1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2023 Intel Corporation
4 */
5
6 #include "xe_devcoredump.h"
7 #include "xe_devcoredump_types.h"
8
9 #include <linux/ascii85.h>
10 #include <linux/devcoredump.h>
11 #include <generated/utsrelease.h>
12
13 #include <drm/drm_managed.h>
14
15 #include "xe_device.h"
16 #include "xe_exec_queue.h"
17 #include "xe_force_wake.h"
18 #include "xe_gt.h"
19 #include "xe_gt_printk.h"
20 #include "xe_guc_capture.h"
21 #include "xe_guc_ct.h"
22 #include "xe_guc_log.h"
23 #include "xe_guc_submit.h"
24 #include "xe_hw_engine.h"
25 #include "xe_module.h"
26 #include "xe_pm.h"
27 #include "xe_sched_job.h"
28 #include "xe_vm.h"
29
30 /**
31 * DOC: Xe device coredump
32 *
33 * Xe uses dev_coredump infrastructure for exposing the crash errors in a
34 * standardized way. Once a crash occurs, devcoredump exposes a temporary
35 * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also
36 * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The
37 * ``failing_device`` symlink points to the device that crashed and created the
38 * coredump.
39 *
40 * The following characteristics are observed by xe when creating a device
41 * coredump:
42 *
43 * **Snapshot at hang**:
44 * The 'data' file contains a snapshot of the HW and driver states at the time
45 * the hang happened. Due to the driver recovering from resets/crashes, it may
46 * not correspond to the state of the system when the file is read by
47 * userspace.
48 *
49 * **Coredump release**:
50 * After a coredump is generated, it stays in kernel memory until released by
51 * userspace by writing anything to it, or after an internal timer expires. The
52 * exact timeout may vary and should not be relied upon. Example to release
53 * a coredump:
54 *
55 * .. code-block:: shell
56 *
57 * $ > /sys/class/drm/card0/device/devcoredump/data
58 *
59 * **First failure only**:
60 * In general, the first hang is the most critical one since the following
61 * hangs can be a consequence of the initial hang. For this reason a snapshot
62 * is taken only for the first failure. Until the devcoredump is released by
63 * userspace or kernel, all subsequent hangs do not override the snapshot nor
64 * create new ones. Devcoredump has a delayed work queue that will eventually
65 * delete the file node and free all the dump information.
66 */
67
68 #ifdef CONFIG_DEV_COREDUMP
69
70 /* 1 hour timeout */
71 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
72
coredump_to_xe(const struct xe_devcoredump * coredump)73 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
74 {
75 return container_of(coredump, struct xe_device, devcoredump);
76 }
77
exec_queue_to_guc(struct xe_exec_queue * q)78 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
79 {
80 return &q->gt->uc.guc;
81 }
82
__xe_devcoredump_read(char * buffer,ssize_t count,ssize_t start,struct xe_devcoredump * coredump)83 static ssize_t __xe_devcoredump_read(char *buffer, ssize_t count,
84 ssize_t start,
85 struct xe_devcoredump *coredump)
86 {
87 struct xe_device *xe;
88 struct xe_devcoredump_snapshot *ss;
89 struct drm_printer p;
90 struct drm_print_iterator iter;
91 struct timespec64 ts;
92 int i;
93
94 xe = coredump_to_xe(coredump);
95 ss = &coredump->snapshot;
96
97 iter.data = buffer;
98 iter.start = start;
99 iter.remain = count;
100
101 p = drm_coredump_printer(&iter);
102
103 drm_puts(&p, "**** Xe Device Coredump ****\n");
104 drm_printf(&p, "Reason: %s\n", ss->reason);
105 drm_puts(&p, "kernel: " UTS_RELEASE "\n");
106 drm_puts(&p, "module: " KBUILD_MODNAME "\n");
107
108 ts = ktime_to_timespec64(ss->snapshot_time);
109 drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
110 ts = ktime_to_timespec64(ss->boot_time);
111 drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
112 drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid);
113 xe_device_snapshot_print(xe, &p);
114
115 drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
116 drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
117
118 drm_puts(&p, "\n**** GuC Log ****\n");
119 xe_guc_log_snapshot_print(ss->guc.log, &p);
120 drm_puts(&p, "\n**** GuC CT ****\n");
121 xe_guc_ct_snapshot_print(ss->guc.ct, &p);
122
123 drm_puts(&p, "\n**** Contexts ****\n");
124 xe_guc_exec_queue_snapshot_print(ss->ge, &p);
125
126 drm_puts(&p, "\n**** Job ****\n");
127 xe_sched_job_snapshot_print(ss->job, &p);
128
129 drm_puts(&p, "\n**** HW Engines ****\n");
130 for (i = 0; i < XE_NUM_HW_ENGINES; i++)
131 if (ss->hwe[i])
132 xe_engine_snapshot_print(ss->hwe[i], &p);
133
134 drm_puts(&p, "\n**** VM state ****\n");
135 xe_vm_snapshot_print(ss->vm, &p);
136
137 return count - iter.remain;
138 }
139
xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot * ss)140 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
141 {
142 int i;
143
144 kfree(ss->reason);
145 ss->reason = NULL;
146
147 xe_guc_log_snapshot_free(ss->guc.log);
148 ss->guc.log = NULL;
149
150 xe_guc_ct_snapshot_free(ss->guc.ct);
151 ss->guc.ct = NULL;
152
153 xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
154 ss->matched_node = NULL;
155
156 xe_guc_exec_queue_snapshot_free(ss->ge);
157 ss->ge = NULL;
158
159 xe_sched_job_snapshot_free(ss->job);
160 ss->job = NULL;
161
162 for (i = 0; i < XE_NUM_HW_ENGINES; i++)
163 if (ss->hwe[i]) {
164 xe_hw_engine_snapshot_free(ss->hwe[i]);
165 ss->hwe[i] = NULL;
166 }
167
168 xe_vm_snapshot_free(ss->vm);
169 ss->vm = NULL;
170 }
171
172 #define XE_DEVCOREDUMP_CHUNK_MAX (SZ_512M + SZ_1G)
173
174 /**
175 * xe_devcoredump_read() - Read data from the Xe device coredump snapshot
176 * @buffer: Destination buffer to copy the coredump data into
177 * @offset: Offset in the coredump data to start reading from
178 * @count: Number of bytes to read
179 * @data: Pointer to the xe_devcoredump structure
180 * @datalen: Length of the data (unused)
181 *
182 * Reads a chunk of the coredump snapshot data into the provided buffer.
183 * If the devcoredump is smaller than 1.5 GB (XE_DEVCOREDUMP_CHUNK_MAX),
184 * it is read directly from a pre-written buffer. For larger devcoredumps,
185 * the pre-written buffer must be periodically repopulated from the snapshot
186 * state due to kmalloc size limitations.
187 *
188 * Return: Number of bytes copied on success, or a negative error code on failure.
189 */
xe_devcoredump_read(char * buffer,loff_t offset,size_t count,void * data,size_t datalen)190 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
191 size_t count, void *data, size_t datalen)
192 {
193 struct xe_devcoredump *coredump = data;
194 struct xe_devcoredump_snapshot *ss;
195 ssize_t byte_copied = 0;
196 u32 chunk_offset;
197 ssize_t new_chunk_position;
198 bool pm_needed = false;
199 int ret = 0;
200
201 if (!coredump)
202 return -ENODEV;
203
204 ss = &coredump->snapshot;
205
206 /* Ensure delayed work is captured before continuing */
207 flush_work(&ss->work);
208
209 pm_needed = ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX;
210 if (pm_needed)
211 xe_pm_runtime_get(gt_to_xe(ss->gt));
212
213 mutex_lock(&coredump->lock);
214
215 if (!ss->read.buffer) {
216 ret = -ENODEV;
217 goto unlock;
218 }
219
220 if (offset >= ss->read.size)
221 goto unlock;
222
223 new_chunk_position = div_u64_rem(offset,
224 XE_DEVCOREDUMP_CHUNK_MAX,
225 &chunk_offset);
226
227 if (offset >= ss->read.chunk_position + XE_DEVCOREDUMP_CHUNK_MAX ||
228 offset < ss->read.chunk_position) {
229 ss->read.chunk_position = new_chunk_position *
230 XE_DEVCOREDUMP_CHUNK_MAX;
231
232 __xe_devcoredump_read(ss->read.buffer,
233 XE_DEVCOREDUMP_CHUNK_MAX,
234 ss->read.chunk_position, coredump);
235 }
236
237 byte_copied = count < ss->read.size - offset ? count :
238 ss->read.size - offset;
239 memcpy(buffer, ss->read.buffer + chunk_offset, byte_copied);
240
241 unlock:
242 mutex_unlock(&coredump->lock);
243
244 if (pm_needed)
245 xe_pm_runtime_put(gt_to_xe(ss->gt));
246
247 return byte_copied ? byte_copied : ret;
248 }
249
xe_devcoredump_free(void * data)250 static void xe_devcoredump_free(void *data)
251 {
252 struct xe_devcoredump *coredump = data;
253
254 /* Our device is gone. Nothing to do... */
255 if (!data || !coredump_to_xe(coredump))
256 return;
257
258 cancel_work_sync(&coredump->snapshot.work);
259
260 mutex_lock(&coredump->lock);
261
262 xe_devcoredump_snapshot_free(&coredump->snapshot);
263 kvfree(coredump->snapshot.read.buffer);
264
265 /* To prevent stale data on next snapshot, clear everything */
266 memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
267 coredump->captured = false;
268 drm_info(&coredump_to_xe(coredump)->drm,
269 "Xe device coredump has been deleted.\n");
270
271 mutex_unlock(&coredump->lock);
272 }
273
xe_devcoredump_deferred_snap_work(struct work_struct * work)274 static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
275 {
276 struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
277 struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
278 struct xe_device *xe = coredump_to_xe(coredump);
279 unsigned int fw_ref;
280
281 /*
282 * NB: Despite passing a GFP_ flags parameter here, more allocations are done
283 * internally using GFP_KERNEL explicitly. Hence this call must be in the worker
284 * thread and not in the initial capture call.
285 */
286 dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
287 xe_devcoredump_read, xe_devcoredump_free,
288 XE_COREDUMP_TIMEOUT_JIFFIES);
289
290 xe_pm_runtime_get(xe);
291
292 /* keep going if fw fails as we still want to save the memory and SW data */
293 fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
294 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
295 xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
296 xe_vm_snapshot_capture_delayed(ss->vm);
297 xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
298 xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);
299
300 ss->read.chunk_position = 0;
301
302 /* Calculate devcoredump size */
303 ss->read.size = __xe_devcoredump_read(NULL, LONG_MAX, 0, coredump);
304
305 if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) {
306 ss->read.buffer = kvmalloc(XE_DEVCOREDUMP_CHUNK_MAX,
307 GFP_USER);
308 if (!ss->read.buffer)
309 goto put_pm;
310
311 __xe_devcoredump_read(ss->read.buffer,
312 XE_DEVCOREDUMP_CHUNK_MAX,
313 0, coredump);
314 } else {
315 ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
316 if (!ss->read.buffer)
317 goto put_pm;
318
319 __xe_devcoredump_read(ss->read.buffer, ss->read.size, 0,
320 coredump);
321 xe_devcoredump_snapshot_free(ss);
322 }
323
324 put_pm:
325 xe_pm_runtime_put(xe);
326 }
327
devcoredump_snapshot(struct xe_devcoredump * coredump,struct xe_exec_queue * q,struct xe_sched_job * job)328 static void devcoredump_snapshot(struct xe_devcoredump *coredump,
329 struct xe_exec_queue *q,
330 struct xe_sched_job *job)
331 {
332 struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
333 struct xe_guc *guc = exec_queue_to_guc(q);
334 u32 adj_logical_mask = q->logical_mask;
335 u32 width_mask = (0x1 << q->width) - 1;
336 const char *process_name = "no process";
337
338 unsigned int fw_ref;
339 bool cookie;
340 int i;
341
342 ss->snapshot_time = ktime_get_real();
343 ss->boot_time = ktime_get_boottime();
344
345 if (q->vm && q->vm->xef) {
346 process_name = q->vm->xef->process_name;
347 ss->pid = q->vm->xef->pid;
348 }
349
350 strscpy(ss->process_name, process_name);
351
352 ss->gt = q->gt;
353 INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
354
355 cookie = dma_fence_begin_signalling();
356 for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
357 if (adj_logical_mask & BIT(i)) {
358 adj_logical_mask |= width_mask << i;
359 i += q->width;
360 } else {
361 ++i;
362 }
363 }
364
365 /* keep going if fw fails as we still want to save the memory and SW data */
366 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
367
368 ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
369 ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
370 ss->ge = xe_guc_exec_queue_snapshot_capture(q);
371 if (job)
372 ss->job = xe_sched_job_snapshot_capture(job);
373 ss->vm = xe_vm_snapshot_capture(q->vm);
374
375 xe_engine_snapshot_capture_for_queue(q);
376
377 queue_work(system_unbound_wq, &ss->work);
378
379 xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
380 dma_fence_end_signalling(cookie);
381 }
382
383 /**
384 * xe_devcoredump - Take the required snapshots and initialize coredump device.
385 * @q: The faulty xe_exec_queue, where the issue was detected.
386 * @job: The faulty xe_sched_job, where the issue was detected.
387 * @fmt: Printf format + args to describe the reason for the core dump
388 *
389 * This function should be called at the crash time within the serialized
390 * gt_reset. It is skipped if we still have the core dump device available
391 * with the information of the 'first' snapshot.
392 */
393 __printf(3, 4)
xe_devcoredump(struct xe_exec_queue * q,struct xe_sched_job * job,const char * fmt,...)394 void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...)
395 {
396 struct xe_device *xe = gt_to_xe(q->gt);
397 struct xe_devcoredump *coredump = &xe->devcoredump;
398 va_list varg;
399
400 mutex_lock(&coredump->lock);
401
402 if (coredump->captured) {
403 drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
404 mutex_unlock(&coredump->lock);
405 return;
406 }
407
408 coredump->captured = true;
409
410 va_start(varg, fmt);
411 coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg);
412 va_end(varg);
413
414 devcoredump_snapshot(coredump, q, job);
415
416 drm_info(&xe->drm, "Xe device coredump has been created\n");
417 drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
418 xe->drm.primary->index);
419
420 mutex_unlock(&coredump->lock);
421 }
422
xe_driver_devcoredump_fini(void * arg)423 static void xe_driver_devcoredump_fini(void *arg)
424 {
425 struct drm_device *drm = arg;
426
427 dev_coredump_put(drm->dev);
428 }
429
xe_devcoredump_init(struct xe_device * xe)430 int xe_devcoredump_init(struct xe_device *xe)
431 {
432 int err;
433
434 err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock);
435 if (err)
436 return err;
437
438 if (IS_ENABLED(CONFIG_LOCKDEP)) {
439 fs_reclaim_acquire(GFP_KERNEL);
440 might_lock(&xe->devcoredump.lock);
441 fs_reclaim_release(GFP_KERNEL);
442 }
443
444 return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
445 }
446
447 #endif
448
449 /**
450 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
451 *
452 * The output is split into multiple calls to drm_puts() because some print
453 * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may
454 * add newlines, as is the case with dmesg: each drm_puts() call creates a
455 * separate line.
456 *
457 * There is also a scheduler yield call to prevent the 'task has been stuck for
458 * 120s' kernel hang check feature from firing when printing to a slow target
459 * such as dmesg over a serial port.
460 *
461 * @p: the printer object to output to
462 * @prefix: optional prefix to add to output string
463 * @suffix: optional suffix to add at the end. 0 disables it and is
464 * not added to the output, which is useful when using multiple calls
465 * to dump data to @p
466 * @blob: the Binary Large OBject to dump out
467 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
468 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
469 */
xe_print_blob_ascii85(struct drm_printer * p,const char * prefix,char suffix,const void * blob,size_t offset,size_t size)470 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix,
471 const void *blob, size_t offset, size_t size)
472 {
473 const u32 *blob32 = (const u32 *)blob;
474 char buff[ASCII85_BUFSZ], *line_buff;
475 size_t line_pos = 0;
476
477 #define DMESG_MAX_LINE_LEN 800
478 /* Always leave space for the suffix char and the \0 */
479 #define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */
480
481 if (size & 3)
482 drm_printf(p, "Size not word aligned: %zu", size);
483 if (offset & 3)
484 drm_printf(p, "Offset not word aligned: %zu", offset);
485
486 line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_ATOMIC);
487 if (!line_buff) {
488 drm_printf(p, "Failed to allocate line buffer\n");
489 return;
490 }
491
492 blob32 += offset / sizeof(*blob32);
493 size /= sizeof(*blob32);
494
495 if (prefix) {
496 strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
497 line_pos = strlen(line_buff);
498
499 line_buff[line_pos++] = ':';
500 line_buff[line_pos++] = ' ';
501 }
502
503 while (size--) {
504 u32 val = *(blob32++);
505
506 strscpy(line_buff + line_pos, ascii85_encode(val, buff),
507 DMESG_MAX_LINE_LEN - line_pos);
508 line_pos += strlen(line_buff + line_pos);
509
510 if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
511 line_buff[line_pos++] = 0;
512
513 drm_puts(p, line_buff);
514
515 line_pos = 0;
516
517 /* Prevent 'stuck thread' time out errors */
518 cond_resched();
519 }
520 }
521
522 if (suffix)
523 line_buff[line_pos++] = suffix;
524
525 if (line_pos) {
526 line_buff[line_pos++] = 0;
527 drm_puts(p, line_buff);
528 }
529
530 kfree(line_buff);
531
532 #undef MIN_SPACE
533 #undef DMESG_MAX_LINE_LEN
534 }
535