xref: /linux/drivers/gpu/drm/xe/xe_pt.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_pt.h"
7 
8 #include "regs/xe_gtt_defs.h"
9 #include "xe_bo.h"
10 #include "xe_device.h"
11 #include "xe_drm_client.h"
12 #include "xe_exec_queue.h"
13 #include "xe_gt.h"
14 #include "xe_migrate.h"
15 #include "xe_pt_types.h"
16 #include "xe_pt_walk.h"
17 #include "xe_res_cursor.h"
18 #include "xe_sched_job.h"
19 #include "xe_svm.h"
20 #include "xe_sync.h"
21 #include "xe_tlb_inval_job.h"
22 #include "xe_trace.h"
23 #include "xe_ttm_stolen_mgr.h"
24 #include "xe_userptr.h"
25 #include "xe_vm.h"
26 
27 struct xe_pt_dir {
28 	struct xe_pt pt;
29 	/** @children: Array of page-table child nodes */
30 	struct xe_ptw *children[XE_PDES];
31 	/** @staging: Array of page-table staging nodes */
32 	struct xe_ptw *staging[XE_PDES];
33 };
34 
35 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
36 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
37 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
38 #else
39 #define xe_pt_set_addr(__xe_pt, __addr)
40 #define xe_pt_addr(__xe_pt) 0ull
41 #endif
42 
43 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
44 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
45 
46 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
47 
48 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
49 {
50 	return container_of(pt, struct xe_pt_dir, pt);
51 }
52 
53 static struct xe_pt *
54 xe_pt_entry_staging(struct xe_pt_dir *pt_dir, unsigned int index)
55 {
56 	return container_of(pt_dir->staging[index], struct xe_pt, base);
57 }
58 
59 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
60 			     unsigned int level)
61 {
62 	struct xe_device *xe = tile_to_xe(tile);
63 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
64 	u8 id = tile->id;
65 
66 	if (!xe_vm_has_scratch(vm))
67 		return 0;
68 
69 	if (level > MAX_HUGEPTE_LEVEL)
70 		return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
71 						 0);
72 
73 	return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
74 		XE_PTE_NULL;
75 }
76 
77 static void xe_pt_free(struct xe_pt *pt)
78 {
79 	if (pt->level)
80 		kfree(as_xe_pt_dir(pt));
81 	else
82 		kfree(pt);
83 }
84 
85 /**
86  * xe_pt_create() - Create a page-table.
87  * @vm: The vm to create for.
88  * @tile: The tile to create for.
89  * @level: The page-table level.
90  * @exec: The drm_exec object used to lock the vm.
91  *
92  * Allocate and initialize a single struct xe_pt metadata structure. Also
93  * create the corresponding page-table bo, but don't initialize it. If the
94  * level is grater than zero, then it's assumed to be a directory page-
95  * table and the directory structure is also allocated and initialized to
96  * NULL pointers.
97  *
98  * Return: A valid struct xe_pt pointer on success, Pointer error code on
99  * error.
100  */
101 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
102 			   unsigned int level, struct drm_exec *exec)
103 {
104 	struct xe_pt *pt;
105 	struct xe_bo *bo;
106 	u32 bo_flags;
107 	int err;
108 
109 	if (level) {
110 		struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
111 
112 		pt = (dir) ? &dir->pt : NULL;
113 	} else {
114 		pt = kzalloc(sizeof(*pt), GFP_KERNEL);
115 	}
116 	if (!pt)
117 		return ERR_PTR(-ENOMEM);
118 
119 	bo_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) |
120 		   XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE |
121 		   XE_BO_FLAG_NO_RESV_EVICT | XE_BO_FLAG_PAGETABLE;
122 	if (vm->xef) /* userspace */
123 		bo_flags |= XE_BO_FLAG_PINNED_LATE_RESTORE | XE_BO_FLAG_FORCE_USER_VRAM;
124 
125 	pt->level = level;
126 
127 	drm_WARN_ON(&vm->xe->drm, IS_ERR_OR_NULL(exec));
128 	bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
129 				  ttm_bo_type_kernel,
130 				  bo_flags, exec);
131 	if (IS_ERR(bo)) {
132 		err = PTR_ERR(bo);
133 		goto err_kfree;
134 	}
135 	pt->bo = bo;
136 	pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
137 	pt->base.staging = level ? as_xe_pt_dir(pt)->staging : NULL;
138 
139 	if (vm->xef)
140 		xe_drm_client_add_bo(vm->xef->client, pt->bo);
141 	xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
142 
143 	return pt;
144 
145 err_kfree:
146 	xe_pt_free(pt);
147 	return ERR_PTR(err);
148 }
149 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO);
150 
151 /**
152  * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
153  * entries.
154  * @tile: The tile the scratch pagetable of which to use.
155  * @vm: The vm we populate for.
156  * @pt: The pagetable the bo of which to initialize.
157  *
158  * Populate the page-table bo of @pt with entries pointing into the tile's
159  * scratch page-table tree if any. Otherwise populate with zeros.
160  */
161 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
162 			  struct xe_pt *pt)
163 {
164 	struct iosys_map *map = &pt->bo->vmap;
165 	u64 empty;
166 	int i;
167 
168 	if (!xe_vm_has_scratch(vm)) {
169 		/*
170 		 * FIXME: Some memory is allocated already allocated to zero?
171 		 * Find out which memory that is and avoid this memset...
172 		 */
173 		xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
174 	} else {
175 		empty = __xe_pt_empty_pte(tile, vm, pt->level);
176 		for (i = 0; i < XE_PDES; i++)
177 			xe_pt_write(vm->xe, map, i, empty);
178 	}
179 }
180 
181 /**
182  * xe_pt_shift() - Return the ilog2 value of the size of the address range of
183  * a page-table at a certain level.
184  * @level: The level.
185  *
186  * Return: The ilog2 value of the size of the address range of a page-table
187  * at level @level.
188  */
189 unsigned int xe_pt_shift(unsigned int level)
190 {
191 	return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
192 }
193 
194 /**
195  * xe_pt_destroy() - Destroy a page-table tree.
196  * @pt: The root of the page-table tree to destroy.
197  * @flags: vm flags. Currently unused.
198  * @deferred: List head of lockless list for deferred putting. NULL for
199  *            immediate putting.
200  *
201  * Puts the page-table bo, recursively calls xe_pt_destroy on all children
202  * and finally frees @pt. TODO: Can we remove the @flags argument?
203  */
204 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
205 {
206 	int i;
207 
208 	if (!pt)
209 		return;
210 
211 	XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
212 	xe_bo_unpin(pt->bo);
213 	xe_bo_put_deferred(pt->bo, deferred);
214 
215 	if (pt->level > 0 && pt->num_live) {
216 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
217 
218 		for (i = 0; i < XE_PDES; i++) {
219 			if (xe_pt_entry_staging(pt_dir, i))
220 				xe_pt_destroy(xe_pt_entry_staging(pt_dir, i), flags,
221 					      deferred);
222 		}
223 	}
224 	xe_pt_free(pt);
225 }
226 
227 /**
228  * xe_pt_clear() - Clear a page-table.
229  * @xe: xe device.
230  * @pt: The page-table.
231  *
232  * Clears page-table by setting to zero.
233  */
234 void xe_pt_clear(struct xe_device *xe, struct xe_pt *pt)
235 {
236 	struct iosys_map *map = &pt->bo->vmap;
237 
238 	xe_map_memset(xe, map, 0, 0, SZ_4K);
239 }
240 
241 /**
242  * DOC: Pagetable building
243  *
244  * Below we use the term "page-table" for both page-directories, containing
245  * pointers to lower level page-directories or page-tables, and level 0
246  * page-tables that contain only page-table-entries pointing to memory pages.
247  *
248  * When inserting an address range in an already existing page-table tree
249  * there will typically be a set of page-tables that are shared with other
250  * address ranges, and a set that are private to this address range.
251  * The set of shared page-tables can be at most two per level,
252  * and those can't be updated immediately because the entries of those
253  * page-tables may still be in use by the gpu for other mappings. Therefore
254  * when inserting entries into those, we instead stage those insertions by
255  * adding insertion data into struct xe_vm_pgtable_update structures. This
256  * data, (subtrees for the cpu and page-table-entries for the gpu) is then
257  * added in a separate commit step. CPU-data is committed while still under the
258  * vm lock, the object lock and for userptr, the notifier lock in read mode.
259  * The GPU async data is committed either by the GPU or CPU after fulfilling
260  * relevant dependencies.
261  * For non-shared page-tables (and, in fact, for shared ones that aren't
262  * existing at the time of staging), we add the data in-place without the
263  * special update structures. This private part of the page-table tree will
264  * remain disconnected from the vm page-table tree until data is committed to
265  * the shared page tables of the vm tree in the commit phase.
266  */
267 
268 struct xe_pt_update {
269 	/** @update: The update structure we're building for this parent. */
270 	struct xe_vm_pgtable_update *update;
271 	/** @parent: The parent. Used to detect a parent change. */
272 	struct xe_pt *parent;
273 	/** @preexisting: Whether the parent was pre-existing or allocated */
274 	bool preexisting;
275 };
276 
277 /**
278  * struct xe_pt_stage_bind_walk - Walk state for the stage_bind walk.
279  */
280 struct xe_pt_stage_bind_walk {
281 	/** @base: The base class. */
282 	struct xe_pt_walk base;
283 
284 	/* Input parameters for the walk */
285 	/** @vm: The vm we're building for. */
286 	struct xe_vm *vm;
287 	/** @tile: The tile we're building for. */
288 	struct xe_tile *tile;
289 	/** @default_vram_pte: PTE flag only template for VRAM. No address is associated */
290 	u64 default_vram_pte;
291 	/** @default_system_pte: PTE flag only template for System. No address is associated */
292 	u64 default_system_pte;
293 	/** @dma_offset: DMA offset to add to the PTE. */
294 	u64 dma_offset;
295 	/**
296 	 * @needs_64K: This address range enforces 64K alignment and
297 	 * granularity on VRAM.
298 	 */
299 	bool needs_64K;
300 	/** @clear_pt: clear page table entries during the bind walk */
301 	bool clear_pt;
302 	/**
303 	 * @vma: VMA being mapped
304 	 */
305 	struct xe_vma *vma;
306 
307 	/* Also input, but is updated during the walk*/
308 	/** @curs: The DMA address cursor. */
309 	struct xe_res_cursor *curs;
310 	/** @va_curs_start: The Virtual address corresponding to @curs->start */
311 	u64 va_curs_start;
312 
313 	/* Output */
314 	/** @wupd: Walk output data for page-table updates. */
315 	struct xe_walk_update {
316 		/** @wupd.entries: Caller provided storage. */
317 		struct xe_vm_pgtable_update *entries;
318 		/** @wupd.num_used_entries: Number of update @entries used. */
319 		unsigned int num_used_entries;
320 		/** @wupd.updates: Tracks the update entry at a given level */
321 		struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
322 	} wupd;
323 
324 	/* Walk state */
325 	/**
326 	 * @l0_end_addr: The end address of the current l0 leaf. Used for
327 	 * 64K granularity detection.
328 	 */
329 	u64 l0_end_addr;
330 	/** @addr_64K: The start address of the current 64K chunk. */
331 	u64 addr_64K;
332 	/** @found_64K: Whether @add_64K actually points to a 64K chunk. */
333 	bool found_64K;
334 };
335 
336 static int
337 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
338 		 pgoff_t offset, bool alloc_entries)
339 {
340 	struct xe_pt_update *upd = &wupd->updates[parent->level];
341 	struct xe_vm_pgtable_update *entry;
342 
343 	/*
344 	 * For *each level*, we could only have one active
345 	 * struct xt_pt_update at any one time. Once we move on to a
346 	 * new parent and page-directory, the old one is complete, and
347 	 * updates are either already stored in the build tree or in
348 	 * @wupd->entries
349 	 */
350 	if (likely(upd->parent == parent))
351 		return 0;
352 
353 	upd->parent = parent;
354 	upd->preexisting = true;
355 
356 	if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
357 		return -EINVAL;
358 
359 	entry = wupd->entries + wupd->num_used_entries++;
360 	upd->update = entry;
361 	entry->ofs = offset;
362 	entry->pt_bo = parent->bo;
363 	entry->pt = parent;
364 	entry->flags = 0;
365 	entry->qwords = 0;
366 	entry->pt_bo->update_index = -1;
367 
368 	if (alloc_entries) {
369 		entry->pt_entries = kmalloc_array(XE_PDES,
370 						  sizeof(*entry->pt_entries),
371 						  GFP_KERNEL);
372 		if (!entry->pt_entries)
373 			return -ENOMEM;
374 	}
375 
376 	return 0;
377 }
378 
379 /*
380  * NOTE: This is a very frequently called function so we allow ourselves
381  * to annotate (using branch prediction hints) the fastpath of updating a
382  * non-pre-existing pagetable with leaf ptes.
383  */
384 static int
385 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
386 		   pgoff_t offset, struct xe_pt *xe_child, u64 pte)
387 {
388 	struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
389 	struct xe_pt_update *child_upd = xe_child ?
390 		&xe_walk->wupd.updates[xe_child->level] : NULL;
391 	int ret;
392 
393 	ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
394 	if (unlikely(ret))
395 		return ret;
396 
397 	/*
398 	 * Register this new pagetable so that it won't be recognized as
399 	 * a shared pagetable by a subsequent insertion.
400 	 */
401 	if (unlikely(child_upd)) {
402 		child_upd->update = NULL;
403 		child_upd->parent = xe_child;
404 		child_upd->preexisting = false;
405 	}
406 
407 	if (likely(!upd->preexisting)) {
408 		/* Continue building a non-connected subtree. */
409 		struct iosys_map *map = &parent->bo->vmap;
410 
411 		if (unlikely(xe_child)) {
412 			parent->base.children[offset] = &xe_child->base;
413 			parent->base.staging[offset] = &xe_child->base;
414 		}
415 
416 		xe_pt_write(xe_walk->vm->xe, map, offset, pte);
417 		parent->num_live++;
418 	} else {
419 		/* Shared pt. Stage update. */
420 		unsigned int idx;
421 		struct xe_vm_pgtable_update *entry = upd->update;
422 
423 		idx = offset - entry->ofs;
424 		entry->pt_entries[idx].pt = xe_child;
425 		entry->pt_entries[idx].pte = pte;
426 		entry->qwords++;
427 	}
428 
429 	return 0;
430 }
431 
432 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
433 				   struct xe_pt_stage_bind_walk *xe_walk)
434 {
435 	u64 size, dma;
436 
437 	if (level > MAX_HUGEPTE_LEVEL)
438 		return false;
439 
440 	/* Does the virtual range requested cover a huge pte? */
441 	if (!xe_pt_covers(addr, next, level, &xe_walk->base))
442 		return false;
443 
444 	/* Does the DMA segment cover the whole pte? */
445 	if (next - xe_walk->va_curs_start > xe_walk->curs->size)
446 		return false;
447 
448 	/* null VMA's do not have dma addresses */
449 	if (xe_vma_is_null(xe_walk->vma))
450 		return true;
451 
452 	/* if we are clearing page table, no dma addresses*/
453 	if (xe_walk->clear_pt)
454 		return true;
455 
456 	/* Is the DMA address huge PTE size aligned? */
457 	size = next - addr;
458 	dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
459 
460 	return IS_ALIGNED(dma, size);
461 }
462 
463 /*
464  * Scan the requested mapping to check whether it can be done entirely
465  * with 64K PTEs.
466  */
467 static bool
468 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
469 {
470 	struct xe_res_cursor curs = *xe_walk->curs;
471 
472 	if (!IS_ALIGNED(addr, SZ_64K))
473 		return false;
474 
475 	if (next > xe_walk->l0_end_addr)
476 		return false;
477 
478 	/* null VMA's do not have dma addresses */
479 	if (xe_vma_is_null(xe_walk->vma))
480 		return true;
481 
482 	xe_res_next(&curs, addr - xe_walk->va_curs_start);
483 	for (; addr < next; addr += SZ_64K) {
484 		if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
485 			return false;
486 
487 		xe_res_next(&curs, SZ_64K);
488 	}
489 
490 	return addr == next;
491 }
492 
493 /*
494  * For non-compact "normal" 4K level-0 pagetables, we want to try to group
495  * addresses together in 64K-contigous regions to add a 64K TLB hint for the
496  * device to the PTE.
497  * This function determines whether the address is part of such a
498  * segment. For VRAM in normal pagetables, this is strictly necessary on
499  * some devices.
500  */
501 static bool
502 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
503 {
504 	/* Address is within an already found 64k region */
505 	if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
506 		return true;
507 
508 	xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
509 	xe_walk->addr_64K = addr;
510 
511 	return xe_walk->found_64K;
512 }
513 
514 static int
515 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
516 		       unsigned int level, u64 addr, u64 next,
517 		       struct xe_ptw **child,
518 		       enum page_walk_action *action,
519 		       struct xe_pt_walk *walk)
520 {
521 	struct xe_pt_stage_bind_walk *xe_walk =
522 		container_of(walk, typeof(*xe_walk), base);
523 	u16 pat_index = xe_walk->vma->attr.pat_index;
524 	struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
525 	struct xe_vm *vm = xe_walk->vm;
526 	struct xe_pt *xe_child;
527 	bool covers;
528 	int ret = 0;
529 	u64 pte;
530 
531 	/* Is this a leaf entry ?*/
532 	if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
533 		struct xe_res_cursor *curs = xe_walk->curs;
534 		bool is_null = xe_vma_is_null(xe_walk->vma);
535 		bool is_vram = is_null ? false : xe_res_is_vram(curs);
536 
537 		XE_WARN_ON(xe_walk->va_curs_start != addr);
538 
539 		if (xe_walk->clear_pt) {
540 			pte = 0;
541 		} else {
542 			pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
543 							 xe_res_dma(curs) +
544 							 xe_walk->dma_offset,
545 							 xe_walk->vma,
546 							 pat_index, level);
547 			if (!is_null)
548 				pte |= is_vram ? xe_walk->default_vram_pte :
549 					xe_walk->default_system_pte;
550 
551 			/*
552 			 * Set the XE_PTE_PS64 hint if possible, otherwise if
553 			 * this device *requires* 64K PTE size for VRAM, fail.
554 			 */
555 			if (level == 0 && !xe_parent->is_compact) {
556 				if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
557 					xe_walk->vma->gpuva.flags |=
558 							XE_VMA_PTE_64K;
559 					pte |= XE_PTE_PS64;
560 				} else if (XE_WARN_ON(xe_walk->needs_64K &&
561 					   is_vram)) {
562 					return -EINVAL;
563 				}
564 			}
565 		}
566 
567 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
568 		if (unlikely(ret))
569 			return ret;
570 
571 		if (!is_null && !xe_walk->clear_pt)
572 			xe_res_next(curs, next - addr);
573 		xe_walk->va_curs_start = next;
574 		xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
575 		*action = ACTION_CONTINUE;
576 
577 		return ret;
578 	}
579 
580 	/*
581 	 * Descending to lower level. Determine if we need to allocate a
582 	 * new page table or -directory, which we do if there is no
583 	 * previous one or there is one we can completely replace.
584 	 */
585 	if (level == 1) {
586 		walk->shifts = xe_normal_pt_shifts;
587 		xe_walk->l0_end_addr = next;
588 	}
589 
590 	covers = xe_pt_covers(addr, next, level, &xe_walk->base);
591 	if (covers || !*child) {
592 		u64 flags = 0;
593 
594 		xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1,
595 					xe_vm_validation_exec(vm));
596 		if (IS_ERR(xe_child))
597 			return PTR_ERR(xe_child);
598 
599 		xe_pt_set_addr(xe_child,
600 			       round_down(addr, 1ull << walk->shifts[level]));
601 
602 		if (!covers)
603 			xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
604 
605 		*child = &xe_child->base;
606 
607 		/*
608 		 * Prefer the compact pagetable layout for L0 if possible. Only
609 		 * possible if VMA covers entire 2MB region as compact 64k and
610 		 * 4k pages cannot be mixed within a 2MB region.
611 		 * TODO: Suballocate the pt bo to avoid wasting a lot of
612 		 * memory.
613 		 */
614 		if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
615 		    covers && xe_pt_scan_64K(addr, next, xe_walk)) {
616 			walk->shifts = xe_compact_pt_shifts;
617 			xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
618 			flags |= XE_PDE_64K;
619 			xe_child->is_compact = true;
620 		}
621 
622 		pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0) | flags;
623 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
624 					 pte);
625 	}
626 
627 	*action = ACTION_SUBTREE;
628 	return ret;
629 }
630 
631 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
632 	.pt_entry = xe_pt_stage_bind_entry,
633 };
634 
635 /*
636  * Default atomic expectations for different allocation scenarios are as follows:
637  *
638  * 1. Traditional API: When the VM is not in LR mode:
639  *    - Device atomics are expected to function with all allocations.
640  *
641  * 2. Compute/SVM API: When the VM is in LR mode:
642  *    - Device atomics are the default behavior when the bo is placed in a single region.
643  *    - In all other cases device atomics will be disabled with AE=0 until an application
644  *      request differently using a ioctl like madvise.
645  */
646 static bool xe_atomic_for_vram(struct xe_vm *vm, struct xe_vma *vma)
647 {
648 	if (vma->attr.atomic_access == DRM_XE_ATOMIC_CPU)
649 		return false;
650 
651 	return true;
652 }
653 
654 static bool xe_atomic_for_system(struct xe_vm *vm, struct xe_vma *vma)
655 {
656 	struct xe_device *xe = vm->xe;
657 	struct xe_bo *bo = xe_vma_bo(vma);
658 
659 	if (!xe->info.has_device_atomics_on_smem ||
660 	    vma->attr.atomic_access == DRM_XE_ATOMIC_CPU)
661 		return false;
662 
663 	if (vma->attr.atomic_access == DRM_XE_ATOMIC_DEVICE)
664 		return true;
665 
666 	/*
667 	 * If a SMEM+LMEM allocation is backed by SMEM, a device
668 	 * atomics will cause a gpu page fault and which then
669 	 * gets migrated to LMEM, bind such allocations with
670 	 * device atomics enabled.
671 	 */
672 	return (!IS_DGFX(xe) || (!xe_vm_in_lr_mode(vm) ||
673 				 (bo && xe_bo_has_single_placement(bo))));
674 }
675 
676 /**
677  * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
678  * range.
679  * @tile: The tile we're building for.
680  * @vma: The vma indicating the address range.
681  * @range: The range indicating the address range.
682  * @entries: Storage for the update entries used for connecting the tree to
683  * the main tree at commit time.
684  * @num_entries: On output contains the number of @entries used.
685  * @clear_pt: Clear the page table entries.
686  *
687  * This function builds a disconnected page-table tree for a given address
688  * range. The tree is connected to the main vm tree for the gpu using
689  * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
690  * The function builds xe_vm_pgtable_update structures for already existing
691  * shared page-tables, and non-existing shared and non-shared page-tables
692  * are built and populated directly.
693  *
694  * Return 0 on success, negative error code on error.
695  */
696 static int
697 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
698 		 struct xe_svm_range *range,
699 		 struct xe_vm_pgtable_update *entries,
700 		 u32 *num_entries, bool clear_pt)
701 {
702 	struct xe_device *xe = tile_to_xe(tile);
703 	struct xe_bo *bo = xe_vma_bo(vma);
704 	struct xe_res_cursor curs;
705 	struct xe_vm *vm = xe_vma_vm(vma);
706 	struct xe_pt_stage_bind_walk xe_walk = {
707 		.base = {
708 			.ops = &xe_pt_stage_bind_ops,
709 			.shifts = xe_normal_pt_shifts,
710 			.max_level = XE_PT_HIGHEST_LEVEL,
711 			.staging = true,
712 		},
713 		.vm = vm,
714 		.tile = tile,
715 		.curs = &curs,
716 		.va_curs_start = range ? xe_svm_range_start(range) :
717 			xe_vma_start(vma),
718 		.vma = vma,
719 		.wupd.entries = entries,
720 		.clear_pt = clear_pt,
721 	};
722 	struct xe_pt *pt = vm->pt_root[tile->id];
723 	int ret;
724 
725 	if (range) {
726 		/* Move this entire thing to xe_svm.c? */
727 		xe_svm_notifier_lock(vm);
728 		if (!xe_svm_range_pages_valid(range)) {
729 			xe_svm_range_debug(range, "BIND PREPARE - RETRY");
730 			xe_svm_notifier_unlock(vm);
731 			return -EAGAIN;
732 		}
733 		if (xe_svm_range_has_dma_mapping(range)) {
734 			xe_res_first_dma(range->base.pages.dma_addr, 0,
735 					 xe_svm_range_size(range),
736 					 &curs);
737 			xe_svm_range_debug(range, "BIND PREPARE - MIXED");
738 		} else {
739 			xe_assert(xe, false);
740 		}
741 		/*
742 		 * Note, when unlocking the resource cursor dma addresses may become
743 		 * stale, but the bind will be aborted anyway at commit time.
744 		 */
745 		xe_svm_notifier_unlock(vm);
746 	}
747 
748 	xe_walk.needs_64K = (vm->flags & XE_VM_FLAG_64K);
749 	if (clear_pt)
750 		goto walk_pt;
751 
752 	if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) {
753 		xe_walk.default_vram_pte = xe_atomic_for_vram(vm, vma) ? XE_USM_PPGTT_PTE_AE : 0;
754 		xe_walk.default_system_pte = xe_atomic_for_system(vm, vma) ?
755 			XE_USM_PPGTT_PTE_AE : 0;
756 	}
757 
758 	xe_walk.default_vram_pte |= XE_PPGTT_PTE_DM;
759 	xe_walk.dma_offset = bo ? vram_region_gpu_offset(bo->ttm.resource) : 0;
760 	if (!range)
761 		xe_bo_assert_held(bo);
762 
763 	if (!xe_vma_is_null(vma) && !range) {
764 		if (xe_vma_is_userptr(vma))
765 			xe_res_first_dma(to_userptr_vma(vma)->userptr.pages.dma_addr, 0,
766 					 xe_vma_size(vma), &curs);
767 		else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
768 			xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
769 				     xe_vma_size(vma), &curs);
770 		else
771 			xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
772 					xe_vma_size(vma), &curs);
773 	} else if (!range) {
774 		curs.size = xe_vma_size(vma);
775 	}
776 
777 walk_pt:
778 	ret = xe_pt_walk_range(&pt->base, pt->level,
779 			       range ? xe_svm_range_start(range) : xe_vma_start(vma),
780 			       range ? xe_svm_range_end(range) : xe_vma_end(vma),
781 			       &xe_walk.base);
782 
783 	*num_entries = xe_walk.wupd.num_used_entries;
784 	return ret;
785 }
786 
787 /**
788  * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
789  * shared pagetable.
790  * @addr: The start address within the non-shared pagetable.
791  * @end: The end address within the non-shared pagetable.
792  * @level: The level of the non-shared pagetable.
793  * @walk: Walk info. The function adjusts the walk action.
794  * @action: next action to perform (see enum page_walk_action)
795  * @offset: Ignored on input, First non-shared entry on output.
796  * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
797  *
798  * A non-shared page-table has some entries that belong to the address range
799  * and others that don't. This function determines the entries that belong
800  * fully to the address range. Depending on level, some entries may
801  * partially belong to the address range (that can't happen at level 0).
802  * The function detects that and adjust those offsets to not include those
803  * partial entries. Iff it does detect partial entries, we know that there must
804  * be shared page tables also at lower levels, so it adjusts the walk action
805  * accordingly.
806  *
807  * Return: true if there were non-shared entries, false otherwise.
808  */
809 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
810 				    struct xe_pt_walk *walk,
811 				    enum page_walk_action *action,
812 				    pgoff_t *offset, pgoff_t *end_offset)
813 {
814 	u64 size = 1ull << walk->shifts[level];
815 
816 	*offset = xe_pt_offset(addr, level, walk);
817 	*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
818 
819 	if (!level)
820 		return true;
821 
822 	/*
823 	 * If addr or next are not size aligned, there are shared pts at lower
824 	 * level, so in that case traverse down the subtree
825 	 */
826 	*action = ACTION_CONTINUE;
827 	if (!IS_ALIGNED(addr, size)) {
828 		*action = ACTION_SUBTREE;
829 		(*offset)++;
830 	}
831 
832 	if (!IS_ALIGNED(end, size)) {
833 		*action = ACTION_SUBTREE;
834 		(*end_offset)--;
835 	}
836 
837 	return *end_offset > *offset;
838 }
839 
840 struct xe_pt_zap_ptes_walk {
841 	/** @base: The walk base-class */
842 	struct xe_pt_walk base;
843 
844 	/* Input parameters for the walk */
845 	/** @tile: The tile we're building for */
846 	struct xe_tile *tile;
847 
848 	/* Output */
849 	/** @needs_invalidate: Whether we need to invalidate TLB*/
850 	bool needs_invalidate;
851 };
852 
853 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
854 				unsigned int level, u64 addr, u64 next,
855 				struct xe_ptw **child,
856 				enum page_walk_action *action,
857 				struct xe_pt_walk *walk)
858 {
859 	struct xe_pt_zap_ptes_walk *xe_walk =
860 		container_of(walk, typeof(*xe_walk), base);
861 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
862 	pgoff_t end_offset;
863 
864 	XE_WARN_ON(!*child);
865 	XE_WARN_ON(!level);
866 
867 	/*
868 	 * Note that we're called from an entry callback, and we're dealing
869 	 * with the child of that entry rather than the parent, so need to
870 	 * adjust level down.
871 	 */
872 	if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
873 				    &end_offset)) {
874 		xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
875 			      offset * sizeof(u64), 0,
876 			      (end_offset - offset) * sizeof(u64));
877 		xe_walk->needs_invalidate = true;
878 	}
879 
880 	return 0;
881 }
882 
883 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
884 	.pt_entry = xe_pt_zap_ptes_entry,
885 };
886 
887 /**
888  * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
889  * @tile: The tile we're zapping for.
890  * @vma: GPU VMA detailing address range.
891  *
892  * Eviction and Userptr invalidation needs to be able to zap the
893  * gpu ptes of a given address range in pagefaulting mode.
894  * In order to be able to do that, that function needs access to the shared
895  * page-table entrieaso it can either clear the leaf PTEs or
896  * clear the pointers to lower-level page-tables. The caller is required
897  * to hold the necessary locks to ensure neither the page-table connectivity
898  * nor the page-table entries of the range is updated from under us.
899  *
900  * Return: Whether ptes were actually updated and a TLB invalidation is
901  * required.
902  */
903 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
904 {
905 	struct xe_pt_zap_ptes_walk xe_walk = {
906 		.base = {
907 			.ops = &xe_pt_zap_ptes_ops,
908 			.shifts = xe_normal_pt_shifts,
909 			.max_level = XE_PT_HIGHEST_LEVEL,
910 		},
911 		.tile = tile,
912 	};
913 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
914 	u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated);
915 
916 	if (xe_vma_bo(vma))
917 		xe_bo_assert_held(xe_vma_bo(vma));
918 	else if (xe_vma_is_userptr(vma))
919 		lockdep_assert_held(&xe_vma_vm(vma)->svm.gpusvm.notifier_lock);
920 
921 	if (!(pt_mask & BIT(tile->id)))
922 		return false;
923 
924 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
925 				xe_vma_end(vma), &xe_walk.base);
926 
927 	return xe_walk.needs_invalidate;
928 }
929 
930 /**
931  * xe_pt_zap_ptes_range() - Zap (zero) gpu ptes of a SVM range
932  * @tile: The tile we're zapping for.
933  * @vm: The VM we're zapping for.
934  * @range: The SVM range we're zapping for.
935  *
936  * SVM invalidation needs to be able to zap the gpu ptes of a given address
937  * range. In order to be able to do that, that function needs access to the
938  * shared page-table entries so it can either clear the leaf PTEs or
939  * clear the pointers to lower-level page-tables. The caller is required
940  * to hold the SVM notifier lock.
941  *
942  * Return: Whether ptes were actually updated and a TLB invalidation is
943  * required.
944  */
945 bool xe_pt_zap_ptes_range(struct xe_tile *tile, struct xe_vm *vm,
946 			  struct xe_svm_range *range)
947 {
948 	struct xe_pt_zap_ptes_walk xe_walk = {
949 		.base = {
950 			.ops = &xe_pt_zap_ptes_ops,
951 			.shifts = xe_normal_pt_shifts,
952 			.max_level = XE_PT_HIGHEST_LEVEL,
953 		},
954 		.tile = tile,
955 	};
956 	struct xe_pt *pt = vm->pt_root[tile->id];
957 	u8 pt_mask = (range->tile_present & ~range->tile_invalidated);
958 
959 	/*
960 	 * Locking rules:
961 	 *
962 	 * - notifier_lock (write): full protection against page table changes
963 	 *   and MMU notifier invalidations.
964 	 *
965 	 * - notifier_lock (read) + vm_lock (write): combined protection against
966 	 *   invalidations and concurrent page table modifications. (e.g., madvise)
967 	 *
968 	 */
969 	lockdep_assert(lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 0) ||
970 		       (lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 1) &&
971 		       lockdep_is_held_type(&vm->lock, 0)));
972 
973 	if (!(pt_mask & BIT(tile->id)))
974 		return false;
975 
976 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_svm_range_start(range),
977 				xe_svm_range_end(range), &xe_walk.base);
978 
979 	return xe_walk.needs_invalidate;
980 }
981 
982 static void
983 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
984 		       struct iosys_map *map, void *data,
985 		       u32 qword_ofs, u32 num_qwords,
986 		       const struct xe_vm_pgtable_update *update)
987 {
988 	struct xe_pt_entry *ptes = update->pt_entries;
989 	u64 *ptr = data;
990 	u32 i;
991 
992 	for (i = 0; i < num_qwords; i++) {
993 		if (map)
994 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
995 				  sizeof(u64), u64, ptes[i].pte);
996 		else
997 			ptr[i] = ptes[i].pte;
998 	}
999 }
1000 
1001 static void xe_pt_cancel_bind(struct xe_vma *vma,
1002 			      struct xe_vm_pgtable_update *entries,
1003 			      u32 num_entries)
1004 {
1005 	u32 i, j;
1006 
1007 	for (i = 0; i < num_entries; i++) {
1008 		struct xe_pt *pt = entries[i].pt;
1009 
1010 		if (!pt)
1011 			continue;
1012 
1013 		if (pt->level) {
1014 			for (j = 0; j < entries[i].qwords; j++)
1015 				xe_pt_destroy(entries[i].pt_entries[j].pt,
1016 					      xe_vma_vm(vma)->flags, NULL);
1017 		}
1018 
1019 		kfree(entries[i].pt_entries);
1020 		entries[i].pt_entries = NULL;
1021 		entries[i].qwords = 0;
1022 	}
1023 }
1024 
1025 #define XE_INVALID_VMA	((struct xe_vma *)(0xdeaddeadull))
1026 
1027 static void xe_pt_commit_prepare_locks_assert(struct xe_vma *vma)
1028 {
1029 	struct xe_vm *vm;
1030 
1031 	if (vma == XE_INVALID_VMA)
1032 		return;
1033 
1034 	vm = xe_vma_vm(vma);
1035 	lockdep_assert_held(&vm->lock);
1036 
1037 	if (!xe_vma_has_no_bo(vma))
1038 		dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
1039 
1040 	xe_vm_assert_held(vm);
1041 }
1042 
1043 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
1044 {
1045 	struct xe_vm *vm;
1046 
1047 	if (vma == XE_INVALID_VMA)
1048 		return;
1049 
1050 	vm = xe_vma_vm(vma);
1051 	xe_pt_commit_prepare_locks_assert(vma);
1052 
1053 	if (xe_vma_is_userptr(vma))
1054 		xe_svm_assert_held_read(vm);
1055 }
1056 
1057 static void xe_pt_commit(struct xe_vma *vma,
1058 			 struct xe_vm_pgtable_update *entries,
1059 			 u32 num_entries, struct llist_head *deferred)
1060 {
1061 	u32 i, j;
1062 
1063 	xe_pt_commit_locks_assert(vma);
1064 
1065 	for (i = 0; i < num_entries; i++) {
1066 		struct xe_pt *pt = entries[i].pt;
1067 		struct xe_pt_dir *pt_dir;
1068 
1069 		if (!pt->level)
1070 			continue;
1071 
1072 		pt_dir = as_xe_pt_dir(pt);
1073 		for (j = 0; j < entries[i].qwords; j++) {
1074 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
1075 			int j_ = j + entries[i].ofs;
1076 
1077 			pt_dir->children[j_] = pt_dir->staging[j_];
1078 			xe_pt_destroy(oldpte, (vma == XE_INVALID_VMA) ? 0 :
1079 				      xe_vma_vm(vma)->flags, deferred);
1080 		}
1081 	}
1082 }
1083 
1084 static void xe_pt_abort_bind(struct xe_vma *vma,
1085 			     struct xe_vm_pgtable_update *entries,
1086 			     u32 num_entries, bool rebind)
1087 {
1088 	int i, j;
1089 
1090 	xe_pt_commit_prepare_locks_assert(vma);
1091 
1092 	for (i = num_entries - 1; i >= 0; --i) {
1093 		struct xe_pt *pt = entries[i].pt;
1094 		struct xe_pt_dir *pt_dir;
1095 
1096 		if (!rebind)
1097 			pt->num_live -= entries[i].qwords;
1098 
1099 		if (!pt->level)
1100 			continue;
1101 
1102 		pt_dir = as_xe_pt_dir(pt);
1103 		for (j = 0; j < entries[i].qwords; j++) {
1104 			u32 j_ = j + entries[i].ofs;
1105 			struct xe_pt *newpte = xe_pt_entry_staging(pt_dir, j_);
1106 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
1107 
1108 			pt_dir->staging[j_] = oldpte ? &oldpte->base : 0;
1109 			xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL);
1110 		}
1111 	}
1112 }
1113 
1114 static void xe_pt_commit_prepare_bind(struct xe_vma *vma,
1115 				      struct xe_vm_pgtable_update *entries,
1116 				      u32 num_entries, bool rebind)
1117 {
1118 	u32 i, j;
1119 
1120 	xe_pt_commit_prepare_locks_assert(vma);
1121 
1122 	for (i = 0; i < num_entries; i++) {
1123 		struct xe_pt *pt = entries[i].pt;
1124 		struct xe_pt_dir *pt_dir;
1125 
1126 		if (!rebind)
1127 			pt->num_live += entries[i].qwords;
1128 
1129 		if (!pt->level)
1130 			continue;
1131 
1132 		pt_dir = as_xe_pt_dir(pt);
1133 		for (j = 0; j < entries[i].qwords; j++) {
1134 			u32 j_ = j + entries[i].ofs;
1135 			struct xe_pt *newpte = entries[i].pt_entries[j].pt;
1136 			struct xe_pt *oldpte = NULL;
1137 
1138 			if (xe_pt_entry_staging(pt_dir, j_))
1139 				oldpte = xe_pt_entry_staging(pt_dir, j_);
1140 
1141 			pt_dir->staging[j_] = &newpte->base;
1142 			entries[i].pt_entries[j].pt = oldpte;
1143 		}
1144 	}
1145 }
1146 
1147 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries,
1148 			    u32 num_entries)
1149 {
1150 	u32 i;
1151 
1152 	for (i = 0; i < num_entries; i++)
1153 		kfree(entries[i].pt_entries);
1154 }
1155 
1156 static int
1157 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
1158 		   struct xe_svm_range *range,
1159 		   struct xe_vm_pgtable_update *entries,
1160 		   u32 *num_entries, bool invalidate_on_bind)
1161 {
1162 	int err;
1163 
1164 	*num_entries = 0;
1165 	err = xe_pt_stage_bind(tile, vma, range, entries, num_entries,
1166 			       invalidate_on_bind);
1167 	if (!err)
1168 		xe_tile_assert(tile, *num_entries);
1169 
1170 	return err;
1171 }
1172 
1173 static void xe_vm_dbg_print_entries(struct xe_device *xe,
1174 				    const struct xe_vm_pgtable_update *entries,
1175 				    unsigned int num_entries, bool bind)
1176 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
1177 {
1178 	unsigned int i;
1179 
1180 	vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind",
1181 	       num_entries);
1182 	for (i = 0; i < num_entries; i++) {
1183 		const struct xe_vm_pgtable_update *entry = &entries[i];
1184 		struct xe_pt *xe_pt = entry->pt;
1185 		u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
1186 		u64 end;
1187 		u64 start;
1188 
1189 		xe_assert(xe, !entry->pt->is_compact);
1190 		start = entry->ofs * page_size;
1191 		end = start + page_size * entry->qwords;
1192 		vm_dbg(&xe->drm,
1193 		       "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
1194 		       i, xe_pt->level, entry->ofs, entry->qwords,
1195 		       xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
1196 	}
1197 }
1198 #else
1199 {}
1200 #endif
1201 
1202 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs)
1203 {
1204 	int i;
1205 
1206 	for (i = 0; i < num_syncs; i++) {
1207 		struct dma_fence *fence = syncs[i].fence;
1208 
1209 		if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1210 				       &fence->flags))
1211 			return false;
1212 	}
1213 
1214 	return true;
1215 }
1216 
1217 static int job_test_add_deps(struct xe_sched_job *job,
1218 			     struct dma_resv *resv,
1219 			     enum dma_resv_usage usage)
1220 {
1221 	if (!job) {
1222 		if (!dma_resv_test_signaled(resv, usage))
1223 			return -ETIME;
1224 
1225 		return 0;
1226 	}
1227 
1228 	return xe_sched_job_add_deps(job, resv, usage);
1229 }
1230 
1231 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job)
1232 {
1233 	struct xe_bo *bo = xe_vma_bo(vma);
1234 
1235 	xe_bo_assert_held(bo);
1236 
1237 	if (bo && !bo->vm)
1238 		return job_test_add_deps(job, bo->ttm.base.resv,
1239 					 DMA_RESV_USAGE_KERNEL);
1240 
1241 	return 0;
1242 }
1243 
1244 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op,
1245 		       struct xe_sched_job *job)
1246 {
1247 	int err = 0;
1248 
1249 	/*
1250 	 * No need to check for is_cpu_addr_mirror here as vma_add_deps is a
1251 	 * NOP if VMA is_cpu_addr_mirror
1252 	 */
1253 
1254 	switch (op->base.op) {
1255 	case DRM_GPUVA_OP_MAP:
1256 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1257 			break;
1258 
1259 		err = vma_add_deps(op->map.vma, job);
1260 		break;
1261 	case DRM_GPUVA_OP_REMAP:
1262 		if (op->remap.prev)
1263 			err = vma_add_deps(op->remap.prev, job);
1264 		if (!err && op->remap.next)
1265 			err = vma_add_deps(op->remap.next, job);
1266 		break;
1267 	case DRM_GPUVA_OP_UNMAP:
1268 		break;
1269 	case DRM_GPUVA_OP_PREFETCH:
1270 		err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job);
1271 		break;
1272 	case DRM_GPUVA_OP_DRIVER:
1273 		break;
1274 	default:
1275 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1276 	}
1277 
1278 	return err;
1279 }
1280 
1281 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
1282 				 struct xe_tlb_inval_job *ijob,
1283 				 struct xe_tlb_inval_job *mjob,
1284 				 struct xe_vm *vm,
1285 				 struct xe_vma_ops *vops,
1286 				 struct xe_vm_pgtable_update_ops *pt_update_ops,
1287 				 struct xe_range_fence_tree *rftree)
1288 {
1289 	struct xe_range_fence *rtfence;
1290 	struct dma_fence *fence;
1291 	struct xe_vma_op *op;
1292 	int err = 0, i;
1293 
1294 	xe_vm_assert_held(vm);
1295 
1296 	if (!job && !no_in_syncs(vops->syncs, vops->num_syncs))
1297 		return -ETIME;
1298 
1299 	if (!job && !xe_exec_queue_is_idle(pt_update_ops->q))
1300 		return -ETIME;
1301 
1302 	if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) {
1303 		err = job_test_add_deps(job, xe_vm_resv(vm),
1304 					pt_update_ops->wait_vm_bookkeep ?
1305 					DMA_RESV_USAGE_BOOKKEEP :
1306 					DMA_RESV_USAGE_KERNEL);
1307 		if (err)
1308 			return err;
1309 	}
1310 
1311 	rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start,
1312 					    pt_update_ops->last);
1313 	while (rtfence) {
1314 		fence = rtfence->fence;
1315 
1316 		if (!dma_fence_is_signaled(fence)) {
1317 			/*
1318 			 * Is this a CPU update? GPU is busy updating, so return
1319 			 * an error
1320 			 */
1321 			if (!job)
1322 				return -ETIME;
1323 
1324 			dma_fence_get(fence);
1325 			err = drm_sched_job_add_dependency(&job->drm, fence);
1326 			if (err)
1327 				return err;
1328 		}
1329 
1330 		rtfence = xe_range_fence_tree_next(rtfence,
1331 						   pt_update_ops->start,
1332 						   pt_update_ops->last);
1333 	}
1334 
1335 	list_for_each_entry(op, &vops->list, link) {
1336 		err = op_add_deps(vm, op, job);
1337 		if (err)
1338 			return err;
1339 	}
1340 
1341 	for (i = 0; job && !err && i < vops->num_syncs; i++)
1342 		err = xe_sync_entry_add_deps(&vops->syncs[i], job);
1343 
1344 	if (job) {
1345 		if (ijob) {
1346 			err = xe_tlb_inval_job_alloc_dep(ijob);
1347 			if (err)
1348 				return err;
1349 		}
1350 
1351 		if (mjob) {
1352 			err = xe_tlb_inval_job_alloc_dep(mjob);
1353 			if (err)
1354 				return err;
1355 		}
1356 	}
1357 
1358 	return err;
1359 }
1360 
1361 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1362 {
1363 	struct xe_vma_ops *vops = pt_update->vops;
1364 	struct xe_vm *vm = vops->vm;
1365 	struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id];
1366 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1367 		&vops->pt_update_ops[pt_update->tile_id];
1368 
1369 	return xe_pt_vm_dependencies(pt_update->job, pt_update->ijob,
1370 				     pt_update->mjob, vm, pt_update->vops,
1371 				     pt_update_ops, rftree);
1372 }
1373 
1374 #if IS_ENABLED(CONFIG_DRM_GPUSVM)
1375 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
1376 
1377 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1378 {
1379 	u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
1380 	static u32 count;
1381 
1382 	if (count++ % divisor == divisor - 1) {
1383 		uvma->userptr.divisor = divisor << 1;
1384 		return true;
1385 	}
1386 
1387 	return false;
1388 }
1389 
1390 #else
1391 
1392 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1393 {
1394 	return false;
1395 }
1396 
1397 #endif
1398 
1399 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma,
1400 			     struct xe_vm_pgtable_update_ops *pt_update)
1401 {
1402 	struct xe_userptr_vma *uvma;
1403 	unsigned long notifier_seq;
1404 
1405 	xe_svm_assert_held_read(vm);
1406 
1407 	if (!xe_vma_is_userptr(vma))
1408 		return 0;
1409 
1410 	uvma = to_userptr_vma(vma);
1411 	if (xe_pt_userptr_inject_eagain(uvma))
1412 		xe_vma_userptr_force_invalidate(uvma);
1413 
1414 	notifier_seq = uvma->userptr.pages.notifier_seq;
1415 
1416 	if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1417 				     notifier_seq))
1418 		return 0;
1419 
1420 	if (xe_vm_in_fault_mode(vm))
1421 		return -EAGAIN;
1422 
1423 	/*
1424 	 * Just continue the operation since exec or rebind worker
1425 	 * will take care of rebinding.
1426 	 */
1427 	return 0;
1428 }
1429 
1430 static int op_check_svm_userptr(struct xe_vm *vm, struct xe_vma_op *op,
1431 				struct xe_vm_pgtable_update_ops *pt_update)
1432 {
1433 	int err = 0;
1434 
1435 	xe_svm_assert_held_read(vm);
1436 
1437 	switch (op->base.op) {
1438 	case DRM_GPUVA_OP_MAP:
1439 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1440 			break;
1441 
1442 		err = vma_check_userptr(vm, op->map.vma, pt_update);
1443 		break;
1444 	case DRM_GPUVA_OP_REMAP:
1445 		if (op->remap.prev)
1446 			err = vma_check_userptr(vm, op->remap.prev, pt_update);
1447 		if (!err && op->remap.next)
1448 			err = vma_check_userptr(vm, op->remap.next, pt_update);
1449 		break;
1450 	case DRM_GPUVA_OP_UNMAP:
1451 		break;
1452 	case DRM_GPUVA_OP_PREFETCH:
1453 		if (xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va))) {
1454 			struct xe_svm_range *range = op->map_range.range;
1455 			unsigned long i;
1456 
1457 			xe_assert(vm->xe,
1458 				  xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va)));
1459 			xa_for_each(&op->prefetch_range.range, i, range) {
1460 				xe_svm_range_debug(range, "PRE-COMMIT");
1461 
1462 				if (!xe_svm_range_pages_valid(range)) {
1463 					xe_svm_range_debug(range, "PRE-COMMIT - RETRY");
1464 					return -ENODATA;
1465 				}
1466 			}
1467 		} else {
1468 			err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va), pt_update);
1469 		}
1470 		break;
1471 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM)
1472 	case DRM_GPUVA_OP_DRIVER:
1473 		if (op->subop == XE_VMA_SUBOP_MAP_RANGE) {
1474 			struct xe_svm_range *range = op->map_range.range;
1475 
1476 			xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma));
1477 
1478 			xe_svm_range_debug(range, "PRE-COMMIT");
1479 
1480 			if (!xe_svm_range_pages_valid(range)) {
1481 				xe_svm_range_debug(range, "PRE-COMMIT - RETRY");
1482 				return -EAGAIN;
1483 			}
1484 		}
1485 		break;
1486 #endif
1487 	default:
1488 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1489 	}
1490 
1491 	return err;
1492 }
1493 
1494 static int xe_pt_svm_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1495 {
1496 	struct xe_vm *vm = pt_update->vops->vm;
1497 	struct xe_vma_ops *vops = pt_update->vops;
1498 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1499 		&vops->pt_update_ops[pt_update->tile_id];
1500 	struct xe_vma_op *op;
1501 	int err;
1502 
1503 	err = xe_pt_pre_commit(pt_update);
1504 	if (err)
1505 		return err;
1506 
1507 	xe_svm_notifier_lock(vm);
1508 
1509 	list_for_each_entry(op, &vops->list, link) {
1510 		err = op_check_svm_userptr(vm, op, pt_update_ops);
1511 		if (err) {
1512 			xe_svm_notifier_unlock(vm);
1513 			break;
1514 		}
1515 	}
1516 
1517 	return err;
1518 }
1519 #endif
1520 
1521 struct xe_pt_stage_unbind_walk {
1522 	/** @base: The pagewalk base-class. */
1523 	struct xe_pt_walk base;
1524 
1525 	/* Input parameters for the walk */
1526 	/** @tile: The tile we're unbinding from. */
1527 	struct xe_tile *tile;
1528 
1529 	/**
1530 	 * @modified_start: Walk range start, modified to include any
1531 	 * shared pagetables that we're the only user of and can thus
1532 	 * treat as private.
1533 	 */
1534 	u64 modified_start;
1535 	/** @modified_end: Walk range start, modified like @modified_start. */
1536 	u64 modified_end;
1537 
1538 	/* Output */
1539 	/* @wupd: Structure to track the page-table updates we're building */
1540 	struct xe_walk_update wupd;
1541 };
1542 
1543 /*
1544  * Check whether this range is the only one populating this pagetable,
1545  * and in that case, update the walk range checks so that higher levels don't
1546  * view us as a shared pagetable.
1547  */
1548 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1549 			     const struct xe_pt *child,
1550 			     enum page_walk_action *action,
1551 			     struct xe_pt_walk *walk)
1552 {
1553 	struct xe_pt_stage_unbind_walk *xe_walk =
1554 		container_of(walk, typeof(*xe_walk), base);
1555 	unsigned int shift = walk->shifts[level];
1556 	u64 size = 1ull << shift;
1557 
1558 	if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1559 	    ((next - addr) >> shift) == child->num_live) {
1560 		u64 size = 1ull << walk->shifts[level + 1];
1561 
1562 		*action = ACTION_CONTINUE;
1563 
1564 		if (xe_walk->modified_start >= addr)
1565 			xe_walk->modified_start = round_down(addr, size);
1566 		if (xe_walk->modified_end <= next)
1567 			xe_walk->modified_end = round_up(next, size);
1568 
1569 		return true;
1570 	}
1571 
1572 	return false;
1573 }
1574 
1575 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1576 				    unsigned int level, u64 addr, u64 next,
1577 				    struct xe_ptw **child,
1578 				    enum page_walk_action *action,
1579 				    struct xe_pt_walk *walk)
1580 {
1581 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1582 
1583 	XE_WARN_ON(!*child);
1584 	XE_WARN_ON(!level);
1585 
1586 	xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1587 
1588 	return 0;
1589 }
1590 
1591 static int
1592 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1593 				unsigned int level, u64 addr, u64 next,
1594 				struct xe_ptw **child,
1595 				enum page_walk_action *action,
1596 				struct xe_pt_walk *walk)
1597 {
1598 	struct xe_pt_stage_unbind_walk *xe_walk =
1599 		container_of(walk, typeof(*xe_walk), base);
1600 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1601 	pgoff_t end_offset;
1602 	u64 size = 1ull << walk->shifts[--level];
1603 	int err;
1604 
1605 	if (!IS_ALIGNED(addr, size))
1606 		addr = xe_walk->modified_start;
1607 	if (!IS_ALIGNED(next, size))
1608 		next = xe_walk->modified_end;
1609 
1610 	/* Parent == *child is the root pt. Don't kill it. */
1611 	if (parent != *child &&
1612 	    xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1613 		return 0;
1614 
1615 	if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1616 				     &end_offset))
1617 		return 0;
1618 
1619 	err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true);
1620 	if (err)
1621 		return err;
1622 
1623 	xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1624 
1625 	return 0;
1626 }
1627 
1628 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1629 	.pt_entry = xe_pt_stage_unbind_entry,
1630 	.pt_post_descend = xe_pt_stage_unbind_post_descend,
1631 };
1632 
1633 /**
1634  * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1635  * operation
1636  * @tile: The tile we're unbinding for.
1637  * @vm: The vm
1638  * @vma: The vma we're unbinding.
1639  * @range: The range we're unbinding.
1640  * @entries: Caller-provided storage for the update structures.
1641  *
1642  * Builds page-table update structures for an unbind operation. The function
1643  * will attempt to remove all page-tables that we're the only user
1644  * of, and for that to work, the unbind operation must be committed in the
1645  * same critical section that blocks racing binds to the same page-table tree.
1646  *
1647  * Return: The number of entries used.
1648  */
1649 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile,
1650 				       struct xe_vm *vm,
1651 				       struct xe_vma *vma,
1652 				       struct xe_svm_range *range,
1653 				       struct xe_vm_pgtable_update *entries)
1654 {
1655 	u64 start = range ? xe_svm_range_start(range) : xe_vma_start(vma);
1656 	u64 end = range ? xe_svm_range_end(range) : xe_vma_end(vma);
1657 	struct xe_pt_stage_unbind_walk xe_walk = {
1658 		.base = {
1659 			.ops = &xe_pt_stage_unbind_ops,
1660 			.shifts = xe_normal_pt_shifts,
1661 			.max_level = XE_PT_HIGHEST_LEVEL,
1662 			.staging = true,
1663 		},
1664 		.tile = tile,
1665 		.modified_start = start,
1666 		.modified_end = end,
1667 		.wupd.entries = entries,
1668 	};
1669 	struct xe_pt *pt = vm->pt_root[tile->id];
1670 
1671 	(void)xe_pt_walk_shared(&pt->base, pt->level, start, end,
1672 				&xe_walk.base);
1673 
1674 	return xe_walk.wupd.num_used_entries;
1675 }
1676 
1677 static void
1678 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1679 				  struct xe_tile *tile, struct iosys_map *map,
1680 				  void *ptr, u32 qword_ofs, u32 num_qwords,
1681 				  const struct xe_vm_pgtable_update *update)
1682 {
1683 	struct xe_vm *vm = pt_update->vops->vm;
1684 	u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level);
1685 	int i;
1686 
1687 	if (map && map->is_iomem)
1688 		for (i = 0; i < num_qwords; ++i)
1689 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1690 				  sizeof(u64), u64, empty);
1691 	else if (map)
1692 		memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1693 			 num_qwords);
1694 	else
1695 		memset64(ptr, empty, num_qwords);
1696 }
1697 
1698 static void xe_pt_abort_unbind(struct xe_vma *vma,
1699 			       struct xe_vm_pgtable_update *entries,
1700 			       u32 num_entries)
1701 {
1702 	int i, j;
1703 
1704 	xe_pt_commit_prepare_locks_assert(vma);
1705 
1706 	for (i = num_entries - 1; i >= 0; --i) {
1707 		struct xe_vm_pgtable_update *entry = &entries[i];
1708 		struct xe_pt *pt = entry->pt;
1709 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1710 
1711 		pt->num_live += entry->qwords;
1712 
1713 		if (!pt->level)
1714 			continue;
1715 
1716 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++)
1717 			pt_dir->staging[j] =
1718 				entries[i].pt_entries[j - entry->ofs].pt ?
1719 				&entries[i].pt_entries[j - entry->ofs].pt->base : NULL;
1720 	}
1721 }
1722 
1723 static void
1724 xe_pt_commit_prepare_unbind(struct xe_vma *vma,
1725 			    struct xe_vm_pgtable_update *entries,
1726 			    u32 num_entries)
1727 {
1728 	int i, j;
1729 
1730 	xe_pt_commit_prepare_locks_assert(vma);
1731 
1732 	for (i = 0; i < num_entries; ++i) {
1733 		struct xe_vm_pgtable_update *entry = &entries[i];
1734 		struct xe_pt *pt = entry->pt;
1735 		struct xe_pt_dir *pt_dir;
1736 
1737 		pt->num_live -= entry->qwords;
1738 		if (!pt->level)
1739 			continue;
1740 
1741 		pt_dir = as_xe_pt_dir(pt);
1742 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) {
1743 			entry->pt_entries[j - entry->ofs].pt =
1744 				xe_pt_entry_staging(pt_dir, j);
1745 			pt_dir->staging[j] = NULL;
1746 		}
1747 	}
1748 }
1749 
1750 static void
1751 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops,
1752 				 u64 start, u64 end)
1753 {
1754 	u64 last;
1755 	u32 current_op = pt_update_ops->current_op;
1756 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1757 	int i, level = 0;
1758 
1759 	for (i = 0; i < pt_op->num_entries; i++) {
1760 		const struct xe_vm_pgtable_update *entry = &pt_op->entries[i];
1761 
1762 		if (entry->pt->level > level)
1763 			level = entry->pt->level;
1764 	}
1765 
1766 	/* Greedy (non-optimal) calculation but simple */
1767 	start = ALIGN_DOWN(start, 0x1ull << xe_pt_shift(level));
1768 	last = ALIGN(end, 0x1ull << xe_pt_shift(level)) - 1;
1769 
1770 	if (start < pt_update_ops->start)
1771 		pt_update_ops->start = start;
1772 	if (last > pt_update_ops->last)
1773 		pt_update_ops->last = last;
1774 }
1775 
1776 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma)
1777 {
1778 	int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0;
1779 
1780 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1781 		return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv,
1782 					       xe->info.tile_count << shift);
1783 
1784 	return 0;
1785 }
1786 
1787 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile,
1788 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
1789 			   struct xe_vma *vma, bool invalidate_on_bind)
1790 {
1791 	u32 current_op = pt_update_ops->current_op;
1792 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1793 	int err;
1794 
1795 	xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
1796 	xe_bo_assert_held(xe_vma_bo(vma));
1797 
1798 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1799 	       "Preparing bind, with range [%llx...%llx)\n",
1800 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1801 
1802 	pt_op->vma = NULL;
1803 	pt_op->bind = true;
1804 	pt_op->rebind = BIT(tile->id) & vma->tile_present;
1805 
1806 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1807 	if (err)
1808 		return err;
1809 
1810 	err = xe_pt_prepare_bind(tile, vma, NULL, pt_op->entries,
1811 				 &pt_op->num_entries, invalidate_on_bind);
1812 	if (!err) {
1813 		xe_tile_assert(tile, pt_op->num_entries <=
1814 			       ARRAY_SIZE(pt_op->entries));
1815 		xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1816 					pt_op->num_entries, true);
1817 
1818 		xe_pt_update_ops_rfence_interval(pt_update_ops,
1819 						 xe_vma_start(vma),
1820 						 xe_vma_end(vma));
1821 		++pt_update_ops->current_op;
1822 		pt_update_ops->needs_svm_lock |= xe_vma_is_userptr(vma);
1823 
1824 		/*
1825 		 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1826 		 * cached PTEs point to freed memory. On LR vms this is done
1827 		 * automatically when the context is re-enabled by the rebind worker,
1828 		 * or in fault mode it was invalidated on PTE zapping.
1829 		 *
1830 		 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1831 		 * PTE is already cached in the TLB so it needs to be invalidated.
1832 		 * On !LR VMs this is done in the ring ops preceding a batch, but on
1833 		 * LR, in particular on user-space batch buffer chaining, it needs to
1834 		 * be done here.
1835 		 */
1836 		if ((!pt_op->rebind && xe_vm_has_scratch(vm) &&
1837 		     xe_vm_in_lr_mode(vm)))
1838 			pt_update_ops->needs_invalidation = true;
1839 		else if (pt_op->rebind && !xe_vm_in_lr_mode(vm))
1840 			/* We bump also if batch_invalidate_tlb is true */
1841 			vm->tlb_flush_seqno++;
1842 
1843 		vma->tile_staged |= BIT(tile->id);
1844 		pt_op->vma = vma;
1845 		xe_pt_commit_prepare_bind(vma, pt_op->entries,
1846 					  pt_op->num_entries, pt_op->rebind);
1847 	} else {
1848 		xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1849 	}
1850 
1851 	return err;
1852 }
1853 
1854 static int bind_range_prepare(struct xe_vm *vm, struct xe_tile *tile,
1855 			      struct xe_vm_pgtable_update_ops *pt_update_ops,
1856 			      struct xe_vma *vma, struct xe_svm_range *range)
1857 {
1858 	u32 current_op = pt_update_ops->current_op;
1859 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1860 	int err;
1861 
1862 	xe_tile_assert(tile, xe_vma_is_cpu_addr_mirror(vma));
1863 
1864 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1865 	       "Preparing bind, with range [%lx...%lx)\n",
1866 	       xe_svm_range_start(range), xe_svm_range_end(range) - 1);
1867 
1868 	pt_op->vma = NULL;
1869 	pt_op->bind = true;
1870 	pt_op->rebind = BIT(tile->id) & range->tile_present;
1871 
1872 	err = xe_pt_prepare_bind(tile, vma, range, pt_op->entries,
1873 				 &pt_op->num_entries, false);
1874 	if (!err) {
1875 		xe_tile_assert(tile, pt_op->num_entries <=
1876 			       ARRAY_SIZE(pt_op->entries));
1877 		xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1878 					pt_op->num_entries, true);
1879 
1880 		xe_pt_update_ops_rfence_interval(pt_update_ops,
1881 						 xe_svm_range_start(range),
1882 						 xe_svm_range_end(range));
1883 		++pt_update_ops->current_op;
1884 		pt_update_ops->needs_svm_lock = true;
1885 
1886 		pt_op->vma = vma;
1887 		xe_pt_commit_prepare_bind(vma, pt_op->entries,
1888 					  pt_op->num_entries, pt_op->rebind);
1889 	} else {
1890 		xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1891 	}
1892 
1893 	return err;
1894 }
1895 
1896 static int unbind_op_prepare(struct xe_tile *tile,
1897 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
1898 			     struct xe_vma *vma)
1899 {
1900 	u32 current_op = pt_update_ops->current_op;
1901 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1902 	int err;
1903 
1904 	if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id)))
1905 		return 0;
1906 
1907 	xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
1908 	xe_bo_assert_held(xe_vma_bo(vma));
1909 
1910 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1911 	       "Preparing unbind, with range [%llx...%llx)\n",
1912 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1913 
1914 	pt_op->vma = vma;
1915 	pt_op->bind = false;
1916 	pt_op->rebind = false;
1917 
1918 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1919 	if (err)
1920 		return err;
1921 
1922 	pt_op->num_entries = xe_pt_stage_unbind(tile, xe_vma_vm(vma),
1923 						vma, NULL, pt_op->entries);
1924 
1925 	xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1926 				pt_op->num_entries, false);
1927 	xe_pt_update_ops_rfence_interval(pt_update_ops, xe_vma_start(vma),
1928 					 xe_vma_end(vma));
1929 	++pt_update_ops->current_op;
1930 	pt_update_ops->needs_svm_lock |= xe_vma_is_userptr(vma);
1931 	pt_update_ops->needs_invalidation = true;
1932 
1933 	xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries);
1934 
1935 	return 0;
1936 }
1937 
1938 static bool
1939 xe_pt_op_check_range_skip_invalidation(struct xe_vm_pgtable_update_op *pt_op,
1940 				       struct xe_svm_range *range)
1941 {
1942 	struct xe_vm_pgtable_update *update = pt_op->entries;
1943 
1944 	XE_WARN_ON(!pt_op->num_entries);
1945 
1946 	/*
1947 	 * We can't skip the invalidation if we are removing PTEs that span more
1948 	 * than the range, do some checks to ensure we are removing PTEs that
1949 	 * are invalid.
1950 	 */
1951 
1952 	if (pt_op->num_entries > 1)
1953 		return false;
1954 
1955 	if (update->pt->level == 0)
1956 		return true;
1957 
1958 	if (update->pt->level == 1)
1959 		return xe_svm_range_size(range) >= SZ_2M;
1960 
1961 	return false;
1962 }
1963 
1964 static int unbind_range_prepare(struct xe_vm *vm,
1965 				struct xe_tile *tile,
1966 				struct xe_vm_pgtable_update_ops *pt_update_ops,
1967 				struct xe_svm_range *range)
1968 {
1969 	u32 current_op = pt_update_ops->current_op;
1970 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1971 
1972 	if (!(range->tile_present & BIT(tile->id)))
1973 		return 0;
1974 
1975 	vm_dbg(&vm->xe->drm,
1976 	       "Preparing unbind, with range [%lx...%lx)\n",
1977 	       xe_svm_range_start(range), xe_svm_range_end(range) - 1);
1978 
1979 	pt_op->vma = XE_INVALID_VMA;
1980 	pt_op->bind = false;
1981 	pt_op->rebind = false;
1982 
1983 	pt_op->num_entries = xe_pt_stage_unbind(tile, vm, NULL, range,
1984 						pt_op->entries);
1985 
1986 	xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1987 				pt_op->num_entries, false);
1988 	xe_pt_update_ops_rfence_interval(pt_update_ops, xe_svm_range_start(range),
1989 					 xe_svm_range_end(range));
1990 	++pt_update_ops->current_op;
1991 	pt_update_ops->needs_svm_lock = true;
1992 	pt_update_ops->needs_invalidation |= xe_vm_has_scratch(vm) ||
1993 		xe_vm_has_valid_gpu_mapping(tile, range->tile_present,
1994 					    range->tile_invalidated) ||
1995 		!xe_pt_op_check_range_skip_invalidation(pt_op, range);
1996 
1997 	xe_pt_commit_prepare_unbind(XE_INVALID_VMA, pt_op->entries,
1998 				    pt_op->num_entries);
1999 
2000 	return 0;
2001 }
2002 
2003 static int op_prepare(struct xe_vm *vm,
2004 		      struct xe_tile *tile,
2005 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
2006 		      struct xe_vma_op *op)
2007 {
2008 	int err = 0;
2009 
2010 	xe_vm_assert_held(vm);
2011 
2012 	switch (op->base.op) {
2013 	case DRM_GPUVA_OP_MAP:
2014 		if ((!op->map.immediate && xe_vm_in_fault_mode(vm) &&
2015 		     !op->map.invalidate_on_bind) ||
2016 		    (op->map.vma_flags & XE_VMA_SYSTEM_ALLOCATOR))
2017 			break;
2018 
2019 		err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma,
2020 				      op->map.invalidate_on_bind);
2021 		pt_update_ops->wait_vm_kernel = true;
2022 		break;
2023 	case DRM_GPUVA_OP_REMAP:
2024 	{
2025 		struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va);
2026 
2027 		if (xe_vma_is_cpu_addr_mirror(old))
2028 			break;
2029 
2030 		err = unbind_op_prepare(tile, pt_update_ops, old);
2031 
2032 		if (!err && op->remap.prev) {
2033 			err = bind_op_prepare(vm, tile, pt_update_ops,
2034 					      op->remap.prev, false);
2035 			pt_update_ops->wait_vm_bookkeep = true;
2036 		}
2037 		if (!err && op->remap.next) {
2038 			err = bind_op_prepare(vm, tile, pt_update_ops,
2039 					      op->remap.next, false);
2040 			pt_update_ops->wait_vm_bookkeep = true;
2041 		}
2042 		break;
2043 	}
2044 	case DRM_GPUVA_OP_UNMAP:
2045 	{
2046 		struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
2047 
2048 		if (xe_vma_is_cpu_addr_mirror(vma))
2049 			break;
2050 
2051 		err = unbind_op_prepare(tile, pt_update_ops, vma);
2052 		break;
2053 	}
2054 	case DRM_GPUVA_OP_PREFETCH:
2055 	{
2056 		struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va);
2057 
2058 		if (xe_vma_is_cpu_addr_mirror(vma)) {
2059 			struct xe_svm_range *range;
2060 			unsigned long i;
2061 
2062 			xa_for_each(&op->prefetch_range.range, i, range) {
2063 				err = bind_range_prepare(vm, tile, pt_update_ops,
2064 							 vma, range);
2065 				if (err)
2066 					return err;
2067 			}
2068 		} else {
2069 			err = bind_op_prepare(vm, tile, pt_update_ops, vma, false);
2070 			pt_update_ops->wait_vm_kernel = true;
2071 		}
2072 		break;
2073 	}
2074 	case DRM_GPUVA_OP_DRIVER:
2075 		if (op->subop == XE_VMA_SUBOP_MAP_RANGE) {
2076 			xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma));
2077 
2078 			err = bind_range_prepare(vm, tile, pt_update_ops,
2079 						 op->map_range.vma,
2080 						 op->map_range.range);
2081 		} else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) {
2082 			err = unbind_range_prepare(vm, tile, pt_update_ops,
2083 						   op->unmap_range.range);
2084 		}
2085 		break;
2086 	default:
2087 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2088 	}
2089 
2090 	return err;
2091 }
2092 
2093 static void
2094 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops)
2095 {
2096 	init_llist_head(&pt_update_ops->deferred);
2097 	pt_update_ops->start = ~0x0ull;
2098 	pt_update_ops->last = 0x0ull;
2099 }
2100 
2101 /**
2102  * xe_pt_update_ops_prepare() - Prepare PT update operations
2103  * @tile: Tile of PT update operations
2104  * @vops: VMA operationa
2105  *
2106  * Prepare PT update operations which includes updating internal PT state,
2107  * allocate memory for page tables, populate page table being pruned in, and
2108  * create PT update operations for leaf insertion / removal.
2109  *
2110  * Return: 0 on success, negative error code on error.
2111  */
2112 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops)
2113 {
2114 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2115 		&vops->pt_update_ops[tile->id];
2116 	struct xe_vma_op *op;
2117 	int shift = tile->media_gt ? 1 : 0;
2118 	int err;
2119 
2120 	lockdep_assert_held(&vops->vm->lock);
2121 	xe_vm_assert_held(vops->vm);
2122 
2123 	xe_pt_update_ops_init(pt_update_ops);
2124 
2125 	err = dma_resv_reserve_fences(xe_vm_resv(vops->vm),
2126 				      tile_to_xe(tile)->info.tile_count << shift);
2127 	if (err)
2128 		return err;
2129 
2130 	list_for_each_entry(op, &vops->list, link) {
2131 		err = op_prepare(vops->vm, tile, pt_update_ops, op);
2132 
2133 		if (err)
2134 			return err;
2135 	}
2136 
2137 	xe_tile_assert(tile, pt_update_ops->current_op <=
2138 		       pt_update_ops->num_ops);
2139 
2140 #ifdef TEST_VM_OPS_ERROR
2141 	if (vops->inject_error &&
2142 	    vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE)
2143 		return -ENOSPC;
2144 #endif
2145 
2146 	return 0;
2147 }
2148 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO);
2149 
2150 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
2151 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
2152 			   struct xe_vma *vma, struct dma_fence *fence,
2153 			   struct dma_fence *fence2, bool invalidate_on_bind)
2154 {
2155 	xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
2156 
2157 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
2158 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
2159 				   pt_update_ops->wait_vm_bookkeep ?
2160 				   DMA_RESV_USAGE_KERNEL :
2161 				   DMA_RESV_USAGE_BOOKKEEP);
2162 		if (fence2)
2163 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
2164 					   pt_update_ops->wait_vm_bookkeep ?
2165 					   DMA_RESV_USAGE_KERNEL :
2166 					   DMA_RESV_USAGE_BOOKKEEP);
2167 	}
2168 	/* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */
2169 	WRITE_ONCE(vma->tile_present, vma->tile_present | BIT(tile->id));
2170 	if (invalidate_on_bind)
2171 		WRITE_ONCE(vma->tile_invalidated,
2172 			   vma->tile_invalidated | BIT(tile->id));
2173 	else
2174 		WRITE_ONCE(vma->tile_invalidated,
2175 			   vma->tile_invalidated & ~BIT(tile->id));
2176 	vma->tile_staged &= ~BIT(tile->id);
2177 	if (xe_vma_is_userptr(vma)) {
2178 		xe_svm_assert_held_read(vm);
2179 		to_userptr_vma(vma)->userptr.initial_bind = true;
2180 	}
2181 
2182 	/*
2183 	 * Kick rebind worker if this bind triggers preempt fences and not in
2184 	 * the rebind worker
2185 	 */
2186 	if (pt_update_ops->wait_vm_bookkeep &&
2187 	    xe_vm_in_preempt_fence_mode(vm) &&
2188 	    !current->mm)
2189 		xe_vm_queue_rebind_worker(vm);
2190 }
2191 
2192 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
2193 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
2194 			     struct xe_vma *vma, struct dma_fence *fence,
2195 			     struct dma_fence *fence2)
2196 {
2197 	xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
2198 
2199 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
2200 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
2201 				   pt_update_ops->wait_vm_bookkeep ?
2202 				   DMA_RESV_USAGE_KERNEL :
2203 				   DMA_RESV_USAGE_BOOKKEEP);
2204 		if (fence2)
2205 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
2206 					   pt_update_ops->wait_vm_bookkeep ?
2207 					   DMA_RESV_USAGE_KERNEL :
2208 					   DMA_RESV_USAGE_BOOKKEEP);
2209 	}
2210 	vma->tile_present &= ~BIT(tile->id);
2211 	if (!vma->tile_present) {
2212 		list_del_init(&vma->combined_links.rebind);
2213 		if (xe_vma_is_userptr(vma)) {
2214 			xe_svm_assert_held_read(vm);
2215 
2216 			spin_lock(&vm->userptr.invalidated_lock);
2217 			list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
2218 			spin_unlock(&vm->userptr.invalidated_lock);
2219 		}
2220 	}
2221 }
2222 
2223 static void range_present_and_invalidated_tile(struct xe_vm *vm,
2224 					       struct xe_svm_range *range,
2225 					       u8 tile_id)
2226 {
2227 	/* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */
2228 
2229 	lockdep_assert_held(&vm->svm.gpusvm.notifier_lock);
2230 
2231 	WRITE_ONCE(range->tile_present, range->tile_present | BIT(tile_id));
2232 	WRITE_ONCE(range->tile_invalidated, range->tile_invalidated & ~BIT(tile_id));
2233 }
2234 
2235 static void op_commit(struct xe_vm *vm,
2236 		      struct xe_tile *tile,
2237 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
2238 		      struct xe_vma_op *op, struct dma_fence *fence,
2239 		      struct dma_fence *fence2)
2240 {
2241 	xe_vm_assert_held(vm);
2242 
2243 	switch (op->base.op) {
2244 	case DRM_GPUVA_OP_MAP:
2245 		if ((!op->map.immediate && xe_vm_in_fault_mode(vm)) ||
2246 		    (op->map.vma_flags & XE_VMA_SYSTEM_ALLOCATOR))
2247 			break;
2248 
2249 		bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence,
2250 			       fence2, op->map.invalidate_on_bind);
2251 		break;
2252 	case DRM_GPUVA_OP_REMAP:
2253 	{
2254 		struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va);
2255 
2256 		if (xe_vma_is_cpu_addr_mirror(old))
2257 			break;
2258 
2259 		unbind_op_commit(vm, tile, pt_update_ops, old, fence, fence2);
2260 
2261 		if (op->remap.prev)
2262 			bind_op_commit(vm, tile, pt_update_ops, op->remap.prev,
2263 				       fence, fence2, false);
2264 		if (op->remap.next)
2265 			bind_op_commit(vm, tile, pt_update_ops, op->remap.next,
2266 				       fence, fence2, false);
2267 		break;
2268 	}
2269 	case DRM_GPUVA_OP_UNMAP:
2270 	{
2271 		struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
2272 
2273 		if (!xe_vma_is_cpu_addr_mirror(vma))
2274 			unbind_op_commit(vm, tile, pt_update_ops, vma, fence,
2275 					 fence2);
2276 		break;
2277 	}
2278 	case DRM_GPUVA_OP_PREFETCH:
2279 	{
2280 		struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va);
2281 
2282 		if (xe_vma_is_cpu_addr_mirror(vma)) {
2283 			struct xe_svm_range *range = NULL;
2284 			unsigned long i;
2285 
2286 			xa_for_each(&op->prefetch_range.range, i, range)
2287 				range_present_and_invalidated_tile(vm, range, tile->id);
2288 		} else {
2289 			bind_op_commit(vm, tile, pt_update_ops, vma, fence,
2290 				       fence2, false);
2291 		}
2292 		break;
2293 	}
2294 	case DRM_GPUVA_OP_DRIVER:
2295 	{
2296 		/* WRITE_ONCE pairs with READ_ONCE in xe_vm_has_valid_gpu_mapping() */
2297 		if (op->subop == XE_VMA_SUBOP_MAP_RANGE)
2298 			range_present_and_invalidated_tile(vm, op->map_range.range, tile->id);
2299 		else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE)
2300 			WRITE_ONCE(op->unmap_range.range->tile_present,
2301 				   op->unmap_range.range->tile_present &
2302 				   ~BIT(tile->id));
2303 
2304 		break;
2305 	}
2306 	default:
2307 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2308 	}
2309 }
2310 
2311 static const struct xe_migrate_pt_update_ops migrate_ops = {
2312 	.populate = xe_vm_populate_pgtable,
2313 	.clear = xe_migrate_clear_pgtable_callback,
2314 	.pre_commit = xe_pt_pre_commit,
2315 };
2316 
2317 #if IS_ENABLED(CONFIG_DRM_GPUSVM)
2318 static const struct xe_migrate_pt_update_ops svm_userptr_migrate_ops = {
2319 	.populate = xe_vm_populate_pgtable,
2320 	.clear = xe_migrate_clear_pgtable_callback,
2321 	.pre_commit = xe_pt_svm_userptr_pre_commit,
2322 };
2323 #else
2324 static const struct xe_migrate_pt_update_ops svm_userptr_migrate_ops;
2325 #endif
2326 
2327 static struct xe_dep_scheduler *to_dep_scheduler(struct xe_exec_queue *q,
2328 						 struct xe_gt *gt)
2329 {
2330 	if (xe_gt_is_media_type(gt))
2331 		return q->tlb_inval[XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT].dep_scheduler;
2332 
2333 	return q->tlb_inval[XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT].dep_scheduler;
2334 }
2335 
2336 /**
2337  * xe_pt_update_ops_run() - Run PT update operations
2338  * @tile: Tile of PT update operations
2339  * @vops: VMA operationa
2340  *
2341  * Run PT update operations which includes committing internal PT state changes,
2342  * creating job for PT update operations for leaf insertion / removal, and
2343  * installing job fence in various places.
2344  *
2345  * Return: fence on success, negative ERR_PTR on error.
2346  */
2347 struct dma_fence *
2348 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops)
2349 {
2350 	struct xe_vm *vm = vops->vm;
2351 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2352 		&vops->pt_update_ops[tile->id];
2353 	struct xe_exec_queue *q = pt_update_ops->q;
2354 	struct dma_fence *fence, *ifence = NULL, *mfence = NULL;
2355 	struct xe_tlb_inval_job *ijob = NULL, *mjob = NULL;
2356 	struct xe_range_fence *rfence;
2357 	struct xe_vma_op *op;
2358 	int err = 0, i;
2359 	struct xe_migrate_pt_update update = {
2360 		.ops = pt_update_ops->needs_svm_lock ?
2361 			&svm_userptr_migrate_ops :
2362 			&migrate_ops,
2363 		.vops = vops,
2364 		.tile_id = tile->id,
2365 	};
2366 
2367 	lockdep_assert_held(&vm->lock);
2368 	xe_vm_assert_held(vm);
2369 
2370 	if (!pt_update_ops->current_op) {
2371 		xe_tile_assert(tile, xe_vm_in_fault_mode(vm));
2372 
2373 		return dma_fence_get_stub();
2374 	}
2375 
2376 #ifdef TEST_VM_OPS_ERROR
2377 	if (vops->inject_error &&
2378 	    vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN)
2379 		return ERR_PTR(-ENOSPC);
2380 #endif
2381 
2382 	if (pt_update_ops->needs_invalidation) {
2383 		struct xe_dep_scheduler *dep_scheduler =
2384 			to_dep_scheduler(q, tile->primary_gt);
2385 
2386 		ijob = xe_tlb_inval_job_create(q, &tile->primary_gt->tlb_inval,
2387 					       dep_scheduler, vm,
2388 					       pt_update_ops->start,
2389 					       pt_update_ops->last,
2390 					       XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT);
2391 		if (IS_ERR(ijob)) {
2392 			err = PTR_ERR(ijob);
2393 			goto kill_vm_tile1;
2394 		}
2395 		update.ijob = ijob;
2396 
2397 		if (tile->media_gt) {
2398 			dep_scheduler = to_dep_scheduler(q, tile->media_gt);
2399 
2400 			mjob = xe_tlb_inval_job_create(q,
2401 						       &tile->media_gt->tlb_inval,
2402 						       dep_scheduler, vm,
2403 						       pt_update_ops->start,
2404 						       pt_update_ops->last,
2405 						       XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT);
2406 			if (IS_ERR(mjob)) {
2407 				err = PTR_ERR(mjob);
2408 				goto free_ijob;
2409 			}
2410 			update.mjob = mjob;
2411 		}
2412 	}
2413 
2414 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
2415 	if (!rfence) {
2416 		err = -ENOMEM;
2417 		goto free_ijob;
2418 	}
2419 
2420 	fence = xe_migrate_update_pgtables(tile->migrate, &update);
2421 	if (IS_ERR(fence)) {
2422 		err = PTR_ERR(fence);
2423 		goto free_rfence;
2424 	}
2425 
2426 	/* Point of no return - VM killed if failure after this */
2427 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2428 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2429 
2430 		xe_pt_commit(pt_op->vma, pt_op->entries,
2431 			     pt_op->num_entries, &pt_update_ops->deferred);
2432 		pt_op->vma = NULL;	/* skip in xe_pt_update_ops_abort */
2433 	}
2434 
2435 	if (xe_range_fence_insert(&vm->rftree[tile->id], rfence,
2436 				  &xe_range_fence_kfree_ops,
2437 				  pt_update_ops->start,
2438 				  pt_update_ops->last, fence))
2439 		dma_fence_wait(fence, false);
2440 
2441 	if (ijob)
2442 		ifence = xe_tlb_inval_job_push(ijob, tile->migrate, fence);
2443 	if (mjob)
2444 		mfence = xe_tlb_inval_job_push(mjob, tile->migrate, fence);
2445 
2446 	if (!mjob && !ijob) {
2447 		dma_resv_add_fence(xe_vm_resv(vm), fence,
2448 				   pt_update_ops->wait_vm_bookkeep ?
2449 				   DMA_RESV_USAGE_KERNEL :
2450 				   DMA_RESV_USAGE_BOOKKEEP);
2451 
2452 		list_for_each_entry(op, &vops->list, link)
2453 			op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL);
2454 	} else if (ijob && !mjob) {
2455 		dma_resv_add_fence(xe_vm_resv(vm), ifence,
2456 				   pt_update_ops->wait_vm_bookkeep ?
2457 				   DMA_RESV_USAGE_KERNEL :
2458 				   DMA_RESV_USAGE_BOOKKEEP);
2459 
2460 		list_for_each_entry(op, &vops->list, link)
2461 			op_commit(vops->vm, tile, pt_update_ops, op, ifence, NULL);
2462 	} else {
2463 		dma_resv_add_fence(xe_vm_resv(vm), ifence,
2464 				   pt_update_ops->wait_vm_bookkeep ?
2465 				   DMA_RESV_USAGE_KERNEL :
2466 				   DMA_RESV_USAGE_BOOKKEEP);
2467 
2468 		dma_resv_add_fence(xe_vm_resv(vm), mfence,
2469 				   pt_update_ops->wait_vm_bookkeep ?
2470 				   DMA_RESV_USAGE_KERNEL :
2471 				   DMA_RESV_USAGE_BOOKKEEP);
2472 
2473 		list_for_each_entry(op, &vops->list, link)
2474 			op_commit(vops->vm, tile, pt_update_ops, op, ifence,
2475 				  mfence);
2476 	}
2477 
2478 	if (pt_update_ops->needs_svm_lock)
2479 		xe_svm_notifier_unlock(vm);
2480 
2481 	/*
2482 	 * The last fence is only used for zero bind queue idling; migrate
2483 	 * queues are not exposed to user space.
2484 	 */
2485 	if (!(q->flags & EXEC_QUEUE_FLAG_MIGRATE))
2486 		xe_exec_queue_last_fence_set(q, vm, fence);
2487 
2488 	xe_tlb_inval_job_put(mjob);
2489 	xe_tlb_inval_job_put(ijob);
2490 	dma_fence_put(ifence);
2491 	dma_fence_put(mfence);
2492 
2493 	return fence;
2494 
2495 free_rfence:
2496 	kfree(rfence);
2497 free_ijob:
2498 	xe_tlb_inval_job_put(mjob);
2499 	xe_tlb_inval_job_put(ijob);
2500 kill_vm_tile1:
2501 	if (err != -EAGAIN && err != -ENODATA && tile->id)
2502 		xe_vm_kill(vops->vm, false);
2503 
2504 	return ERR_PTR(err);
2505 }
2506 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO);
2507 
2508 /**
2509  * xe_pt_update_ops_fini() - Finish PT update operations
2510  * @tile: Tile of PT update operations
2511  * @vops: VMA operations
2512  *
2513  * Finish PT update operations by committing to destroy page table memory
2514  */
2515 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops)
2516 {
2517 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2518 		&vops->pt_update_ops[tile->id];
2519 	int i;
2520 
2521 	lockdep_assert_held(&vops->vm->lock);
2522 	xe_vm_assert_held(vops->vm);
2523 
2524 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2525 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2526 
2527 		xe_pt_free_bind(pt_op->entries, pt_op->num_entries);
2528 	}
2529 	xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2530 }
2531 
2532 /**
2533  * xe_pt_update_ops_abort() - Abort PT update operations
2534  * @tile: Tile of PT update operations
2535  * @vops: VMA operationa
2536  *
2537  *  Abort PT update operations by unwinding internal PT state
2538  */
2539 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops)
2540 {
2541 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2542 		&vops->pt_update_ops[tile->id];
2543 	int i;
2544 
2545 	lockdep_assert_held(&vops->vm->lock);
2546 	xe_vm_assert_held(vops->vm);
2547 
2548 	for (i = pt_update_ops->num_ops - 1; i >= 0; --i) {
2549 		struct xe_vm_pgtable_update_op *pt_op =
2550 			&pt_update_ops->ops[i];
2551 
2552 		if (!pt_op->vma || i >= pt_update_ops->current_op)
2553 			continue;
2554 
2555 		if (pt_op->bind)
2556 			xe_pt_abort_bind(pt_op->vma, pt_op->entries,
2557 					 pt_op->num_entries,
2558 					 pt_op->rebind);
2559 		else
2560 			xe_pt_abort_unbind(pt_op->vma, pt_op->entries,
2561 					   pt_op->num_entries);
2562 	}
2563 
2564 	xe_pt_update_ops_fini(tile, vops);
2565 }
2566