xref: /linux/drivers/gpu/drm/xe/xe_mmio.c (revision de848da12f752170c2ebe114804a985314fd5a6a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021-2023 Intel Corporation
4  */
5 
6 #include "xe_mmio.h"
7 
8 #include <linux/delay.h>
9 #include <linux/io-64-nonatomic-lo-hi.h>
10 #include <linux/minmax.h>
11 #include <linux/pci.h>
12 
13 #include <drm/drm_managed.h>
14 #include <drm/drm_print.h>
15 
16 #include "regs/xe_bars.h"
17 #include "regs/xe_regs.h"
18 #include "xe_device.h"
19 #include "xe_gt.h"
20 #include "xe_gt_printk.h"
21 #include "xe_gt_sriov_vf.h"
22 #include "xe_macros.h"
23 #include "xe_sriov.h"
24 #include "xe_trace.h"
25 
26 static void tiles_fini(void *arg)
27 {
28 	struct xe_device *xe = arg;
29 	struct xe_tile *tile;
30 	int id;
31 
32 	for_each_remote_tile(tile, xe, id)
33 		tile->mmio.regs = NULL;
34 }
35 
36 /*
37  * On multi-tile devices, partition the BAR space for MMIO on each tile,
38  * possibly accounting for register override on the number of tiles available.
39  * Resulting memory layout is like below:
40  *
41  * .----------------------. <- tile_count * tile_mmio_size
42  * |         ....         |
43  * |----------------------| <- 2 * tile_mmio_size
44  * |   tile1->mmio.regs   |
45  * |----------------------| <- 1 * tile_mmio_size
46  * |   tile0->mmio.regs   |
47  * '----------------------' <- 0MB
48  */
49 static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size)
50 {
51 	struct xe_tile *tile;
52 	void __iomem *regs;
53 	u8 id;
54 
55 	/*
56 	 * Nothing to be done as tile 0 has already been setup earlier with the
57 	 * entire BAR mapped - see xe_mmio_init()
58 	 */
59 	if (xe->info.tile_count == 1)
60 		return;
61 
62 	/* Possibly override number of tile based on configuration register */
63 	if (!xe->info.skip_mtcfg) {
64 		struct xe_gt *gt = xe_root_mmio_gt(xe);
65 		u8 tile_count;
66 		u32 mtcfg;
67 
68 		/*
69 		 * Although the per-tile mmio regs are not yet initialized, this
70 		 * is fine as it's going to the root gt, that's guaranteed to be
71 		 * initialized earlier in xe_mmio_init()
72 		 */
73 		mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR);
74 		tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
75 
76 		if (tile_count < xe->info.tile_count) {
77 			drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
78 					xe->info.tile_count, tile_count);
79 			xe->info.tile_count = tile_count;
80 
81 			/*
82 			 * FIXME: Needs some work for standalone media, but
83 			 * should be impossible with multi-tile for now:
84 			 * multi-tile platform with standalone media doesn't
85 			 * exist
86 			 */
87 			xe->info.gt_count = xe->info.tile_count;
88 		}
89 	}
90 
91 	regs = xe->mmio.regs;
92 	for_each_tile(tile, xe, id) {
93 		tile->mmio.size = tile_mmio_size;
94 		tile->mmio.regs = regs;
95 		regs += tile_mmio_size;
96 	}
97 }
98 
99 /*
100  * On top of all the multi-tile MMIO space there can be a platform-dependent
101  * extension for each tile, resulting in a layout like below:
102  *
103  * .----------------------. <- ext_base + tile_count * tile_mmio_ext_size
104  * |         ....         |
105  * |----------------------| <- ext_base + 2 * tile_mmio_ext_size
106  * | tile1->mmio_ext.regs |
107  * |----------------------| <- ext_base + 1 * tile_mmio_ext_size
108  * | tile0->mmio_ext.regs |
109  * |======================| <- ext_base = tile_count * tile_mmio_size
110  * |                      |
111  * |       mmio.regs      |
112  * |                      |
113  * '----------------------' <- 0MB
114  *
115  * Set up the tile[]->mmio_ext pointers/sizes.
116  */
117 static void mmio_extension_setup(struct xe_device *xe, size_t tile_mmio_size,
118 				 size_t tile_mmio_ext_size)
119 {
120 	struct xe_tile *tile;
121 	void __iomem *regs;
122 	u8 id;
123 
124 	if (!xe->info.has_mmio_ext)
125 		return;
126 
127 	regs = xe->mmio.regs + tile_mmio_size * xe->info.tile_count;
128 	for_each_tile(tile, xe, id) {
129 		tile->mmio_ext.size = tile_mmio_ext_size;
130 		tile->mmio_ext.regs = regs;
131 		regs += tile_mmio_ext_size;
132 	}
133 }
134 
135 int xe_mmio_probe_tiles(struct xe_device *xe)
136 {
137 	size_t tile_mmio_size = SZ_16M;
138 	size_t tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
139 
140 	mmio_multi_tile_setup(xe, tile_mmio_size);
141 	mmio_extension_setup(xe, tile_mmio_size, tile_mmio_ext_size);
142 
143 	return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe);
144 }
145 
146 static void mmio_fini(void *arg)
147 {
148 	struct xe_device *xe = arg;
149 	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
150 
151 	pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
152 	xe->mmio.regs = NULL;
153 	root_tile->mmio.regs = NULL;
154 }
155 
156 int xe_mmio_init(struct xe_device *xe)
157 {
158 	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
159 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
160 	const int mmio_bar = 0;
161 
162 	/*
163 	 * Map the entire BAR.
164 	 * The first 16MB of the BAR, belong to the root tile, and include:
165 	 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
166 	 */
167 	xe->mmio.size = pci_resource_len(pdev, mmio_bar);
168 	xe->mmio.regs = pci_iomap(pdev, mmio_bar, GTTMMADR_BAR);
169 	if (xe->mmio.regs == NULL) {
170 		drm_err(&xe->drm, "failed to map registers\n");
171 		return -EIO;
172 	}
173 
174 	/* Setup first tile; other tiles (if present) will be setup later. */
175 	root_tile->mmio.size = SZ_16M;
176 	root_tile->mmio.regs = xe->mmio.regs;
177 
178 	return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe);
179 }
180 
181 static void mmio_flush_pending_writes(struct xe_gt *gt)
182 {
183 #define DUMMY_REG_OFFSET	0x130030
184 	struct xe_tile *tile = gt_to_tile(gt);
185 	int i;
186 
187 	if (tile->xe->info.platform != XE_LUNARLAKE)
188 		return;
189 
190 	/* 4 dummy writes */
191 	for (i = 0; i < 4; i++)
192 		writel(0, tile->mmio.regs + DUMMY_REG_OFFSET);
193 }
194 
195 u8 xe_mmio_read8(struct xe_gt *gt, struct xe_reg reg)
196 {
197 	struct xe_tile *tile = gt_to_tile(gt);
198 	u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
199 	u8 val;
200 
201 	/* Wa_15015404425 */
202 	mmio_flush_pending_writes(gt);
203 
204 	val = readb((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
205 	trace_xe_reg_rw(gt, false, addr, val, sizeof(val));
206 
207 	return val;
208 }
209 
210 u16 xe_mmio_read16(struct xe_gt *gt, struct xe_reg reg)
211 {
212 	struct xe_tile *tile = gt_to_tile(gt);
213 	u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
214 	u16 val;
215 
216 	/* Wa_15015404425 */
217 	mmio_flush_pending_writes(gt);
218 
219 	val = readw((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
220 	trace_xe_reg_rw(gt, false, addr, val, sizeof(val));
221 
222 	return val;
223 }
224 
225 void xe_mmio_write32(struct xe_gt *gt, struct xe_reg reg, u32 val)
226 {
227 	struct xe_tile *tile = gt_to_tile(gt);
228 	u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
229 
230 	trace_xe_reg_rw(gt, true, addr, val, sizeof(val));
231 
232 	if (!reg.vf && IS_SRIOV_VF(gt_to_xe(gt)))
233 		xe_gt_sriov_vf_write32(gt, reg, val);
234 	else
235 		writel(val, (reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
236 }
237 
238 u32 xe_mmio_read32(struct xe_gt *gt, struct xe_reg reg)
239 {
240 	struct xe_tile *tile = gt_to_tile(gt);
241 	u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
242 	u32 val;
243 
244 	/* Wa_15015404425 */
245 	mmio_flush_pending_writes(gt);
246 
247 	if (!reg.vf && IS_SRIOV_VF(gt_to_xe(gt)))
248 		val = xe_gt_sriov_vf_read32(gt, reg);
249 	else
250 		val = readl((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + addr);
251 
252 	trace_xe_reg_rw(gt, false, addr, val, sizeof(val));
253 
254 	return val;
255 }
256 
257 u32 xe_mmio_rmw32(struct xe_gt *gt, struct xe_reg reg, u32 clr, u32 set)
258 {
259 	u32 old, reg_val;
260 
261 	old = xe_mmio_read32(gt, reg);
262 	reg_val = (old & ~clr) | set;
263 	xe_mmio_write32(gt, reg, reg_val);
264 
265 	return old;
266 }
267 
268 int xe_mmio_write32_and_verify(struct xe_gt *gt,
269 			       struct xe_reg reg, u32 val, u32 mask, u32 eval)
270 {
271 	u32 reg_val;
272 
273 	xe_mmio_write32(gt, reg, val);
274 	reg_val = xe_mmio_read32(gt, reg);
275 
276 	return (reg_val & mask) != eval ? -EINVAL : 0;
277 }
278 
279 bool xe_mmio_in_range(const struct xe_gt *gt,
280 		      const struct xe_mmio_range *range,
281 		      struct xe_reg reg)
282 {
283 	u32 addr = xe_mmio_adjusted_addr(gt, reg.addr);
284 
285 	return range && addr >= range->start && addr <= range->end;
286 }
287 
288 /**
289  * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
290  * @gt: MMIO target GT
291  * @reg: register to read value from
292  *
293  * Although Intel GPUs have some 64-bit registers, the hardware officially
294  * only supports GTTMMADR register reads of 32 bits or smaller.  Even if
295  * a readq operation may return a reasonable value, that violation of the
296  * spec shouldn't be relied upon and all 64-bit register reads should be
297  * performed as two 32-bit reads of the upper and lower dwords.
298  *
299  * When reading registers that may be changing (such as
300  * counters), a rollover of the lower dword between the two 32-bit reads
301  * can be problematic.  This function attempts to ensure the upper dword has
302  * stabilized before returning the 64-bit value.
303  *
304  * Note that because this function may re-read the register multiple times
305  * while waiting for the value to stabilize it should not be used to read
306  * any registers where read operations have side effects.
307  *
308  * Returns the value of the 64-bit register.
309  */
310 u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg)
311 {
312 	struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
313 	u32 ldw, udw, oldudw, retries;
314 
315 	reg.addr = xe_mmio_adjusted_addr(gt, reg.addr);
316 	reg_udw.addr = xe_mmio_adjusted_addr(gt, reg_udw.addr);
317 
318 	/* we shouldn't adjust just one register address */
319 	xe_gt_assert(gt, reg_udw.addr == reg.addr + 0x4);
320 
321 	oldudw = xe_mmio_read32(gt, reg_udw);
322 	for (retries = 5; retries; --retries) {
323 		ldw = xe_mmio_read32(gt, reg);
324 		udw = xe_mmio_read32(gt, reg_udw);
325 
326 		if (udw == oldudw)
327 			break;
328 
329 		oldudw = udw;
330 	}
331 
332 	xe_gt_WARN(gt, retries == 0,
333 		   "64-bit read of %#x did not stabilize\n", reg.addr);
334 
335 	return (u64)udw << 32 | ldw;
336 }
337 
338 static int __xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
339 			    u32 *out_val, bool atomic, bool expect_match)
340 {
341 	ktime_t cur = ktime_get_raw();
342 	const ktime_t end = ktime_add_us(cur, timeout_us);
343 	int ret = -ETIMEDOUT;
344 	s64 wait = 10;
345 	u32 read;
346 	bool check;
347 
348 	for (;;) {
349 		read = xe_mmio_read32(gt, reg);
350 
351 		check = (read & mask) == val;
352 		if (!expect_match)
353 			check = !check;
354 
355 		if (check) {
356 			ret = 0;
357 			break;
358 		}
359 
360 		cur = ktime_get_raw();
361 		if (!ktime_before(cur, end))
362 			break;
363 
364 		if (ktime_after(ktime_add_us(cur, wait), end))
365 			wait = ktime_us_delta(end, cur);
366 
367 		if (atomic)
368 			udelay(wait);
369 		else
370 			usleep_range(wait, wait << 1);
371 		wait <<= 1;
372 	}
373 
374 	if (ret != 0) {
375 		read = xe_mmio_read32(gt, reg);
376 
377 		check = (read & mask) == val;
378 		if (!expect_match)
379 			check = !check;
380 
381 		if (check)
382 			ret = 0;
383 	}
384 
385 	if (out_val)
386 		*out_val = read;
387 
388 	return ret;
389 }
390 
391 /**
392  * xe_mmio_wait32() - Wait for a register to match the desired masked value
393  * @gt: MMIO target GT
394  * @reg: register to read value from
395  * @mask: mask to be applied to the value read from the register
396  * @val: desired value after applying the mask
397  * @timeout_us: time out after this period of time. Wait logic tries to be
398  * smart, applying an exponential backoff until @timeout_us is reached.
399  * @out_val: if not NULL, points where to store the last unmasked value
400  * @atomic: needs to be true if calling from an atomic context
401  *
402  * This function polls for the desired masked value and returns zero on success
403  * or -ETIMEDOUT if timed out.
404  *
405  * Note that @timeout_us represents the minimum amount of time to wait before
406  * giving up. The actual time taken by this function can be a little more than
407  * @timeout_us for different reasons, specially in non-atomic contexts. Thus,
408  * it is possible that this function succeeds even after @timeout_us has passed.
409  */
410 int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
411 		   u32 *out_val, bool atomic)
412 {
413 	return __xe_mmio_wait32(gt, reg, mask, val, timeout_us, out_val, atomic, true);
414 }
415 
416 /**
417  * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value
418  * @gt: MMIO target GT
419  * @reg: register to read value from
420  * @mask: mask to be applied to the value read from the register
421  * @val: value not to be matched after applying the mask
422  * @timeout_us: time out after this period of time
423  * @out_val: if not NULL, points where to store the last unmasked value
424  * @atomic: needs to be true if calling from an atomic context
425  *
426  * This function works exactly like xe_mmio_wait32() with the exception that
427  * @val is expected not to be matched.
428  */
429 int xe_mmio_wait32_not(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
430 		       u32 *out_val, bool atomic)
431 {
432 	return __xe_mmio_wait32(gt, reg, mask, val, timeout_us, out_val, atomic, false);
433 }
434