vm_assert_held(vm);
2020
2021 switch (op->base.op) {
2022 case DRM_GPUVA_OP_MAP:
2023 if ((!op->map.immediate && xe_vm_in_fault_mode(vm) &&
2024 !op->map.invalidate_on_bind) ||
2025 (op->map.vma_flags & XE_VMA_SYSTEM_ALLOCATOR))
2026 break;
2027
2028 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma,
2029 op->map.invalidate_on_bind);
2030 pt_update_ops->wait_vm_kernel = true;
2031 break;
2032 case DRM_GPUVA_OP_REMAP:
2033 {
2034 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va);
2035
2036 if (xe_vma_is_cpu_addr_mirror(old))
2037 break;
2038
2039 err = unbind_op_prepare(tile, pt_update_ops, old);
2040
2041 if (!err && op->remap.prev) {
2042 err = bind_op_prepare(vm, tile, pt_update_ops,
2043 op->remap.prev, false);
2044 pt_update_ops->wait_vm_bookkeep = true;
2045 }
2046 if (!err && op->remap.next) {
2047 err = bind_op_prepare(vm, tile, pt_update_ops,
2048 op->remap.next, false);
2049 pt_update_ops->wait_vm_bookkeep = true;
2050 }
2051 break;
2052 }
2053 case DRM_GPUVA_OP_UNMAP:
2054 {
2055 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
2056
2057 if (xe_vma_is_cpu_addr_mirror(vma))
2058 break;
2059
2060 err = unbind_op_prepare(tile, pt_update_ops, vma);
2061 break;
2062 }
2063 case DRM_GPUVA_OP_PREFETCH:
2064 {
2065 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va);
2066
2067 if (xe_vma_is_cpu_addr_mirror(vma)) {
2068 struct xe_svm_range *range;
2069 unsigned long i;
2070
2071 xa_for_each(&op->prefetch_range.range, i, range) {
2072 err = bind_range_prepare(vm, tile, pt_update_ops,
2073 vma, range);
2074 if (err)
2075 return err;
2076 }
2077 } else {
2078 err = bind_op_prepare(vm, tile, pt_update_ops, vma, false);
2079 pt_update_ops->wait_vm_kernel = true;
2080 }
2081 break;
2082 }
2083 case DRM_GPUVA_OP_DRIVER:
2084 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) {
2085 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma));
2086
2087 err = bind_range_prepare(vm, tile, pt_update_ops,
2088 op->map_range.vma,
2089 op->map_range.range);
2090 } else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) {
2091 err = unbind_range_prepare(vm, tile, pt_update_ops,
2092 op->unmap_range.range);
2093 }
2094 break;
2095 default:
2096 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2097 }
2098
2099 return err;
2100 }
2101
2102 static void
xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops * pt_update_ops)2103 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops)
2104 {
2105 init_llist_head(&pt_update_ops->deferred);
2106 pt_update_ops->start = ~0x0ull;
2107 pt_update_ops->last = 0x0ull;
2108 }
2109
2110 /**
2111 * xe_pt_update_ops_prepare() - Prepare PT update operations
2112 * @tile: Tile of PT update operations
2113 * @vops: VMA operationa
2114 *
2115 * Prepare PT update operations which includes updating internal PT state,
2116 * allocate memory for page tables, populate page table being pruned in, and
2117 * create PT update operations for leaf insertion / removal.
2118 *
2119 * Return: 0 on success, negative error code on error.
2120 */
xe_pt_update_ops_prepare(struct xe_tile * tile,struct xe_vma_ops * vops)2121 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops)
2122 {
2123 struct xe_vm_pgtable_update_ops *pt_update_ops =
2124 &vops->pt_update_ops[tile->id];
2125 struct xe_vma_op *op;
2126 int shift = tile->media_gt ? 1 : 0;
2127 int err;
2128
2129 lockdep_assert_held(&vops->vm->lock);
2130 xe_vm_assert_held(vops->vm);
2131
2132 xe_pt_update_ops_init(pt_update_ops);
2133
2134 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm),
2135 tile_to_xe(tile)->info.tile_count << shift);
2136 if (err)
2137 return err;
2138
2139 list_for_each_entry(op, &vops->list, link) {
2140 err = op_prepare(vops->vm, tile, pt_update_ops, op);
2141
2142 if (err)
2143 return err;
2144 }
2145
2146 xe_tile_assert(tile, pt_update_ops->current_op <=
2147 pt_update_ops->num_ops);
2148
2149 #ifdef TEST_VM_OPS_ERROR
2150 if (vops->inject_error &&
2151 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE)
2152 return -ENOSPC;
2153 #endif
2154
2155 return 0;
2156 }
2157 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO);
2158
bind_op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct dma_fence * fence,struct dma_fence * fence2,bool invalidate_on_bind)2159 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
2160 struct xe_vm_pgtable_update_ops *pt_update_ops,
2161 struct xe_vma *vma, struct dma_fence *fence,
2162 struct dma_fence *fence2, bool invalidate_on_bind)
2163 {
2164 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
2165
2166 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
2167 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
2168 pt_update_ops->wait_vm_bookkeep ?
2169 DMA_RESV_USAGE_KERNEL :
2170 DMA_RESV_USAGE_BOOKKEEP);
2171 if (fence2)
2172 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
2173 pt_update_ops->wait_vm_bookkeep ?
2174 DMA_RESV_USAGE_KERNEL :
2175 DMA_RESV_USAGE_BOOKKEEP);
2176 }
2177 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */
2178 WRITE_ONCE(vma->tile_present, vma->tile_present | BIT(tile->id));
2179 if (invalidate_on_bind)
2180 WRITE_ONCE(vma->tile_invalidated,
2181 vma->tile_invalidated | BIT(tile->id));
2182 else
2183 WRITE_ONCE(vma->tile_invalidated,
2184 vma->tile_invalidated & ~BIT(tile->id));
2185 vma->tile_staged &= ~BIT(tile->id);
2186 if (xe_vma_is_userptr(vma)) {
2187 xe_svm_assert_held_read(vm);
2188 to_userptr_vma(vma)->userptr.initial_bind = true;
2189 }
2190
2191 /*
2192 * Kick rebind worker if this bind triggers preempt fences and not in
2193 * the rebind worker
2194 */
2195 if (pt_update_ops->wait_vm_bookkeep &&
2196 xe_vm_in_preempt_fence_mode(vm) &&
2197 !current->mm)
2198 xe_vm_queue_rebind_worker(vm);
2199 }
2200
unbind_op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct dma_fence * fence,struct dma_fence * fence2)2201 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
2202 struct xe_vm_pgtable_update_ops *pt_update_ops,
2203 struct xe_vma *vma, struct dma_fence *fence,
2204 struct dma_fence *fence2)
2205 {
2206 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
2207
2208 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
2209 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
2210 pt_update_ops->wait_vm_bookkeep ?
2211 DMA_RESV_USAGE_KERNEL :
2212 DMA_RESV_USAGE_BOOKKEEP);
2213 if (fence2)
2214 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
2215 pt_update_ops->wait_vm_bookkeep ?
2216 DMA_RESV_USAGE_KERNEL :
2217 DMA_RESV_USAGE_BOOKKEEP);
2218 }
2219 vma->tile_present &= ~BIT(tile->id);
2220 if (!vma->tile_present) {
2221 list_del_init(&vma->combined_links.rebind);
2222 if (xe_vma_is_userptr(vma)) {
2223 xe_svm_assert_held_read(vm);
2224
2225 spin_lock(&vm->userptr.invalidated_lock);
2226 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
2227 spin_unlock(&vm->userptr.invalidated_lock);
2228 }
2229 }
2230 }
2231
range_present_and_invalidated_tile(struct xe_vm * vm,struct xe_svm_range * range,u8 tile_id)2232 static void range_present_and_invalidated_tile(struct xe_vm *vm,
2233 struct xe_svm_range *range,
2234 u8 tile_id)
2235 {
2236 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */
2237
2238 lockdep_assert_held(&vm->svm.gpusvm.notifier_lock);
2239
2240 WRITE_ONCE(range->tile_present, range->tile_present | BIT(tile_id));
2241 WRITE_ONCE(range->tile_invalidated, range->tile_invalidated & ~BIT(tile_id));
2242 }
2243
op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma_op * op,struct dma_fence * fence,struct dma_fence * fence2)2244 static void op_commit(struct xe_vm *vm,
2245 struct xe_tile *tile,
2246 struct xe_vm_pgtable_update_ops *pt_update_ops,
2247 struct xe_vma_op *op, struct dma_fence *fence,
2248 struct dma_fence *fence2)
2249 {
2250 xe_vm_assert_held(vm);
2251
2252 switch (op->base.op) {
2253 case DRM_GPUVA_OP_MAP:
2254 if ((!op->map.immediate && xe_vm_in_fault_mode(vm)) ||
2255 (op->map.vma_flags & XE_VMA_SYSTEM_ALLOCATOR))
2256 break;
2257
2258 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence,
2259 fence2, op->map.invalidate_on_bind);
2260 break;
2261 case DRM_GPUVA_OP_REMAP:
2262 {
2263 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va);
2264
2265 if (xe_vma_is_cpu_addr_mirror(old))
2266 break;
2267
2268 unbind_op_commit(vm, tile, pt_update_ops, old, fence, fence2);
2269
2270 if (op->remap.prev)
2271 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev,
2272 fence, fence2, false);
2273 if (op->remap.next)
2274 bind_op_commit(vm, tile, pt_update_ops, op->remap.next,
2275 fence, fence2, false);
2276 break;
2277 }
2278 case DRM_GPUVA_OP_UNMAP:
2279 {
2280 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
2281
2282 if (!xe_vma_is_cpu_addr_mirror(vma))
2283 unbind_op_commit(vm, tile, pt_update_ops, vma, fence,
2284 fence2);
2285 break;
2286 }
2287 case DRM_GPUVA_OP_PREFETCH:
2288 {
2289 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va);
2290
2291 if (xe_vma_is_cpu_addr_mirror(vma)) {
2292 struct xe_svm_range *range = NULL;
2293 unsigned long i;
2294
2295 xa_for_each(&op->prefetch_range.range, i, range)
2296 range_present_and_invalidated_tile(vm, range, tile->id);
2297 } else {
2298 bind_op_commit(vm, tile, pt_update_ops, vma, fence,
2299 fence2, false);
2300 }
2301 break;
2302 }
2303 case DRM_GPUVA_OP_DRIVER:
2304 {
2305 /* WRITE_ONCE pairs with READ_ONCE in xe_vm_has_valid_gpu_mapping() */
2306 if (op->subop == XE_VMA_SUBOP_MAP_RANGE)
2307 range_present_and_invalidated_tile(vm, op->map_range.range, tile->id);
2308 else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE)
2309 WRITE_ONCE(op->unmap_range.range->tile_present,
2310 op->unmap_range.range->tile_present &
2311 ~BIT(tile->id));
2312
2313 break;
2314 }
2315 default:
2316 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2317 }
2318 }
2319
2320 static const struct xe_migrate_pt_update_ops migrate_ops = {
2321 .populate = xe_vm_populate_pgtable,
2322 .clear = xe_migrate_clear_pgtable_callback,
2323 .pre_commit = xe_pt_pre_commit,
2324 };
2325
2326 #if IS_ENABLED(CONFIG_DRM_GPUSVM)
2327 static const struct xe_migrate_pt_update_ops svm_userptr_migrate_ops = {
2328 .populate = xe_vm_populate_pgtable,
2329 .clear = xe_migrate_clear_pgtable_callback,
2330 .pre_commit = xe_pt_svm_userptr_pre_commit,
2331 };
2332 #else
2333 static const struct xe_migrate_pt_update_ops svm_userptr_migrate_ops;
2334 #endif
2335
to_dep_scheduler(struct xe_exec_queue * q,struct xe_gt * gt)2336 static struct xe_dep_scheduler *to_dep_scheduler(struct xe_exec_queue *q,
2337 struct xe_gt *gt)
2338 {
2339 if (xe_gt_is_media_type(gt))
2340 return q->tlb_inval[XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT].dep_scheduler;
2341
2342 return q->tlb_inval[XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT].dep_scheduler;
2343 }
2344
2345 /**
2346 * xe_pt_update_ops_run() - Run PT update operations
2347 * @tile: Tile of PT update operations
2348 * @vops: VMA operationa
2349 *
2350 * Run PT update operations which includes committing internal PT state changes,
2351 * creating job for PT update operations for leaf insertion / removal, and
2352 * installing job fence in various places.
2353 *
2354 * Return: fence on success, negative ERR_PTR on error.
2355 */
2356 struct dma_fence *
xe_pt_update_ops_run(struct xe_tile * tile,struct xe_vma_ops * vops)2357 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops)
2358 {
2359 struct xe_vm *vm = vops->vm;
2360 struct xe_vm_pgtable_update_ops *pt_update_ops =
2361 &vops->pt_update_ops[tile->id];
2362 struct dma_fence *fence, *ifence, *mfence;
2363 struct xe_tlb_inval_job *ijob = NULL, *mjob = NULL;
2364 struct dma_fence **fences = NULL;
2365 struct dma_fence_array *cf = NULL;
2366 struct xe_range_fence *rfence;
2367 struct xe_vma_op *op;
2368 int err = 0, i;
2369 struct xe_migrate_pt_update update = {
2370 .ops = pt_update_ops->needs_svm_lock ?
2371 &svm_userptr_migrate_ops :
2372 &migrate_ops,
2373 .vops = vops,
2374 .tile_id = tile->id,
2375 };
2376
2377 lockdep_assert_held(&vm->lock);
2378 xe_vm_assert_held(vm);
2379
2380 if (!pt_update_ops->current_op) {
2381 xe_tile_assert(tile, xe_vm_in_fault_mode(vm));
2382
2383 return dma_fence_get_stub();
2384 }
2385
2386 #ifdef TEST_VM_OPS_ERROR
2387 if (vops->inject_error &&
2388 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN)
2389 return ERR_PTR(-ENOSPC);
2390 #endif
2391
2392 if (pt_update_ops->needs_invalidation) {
2393 struct xe_exec_queue *q = pt_update_ops->q;
2394 struct xe_dep_scheduler *dep_scheduler =
2395 to_dep_scheduler(q, tile->primary_gt);
2396
2397 ijob = xe_tlb_inval_job_create(q, &tile->primary_gt->tlb_inval,
2398 dep_scheduler,
2399 pt_update_ops->start,
2400 pt_update_ops->last,
2401 vm->usm.asid);
2402 if (IS_ERR(ijob)) {
2403 err = PTR_ERR(ijob);
2404 goto kill_vm_tile1;
2405 }
2406 update.ijob = ijob;
2407
2408 if (tile->media_gt) {
2409 dep_scheduler = to_dep_scheduler(q, tile->media_gt);
2410
2411 mjob = xe_tlb_inval_job_create(q,
2412 &tile->media_gt->tlb_inval,
2413 dep_scheduler,
2414 pt_update_ops->start,
2415 pt_update_ops->last,
2416 vm->usm.asid);
2417 if (IS_ERR(mjob)) {
2418 err = PTR_ERR(mjob);
2419 goto free_ijob;
2420 }
2421 update.mjob = mjob;
2422
2423 fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL);
2424 if (!fences) {
2425 err = -ENOMEM;
2426 goto free_ijob;
2427 }
2428 cf = dma_fence_array_alloc(2);
2429 if (!cf) {
2430 err = -ENOMEM;
2431 goto free_ijob;
2432 }
2433 }
2434 }
2435
2436 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
2437 if (!rfence) {
2438 err = -ENOMEM;
2439 goto free_ijob;
2440 }
2441
2442 fence = xe_migrate_update_pgtables(tile->migrate, &update);
2443 if (IS_ERR(fence)) {
2444 err = PTR_ERR(fence);
2445 goto free_rfence;
2446 }
2447
2448 /* Point of no return - VM killed if failure after this */
2449 for (i = 0; i < pt_update_ops->current_op; ++i) {
2450 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2451
2452 xe_pt_commit(pt_op->vma, pt_op->entries,
2453 pt_op->num_entries, &pt_update_ops->deferred);
2454 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */
2455 }
2456
2457 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence,
2458 &xe_range_fence_kfree_ops,
2459 pt_update_ops->start,
2460 pt_update_ops->last, fence))
2461 dma_fence_wait(fence, false);
2462
2463 /* tlb invalidation must be done before signaling unbind/rebind */
2464 if (ijob) {
2465 struct dma_fence *__fence;
2466
2467 ifence = xe_tlb_inval_job_push(ijob, tile->migrate, fence);
2468 __fence = ifence;
2469
2470 if (mjob) {
2471 fences[0] = ifence;
2472 mfence = xe_tlb_inval_job_push(mjob, tile->migrate,
2473 fence);
2474 fences[1] = mfence;
2475
2476 dma_fence_array_init(cf, 2, fences,
2477 vm->composite_fence_ctx,
2478 vm->composite_fence_seqno++,
2479 false);
2480 __fence = &cf->base;
2481 }
2482
2483 dma_fence_put(fence);
2484 fence = __fence;
2485 }
2486
2487 if (!mjob) {
2488 dma_resv_add_fence(xe_vm_resv(vm), fence,
2489 pt_update_ops->wait_vm_bookkeep ?
2490 DMA_RESV_USAGE_KERNEL :
2491 DMA_RESV_USAGE_BOOKKEEP);
2492
2493 list_for_each_entry(op, &vops->list, link)
2494 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL);
2495 } else {
2496 dma_resv_add_fence(xe_vm_resv(vm), ifence,
2497 pt_update_ops->wait_vm_bookkeep ?
2498 DMA_RESV_USAGE_KERNEL :
2499 DMA_RESV_USAGE_BOOKKEEP);
2500
2501 dma_resv_add_fence(xe_vm_resv(vm), mfence,
2502 pt_update_ops->wait_vm_bookkeep ?
2503 DMA_RESV_USAGE_KERNEL :
2504 DMA_RESV_USAGE_BOOKKEEP);
2505
2506 list_for_each_entry(op, &vops->list, link)
2507 op_commit(vops->vm, tile, pt_update_ops, op, ifence,
2508 mfence);
2509 }
2510
2511 if (pt_update_ops->needs_svm_lock)
2512 xe_svm_notifier_unlock(vm);
2513
2514 xe_tlb_inval_job_put(mjob);
2515 xe_tlb_inval_job_put(ijob);
2516
2517 return fence;
2518
2519 free_rfence:
2520 kfree(rfence);
2521 free_ijob:
2522 kfree(cf);
2523 kfree(fences);
2524 xe_tlb_inval_job_put(mjob);
2525 xe_tlb_inval_job_put(ijob);
2526 kill_vm_tile1:
2527 if (err != -EAGAIN && err != -ENODATA && tile->id)
2528 xe_vm_kill(vops->vm, false);
2529
2530 return ERR_PTR(err);
2531 }
2532 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO);
2533
2534 /**
2535 * xe_pt_update_ops_fini() - Finish PT update operations
2536 * @tile: Tile of PT update operations
2537 * @vops: VMA operations
2538 *
2539 * Finish PT update operations by committing to destroy page table memory
2540 */
xe_pt_update_ops_fini(struct xe_tile * tile,struct xe_vma_ops * vops)2541 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops)
2542 {
2543 struct xe_vm_pgtable_update_ops *pt_update_ops =
2544 &vops->pt_update_ops[tile->id];
2545 int i;
2546
2547 lockdep_assert_held(&vops->vm->lock);
2548 xe_vm_assert_held(vops->vm);
2549
2550 for (i = 0; i < pt_update_ops->current_op; ++i) {
2551 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2552
2553 xe_pt_free_bind(pt_op->entries, pt_op->num_entries);
2554 }
2555 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2556 }
2557
2558 /**
2559 * xe_pt_update_ops_abort() - Abort PT update operations
2560 * @tile: Tile of PT update operations
2561 * @vops: VMA operationa
2562 *
2563 * Abort PT update operations by unwinding internal PT state
2564 */
xe_pt_update_ops_abort(struct xe_tile * tile,struct xe_vma_ops * vops)2565 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops)
2566 {
2567 struct xe_vm_pgtable_update_ops *pt_update_ops =
2568 &vops->pt_update_ops[tile->id];
2569 int i;
2570
2571 lockdep_assert_held(&vops->vm->lock);
2572 xe_vm_assert_held(vops->vm);
2573
2574 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) {
2575 struct xe_vm_pgtable_update_op *pt_op =
2576 &pt_update_ops->ops[i];
2577
2578 if (!pt_op->vma || i >= pt_update_ops->current_op)
2579 continue;
2580
2581 if (pt_op->bind)
2582 xe_pt_abort_bind(pt_op->vma, pt_op->entries,
2583 pt_op->num_entries,
2584 pt_op->rebind);
2585 else
2586 xe_pt_abort_unbind(pt_op->vma, pt_op->entries,
2587 pt_op->num_entries);
2588 }
2589
2590 xe_pt_update_ops_fini(tile, vops);
2591 }
2592