1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_pt.h" 7 8 #include "regs/xe_gtt_defs.h" 9 #include "xe_bo.h" 10 #include "xe_device.h" 11 #include "xe_drm_client.h" 12 #include "xe_exec_queue.h" 13 #include "xe_gt.h" 14 #include "xe_migrate.h" 15 #include "xe_pt_types.h" 16 #include "xe_pt_walk.h" 17 #include "xe_res_cursor.h" 18 #include "xe_sched_job.h" 19 #include "xe_svm.h" 20 #include "xe_sync.h" 21 #include "xe_tlb_inval_job.h" 22 #include "xe_trace.h" 23 #include "xe_ttm_stolen_mgr.h" 24 #include "xe_userptr.h" 25 #include "xe_vm.h" 26 27 struct xe_pt_dir { 28 struct xe_pt pt; 29 /** @children: Array of page-table child nodes */ 30 struct xe_ptw *children[XE_PDES]; 31 /** @staging: Array of page-table staging nodes */ 32 struct xe_ptw *staging[XE_PDES]; 33 }; 34 35 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 36 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) 37 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) 38 #else 39 #define xe_pt_set_addr(__xe_pt, __addr) 40 #define xe_pt_addr(__xe_pt) 0ull 41 #endif 42 43 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; 44 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; 45 46 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) 47 48 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) 49 { 50 return container_of(pt, struct xe_pt_dir, pt); 51 } 52 53 static struct xe_pt * 54 xe_pt_entry_staging(struct xe_pt_dir *pt_dir, unsigned int index) 55 { 56 return container_of(pt_dir->staging[index], struct xe_pt, base); 57 } 58 59 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, 60 unsigned int level) 61 { 62 struct xe_device *xe = tile_to_xe(tile); 63 u16 pat_index = xe->pat.idx[XE_CACHE_WB]; 64 u8 id = tile->id; 65 66 if (!xe_vm_has_scratch(vm)) 67 return 0; 68 69 if (level > MAX_HUGEPTE_LEVEL) 70 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 71 0); 72 73 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | 74 XE_PTE_NULL; 75 } 76 77 static void xe_pt_free(struct xe_pt *pt) 78 { 79 if (pt->level) 80 kfree(as_xe_pt_dir(pt)); 81 else 82 kfree(pt); 83 } 84 85 /** 86 * xe_pt_create() - Create a page-table. 87 * @vm: The vm to create for. 88 * @tile: The tile to create for. 89 * @level: The page-table level. 90 * @exec: The drm_exec object used to lock the vm. 91 * 92 * Allocate and initialize a single struct xe_pt metadata structure. Also 93 * create the corresponding page-table bo, but don't initialize it. If the 94 * level is grater than zero, then it's assumed to be a directory page- 95 * table and the directory structure is also allocated and initialized to 96 * NULL pointers. 97 * 98 * Return: A valid struct xe_pt pointer on success, Pointer error code on 99 * error. 100 */ 101 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, 102 unsigned int level, struct drm_exec *exec) 103 { 104 struct xe_pt *pt; 105 struct xe_bo *bo; 106 u32 bo_flags; 107 int err; 108 109 if (level) { 110 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); 111 112 pt = (dir) ? &dir->pt : NULL; 113 } else { 114 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 115 } 116 if (!pt) 117 return ERR_PTR(-ENOMEM); 118 119 bo_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | 120 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE | 121 XE_BO_FLAG_NO_RESV_EVICT | XE_BO_FLAG_PAGETABLE; 122 if (vm->xef) /* userspace */ 123 bo_flags |= XE_BO_FLAG_PINNED_LATE_RESTORE | XE_BO_FLAG_FORCE_USER_VRAM; 124 125 pt->level = level; 126 127 drm_WARN_ON(&vm->xe->drm, IS_ERR_OR_NULL(exec)); 128 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, 129 ttm_bo_type_kernel, 130 bo_flags, exec); 131 if (IS_ERR(bo)) { 132 err = PTR_ERR(bo); 133 goto err_kfree; 134 } 135 pt->bo = bo; 136 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; 137 pt->base.staging = level ? as_xe_pt_dir(pt)->staging : NULL; 138 139 if (vm->xef) 140 xe_drm_client_add_bo(vm->xef->client, pt->bo); 141 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); 142 143 return pt; 144 145 err_kfree: 146 xe_pt_free(pt); 147 return ERR_PTR(err); 148 } 149 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO); 150 151 /** 152 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero 153 * entries. 154 * @tile: The tile the scratch pagetable of which to use. 155 * @vm: The vm we populate for. 156 * @pt: The pagetable the bo of which to initialize. 157 * 158 * Populate the page-table bo of @pt with entries pointing into the tile's 159 * scratch page-table tree if any. Otherwise populate with zeros. 160 */ 161 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, 162 struct xe_pt *pt) 163 { 164 struct iosys_map *map = &pt->bo->vmap; 165 u64 empty; 166 int i; 167 168 if (!xe_vm_has_scratch(vm)) { 169 /* 170 * FIXME: Some memory is allocated already allocated to zero? 171 * Find out which memory that is and avoid this memset... 172 */ 173 xe_map_memset(vm->xe, map, 0, 0, SZ_4K); 174 } else { 175 empty = __xe_pt_empty_pte(tile, vm, pt->level); 176 for (i = 0; i < XE_PDES; i++) 177 xe_pt_write(vm->xe, map, i, empty); 178 } 179 } 180 181 /** 182 * xe_pt_shift() - Return the ilog2 value of the size of the address range of 183 * a page-table at a certain level. 184 * @level: The level. 185 * 186 * Return: The ilog2 value of the size of the address range of a page-table 187 * at level @level. 188 */ 189 unsigned int xe_pt_shift(unsigned int level) 190 { 191 return XE_PTE_SHIFT + XE_PDE_SHIFT * level; 192 } 193 194 /** 195 * xe_pt_destroy() - Destroy a page-table tree. 196 * @pt: The root of the page-table tree to destroy. 197 * @flags: vm flags. Currently unused. 198 * @deferred: List head of lockless list for deferred putting. NULL for 199 * immediate putting. 200 * 201 * Puts the page-table bo, recursively calls xe_pt_destroy on all children 202 * and finally frees @pt. TODO: Can we remove the @flags argument? 203 */ 204 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) 205 { 206 int i; 207 208 if (!pt) 209 return; 210 211 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); 212 xe_bo_unpin(pt->bo); 213 xe_bo_put_deferred(pt->bo, deferred); 214 215 if (pt->level > 0 && pt->num_live) { 216 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 217 218 for (i = 0; i < XE_PDES; i++) { 219 if (xe_pt_entry_staging(pt_dir, i)) 220 xe_pt_destroy(xe_pt_entry_staging(pt_dir, i), flags, 221 deferred); 222 } 223 } 224 xe_pt_free(pt); 225 } 226 227 /** 228 * xe_pt_clear() - Clear a page-table. 229 * @xe: xe device. 230 * @pt: The page-table. 231 * 232 * Clears page-table by setting to zero. 233 */ 234 void xe_pt_clear(struct xe_device *xe, struct xe_pt *pt) 235 { 236 struct iosys_map *map = &pt->bo->vmap; 237 238 xe_map_memset(xe, map, 0, 0, SZ_4K); 239 } 240 241 /** 242 * DOC: Pagetable building 243 * 244 * Below we use the term "page-table" for both page-directories, containing 245 * pointers to lower level page-directories or page-tables, and level 0 246 * page-tables that contain only page-table-entries pointing to memory pages. 247 * 248 * When inserting an address range in an already existing page-table tree 249 * there will typically be a set of page-tables that are shared with other 250 * address ranges, and a set that are private to this address range. 251 * The set of shared page-tables can be at most two per level, 252 * and those can't be updated immediately because the entries of those 253 * page-tables may still be in use by the gpu for other mappings. Therefore 254 * when inserting entries into those, we instead stage those insertions by 255 * adding insertion data into struct xe_vm_pgtable_update structures. This 256 * data, (subtrees for the cpu and page-table-entries for the gpu) is then 257 * added in a separate commit step. CPU-data is committed while still under the 258 * vm lock, the object lock and for userptr, the notifier lock in read mode. 259 * The GPU async data is committed either by the GPU or CPU after fulfilling 260 * relevant dependencies. 261 * For non-shared page-tables (and, in fact, for shared ones that aren't 262 * existing at the time of staging), we add the data in-place without the 263 * special update structures. This private part of the page-table tree will 264 * remain disconnected from the vm page-table tree until data is committed to 265 * the shared page tables of the vm tree in the commit phase. 266 */ 267 268 struct xe_pt_update { 269 /** @update: The update structure we're building for this parent. */ 270 struct xe_vm_pgtable_update *update; 271 /** @parent: The parent. Used to detect a parent change. */ 272 struct xe_pt *parent; 273 /** @preexisting: Whether the parent was pre-existing or allocated */ 274 bool preexisting; 275 }; 276 277 /** 278 * struct xe_pt_stage_bind_walk - Walk state for the stage_bind walk. 279 */ 280 struct xe_pt_stage_bind_walk { 281 /** @base: The base class. */ 282 struct xe_pt_walk base; 283 284 /* Input parameters for the walk */ 285 /** @vm: The vm we're building for. */ 286 struct xe_vm *vm; 287 /** @tile: The tile we're building for. */ 288 struct xe_tile *tile; 289 /** @default_vram_pte: PTE flag only template for VRAM. No address is associated */ 290 u64 default_vram_pte; 291 /** @default_system_pte: PTE flag only template for System. No address is associated */ 292 u64 default_system_pte; 293 /** @dma_offset: DMA offset to add to the PTE. */ 294 u64 dma_offset; 295 /** 296 * @needs_64K: This address range enforces 64K alignment and 297 * granularity on VRAM. 298 */ 299 bool needs_64K; 300 /** @clear_pt: clear page table entries during the bind walk */ 301 bool clear_pt; 302 /** 303 * @vma: VMA being mapped 304 */ 305 struct xe_vma *vma; 306 307 /* Also input, but is updated during the walk*/ 308 /** @curs: The DMA address cursor. */ 309 struct xe_res_cursor *curs; 310 /** @va_curs_start: The Virtual address corresponding to @curs->start */ 311 u64 va_curs_start; 312 313 /* Output */ 314 /** @wupd: Walk output data for page-table updates. */ 315 struct xe_walk_update { 316 /** @wupd.entries: Caller provided storage. */ 317 struct xe_vm_pgtable_update *entries; 318 /** @wupd.num_used_entries: Number of update @entries used. */ 319 unsigned int num_used_entries; 320 /** @wupd.updates: Tracks the update entry at a given level */ 321 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; 322 } wupd; 323 324 /* Walk state */ 325 /** 326 * @l0_end_addr: The end address of the current l0 leaf. Used for 327 * 64K granularity detection. 328 */ 329 u64 l0_end_addr; 330 /** @addr_64K: The start address of the current 64K chunk. */ 331 u64 addr_64K; 332 /** @found_64K: Whether @add_64K actually points to a 64K chunk. */ 333 bool found_64K; 334 }; 335 336 static int 337 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, 338 pgoff_t offset, bool alloc_entries) 339 { 340 struct xe_pt_update *upd = &wupd->updates[parent->level]; 341 struct xe_vm_pgtable_update *entry; 342 343 /* 344 * For *each level*, we could only have one active 345 * struct xt_pt_update at any one time. Once we move on to a 346 * new parent and page-directory, the old one is complete, and 347 * updates are either already stored in the build tree or in 348 * @wupd->entries 349 */ 350 if (likely(upd->parent == parent)) 351 return 0; 352 353 upd->parent = parent; 354 upd->preexisting = true; 355 356 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) 357 return -EINVAL; 358 359 entry = wupd->entries + wupd->num_used_entries++; 360 upd->update = entry; 361 entry->ofs = offset; 362 entry->pt_bo = parent->bo; 363 entry->pt = parent; 364 entry->flags = 0; 365 entry->qwords = 0; 366 entry->pt_bo->update_index = -1; 367 368 if (alloc_entries) { 369 entry->pt_entries = kmalloc_array(XE_PDES, 370 sizeof(*entry->pt_entries), 371 GFP_KERNEL); 372 if (!entry->pt_entries) 373 return -ENOMEM; 374 } 375 376 return 0; 377 } 378 379 /* 380 * NOTE: This is a very frequently called function so we allow ourselves 381 * to annotate (using branch prediction hints) the fastpath of updating a 382 * non-pre-existing pagetable with leaf ptes. 383 */ 384 static int 385 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, 386 pgoff_t offset, struct xe_pt *xe_child, u64 pte) 387 { 388 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; 389 struct xe_pt_update *child_upd = xe_child ? 390 &xe_walk->wupd.updates[xe_child->level] : NULL; 391 int ret; 392 393 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); 394 if (unlikely(ret)) 395 return ret; 396 397 /* 398 * Register this new pagetable so that it won't be recognized as 399 * a shared pagetable by a subsequent insertion. 400 */ 401 if (unlikely(child_upd)) { 402 child_upd->update = NULL; 403 child_upd->parent = xe_child; 404 child_upd->preexisting = false; 405 } 406 407 if (likely(!upd->preexisting)) { 408 /* Continue building a non-connected subtree. */ 409 struct iosys_map *map = &parent->bo->vmap; 410 411 if (unlikely(xe_child)) { 412 parent->base.children[offset] = &xe_child->base; 413 parent->base.staging[offset] = &xe_child->base; 414 } 415 416 xe_pt_write(xe_walk->vm->xe, map, offset, pte); 417 parent->num_live++; 418 } else { 419 /* Shared pt. Stage update. */ 420 unsigned int idx; 421 struct xe_vm_pgtable_update *entry = upd->update; 422 423 idx = offset - entry->ofs; 424 entry->pt_entries[idx].pt = xe_child; 425 entry->pt_entries[idx].pte = pte; 426 entry->qwords++; 427 } 428 429 return 0; 430 } 431 432 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, 433 struct xe_pt_stage_bind_walk *xe_walk) 434 { 435 u64 size, dma; 436 437 if (level > MAX_HUGEPTE_LEVEL) 438 return false; 439 440 /* Does the virtual range requested cover a huge pte? */ 441 if (!xe_pt_covers(addr, next, level, &xe_walk->base)) 442 return false; 443 444 /* Does the DMA segment cover the whole pte? */ 445 if (next - xe_walk->va_curs_start > xe_walk->curs->size) 446 return false; 447 448 /* null VMA's do not have dma addresses */ 449 if (xe_vma_is_null(xe_walk->vma)) 450 return true; 451 452 /* if we are clearing page table, no dma addresses*/ 453 if (xe_walk->clear_pt) 454 return true; 455 456 /* Is the DMA address huge PTE size aligned? */ 457 size = next - addr; 458 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); 459 460 return IS_ALIGNED(dma, size); 461 } 462 463 /* 464 * Scan the requested mapping to check whether it can be done entirely 465 * with 64K PTEs. 466 */ 467 static bool 468 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 469 { 470 struct xe_res_cursor curs = *xe_walk->curs; 471 472 if (!IS_ALIGNED(addr, SZ_64K)) 473 return false; 474 475 if (next > xe_walk->l0_end_addr) 476 return false; 477 478 /* null VMA's do not have dma addresses */ 479 if (xe_vma_is_null(xe_walk->vma)) 480 return true; 481 482 xe_res_next(&curs, addr - xe_walk->va_curs_start); 483 for (; addr < next; addr += SZ_64K) { 484 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) 485 return false; 486 487 xe_res_next(&curs, SZ_64K); 488 } 489 490 return addr == next; 491 } 492 493 /* 494 * For non-compact "normal" 4K level-0 pagetables, we want to try to group 495 * addresses together in 64K-contigous regions to add a 64K TLB hint for the 496 * device to the PTE. 497 * This function determines whether the address is part of such a 498 * segment. For VRAM in normal pagetables, this is strictly necessary on 499 * some devices. 500 */ 501 static bool 502 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) 503 { 504 /* Address is within an already found 64k region */ 505 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) 506 return true; 507 508 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); 509 xe_walk->addr_64K = addr; 510 511 return xe_walk->found_64K; 512 } 513 514 static int 515 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, 516 unsigned int level, u64 addr, u64 next, 517 struct xe_ptw **child, 518 enum page_walk_action *action, 519 struct xe_pt_walk *walk) 520 { 521 struct xe_pt_stage_bind_walk *xe_walk = 522 container_of(walk, typeof(*xe_walk), base); 523 u16 pat_index = xe_walk->vma->attr.pat_index; 524 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); 525 struct xe_vm *vm = xe_walk->vm; 526 struct xe_pt *xe_child; 527 bool covers; 528 int ret = 0; 529 u64 pte; 530 531 /* Is this a leaf entry ?*/ 532 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { 533 struct xe_res_cursor *curs = xe_walk->curs; 534 bool is_null = xe_vma_is_null(xe_walk->vma); 535 bool is_vram = is_null ? false : xe_res_is_vram(curs); 536 537 XE_WARN_ON(xe_walk->va_curs_start != addr); 538 539 if (xe_walk->clear_pt) { 540 pte = 0; 541 } else { 542 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : 543 xe_res_dma(curs) + 544 xe_walk->dma_offset, 545 xe_walk->vma, 546 pat_index, level); 547 if (!is_null) 548 pte |= is_vram ? xe_walk->default_vram_pte : 549 xe_walk->default_system_pte; 550 551 /* 552 * Set the XE_PTE_PS64 hint if possible, otherwise if 553 * this device *requires* 64K PTE size for VRAM, fail. 554 */ 555 if (level == 0 && !xe_parent->is_compact) { 556 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) { 557 xe_walk->vma->gpuva.flags |= 558 XE_VMA_PTE_64K; 559 pte |= XE_PTE_PS64; 560 } else if (XE_WARN_ON(xe_walk->needs_64K && 561 is_vram)) { 562 return -EINVAL; 563 } 564 } 565 } 566 567 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); 568 if (unlikely(ret)) 569 return ret; 570 571 if (!is_null && !xe_walk->clear_pt) 572 xe_res_next(curs, next - addr); 573 xe_walk->va_curs_start = next; 574 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); 575 *action = ACTION_CONTINUE; 576 577 return ret; 578 } 579 580 /* 581 * Descending to lower level. Determine if we need to allocate a 582 * new page table or -directory, which we do if there is no 583 * previous one or there is one we can completely replace. 584 */ 585 if (level == 1) { 586 walk->shifts = xe_normal_pt_shifts; 587 xe_walk->l0_end_addr = next; 588 } 589 590 covers = xe_pt_covers(addr, next, level, &xe_walk->base); 591 if (covers || !*child) { 592 u64 flags = 0; 593 594 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1, 595 xe_vm_validation_exec(vm)); 596 if (IS_ERR(xe_child)) 597 return PTR_ERR(xe_child); 598 599 xe_pt_set_addr(xe_child, 600 round_down(addr, 1ull << walk->shifts[level])); 601 602 if (!covers) 603 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); 604 605 *child = &xe_child->base; 606 607 /* 608 * Prefer the compact pagetable layout for L0 if possible. Only 609 * possible if VMA covers entire 2MB region as compact 64k and 610 * 4k pages cannot be mixed within a 2MB region. 611 * TODO: Suballocate the pt bo to avoid wasting a lot of 612 * memory. 613 */ 614 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && 615 covers && xe_pt_scan_64K(addr, next, xe_walk)) { 616 walk->shifts = xe_compact_pt_shifts; 617 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT; 618 flags |= XE_PDE_64K; 619 xe_child->is_compact = true; 620 } 621 622 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0) | flags; 623 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, 624 pte); 625 } 626 627 *action = ACTION_SUBTREE; 628 return ret; 629 } 630 631 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { 632 .pt_entry = xe_pt_stage_bind_entry, 633 }; 634 635 /* 636 * Default atomic expectations for different allocation scenarios are as follows: 637 * 638 * 1. Traditional API: When the VM is not in LR mode: 639 * - Device atomics are expected to function with all allocations. 640 * 641 * 2. Compute/SVM API: When the VM is in LR mode: 642 * - Device atomics are the default behavior when the bo is placed in a single region. 643 * - In all other cases device atomics will be disabled with AE=0 until an application 644 * request differently using a ioctl like madvise. 645 */ 646 static bool xe_atomic_for_vram(struct xe_vm *vm, struct xe_vma *vma) 647 { 648 if (vma->attr.atomic_access == DRM_XE_ATOMIC_CPU) 649 return false; 650 651 return true; 652 } 653 654 static bool xe_atomic_for_system(struct xe_vm *vm, struct xe_vma *vma) 655 { 656 struct xe_device *xe = vm->xe; 657 struct xe_bo *bo = xe_vma_bo(vma); 658 659 if (!xe->info.has_device_atomics_on_smem || 660 vma->attr.atomic_access == DRM_XE_ATOMIC_CPU) 661 return false; 662 663 if (vma->attr.atomic_access == DRM_XE_ATOMIC_DEVICE) 664 return true; 665 666 /* 667 * If a SMEM+LMEM allocation is backed by SMEM, a device 668 * atomics will cause a gpu page fault and which then 669 * gets migrated to LMEM, bind such allocations with 670 * device atomics enabled. 671 */ 672 return (!IS_DGFX(xe) || (!xe_vm_in_lr_mode(vm) || 673 (bo && xe_bo_has_single_placement(bo)))); 674 } 675 676 /** 677 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address 678 * range. 679 * @tile: The tile we're building for. 680 * @vma: The vma indicating the address range. 681 * @range: The range indicating the address range. 682 * @entries: Storage for the update entries used for connecting the tree to 683 * the main tree at commit time. 684 * @num_entries: On output contains the number of @entries used. 685 * @clear_pt: Clear the page table entries. 686 * 687 * This function builds a disconnected page-table tree for a given address 688 * range. The tree is connected to the main vm tree for the gpu using 689 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). 690 * The function builds xe_vm_pgtable_update structures for already existing 691 * shared page-tables, and non-existing shared and non-shared page-tables 692 * are built and populated directly. 693 * 694 * Return 0 on success, negative error code on error. 695 */ 696 static int 697 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, 698 struct xe_svm_range *range, 699 struct xe_vm_pgtable_update *entries, 700 u32 *num_entries, bool clear_pt) 701 { 702 struct xe_device *xe = tile_to_xe(tile); 703 struct xe_bo *bo = xe_vma_bo(vma); 704 struct xe_res_cursor curs; 705 struct xe_vm *vm = xe_vma_vm(vma); 706 struct xe_pt_stage_bind_walk xe_walk = { 707 .base = { 708 .ops = &xe_pt_stage_bind_ops, 709 .shifts = xe_normal_pt_shifts, 710 .max_level = XE_PT_HIGHEST_LEVEL, 711 .staging = true, 712 }, 713 .vm = vm, 714 .tile = tile, 715 .curs = &curs, 716 .va_curs_start = range ? xe_svm_range_start(range) : 717 xe_vma_start(vma), 718 .vma = vma, 719 .wupd.entries = entries, 720 .clear_pt = clear_pt, 721 }; 722 struct xe_pt *pt = vm->pt_root[tile->id]; 723 int ret; 724 725 if (range) { 726 /* Move this entire thing to xe_svm.c? */ 727 xe_svm_notifier_lock(vm); 728 if (!xe_svm_range_pages_valid(range)) { 729 xe_svm_range_debug(range, "BIND PREPARE - RETRY"); 730 xe_svm_notifier_unlock(vm); 731 return -EAGAIN; 732 } 733 if (xe_svm_range_has_dma_mapping(range)) { 734 xe_res_first_dma(range->base.pages.dma_addr, 0, 735 xe_svm_range_size(range), 736 &curs); 737 xe_svm_range_debug(range, "BIND PREPARE - MIXED"); 738 } else { 739 xe_assert(xe, false); 740 } 741 /* 742 * Note, when unlocking the resource cursor dma addresses may become 743 * stale, but the bind will be aborted anyway at commit time. 744 */ 745 xe_svm_notifier_unlock(vm); 746 } 747 748 xe_walk.needs_64K = (vm->flags & XE_VM_FLAG_64K); 749 if (clear_pt) 750 goto walk_pt; 751 752 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) { 753 xe_walk.default_vram_pte = xe_atomic_for_vram(vm, vma) ? XE_USM_PPGTT_PTE_AE : 0; 754 xe_walk.default_system_pte = xe_atomic_for_system(vm, vma) ? 755 XE_USM_PPGTT_PTE_AE : 0; 756 } 757 758 xe_walk.default_vram_pte |= XE_PPGTT_PTE_DM; 759 xe_walk.dma_offset = bo ? vram_region_gpu_offset(bo->ttm.resource) : 0; 760 if (!range) 761 xe_bo_assert_held(bo); 762 763 if (!xe_vma_is_null(vma) && !range) { 764 if (xe_vma_is_userptr(vma)) 765 xe_res_first_dma(to_userptr_vma(vma)->userptr.pages.dma_addr, 0, 766 xe_vma_size(vma), &curs); 767 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) 768 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), 769 xe_vma_size(vma), &curs); 770 else 771 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), 772 xe_vma_size(vma), &curs); 773 } else if (!range) { 774 curs.size = xe_vma_size(vma); 775 } 776 777 walk_pt: 778 ret = xe_pt_walk_range(&pt->base, pt->level, 779 range ? xe_svm_range_start(range) : xe_vma_start(vma), 780 range ? xe_svm_range_end(range) : xe_vma_end(vma), 781 &xe_walk.base); 782 783 *num_entries = xe_walk.wupd.num_used_entries; 784 return ret; 785 } 786 787 /** 788 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a 789 * shared pagetable. 790 * @addr: The start address within the non-shared pagetable. 791 * @end: The end address within the non-shared pagetable. 792 * @level: The level of the non-shared pagetable. 793 * @walk: Walk info. The function adjusts the walk action. 794 * @action: next action to perform (see enum page_walk_action) 795 * @offset: Ignored on input, First non-shared entry on output. 796 * @end_offset: Ignored on input, Last non-shared entry + 1 on output. 797 * 798 * A non-shared page-table has some entries that belong to the address range 799 * and others that don't. This function determines the entries that belong 800 * fully to the address range. Depending on level, some entries may 801 * partially belong to the address range (that can't happen at level 0). 802 * The function detects that and adjust those offsets to not include those 803 * partial entries. Iff it does detect partial entries, we know that there must 804 * be shared page tables also at lower levels, so it adjusts the walk action 805 * accordingly. 806 * 807 * Return: true if there were non-shared entries, false otherwise. 808 */ 809 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, 810 struct xe_pt_walk *walk, 811 enum page_walk_action *action, 812 pgoff_t *offset, pgoff_t *end_offset) 813 { 814 u64 size = 1ull << walk->shifts[level]; 815 816 *offset = xe_pt_offset(addr, level, walk); 817 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; 818 819 if (!level) 820 return true; 821 822 /* 823 * If addr or next are not size aligned, there are shared pts at lower 824 * level, so in that case traverse down the subtree 825 */ 826 *action = ACTION_CONTINUE; 827 if (!IS_ALIGNED(addr, size)) { 828 *action = ACTION_SUBTREE; 829 (*offset)++; 830 } 831 832 if (!IS_ALIGNED(end, size)) { 833 *action = ACTION_SUBTREE; 834 (*end_offset)--; 835 } 836 837 return *end_offset > *offset; 838 } 839 840 struct xe_pt_zap_ptes_walk { 841 /** @base: The walk base-class */ 842 struct xe_pt_walk base; 843 844 /* Input parameters for the walk */ 845 /** @tile: The tile we're building for */ 846 struct xe_tile *tile; 847 848 /* Output */ 849 /** @needs_invalidate: Whether we need to invalidate TLB*/ 850 bool needs_invalidate; 851 }; 852 853 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, 854 unsigned int level, u64 addr, u64 next, 855 struct xe_ptw **child, 856 enum page_walk_action *action, 857 struct xe_pt_walk *walk) 858 { 859 struct xe_pt_zap_ptes_walk *xe_walk = 860 container_of(walk, typeof(*xe_walk), base); 861 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 862 pgoff_t end_offset; 863 864 XE_WARN_ON(!*child); 865 XE_WARN_ON(!level); 866 867 /* 868 * Note that we're called from an entry callback, and we're dealing 869 * with the child of that entry rather than the parent, so need to 870 * adjust level down. 871 */ 872 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, 873 &end_offset)) { 874 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, 875 offset * sizeof(u64), 0, 876 (end_offset - offset) * sizeof(u64)); 877 xe_walk->needs_invalidate = true; 878 } 879 880 return 0; 881 } 882 883 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { 884 .pt_entry = xe_pt_zap_ptes_entry, 885 }; 886 887 /** 888 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range 889 * @tile: The tile we're zapping for. 890 * @vma: GPU VMA detailing address range. 891 * 892 * Eviction and Userptr invalidation needs to be able to zap the 893 * gpu ptes of a given address range in pagefaulting mode. 894 * In order to be able to do that, that function needs access to the shared 895 * page-table entrieaso it can either clear the leaf PTEs or 896 * clear the pointers to lower-level page-tables. The caller is required 897 * to hold the necessary locks to ensure neither the page-table connectivity 898 * nor the page-table entries of the range is updated from under us. 899 * 900 * Return: Whether ptes were actually updated and a TLB invalidation is 901 * required. 902 */ 903 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) 904 { 905 struct xe_pt_zap_ptes_walk xe_walk = { 906 .base = { 907 .ops = &xe_pt_zap_ptes_ops, 908 .shifts = xe_normal_pt_shifts, 909 .max_level = XE_PT_HIGHEST_LEVEL, 910 }, 911 .tile = tile, 912 }; 913 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; 914 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated); 915 916 if (xe_vma_bo(vma)) 917 xe_bo_assert_held(xe_vma_bo(vma)); 918 else if (xe_vma_is_userptr(vma)) 919 lockdep_assert_held(&xe_vma_vm(vma)->svm.gpusvm.notifier_lock); 920 921 if (!(pt_mask & BIT(tile->id))) 922 return false; 923 924 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), 925 xe_vma_end(vma), &xe_walk.base); 926 927 return xe_walk.needs_invalidate; 928 } 929 930 /** 931 * xe_pt_zap_ptes_range() - Zap (zero) gpu ptes of a SVM range 932 * @tile: The tile we're zapping for. 933 * @vm: The VM we're zapping for. 934 * @range: The SVM range we're zapping for. 935 * 936 * SVM invalidation needs to be able to zap the gpu ptes of a given address 937 * range. In order to be able to do that, that function needs access to the 938 * shared page-table entries so it can either clear the leaf PTEs or 939 * clear the pointers to lower-level page-tables. The caller is required 940 * to hold the SVM notifier lock. 941 * 942 * Return: Whether ptes were actually updated and a TLB invalidation is 943 * required. 944 */ 945 bool xe_pt_zap_ptes_range(struct xe_tile *tile, struct xe_vm *vm, 946 struct xe_svm_range *range) 947 { 948 struct xe_pt_zap_ptes_walk xe_walk = { 949 .base = { 950 .ops = &xe_pt_zap_ptes_ops, 951 .shifts = xe_normal_pt_shifts, 952 .max_level = XE_PT_HIGHEST_LEVEL, 953 }, 954 .tile = tile, 955 }; 956 struct xe_pt *pt = vm->pt_root[tile->id]; 957 u8 pt_mask = (range->tile_present & ~range->tile_invalidated); 958 959 /* 960 * Locking rules: 961 * 962 * - notifier_lock (write): full protection against page table changes 963 * and MMU notifier invalidations. 964 * 965 * - notifier_lock (read) + vm_lock (write): combined protection against 966 * invalidations and concurrent page table modifications. (e.g., madvise) 967 * 968 */ 969 lockdep_assert(lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 0) || 970 (lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 1) && 971 lockdep_is_held_type(&vm->lock, 0))); 972 973 if (!(pt_mask & BIT(tile->id))) 974 return false; 975 976 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_svm_range_start(range), 977 xe_svm_range_end(range), &xe_walk.base); 978 979 return xe_walk.needs_invalidate; 980 } 981 982 static void 983 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, 984 struct iosys_map *map, void *data, 985 u32 qword_ofs, u32 num_qwords, 986 const struct xe_vm_pgtable_update *update) 987 { 988 struct xe_pt_entry *ptes = update->pt_entries; 989 u64 *ptr = data; 990 u32 i; 991 992 for (i = 0; i < num_qwords; i++) { 993 if (map) 994 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 995 sizeof(u64), u64, ptes[i].pte); 996 else 997 ptr[i] = ptes[i].pte; 998 } 999 } 1000 1001 static void xe_pt_cancel_bind(struct xe_vma *vma, 1002 struct xe_vm_pgtable_update *entries, 1003 u32 num_entries) 1004 { 1005 u32 i, j; 1006 1007 for (i = 0; i < num_entries; i++) { 1008 struct xe_pt *pt = entries[i].pt; 1009 1010 if (!pt) 1011 continue; 1012 1013 if (pt->level) { 1014 for (j = 0; j < entries[i].qwords; j++) 1015 xe_pt_destroy(entries[i].pt_entries[j].pt, 1016 xe_vma_vm(vma)->flags, NULL); 1017 } 1018 1019 kfree(entries[i].pt_entries); 1020 entries[i].pt_entries = NULL; 1021 entries[i].qwords = 0; 1022 } 1023 } 1024 1025 #define XE_INVALID_VMA ((struct xe_vma *)(0xdeaddeadull)) 1026 1027 static void xe_pt_commit_prepare_locks_assert(struct xe_vma *vma) 1028 { 1029 struct xe_vm *vm; 1030 1031 if (vma == XE_INVALID_VMA) 1032 return; 1033 1034 vm = xe_vma_vm(vma); 1035 lockdep_assert_held(&vm->lock); 1036 1037 if (!xe_vma_has_no_bo(vma)) 1038 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); 1039 1040 xe_vm_assert_held(vm); 1041 } 1042 1043 static void xe_pt_commit_locks_assert(struct xe_vma *vma) 1044 { 1045 struct xe_vm *vm; 1046 1047 if (vma == XE_INVALID_VMA) 1048 return; 1049 1050 vm = xe_vma_vm(vma); 1051 xe_pt_commit_prepare_locks_assert(vma); 1052 1053 if (xe_vma_is_userptr(vma)) 1054 xe_svm_assert_held_read(vm); 1055 } 1056 1057 static void xe_pt_commit(struct xe_vma *vma, 1058 struct xe_vm_pgtable_update *entries, 1059 u32 num_entries, struct llist_head *deferred) 1060 { 1061 u32 i, j; 1062 1063 xe_pt_commit_locks_assert(vma); 1064 1065 for (i = 0; i < num_entries; i++) { 1066 struct xe_pt *pt = entries[i].pt; 1067 struct xe_pt_dir *pt_dir; 1068 1069 if (!pt->level) 1070 continue; 1071 1072 pt_dir = as_xe_pt_dir(pt); 1073 for (j = 0; j < entries[i].qwords; j++) { 1074 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1075 int j_ = j + entries[i].ofs; 1076 1077 pt_dir->children[j_] = pt_dir->staging[j_]; 1078 xe_pt_destroy(oldpte, (vma == XE_INVALID_VMA) ? 0 : 1079 xe_vma_vm(vma)->flags, deferred); 1080 } 1081 } 1082 } 1083 1084 static void xe_pt_abort_bind(struct xe_vma *vma, 1085 struct xe_vm_pgtable_update *entries, 1086 u32 num_entries, bool rebind) 1087 { 1088 int i, j; 1089 1090 xe_pt_commit_prepare_locks_assert(vma); 1091 1092 for (i = num_entries - 1; i >= 0; --i) { 1093 struct xe_pt *pt = entries[i].pt; 1094 struct xe_pt_dir *pt_dir; 1095 1096 if (!rebind) 1097 pt->num_live -= entries[i].qwords; 1098 1099 if (!pt->level) 1100 continue; 1101 1102 pt_dir = as_xe_pt_dir(pt); 1103 for (j = 0; j < entries[i].qwords; j++) { 1104 u32 j_ = j + entries[i].ofs; 1105 struct xe_pt *newpte = xe_pt_entry_staging(pt_dir, j_); 1106 struct xe_pt *oldpte = entries[i].pt_entries[j].pt; 1107 1108 pt_dir->staging[j_] = oldpte ? &oldpte->base : 0; 1109 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL); 1110 } 1111 } 1112 } 1113 1114 static void xe_pt_commit_prepare_bind(struct xe_vma *vma, 1115 struct xe_vm_pgtable_update *entries, 1116 u32 num_entries, bool rebind) 1117 { 1118 u32 i, j; 1119 1120 xe_pt_commit_prepare_locks_assert(vma); 1121 1122 for (i = 0; i < num_entries; i++) { 1123 struct xe_pt *pt = entries[i].pt; 1124 struct xe_pt_dir *pt_dir; 1125 1126 if (!rebind) 1127 pt->num_live += entries[i].qwords; 1128 1129 if (!pt->level) 1130 continue; 1131 1132 pt_dir = as_xe_pt_dir(pt); 1133 for (j = 0; j < entries[i].qwords; j++) { 1134 u32 j_ = j + entries[i].ofs; 1135 struct xe_pt *newpte = entries[i].pt_entries[j].pt; 1136 struct xe_pt *oldpte = NULL; 1137 1138 if (xe_pt_entry_staging(pt_dir, j_)) 1139 oldpte = xe_pt_entry_staging(pt_dir, j_); 1140 1141 pt_dir->staging[j_] = &newpte->base; 1142 entries[i].pt_entries[j].pt = oldpte; 1143 } 1144 } 1145 } 1146 1147 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries, 1148 u32 num_entries) 1149 { 1150 u32 i; 1151 1152 for (i = 0; i < num_entries; i++) 1153 kfree(entries[i].pt_entries); 1154 } 1155 1156 static int 1157 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, 1158 struct xe_svm_range *range, 1159 struct xe_vm_pgtable_update *entries, 1160 u32 *num_entries, bool invalidate_on_bind) 1161 { 1162 int err; 1163 1164 *num_entries = 0; 1165 err = xe_pt_stage_bind(tile, vma, range, entries, num_entries, 1166 invalidate_on_bind); 1167 if (!err) 1168 xe_tile_assert(tile, *num_entries); 1169 1170 return err; 1171 } 1172 1173 static void xe_vm_dbg_print_entries(struct xe_device *xe, 1174 const struct xe_vm_pgtable_update *entries, 1175 unsigned int num_entries, bool bind) 1176 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) 1177 { 1178 unsigned int i; 1179 1180 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind", 1181 num_entries); 1182 for (i = 0; i < num_entries; i++) { 1183 const struct xe_vm_pgtable_update *entry = &entries[i]; 1184 struct xe_pt *xe_pt = entry->pt; 1185 u64 page_size = 1ull << xe_pt_shift(xe_pt->level); 1186 u64 end; 1187 u64 start; 1188 1189 xe_assert(xe, !entry->pt->is_compact); 1190 start = entry->ofs * page_size; 1191 end = start + page_size * entry->qwords; 1192 vm_dbg(&xe->drm, 1193 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", 1194 i, xe_pt->level, entry->ofs, entry->qwords, 1195 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); 1196 } 1197 } 1198 #else 1199 {} 1200 #endif 1201 1202 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs) 1203 { 1204 int i; 1205 1206 for (i = 0; i < num_syncs; i++) { 1207 struct dma_fence *fence = syncs[i].fence; 1208 1209 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1210 &fence->flags)) 1211 return false; 1212 } 1213 1214 return true; 1215 } 1216 1217 static int job_test_add_deps(struct xe_sched_job *job, 1218 struct dma_resv *resv, 1219 enum dma_resv_usage usage) 1220 { 1221 if (!job) { 1222 if (!dma_resv_test_signaled(resv, usage)) 1223 return -ETIME; 1224 1225 return 0; 1226 } 1227 1228 return xe_sched_job_add_deps(job, resv, usage); 1229 } 1230 1231 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job) 1232 { 1233 struct xe_bo *bo = xe_vma_bo(vma); 1234 1235 xe_bo_assert_held(bo); 1236 1237 if (bo && !bo->vm) 1238 return job_test_add_deps(job, bo->ttm.base.resv, 1239 DMA_RESV_USAGE_KERNEL); 1240 1241 return 0; 1242 } 1243 1244 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op, 1245 struct xe_sched_job *job) 1246 { 1247 int err = 0; 1248 1249 /* 1250 * No need to check for is_cpu_addr_mirror here as vma_add_deps is a 1251 * NOP if VMA is_cpu_addr_mirror 1252 */ 1253 1254 switch (op->base.op) { 1255 case DRM_GPUVA_OP_MAP: 1256 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1257 break; 1258 1259 err = vma_add_deps(op->map.vma, job); 1260 break; 1261 case DRM_GPUVA_OP_REMAP: 1262 if (op->remap.prev) 1263 err = vma_add_deps(op->remap.prev, job); 1264 if (!err && op->remap.next) 1265 err = vma_add_deps(op->remap.next, job); 1266 break; 1267 case DRM_GPUVA_OP_UNMAP: 1268 break; 1269 case DRM_GPUVA_OP_PREFETCH: 1270 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job); 1271 break; 1272 case DRM_GPUVA_OP_DRIVER: 1273 break; 1274 default: 1275 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1276 } 1277 1278 return err; 1279 } 1280 1281 static int xe_pt_vm_dependencies(struct xe_sched_job *job, 1282 struct xe_tlb_inval_job *ijob, 1283 struct xe_tlb_inval_job *mjob, 1284 struct xe_vm *vm, 1285 struct xe_vma_ops *vops, 1286 struct xe_vm_pgtable_update_ops *pt_update_ops, 1287 struct xe_range_fence_tree *rftree) 1288 { 1289 struct xe_range_fence *rtfence; 1290 struct dma_fence *fence; 1291 struct xe_vma_op *op; 1292 int err = 0, i; 1293 1294 xe_vm_assert_held(vm); 1295 1296 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs)) 1297 return -ETIME; 1298 1299 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q)) 1300 return -ETIME; 1301 1302 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) { 1303 err = job_test_add_deps(job, xe_vm_resv(vm), 1304 pt_update_ops->wait_vm_bookkeep ? 1305 DMA_RESV_USAGE_BOOKKEEP : 1306 DMA_RESV_USAGE_KERNEL); 1307 if (err) 1308 return err; 1309 } 1310 1311 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start, 1312 pt_update_ops->last); 1313 while (rtfence) { 1314 fence = rtfence->fence; 1315 1316 if (!dma_fence_is_signaled(fence)) { 1317 /* 1318 * Is this a CPU update? GPU is busy updating, so return 1319 * an error 1320 */ 1321 if (!job) 1322 return -ETIME; 1323 1324 dma_fence_get(fence); 1325 err = drm_sched_job_add_dependency(&job->drm, fence); 1326 if (err) 1327 return err; 1328 } 1329 1330 rtfence = xe_range_fence_tree_next(rtfence, 1331 pt_update_ops->start, 1332 pt_update_ops->last); 1333 } 1334 1335 list_for_each_entry(op, &vops->list, link) { 1336 err = op_add_deps(vm, op, job); 1337 if (err) 1338 return err; 1339 } 1340 1341 for (i = 0; job && !err && i < vops->num_syncs; i++) 1342 err = xe_sync_entry_add_deps(&vops->syncs[i], job); 1343 1344 if (job) { 1345 if (ijob) { 1346 err = xe_tlb_inval_job_alloc_dep(ijob); 1347 if (err) 1348 return err; 1349 } 1350 1351 if (mjob) { 1352 err = xe_tlb_inval_job_alloc_dep(mjob); 1353 if (err) 1354 return err; 1355 } 1356 } 1357 1358 return err; 1359 } 1360 1361 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) 1362 { 1363 struct xe_vma_ops *vops = pt_update->vops; 1364 struct xe_vm *vm = vops->vm; 1365 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id]; 1366 struct xe_vm_pgtable_update_ops *pt_update_ops = 1367 &vops->pt_update_ops[pt_update->tile_id]; 1368 1369 return xe_pt_vm_dependencies(pt_update->job, pt_update->ijob, 1370 pt_update->mjob, vm, pt_update->vops, 1371 pt_update_ops, rftree); 1372 } 1373 1374 #if IS_ENABLED(CONFIG_DRM_GPUSVM) 1375 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT 1376 1377 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1378 { 1379 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; 1380 static u32 count; 1381 1382 if (count++ % divisor == divisor - 1) { 1383 uvma->userptr.divisor = divisor << 1; 1384 return true; 1385 } 1386 1387 return false; 1388 } 1389 1390 #else 1391 1392 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) 1393 { 1394 return false; 1395 } 1396 1397 #endif 1398 1399 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma, 1400 struct xe_vm_pgtable_update_ops *pt_update) 1401 { 1402 struct xe_userptr_vma *uvma; 1403 unsigned long notifier_seq; 1404 1405 xe_svm_assert_held_read(vm); 1406 1407 if (!xe_vma_is_userptr(vma)) 1408 return 0; 1409 1410 uvma = to_userptr_vma(vma); 1411 if (xe_pt_userptr_inject_eagain(uvma)) 1412 xe_vma_userptr_force_invalidate(uvma); 1413 1414 notifier_seq = uvma->userptr.pages.notifier_seq; 1415 1416 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 1417 notifier_seq)) 1418 return 0; 1419 1420 if (xe_vm_in_fault_mode(vm)) 1421 return -EAGAIN; 1422 1423 /* 1424 * Just continue the operation since exec or rebind worker 1425 * will take care of rebinding. 1426 */ 1427 return 0; 1428 } 1429 1430 static int op_check_svm_userptr(struct xe_vm *vm, struct xe_vma_op *op, 1431 struct xe_vm_pgtable_update_ops *pt_update) 1432 { 1433 int err = 0; 1434 1435 xe_svm_assert_held_read(vm); 1436 1437 switch (op->base.op) { 1438 case DRM_GPUVA_OP_MAP: 1439 if (!op->map.immediate && xe_vm_in_fault_mode(vm)) 1440 break; 1441 1442 err = vma_check_userptr(vm, op->map.vma, pt_update); 1443 break; 1444 case DRM_GPUVA_OP_REMAP: 1445 if (op->remap.prev) 1446 err = vma_check_userptr(vm, op->remap.prev, pt_update); 1447 if (!err && op->remap.next) 1448 err = vma_check_userptr(vm, op->remap.next, pt_update); 1449 break; 1450 case DRM_GPUVA_OP_UNMAP: 1451 break; 1452 case DRM_GPUVA_OP_PREFETCH: 1453 if (xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va))) { 1454 struct xe_svm_range *range = op->map_range.range; 1455 unsigned long i; 1456 1457 xe_assert(vm->xe, 1458 xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va))); 1459 xa_for_each(&op->prefetch_range.range, i, range) { 1460 xe_svm_range_debug(range, "PRE-COMMIT"); 1461 1462 if (!xe_svm_range_pages_valid(range)) { 1463 xe_svm_range_debug(range, "PRE-COMMIT - RETRY"); 1464 return -ENODATA; 1465 } 1466 } 1467 } else { 1468 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va), pt_update); 1469 } 1470 break; 1471 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM) 1472 case DRM_GPUVA_OP_DRIVER: 1473 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) { 1474 struct xe_svm_range *range = op->map_range.range; 1475 1476 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 1477 1478 xe_svm_range_debug(range, "PRE-COMMIT"); 1479 1480 if (!xe_svm_range_pages_valid(range)) { 1481 xe_svm_range_debug(range, "PRE-COMMIT - RETRY"); 1482 return -EAGAIN; 1483 } 1484 } 1485 break; 1486 #endif 1487 default: 1488 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 1489 } 1490 1491 return err; 1492 } 1493 1494 static int xe_pt_svm_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) 1495 { 1496 struct xe_vm *vm = pt_update->vops->vm; 1497 struct xe_vma_ops *vops = pt_update->vops; 1498 struct xe_vm_pgtable_update_ops *pt_update_ops = 1499 &vops->pt_update_ops[pt_update->tile_id]; 1500 struct xe_vma_op *op; 1501 int err; 1502 1503 err = xe_pt_pre_commit(pt_update); 1504 if (err) 1505 return err; 1506 1507 xe_svm_notifier_lock(vm); 1508 1509 list_for_each_entry(op, &vops->list, link) { 1510 err = op_check_svm_userptr(vm, op, pt_update_ops); 1511 if (err) { 1512 xe_svm_notifier_unlock(vm); 1513 break; 1514 } 1515 } 1516 1517 return err; 1518 } 1519 #endif 1520 1521 struct xe_pt_stage_unbind_walk { 1522 /** @base: The pagewalk base-class. */ 1523 struct xe_pt_walk base; 1524 1525 /* Input parameters for the walk */ 1526 /** @tile: The tile we're unbinding from. */ 1527 struct xe_tile *tile; 1528 1529 /** 1530 * @modified_start: Walk range start, modified to include any 1531 * shared pagetables that we're the only user of and can thus 1532 * treat as private. 1533 */ 1534 u64 modified_start; 1535 /** @modified_end: Walk range start, modified like @modified_start. */ 1536 u64 modified_end; 1537 1538 /* Output */ 1539 /* @wupd: Structure to track the page-table updates we're building */ 1540 struct xe_walk_update wupd; 1541 }; 1542 1543 /* 1544 * Check whether this range is the only one populating this pagetable, 1545 * and in that case, update the walk range checks so that higher levels don't 1546 * view us as a shared pagetable. 1547 */ 1548 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, 1549 const struct xe_pt *child, 1550 enum page_walk_action *action, 1551 struct xe_pt_walk *walk) 1552 { 1553 struct xe_pt_stage_unbind_walk *xe_walk = 1554 container_of(walk, typeof(*xe_walk), base); 1555 unsigned int shift = walk->shifts[level]; 1556 u64 size = 1ull << shift; 1557 1558 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && 1559 ((next - addr) >> shift) == child->num_live) { 1560 u64 size = 1ull << walk->shifts[level + 1]; 1561 1562 *action = ACTION_CONTINUE; 1563 1564 if (xe_walk->modified_start >= addr) 1565 xe_walk->modified_start = round_down(addr, size); 1566 if (xe_walk->modified_end <= next) 1567 xe_walk->modified_end = round_up(next, size); 1568 1569 return true; 1570 } 1571 1572 return false; 1573 } 1574 1575 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, 1576 unsigned int level, u64 addr, u64 next, 1577 struct xe_ptw **child, 1578 enum page_walk_action *action, 1579 struct xe_pt_walk *walk) 1580 { 1581 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1582 1583 XE_WARN_ON(!*child); 1584 XE_WARN_ON(!level); 1585 1586 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); 1587 1588 return 0; 1589 } 1590 1591 static int 1592 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, 1593 unsigned int level, u64 addr, u64 next, 1594 struct xe_ptw **child, 1595 enum page_walk_action *action, 1596 struct xe_pt_walk *walk) 1597 { 1598 struct xe_pt_stage_unbind_walk *xe_walk = 1599 container_of(walk, typeof(*xe_walk), base); 1600 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); 1601 pgoff_t end_offset; 1602 u64 size = 1ull << walk->shifts[--level]; 1603 int err; 1604 1605 if (!IS_ALIGNED(addr, size)) 1606 addr = xe_walk->modified_start; 1607 if (!IS_ALIGNED(next, size)) 1608 next = xe_walk->modified_end; 1609 1610 /* Parent == *child is the root pt. Don't kill it. */ 1611 if (parent != *child && 1612 xe_pt_check_kill(addr, next, level, xe_child, action, walk)) 1613 return 0; 1614 1615 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, 1616 &end_offset)) 1617 return 0; 1618 1619 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true); 1620 if (err) 1621 return err; 1622 1623 xe_walk->wupd.updates[level].update->qwords = end_offset - offset; 1624 1625 return 0; 1626 } 1627 1628 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { 1629 .pt_entry = xe_pt_stage_unbind_entry, 1630 .pt_post_descend = xe_pt_stage_unbind_post_descend, 1631 }; 1632 1633 /** 1634 * xe_pt_stage_unbind() - Build page-table update structures for an unbind 1635 * operation 1636 * @tile: The tile we're unbinding for. 1637 * @vm: The vm 1638 * @vma: The vma we're unbinding. 1639 * @range: The range we're unbinding. 1640 * @entries: Caller-provided storage for the update structures. 1641 * 1642 * Builds page-table update structures for an unbind operation. The function 1643 * will attempt to remove all page-tables that we're the only user 1644 * of, and for that to work, the unbind operation must be committed in the 1645 * same critical section that blocks racing binds to the same page-table tree. 1646 * 1647 * Return: The number of entries used. 1648 */ 1649 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, 1650 struct xe_vm *vm, 1651 struct xe_vma *vma, 1652 struct xe_svm_range *range, 1653 struct xe_vm_pgtable_update *entries) 1654 { 1655 u64 start = range ? xe_svm_range_start(range) : xe_vma_start(vma); 1656 u64 end = range ? xe_svm_range_end(range) : xe_vma_end(vma); 1657 struct xe_pt_stage_unbind_walk xe_walk = { 1658 .base = { 1659 .ops = &xe_pt_stage_unbind_ops, 1660 .shifts = xe_normal_pt_shifts, 1661 .max_level = XE_PT_HIGHEST_LEVEL, 1662 .staging = true, 1663 }, 1664 .tile = tile, 1665 .modified_start = start, 1666 .modified_end = end, 1667 .wupd.entries = entries, 1668 }; 1669 struct xe_pt *pt = vm->pt_root[tile->id]; 1670 1671 (void)xe_pt_walk_shared(&pt->base, pt->level, start, end, 1672 &xe_walk.base); 1673 1674 return xe_walk.wupd.num_used_entries; 1675 } 1676 1677 static void 1678 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, 1679 struct xe_tile *tile, struct iosys_map *map, 1680 void *ptr, u32 qword_ofs, u32 num_qwords, 1681 const struct xe_vm_pgtable_update *update) 1682 { 1683 struct xe_vm *vm = pt_update->vops->vm; 1684 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level); 1685 int i; 1686 1687 if (map && map->is_iomem) 1688 for (i = 0; i < num_qwords; ++i) 1689 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * 1690 sizeof(u64), u64, empty); 1691 else if (map) 1692 memset64(map->vaddr + qword_ofs * sizeof(u64), empty, 1693 num_qwords); 1694 else 1695 memset64(ptr, empty, num_qwords); 1696 } 1697 1698 static void xe_pt_abort_unbind(struct xe_vma *vma, 1699 struct xe_vm_pgtable_update *entries, 1700 u32 num_entries) 1701 { 1702 int i, j; 1703 1704 xe_pt_commit_prepare_locks_assert(vma); 1705 1706 for (i = num_entries - 1; i >= 0; --i) { 1707 struct xe_vm_pgtable_update *entry = &entries[i]; 1708 struct xe_pt *pt = entry->pt; 1709 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); 1710 1711 pt->num_live += entry->qwords; 1712 1713 if (!pt->level) 1714 continue; 1715 1716 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) 1717 pt_dir->staging[j] = 1718 entries[i].pt_entries[j - entry->ofs].pt ? 1719 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL; 1720 } 1721 } 1722 1723 static void 1724 xe_pt_commit_prepare_unbind(struct xe_vma *vma, 1725 struct xe_vm_pgtable_update *entries, 1726 u32 num_entries) 1727 { 1728 int i, j; 1729 1730 xe_pt_commit_prepare_locks_assert(vma); 1731 1732 for (i = 0; i < num_entries; ++i) { 1733 struct xe_vm_pgtable_update *entry = &entries[i]; 1734 struct xe_pt *pt = entry->pt; 1735 struct xe_pt_dir *pt_dir; 1736 1737 pt->num_live -= entry->qwords; 1738 if (!pt->level) 1739 continue; 1740 1741 pt_dir = as_xe_pt_dir(pt); 1742 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) { 1743 entry->pt_entries[j - entry->ofs].pt = 1744 xe_pt_entry_staging(pt_dir, j); 1745 pt_dir->staging[j] = NULL; 1746 } 1747 } 1748 } 1749 1750 static void 1751 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops, 1752 u64 start, u64 end) 1753 { 1754 u64 last; 1755 u32 current_op = pt_update_ops->current_op; 1756 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1757 int i, level = 0; 1758 1759 for (i = 0; i < pt_op->num_entries; i++) { 1760 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i]; 1761 1762 if (entry->pt->level > level) 1763 level = entry->pt->level; 1764 } 1765 1766 /* Greedy (non-optimal) calculation but simple */ 1767 start = ALIGN_DOWN(start, 0x1ull << xe_pt_shift(level)); 1768 last = ALIGN(end, 0x1ull << xe_pt_shift(level)) - 1; 1769 1770 if (start < pt_update_ops->start) 1771 pt_update_ops->start = start; 1772 if (last > pt_update_ops->last) 1773 pt_update_ops->last = last; 1774 } 1775 1776 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma) 1777 { 1778 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0; 1779 1780 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) 1781 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1782 xe->info.tile_count << shift); 1783 1784 return 0; 1785 } 1786 1787 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile, 1788 struct xe_vm_pgtable_update_ops *pt_update_ops, 1789 struct xe_vma *vma, bool invalidate_on_bind) 1790 { 1791 u32 current_op = pt_update_ops->current_op; 1792 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1793 int err; 1794 1795 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1796 xe_bo_assert_held(xe_vma_bo(vma)); 1797 1798 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1799 "Preparing bind, with range [%llx...%llx)\n", 1800 xe_vma_start(vma), xe_vma_end(vma) - 1); 1801 1802 pt_op->vma = NULL; 1803 pt_op->bind = true; 1804 pt_op->rebind = BIT(tile->id) & vma->tile_present; 1805 1806 err = vma_reserve_fences(tile_to_xe(tile), vma); 1807 if (err) 1808 return err; 1809 1810 err = xe_pt_prepare_bind(tile, vma, NULL, pt_op->entries, 1811 &pt_op->num_entries, invalidate_on_bind); 1812 if (!err) { 1813 xe_tile_assert(tile, pt_op->num_entries <= 1814 ARRAY_SIZE(pt_op->entries)); 1815 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1816 pt_op->num_entries, true); 1817 1818 xe_pt_update_ops_rfence_interval(pt_update_ops, 1819 xe_vma_start(vma), 1820 xe_vma_end(vma)); 1821 ++pt_update_ops->current_op; 1822 pt_update_ops->needs_svm_lock |= xe_vma_is_userptr(vma); 1823 1824 /* 1825 * If rebind, we have to invalidate TLB on !LR vms to invalidate 1826 * cached PTEs point to freed memory. On LR vms this is done 1827 * automatically when the context is re-enabled by the rebind worker, 1828 * or in fault mode it was invalidated on PTE zapping. 1829 * 1830 * If !rebind, and scratch enabled VMs, there is a chance the scratch 1831 * PTE is already cached in the TLB so it needs to be invalidated. 1832 * On !LR VMs this is done in the ring ops preceding a batch, but on 1833 * LR, in particular on user-space batch buffer chaining, it needs to 1834 * be done here. 1835 */ 1836 if ((!pt_op->rebind && xe_vm_has_scratch(vm) && 1837 xe_vm_in_lr_mode(vm))) 1838 pt_update_ops->needs_invalidation = true; 1839 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm)) 1840 /* We bump also if batch_invalidate_tlb is true */ 1841 vm->tlb_flush_seqno++; 1842 1843 vma->tile_staged |= BIT(tile->id); 1844 pt_op->vma = vma; 1845 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1846 pt_op->num_entries, pt_op->rebind); 1847 } else { 1848 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1849 } 1850 1851 return err; 1852 } 1853 1854 static int bind_range_prepare(struct xe_vm *vm, struct xe_tile *tile, 1855 struct xe_vm_pgtable_update_ops *pt_update_ops, 1856 struct xe_vma *vma, struct xe_svm_range *range) 1857 { 1858 u32 current_op = pt_update_ops->current_op; 1859 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1860 int err; 1861 1862 xe_tile_assert(tile, xe_vma_is_cpu_addr_mirror(vma)); 1863 1864 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1865 "Preparing bind, with range [%lx...%lx)\n", 1866 xe_svm_range_start(range), xe_svm_range_end(range) - 1); 1867 1868 pt_op->vma = NULL; 1869 pt_op->bind = true; 1870 pt_op->rebind = BIT(tile->id) & range->tile_present; 1871 1872 err = xe_pt_prepare_bind(tile, vma, range, pt_op->entries, 1873 &pt_op->num_entries, false); 1874 if (!err) { 1875 xe_tile_assert(tile, pt_op->num_entries <= 1876 ARRAY_SIZE(pt_op->entries)); 1877 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1878 pt_op->num_entries, true); 1879 1880 xe_pt_update_ops_rfence_interval(pt_update_ops, 1881 xe_svm_range_start(range), 1882 xe_svm_range_end(range)); 1883 ++pt_update_ops->current_op; 1884 pt_update_ops->needs_svm_lock = true; 1885 1886 pt_op->vma = vma; 1887 xe_pt_commit_prepare_bind(vma, pt_op->entries, 1888 pt_op->num_entries, pt_op->rebind); 1889 } else { 1890 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries); 1891 } 1892 1893 return err; 1894 } 1895 1896 static int unbind_op_prepare(struct xe_tile *tile, 1897 struct xe_vm_pgtable_update_ops *pt_update_ops, 1898 struct xe_vma *vma) 1899 { 1900 u32 current_op = pt_update_ops->current_op; 1901 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1902 int err; 1903 1904 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id))) 1905 return 0; 1906 1907 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 1908 xe_bo_assert_held(xe_vma_bo(vma)); 1909 1910 vm_dbg(&xe_vma_vm(vma)->xe->drm, 1911 "Preparing unbind, with range [%llx...%llx)\n", 1912 xe_vma_start(vma), xe_vma_end(vma) - 1); 1913 1914 pt_op->vma = vma; 1915 pt_op->bind = false; 1916 pt_op->rebind = false; 1917 1918 err = vma_reserve_fences(tile_to_xe(tile), vma); 1919 if (err) 1920 return err; 1921 1922 pt_op->num_entries = xe_pt_stage_unbind(tile, xe_vma_vm(vma), 1923 vma, NULL, pt_op->entries); 1924 1925 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1926 pt_op->num_entries, false); 1927 xe_pt_update_ops_rfence_interval(pt_update_ops, xe_vma_start(vma), 1928 xe_vma_end(vma)); 1929 ++pt_update_ops->current_op; 1930 pt_update_ops->needs_svm_lock |= xe_vma_is_userptr(vma); 1931 pt_update_ops->needs_invalidation = true; 1932 1933 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries); 1934 1935 return 0; 1936 } 1937 1938 static bool 1939 xe_pt_op_check_range_skip_invalidation(struct xe_vm_pgtable_update_op *pt_op, 1940 struct xe_svm_range *range) 1941 { 1942 struct xe_vm_pgtable_update *update = pt_op->entries; 1943 1944 XE_WARN_ON(!pt_op->num_entries); 1945 1946 /* 1947 * We can't skip the invalidation if we are removing PTEs that span more 1948 * than the range, do some checks to ensure we are removing PTEs that 1949 * are invalid. 1950 */ 1951 1952 if (pt_op->num_entries > 1) 1953 return false; 1954 1955 if (update->pt->level == 0) 1956 return true; 1957 1958 if (update->pt->level == 1) 1959 return xe_svm_range_size(range) >= SZ_2M; 1960 1961 return false; 1962 } 1963 1964 static int unbind_range_prepare(struct xe_vm *vm, 1965 struct xe_tile *tile, 1966 struct xe_vm_pgtable_update_ops *pt_update_ops, 1967 struct xe_svm_range *range) 1968 { 1969 u32 current_op = pt_update_ops->current_op; 1970 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op]; 1971 1972 if (!(range->tile_present & BIT(tile->id))) 1973 return 0; 1974 1975 vm_dbg(&vm->xe->drm, 1976 "Preparing unbind, with range [%lx...%lx)\n", 1977 xe_svm_range_start(range), xe_svm_range_end(range) - 1); 1978 1979 pt_op->vma = XE_INVALID_VMA; 1980 pt_op->bind = false; 1981 pt_op->rebind = false; 1982 1983 pt_op->num_entries = xe_pt_stage_unbind(tile, vm, NULL, range, 1984 pt_op->entries); 1985 1986 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries, 1987 pt_op->num_entries, false); 1988 xe_pt_update_ops_rfence_interval(pt_update_ops, xe_svm_range_start(range), 1989 xe_svm_range_end(range)); 1990 ++pt_update_ops->current_op; 1991 pt_update_ops->needs_svm_lock = true; 1992 pt_update_ops->needs_invalidation |= xe_vm_has_scratch(vm) || 1993 xe_vm_has_valid_gpu_mapping(tile, range->tile_present, 1994 range->tile_invalidated) || 1995 !xe_pt_op_check_range_skip_invalidation(pt_op, range); 1996 1997 xe_pt_commit_prepare_unbind(XE_INVALID_VMA, pt_op->entries, 1998 pt_op->num_entries); 1999 2000 return 0; 2001 } 2002 2003 static int op_prepare(struct xe_vm *vm, 2004 struct xe_tile *tile, 2005 struct xe_vm_pgtable_update_ops *pt_update_ops, 2006 struct xe_vma_op *op) 2007 { 2008 int err = 0; 2009 2010 xe_vm_assert_held(vm); 2011 2012 switch (op->base.op) { 2013 case DRM_GPUVA_OP_MAP: 2014 if ((!op->map.immediate && xe_vm_in_fault_mode(vm) && 2015 !op->map.invalidate_on_bind) || 2016 (op->map.vma_flags & XE_VMA_SYSTEM_ALLOCATOR)) 2017 break; 2018 2019 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma, 2020 op->map.invalidate_on_bind); 2021 pt_update_ops->wait_vm_kernel = true; 2022 break; 2023 case DRM_GPUVA_OP_REMAP: 2024 { 2025 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2026 2027 if (xe_vma_is_cpu_addr_mirror(old)) 2028 break; 2029 2030 err = unbind_op_prepare(tile, pt_update_ops, old); 2031 2032 if (!err && op->remap.prev) { 2033 err = bind_op_prepare(vm, tile, pt_update_ops, 2034 op->remap.prev, false); 2035 pt_update_ops->wait_vm_bookkeep = true; 2036 } 2037 if (!err && op->remap.next) { 2038 err = bind_op_prepare(vm, tile, pt_update_ops, 2039 op->remap.next, false); 2040 pt_update_ops->wait_vm_bookkeep = true; 2041 } 2042 break; 2043 } 2044 case DRM_GPUVA_OP_UNMAP: 2045 { 2046 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2047 2048 if (xe_vma_is_cpu_addr_mirror(vma)) 2049 break; 2050 2051 err = unbind_op_prepare(tile, pt_update_ops, vma); 2052 break; 2053 } 2054 case DRM_GPUVA_OP_PREFETCH: 2055 { 2056 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2057 2058 if (xe_vma_is_cpu_addr_mirror(vma)) { 2059 struct xe_svm_range *range; 2060 unsigned long i; 2061 2062 xa_for_each(&op->prefetch_range.range, i, range) { 2063 err = bind_range_prepare(vm, tile, pt_update_ops, 2064 vma, range); 2065 if (err) 2066 return err; 2067 } 2068 } else { 2069 err = bind_op_prepare(vm, tile, pt_update_ops, vma, false); 2070 pt_update_ops->wait_vm_kernel = true; 2071 } 2072 break; 2073 } 2074 case DRM_GPUVA_OP_DRIVER: 2075 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) { 2076 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma)); 2077 2078 err = bind_range_prepare(vm, tile, pt_update_ops, 2079 op->map_range.vma, 2080 op->map_range.range); 2081 } else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) { 2082 err = unbind_range_prepare(vm, tile, pt_update_ops, 2083 op->unmap_range.range); 2084 } 2085 break; 2086 default: 2087 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2088 } 2089 2090 return err; 2091 } 2092 2093 static void 2094 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops) 2095 { 2096 init_llist_head(&pt_update_ops->deferred); 2097 pt_update_ops->start = ~0x0ull; 2098 pt_update_ops->last = 0x0ull; 2099 } 2100 2101 /** 2102 * xe_pt_update_ops_prepare() - Prepare PT update operations 2103 * @tile: Tile of PT update operations 2104 * @vops: VMA operationa 2105 * 2106 * Prepare PT update operations which includes updating internal PT state, 2107 * allocate memory for page tables, populate page table being pruned in, and 2108 * create PT update operations for leaf insertion / removal. 2109 * 2110 * Return: 0 on success, negative error code on error. 2111 */ 2112 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops) 2113 { 2114 struct xe_vm_pgtable_update_ops *pt_update_ops = 2115 &vops->pt_update_ops[tile->id]; 2116 struct xe_vma_op *op; 2117 int shift = tile->media_gt ? 1 : 0; 2118 int err; 2119 2120 lockdep_assert_held(&vops->vm->lock); 2121 xe_vm_assert_held(vops->vm); 2122 2123 xe_pt_update_ops_init(pt_update_ops); 2124 2125 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm), 2126 tile_to_xe(tile)->info.tile_count << shift); 2127 if (err) 2128 return err; 2129 2130 list_for_each_entry(op, &vops->list, link) { 2131 err = op_prepare(vops->vm, tile, pt_update_ops, op); 2132 2133 if (err) 2134 return err; 2135 } 2136 2137 xe_tile_assert(tile, pt_update_ops->current_op <= 2138 pt_update_ops->num_ops); 2139 2140 #ifdef TEST_VM_OPS_ERROR 2141 if (vops->inject_error && 2142 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE) 2143 return -ENOSPC; 2144 #endif 2145 2146 return 0; 2147 } 2148 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO); 2149 2150 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2151 struct xe_vm_pgtable_update_ops *pt_update_ops, 2152 struct xe_vma *vma, struct dma_fence *fence, 2153 struct dma_fence *fence2, bool invalidate_on_bind) 2154 { 2155 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2156 2157 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2158 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2159 pt_update_ops->wait_vm_bookkeep ? 2160 DMA_RESV_USAGE_KERNEL : 2161 DMA_RESV_USAGE_BOOKKEEP); 2162 if (fence2) 2163 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2164 pt_update_ops->wait_vm_bookkeep ? 2165 DMA_RESV_USAGE_KERNEL : 2166 DMA_RESV_USAGE_BOOKKEEP); 2167 } 2168 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2169 WRITE_ONCE(vma->tile_present, vma->tile_present | BIT(tile->id)); 2170 if (invalidate_on_bind) 2171 WRITE_ONCE(vma->tile_invalidated, 2172 vma->tile_invalidated | BIT(tile->id)); 2173 else 2174 WRITE_ONCE(vma->tile_invalidated, 2175 vma->tile_invalidated & ~BIT(tile->id)); 2176 vma->tile_staged &= ~BIT(tile->id); 2177 if (xe_vma_is_userptr(vma)) { 2178 xe_svm_assert_held_read(vm); 2179 to_userptr_vma(vma)->userptr.initial_bind = true; 2180 } 2181 2182 /* 2183 * Kick rebind worker if this bind triggers preempt fences and not in 2184 * the rebind worker 2185 */ 2186 if (pt_update_ops->wait_vm_bookkeep && 2187 xe_vm_in_preempt_fence_mode(vm) && 2188 !current->mm) 2189 xe_vm_queue_rebind_worker(vm); 2190 } 2191 2192 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile, 2193 struct xe_vm_pgtable_update_ops *pt_update_ops, 2194 struct xe_vma *vma, struct dma_fence *fence, 2195 struct dma_fence *fence2) 2196 { 2197 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma)); 2198 2199 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) { 2200 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, 2201 pt_update_ops->wait_vm_bookkeep ? 2202 DMA_RESV_USAGE_KERNEL : 2203 DMA_RESV_USAGE_BOOKKEEP); 2204 if (fence2) 2205 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2, 2206 pt_update_ops->wait_vm_bookkeep ? 2207 DMA_RESV_USAGE_KERNEL : 2208 DMA_RESV_USAGE_BOOKKEEP); 2209 } 2210 vma->tile_present &= ~BIT(tile->id); 2211 if (!vma->tile_present) { 2212 list_del_init(&vma->combined_links.rebind); 2213 if (xe_vma_is_userptr(vma)) { 2214 xe_svm_assert_held_read(vm); 2215 2216 spin_lock(&vm->userptr.invalidated_lock); 2217 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); 2218 spin_unlock(&vm->userptr.invalidated_lock); 2219 } 2220 } 2221 } 2222 2223 static void range_present_and_invalidated_tile(struct xe_vm *vm, 2224 struct xe_svm_range *range, 2225 u8 tile_id) 2226 { 2227 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2228 2229 lockdep_assert_held(&vm->svm.gpusvm.notifier_lock); 2230 2231 WRITE_ONCE(range->tile_present, range->tile_present | BIT(tile_id)); 2232 WRITE_ONCE(range->tile_invalidated, range->tile_invalidated & ~BIT(tile_id)); 2233 } 2234 2235 static void op_commit(struct xe_vm *vm, 2236 struct xe_tile *tile, 2237 struct xe_vm_pgtable_update_ops *pt_update_ops, 2238 struct xe_vma_op *op, struct dma_fence *fence, 2239 struct dma_fence *fence2) 2240 { 2241 xe_vm_assert_held(vm); 2242 2243 switch (op->base.op) { 2244 case DRM_GPUVA_OP_MAP: 2245 if ((!op->map.immediate && xe_vm_in_fault_mode(vm)) || 2246 (op->map.vma_flags & XE_VMA_SYSTEM_ALLOCATOR)) 2247 break; 2248 2249 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence, 2250 fence2, op->map.invalidate_on_bind); 2251 break; 2252 case DRM_GPUVA_OP_REMAP: 2253 { 2254 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va); 2255 2256 if (xe_vma_is_cpu_addr_mirror(old)) 2257 break; 2258 2259 unbind_op_commit(vm, tile, pt_update_ops, old, fence, fence2); 2260 2261 if (op->remap.prev) 2262 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev, 2263 fence, fence2, false); 2264 if (op->remap.next) 2265 bind_op_commit(vm, tile, pt_update_ops, op->remap.next, 2266 fence, fence2, false); 2267 break; 2268 } 2269 case DRM_GPUVA_OP_UNMAP: 2270 { 2271 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2272 2273 if (!xe_vma_is_cpu_addr_mirror(vma)) 2274 unbind_op_commit(vm, tile, pt_update_ops, vma, fence, 2275 fence2); 2276 break; 2277 } 2278 case DRM_GPUVA_OP_PREFETCH: 2279 { 2280 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2281 2282 if (xe_vma_is_cpu_addr_mirror(vma)) { 2283 struct xe_svm_range *range = NULL; 2284 unsigned long i; 2285 2286 xa_for_each(&op->prefetch_range.range, i, range) 2287 range_present_and_invalidated_tile(vm, range, tile->id); 2288 } else { 2289 bind_op_commit(vm, tile, pt_update_ops, vma, fence, 2290 fence2, false); 2291 } 2292 break; 2293 } 2294 case DRM_GPUVA_OP_DRIVER: 2295 { 2296 /* WRITE_ONCE pairs with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 2297 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) 2298 range_present_and_invalidated_tile(vm, op->map_range.range, tile->id); 2299 else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) 2300 WRITE_ONCE(op->unmap_range.range->tile_present, 2301 op->unmap_range.range->tile_present & 2302 ~BIT(tile->id)); 2303 2304 break; 2305 } 2306 default: 2307 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2308 } 2309 } 2310 2311 static const struct xe_migrate_pt_update_ops migrate_ops = { 2312 .populate = xe_vm_populate_pgtable, 2313 .clear = xe_migrate_clear_pgtable_callback, 2314 .pre_commit = xe_pt_pre_commit, 2315 }; 2316 2317 #if IS_ENABLED(CONFIG_DRM_GPUSVM) 2318 static const struct xe_migrate_pt_update_ops svm_userptr_migrate_ops = { 2319 .populate = xe_vm_populate_pgtable, 2320 .clear = xe_migrate_clear_pgtable_callback, 2321 .pre_commit = xe_pt_svm_userptr_pre_commit, 2322 }; 2323 #else 2324 static const struct xe_migrate_pt_update_ops svm_userptr_migrate_ops; 2325 #endif 2326 2327 static struct xe_dep_scheduler *to_dep_scheduler(struct xe_exec_queue *q, 2328 struct xe_gt *gt) 2329 { 2330 if (xe_gt_is_media_type(gt)) 2331 return q->tlb_inval[XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT].dep_scheduler; 2332 2333 return q->tlb_inval[XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT].dep_scheduler; 2334 } 2335 2336 /** 2337 * xe_pt_update_ops_run() - Run PT update operations 2338 * @tile: Tile of PT update operations 2339 * @vops: VMA operationa 2340 * 2341 * Run PT update operations which includes committing internal PT state changes, 2342 * creating job for PT update operations for leaf insertion / removal, and 2343 * installing job fence in various places. 2344 * 2345 * Return: fence on success, negative ERR_PTR on error. 2346 */ 2347 struct dma_fence * 2348 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops) 2349 { 2350 struct xe_vm *vm = vops->vm; 2351 struct xe_vm_pgtable_update_ops *pt_update_ops = 2352 &vops->pt_update_ops[tile->id]; 2353 struct xe_exec_queue *q = pt_update_ops->q; 2354 struct dma_fence *fence, *ifence = NULL, *mfence = NULL; 2355 struct xe_tlb_inval_job *ijob = NULL, *mjob = NULL; 2356 struct xe_range_fence *rfence; 2357 struct xe_vma_op *op; 2358 int err = 0, i; 2359 struct xe_migrate_pt_update update = { 2360 .ops = pt_update_ops->needs_svm_lock ? 2361 &svm_userptr_migrate_ops : 2362 &migrate_ops, 2363 .vops = vops, 2364 .tile_id = tile->id, 2365 }; 2366 2367 lockdep_assert_held(&vm->lock); 2368 xe_vm_assert_held(vm); 2369 2370 if (!pt_update_ops->current_op) { 2371 xe_tile_assert(tile, xe_vm_in_fault_mode(vm)); 2372 2373 return dma_fence_get_stub(); 2374 } 2375 2376 #ifdef TEST_VM_OPS_ERROR 2377 if (vops->inject_error && 2378 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN) 2379 return ERR_PTR(-ENOSPC); 2380 #endif 2381 2382 if (pt_update_ops->needs_invalidation) { 2383 struct xe_dep_scheduler *dep_scheduler = 2384 to_dep_scheduler(q, tile->primary_gt); 2385 2386 ijob = xe_tlb_inval_job_create(q, &tile->primary_gt->tlb_inval, 2387 dep_scheduler, vm, 2388 pt_update_ops->start, 2389 pt_update_ops->last, 2390 XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT); 2391 if (IS_ERR(ijob)) { 2392 err = PTR_ERR(ijob); 2393 goto kill_vm_tile1; 2394 } 2395 update.ijob = ijob; 2396 2397 if (tile->media_gt) { 2398 dep_scheduler = to_dep_scheduler(q, tile->media_gt); 2399 2400 mjob = xe_tlb_inval_job_create(q, 2401 &tile->media_gt->tlb_inval, 2402 dep_scheduler, vm, 2403 pt_update_ops->start, 2404 pt_update_ops->last, 2405 XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT); 2406 if (IS_ERR(mjob)) { 2407 err = PTR_ERR(mjob); 2408 goto free_ijob; 2409 } 2410 update.mjob = mjob; 2411 } 2412 } 2413 2414 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); 2415 if (!rfence) { 2416 err = -ENOMEM; 2417 goto free_ijob; 2418 } 2419 2420 fence = xe_migrate_update_pgtables(tile->migrate, &update); 2421 if (IS_ERR(fence)) { 2422 err = PTR_ERR(fence); 2423 goto free_rfence; 2424 } 2425 2426 /* Point of no return - VM killed if failure after this */ 2427 for (i = 0; i < pt_update_ops->current_op; ++i) { 2428 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2429 2430 xe_pt_commit(pt_op->vma, pt_op->entries, 2431 pt_op->num_entries, &pt_update_ops->deferred); 2432 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */ 2433 } 2434 2435 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence, 2436 &xe_range_fence_kfree_ops, 2437 pt_update_ops->start, 2438 pt_update_ops->last, fence)) 2439 dma_fence_wait(fence, false); 2440 2441 if (ijob) 2442 ifence = xe_tlb_inval_job_push(ijob, tile->migrate, fence); 2443 if (mjob) 2444 mfence = xe_tlb_inval_job_push(mjob, tile->migrate, fence); 2445 2446 if (!mjob && !ijob) { 2447 dma_resv_add_fence(xe_vm_resv(vm), fence, 2448 pt_update_ops->wait_vm_bookkeep ? 2449 DMA_RESV_USAGE_KERNEL : 2450 DMA_RESV_USAGE_BOOKKEEP); 2451 2452 list_for_each_entry(op, &vops->list, link) 2453 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL); 2454 } else if (ijob && !mjob) { 2455 dma_resv_add_fence(xe_vm_resv(vm), ifence, 2456 pt_update_ops->wait_vm_bookkeep ? 2457 DMA_RESV_USAGE_KERNEL : 2458 DMA_RESV_USAGE_BOOKKEEP); 2459 2460 list_for_each_entry(op, &vops->list, link) 2461 op_commit(vops->vm, tile, pt_update_ops, op, ifence, NULL); 2462 } else { 2463 dma_resv_add_fence(xe_vm_resv(vm), ifence, 2464 pt_update_ops->wait_vm_bookkeep ? 2465 DMA_RESV_USAGE_KERNEL : 2466 DMA_RESV_USAGE_BOOKKEEP); 2467 2468 dma_resv_add_fence(xe_vm_resv(vm), mfence, 2469 pt_update_ops->wait_vm_bookkeep ? 2470 DMA_RESV_USAGE_KERNEL : 2471 DMA_RESV_USAGE_BOOKKEEP); 2472 2473 list_for_each_entry(op, &vops->list, link) 2474 op_commit(vops->vm, tile, pt_update_ops, op, ifence, 2475 mfence); 2476 } 2477 2478 if (pt_update_ops->needs_svm_lock) 2479 xe_svm_notifier_unlock(vm); 2480 2481 /* 2482 * The last fence is only used for zero bind queue idling; migrate 2483 * queues are not exposed to user space. 2484 */ 2485 if (!(q->flags & EXEC_QUEUE_FLAG_MIGRATE)) 2486 xe_exec_queue_last_fence_set(q, vm, fence); 2487 2488 xe_tlb_inval_job_put(mjob); 2489 xe_tlb_inval_job_put(ijob); 2490 dma_fence_put(ifence); 2491 dma_fence_put(mfence); 2492 2493 return fence; 2494 2495 free_rfence: 2496 kfree(rfence); 2497 free_ijob: 2498 xe_tlb_inval_job_put(mjob); 2499 xe_tlb_inval_job_put(ijob); 2500 kill_vm_tile1: 2501 if (err != -EAGAIN && err != -ENODATA && tile->id) 2502 xe_vm_kill(vops->vm, false); 2503 2504 return ERR_PTR(err); 2505 } 2506 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO); 2507 2508 /** 2509 * xe_pt_update_ops_fini() - Finish PT update operations 2510 * @tile: Tile of PT update operations 2511 * @vops: VMA operations 2512 * 2513 * Finish PT update operations by committing to destroy page table memory 2514 */ 2515 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops) 2516 { 2517 struct xe_vm_pgtable_update_ops *pt_update_ops = 2518 &vops->pt_update_ops[tile->id]; 2519 int i; 2520 2521 lockdep_assert_held(&vops->vm->lock); 2522 xe_vm_assert_held(vops->vm); 2523 2524 for (i = 0; i < pt_update_ops->current_op; ++i) { 2525 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i]; 2526 2527 xe_pt_free_bind(pt_op->entries, pt_op->num_entries); 2528 } 2529 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred); 2530 } 2531 2532 /** 2533 * xe_pt_update_ops_abort() - Abort PT update operations 2534 * @tile: Tile of PT update operations 2535 * @vops: VMA operationa 2536 * 2537 * Abort PT update operations by unwinding internal PT state 2538 */ 2539 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops) 2540 { 2541 struct xe_vm_pgtable_update_ops *pt_update_ops = 2542 &vops->pt_update_ops[tile->id]; 2543 int i; 2544 2545 lockdep_assert_held(&vops->vm->lock); 2546 xe_vm_assert_held(vops->vm); 2547 2548 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) { 2549 struct xe_vm_pgtable_update_op *pt_op = 2550 &pt_update_ops->ops[i]; 2551 2552 if (!pt_op->vma || i >= pt_update_ops->current_op) 2553 continue; 2554 2555 if (pt_op->bind) 2556 xe_pt_abort_bind(pt_op->vma, pt_op->entries, 2557 pt_op->num_entries, 2558 pt_op->rebind); 2559 else 2560 xe_pt_abort_unbind(pt_op->vma, pt_op->entries, 2561 pt_op->num_entries); 2562 } 2563 2564 xe_pt_update_ops_fini(tile, vops); 2565 } 2566