xref: /linux/drivers/gpu/drm/xe/xe_lrc.c (revision 72d479601d67026c4fafaad21762a777cf41f906)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_lrc.h"
7 
8 #include <generated/xe_wa_oob.h>
9 
10 #include <linux/ascii85.h>
11 
12 #include "instructions/xe_mi_commands.h"
13 #include "instructions/xe_gfxpipe_commands.h"
14 #include "instructions/xe_gfx_state_commands.h"
15 #include "regs/xe_engine_regs.h"
16 #include "regs/xe_lrc_layout.h"
17 #include "xe_bb.h"
18 #include "xe_bo.h"
19 #include "xe_device.h"
20 #include "xe_drm_client.h"
21 #include "xe_exec_queue_types.h"
22 #include "xe_gt.h"
23 #include "xe_gt_printk.h"
24 #include "xe_hw_fence.h"
25 #include "xe_map.h"
26 #include "xe_memirq.h"
27 #include "xe_sriov.h"
28 #include "xe_trace_lrc.h"
29 #include "xe_vm.h"
30 #include "xe_wa.h"
31 
32 #define LRC_VALID				BIT_ULL(0)
33 #define LRC_PRIVILEGE				BIT_ULL(8)
34 #define LRC_ADDRESSING_MODE			GENMASK_ULL(4, 3)
35 #define LRC_LEGACY_64B_CONTEXT			3
36 
37 #define LRC_ENGINE_CLASS			GENMASK_ULL(63, 61)
38 #define LRC_ENGINE_INSTANCE			GENMASK_ULL(53, 48)
39 
40 #define LRC_INDIRECT_RING_STATE_SIZE		SZ_4K
41 
42 static struct xe_device *
43 lrc_to_xe(struct xe_lrc *lrc)
44 {
45 	return gt_to_xe(lrc->fence_ctx.gt);
46 }
47 
48 size_t xe_gt_lrc_size(struct xe_gt *gt, enum xe_engine_class class)
49 {
50 	struct xe_device *xe = gt_to_xe(gt);
51 	size_t size;
52 
53 	switch (class) {
54 	case XE_ENGINE_CLASS_RENDER:
55 		if (GRAPHICS_VER(xe) >= 20)
56 			size = 4 * SZ_4K;
57 		else
58 			size = 14 * SZ_4K;
59 		break;
60 	case XE_ENGINE_CLASS_COMPUTE:
61 		/* 14 pages since graphics_ver == 11 */
62 		if (GRAPHICS_VER(xe) >= 20)
63 			size = 3 * SZ_4K;
64 		else
65 			size = 14 * SZ_4K;
66 		break;
67 	default:
68 		WARN(1, "Unknown engine class: %d", class);
69 		fallthrough;
70 	case XE_ENGINE_CLASS_COPY:
71 	case XE_ENGINE_CLASS_VIDEO_DECODE:
72 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
73 	case XE_ENGINE_CLASS_OTHER:
74 		size = 2 * SZ_4K;
75 	}
76 
77 	/* Add indirect ring state page */
78 	if (xe_gt_has_indirect_ring_state(gt))
79 		size += LRC_INDIRECT_RING_STATE_SIZE;
80 
81 	return size;
82 }
83 
84 /*
85  * The per-platform tables are u8-encoded in @data. Decode @data and set the
86  * addresses' offset and commands in @regs. The following encoding is used
87  * for each byte. There are 2 steps: decoding commands and decoding addresses.
88  *
89  * Commands:
90  * [7]: create NOPs - number of NOPs are set in lower bits
91  * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set
92  *      MI_LRI_FORCE_POSTED
93  * [5:0]: Number of NOPs or registers to set values to in case of
94  *        MI_LOAD_REGISTER_IMM
95  *
96  * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count"
97  * number of registers. They are set by using the REG/REG16 macros: the former
98  * is used for offsets smaller than 0x200 while the latter is for values bigger
99  * than that. Those macros already set all the bits documented below correctly:
100  *
101  * [7]: When a register offset needs more than 6 bits, use additional bytes, to
102  *      follow, for the lower bits
103  * [6:0]: Register offset, without considering the engine base.
104  *
105  * This function only tweaks the commands and register offsets. Values are not
106  * filled out.
107  */
108 static void set_offsets(u32 *regs,
109 			const u8 *data,
110 			const struct xe_hw_engine *hwe)
111 #define NOP(x) (BIT(7) | (x))
112 #define LRI(count, flags) ((flags) << 6 | (count) | \
113 			   BUILD_BUG_ON_ZERO(count >= BIT(6)))
114 #define POSTED BIT(0)
115 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
116 #define REG16(x) \
117 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
118 	(((x) >> 2) & 0x7f)
119 {
120 	const u32 base = hwe->mmio_base;
121 
122 	while (*data) {
123 		u8 count, flags;
124 
125 		if (*data & BIT(7)) { /* skip */
126 			count = *data++ & ~BIT(7);
127 			regs += count;
128 			continue;
129 		}
130 
131 		count = *data & 0x3f;
132 		flags = *data >> 6;
133 		data++;
134 
135 		*regs = MI_LOAD_REGISTER_IMM | MI_LRI_NUM_REGS(count);
136 		if (flags & POSTED)
137 			*regs |= MI_LRI_FORCE_POSTED;
138 		*regs |= MI_LRI_LRM_CS_MMIO;
139 		regs++;
140 
141 		xe_gt_assert(hwe->gt, count);
142 		do {
143 			u32 offset = 0;
144 			u8 v;
145 
146 			do {
147 				v = *data++;
148 				offset <<= 7;
149 				offset |= v & ~BIT(7);
150 			} while (v & BIT(7));
151 
152 			regs[0] = base + (offset << 2);
153 			regs += 2;
154 		} while (--count);
155 	}
156 
157 	*regs = MI_BATCH_BUFFER_END | BIT(0);
158 }
159 
160 static const u8 gen12_xcs_offsets[] = {
161 	NOP(1),
162 	LRI(13, POSTED),
163 	REG16(0x244),
164 	REG(0x034),
165 	REG(0x030),
166 	REG(0x038),
167 	REG(0x03c),
168 	REG(0x168),
169 	REG(0x140),
170 	REG(0x110),
171 	REG(0x1c0),
172 	REG(0x1c4),
173 	REG(0x1c8),
174 	REG(0x180),
175 	REG16(0x2b4),
176 
177 	NOP(5),
178 	LRI(9, POSTED),
179 	REG16(0x3a8),
180 	REG16(0x28c),
181 	REG16(0x288),
182 	REG16(0x284),
183 	REG16(0x280),
184 	REG16(0x27c),
185 	REG16(0x278),
186 	REG16(0x274),
187 	REG16(0x270),
188 
189 	0
190 };
191 
192 static const u8 dg2_xcs_offsets[] = {
193 	NOP(1),
194 	LRI(15, POSTED),
195 	REG16(0x244),
196 	REG(0x034),
197 	REG(0x030),
198 	REG(0x038),
199 	REG(0x03c),
200 	REG(0x168),
201 	REG(0x140),
202 	REG(0x110),
203 	REG(0x1c0),
204 	REG(0x1c4),
205 	REG(0x1c8),
206 	REG(0x180),
207 	REG16(0x2b4),
208 	REG(0x120),
209 	REG(0x124),
210 
211 	NOP(1),
212 	LRI(9, POSTED),
213 	REG16(0x3a8),
214 	REG16(0x28c),
215 	REG16(0x288),
216 	REG16(0x284),
217 	REG16(0x280),
218 	REG16(0x27c),
219 	REG16(0x278),
220 	REG16(0x274),
221 	REG16(0x270),
222 
223 	0
224 };
225 
226 static const u8 gen12_rcs_offsets[] = {
227 	NOP(1),
228 	LRI(13, POSTED),
229 	REG16(0x244),
230 	REG(0x034),
231 	REG(0x030),
232 	REG(0x038),
233 	REG(0x03c),
234 	REG(0x168),
235 	REG(0x140),
236 	REG(0x110),
237 	REG(0x1c0),
238 	REG(0x1c4),
239 	REG(0x1c8),
240 	REG(0x180),
241 	REG16(0x2b4),
242 
243 	NOP(5),
244 	LRI(9, POSTED),
245 	REG16(0x3a8),
246 	REG16(0x28c),
247 	REG16(0x288),
248 	REG16(0x284),
249 	REG16(0x280),
250 	REG16(0x27c),
251 	REG16(0x278),
252 	REG16(0x274),
253 	REG16(0x270),
254 
255 	LRI(3, POSTED),
256 	REG(0x1b0),
257 	REG16(0x5a8),
258 	REG16(0x5ac),
259 
260 	NOP(6),
261 	LRI(1, 0),
262 	REG(0x0c8),
263 	NOP(3 + 9 + 1),
264 
265 	LRI(51, POSTED),
266 	REG16(0x588),
267 	REG16(0x588),
268 	REG16(0x588),
269 	REG16(0x588),
270 	REG16(0x588),
271 	REG16(0x588),
272 	REG(0x028),
273 	REG(0x09c),
274 	REG(0x0c0),
275 	REG(0x178),
276 	REG(0x17c),
277 	REG16(0x358),
278 	REG(0x170),
279 	REG(0x150),
280 	REG(0x154),
281 	REG(0x158),
282 	REG16(0x41c),
283 	REG16(0x600),
284 	REG16(0x604),
285 	REG16(0x608),
286 	REG16(0x60c),
287 	REG16(0x610),
288 	REG16(0x614),
289 	REG16(0x618),
290 	REG16(0x61c),
291 	REG16(0x620),
292 	REG16(0x624),
293 	REG16(0x628),
294 	REG16(0x62c),
295 	REG16(0x630),
296 	REG16(0x634),
297 	REG16(0x638),
298 	REG16(0x63c),
299 	REG16(0x640),
300 	REG16(0x644),
301 	REG16(0x648),
302 	REG16(0x64c),
303 	REG16(0x650),
304 	REG16(0x654),
305 	REG16(0x658),
306 	REG16(0x65c),
307 	REG16(0x660),
308 	REG16(0x664),
309 	REG16(0x668),
310 	REG16(0x66c),
311 	REG16(0x670),
312 	REG16(0x674),
313 	REG16(0x678),
314 	REG16(0x67c),
315 	REG(0x068),
316 	REG(0x084),
317 	NOP(1),
318 
319 	0
320 };
321 
322 static const u8 xehp_rcs_offsets[] = {
323 	NOP(1),
324 	LRI(13, POSTED),
325 	REG16(0x244),
326 	REG(0x034),
327 	REG(0x030),
328 	REG(0x038),
329 	REG(0x03c),
330 	REG(0x168),
331 	REG(0x140),
332 	REG(0x110),
333 	REG(0x1c0),
334 	REG(0x1c4),
335 	REG(0x1c8),
336 	REG(0x180),
337 	REG16(0x2b4),
338 
339 	NOP(5),
340 	LRI(9, POSTED),
341 	REG16(0x3a8),
342 	REG16(0x28c),
343 	REG16(0x288),
344 	REG16(0x284),
345 	REG16(0x280),
346 	REG16(0x27c),
347 	REG16(0x278),
348 	REG16(0x274),
349 	REG16(0x270),
350 
351 	LRI(3, POSTED),
352 	REG(0x1b0),
353 	REG16(0x5a8),
354 	REG16(0x5ac),
355 
356 	NOP(6),
357 	LRI(1, 0),
358 	REG(0x0c8),
359 
360 	0
361 };
362 
363 static const u8 dg2_rcs_offsets[] = {
364 	NOP(1),
365 	LRI(15, POSTED),
366 	REG16(0x244),
367 	REG(0x034),
368 	REG(0x030),
369 	REG(0x038),
370 	REG(0x03c),
371 	REG(0x168),
372 	REG(0x140),
373 	REG(0x110),
374 	REG(0x1c0),
375 	REG(0x1c4),
376 	REG(0x1c8),
377 	REG(0x180),
378 	REG16(0x2b4),
379 	REG(0x120),
380 	REG(0x124),
381 
382 	NOP(1),
383 	LRI(9, POSTED),
384 	REG16(0x3a8),
385 	REG16(0x28c),
386 	REG16(0x288),
387 	REG16(0x284),
388 	REG16(0x280),
389 	REG16(0x27c),
390 	REG16(0x278),
391 	REG16(0x274),
392 	REG16(0x270),
393 
394 	LRI(3, POSTED),
395 	REG(0x1b0),
396 	REG16(0x5a8),
397 	REG16(0x5ac),
398 
399 	NOP(6),
400 	LRI(1, 0),
401 	REG(0x0c8),
402 
403 	0
404 };
405 
406 static const u8 mtl_rcs_offsets[] = {
407 	NOP(1),
408 	LRI(15, POSTED),
409 	REG16(0x244),
410 	REG(0x034),
411 	REG(0x030),
412 	REG(0x038),
413 	REG(0x03c),
414 	REG(0x168),
415 	REG(0x140),
416 	REG(0x110),
417 	REG(0x1c0),
418 	REG(0x1c4),
419 	REG(0x1c8),
420 	REG(0x180),
421 	REG16(0x2b4),
422 	REG(0x120),
423 	REG(0x124),
424 
425 	NOP(1),
426 	LRI(9, POSTED),
427 	REG16(0x3a8),
428 	REG16(0x28c),
429 	REG16(0x288),
430 	REG16(0x284),
431 	REG16(0x280),
432 	REG16(0x27c),
433 	REG16(0x278),
434 	REG16(0x274),
435 	REG16(0x270),
436 
437 	NOP(2),
438 	LRI(2, POSTED),
439 	REG16(0x5a8),
440 	REG16(0x5ac),
441 
442 	NOP(6),
443 	LRI(1, 0),
444 	REG(0x0c8),
445 
446 	0
447 };
448 
449 #define XE2_CTX_COMMON \
450 	NOP(1),                 /* [0x00] */ \
451 	LRI(15, POSTED),        /* [0x01] */ \
452 	REG16(0x244),           /* [0x02] CTXT_SR_CTL */ \
453 	REG(0x034),             /* [0x04] RING_BUFFER_HEAD */ \
454 	REG(0x030),             /* [0x06] RING_BUFFER_TAIL */ \
455 	REG(0x038),             /* [0x08] RING_BUFFER_START */ \
456 	REG(0x03c),             /* [0x0a] RING_BUFFER_CONTROL */ \
457 	REG(0x168),             /* [0x0c] BB_ADDR_UDW */ \
458 	REG(0x140),             /* [0x0e] BB_ADDR */ \
459 	REG(0x110),             /* [0x10] BB_STATE */ \
460 	REG(0x1c0),             /* [0x12] BB_PER_CTX_PTR */ \
461 	REG(0x1c4),             /* [0x14] RCS_INDIRECT_CTX */ \
462 	REG(0x1c8),             /* [0x16] RCS_INDIRECT_CTX_OFFSET */ \
463 	REG(0x180),             /* [0x18] CCID */ \
464 	REG16(0x2b4),           /* [0x1a] SEMAPHORE_TOKEN */ \
465 	REG(0x120),             /* [0x1c] PRT_BB_STATE */ \
466 	REG(0x124),             /* [0x1e] PRT_BB_STATE_UDW */ \
467 	\
468 	NOP(1),                 /* [0x20] */ \
469 	LRI(9, POSTED),         /* [0x21] */ \
470 	REG16(0x3a8),           /* [0x22] CTX_TIMESTAMP */ \
471 	REG16(0x3ac),           /* [0x24] CTX_TIMESTAMP_UDW */ \
472 	REG(0x108),             /* [0x26] INDIRECT_RING_STATE */ \
473 	REG16(0x284),           /* [0x28] dummy reg */ \
474 	REG16(0x280),           /* [0x2a] CS_ACC_CTR_THOLD */ \
475 	REG16(0x27c),           /* [0x2c] CS_CTX_SYS_PASID */ \
476 	REG16(0x278),           /* [0x2e] CS_CTX_ASID */ \
477 	REG16(0x274),           /* [0x30] PTBP_UDW */ \
478 	REG16(0x270)            /* [0x32] PTBP_LDW */
479 
480 static const u8 xe2_rcs_offsets[] = {
481 	XE2_CTX_COMMON,
482 
483 	NOP(2),                 /* [0x34] */
484 	LRI(2, POSTED),         /* [0x36] */
485 	REG16(0x5a8),           /* [0x37] CONTEXT_SCHEDULING_ATTRIBUTES */
486 	REG16(0x5ac),           /* [0x39] PREEMPTION_STATUS */
487 
488 	NOP(6),                 /* [0x41] */
489 	LRI(1, 0),              /* [0x47] */
490 	REG(0x0c8),             /* [0x48] R_PWR_CLK_STATE */
491 
492 	0
493 };
494 
495 static const u8 xe2_bcs_offsets[] = {
496 	XE2_CTX_COMMON,
497 
498 	NOP(4 + 8 + 1),         /* [0x34] */
499 	LRI(2, POSTED),         /* [0x41] */
500 	REG16(0x200),           /* [0x42] BCS_SWCTRL */
501 	REG16(0x204),           /* [0x44] BLIT_CCTL */
502 
503 	0
504 };
505 
506 static const u8 xe2_xcs_offsets[] = {
507 	XE2_CTX_COMMON,
508 
509 	0
510 };
511 
512 static const u8 xe2_indirect_ring_state_offsets[] = {
513 	NOP(1),                 /* [0x00] */
514 	LRI(5, POSTED),         /* [0x01] */
515 	REG(0x034),             /* [0x02] RING_BUFFER_HEAD */
516 	REG(0x030),             /* [0x04] RING_BUFFER_TAIL */
517 	REG(0x038),             /* [0x06] RING_BUFFER_START */
518 	REG(0x048),             /* [0x08] RING_BUFFER_START_UDW */
519 	REG(0x03c),             /* [0x0a] RING_BUFFER_CONTROL */
520 
521 	NOP(5),                 /* [0x0c] */
522 	LRI(9, POSTED),         /* [0x11] */
523 	REG(0x168),             /* [0x12] BB_ADDR_UDW */
524 	REG(0x140),             /* [0x14] BB_ADDR */
525 	REG(0x110),             /* [0x16] BB_STATE */
526 	REG16(0x588),           /* [0x18] BB_STACK_WRITE_PORT */
527 	REG16(0x588),           /* [0x20] BB_STACK_WRITE_PORT */
528 	REG16(0x588),           /* [0x22] BB_STACK_WRITE_PORT */
529 	REG16(0x588),           /* [0x24] BB_STACK_WRITE_PORT */
530 	REG16(0x588),           /* [0x26] BB_STACK_WRITE_PORT */
531 	REG16(0x588),           /* [0x28] BB_STACK_WRITE_PORT */
532 
533 	NOP(12),                 /* [0x00] */
534 
535 	0
536 };
537 
538 #undef REG16
539 #undef REG
540 #undef LRI
541 #undef NOP
542 
543 static const u8 *reg_offsets(struct xe_device *xe, enum xe_engine_class class)
544 {
545 	if (class == XE_ENGINE_CLASS_RENDER) {
546 		if (GRAPHICS_VER(xe) >= 20)
547 			return xe2_rcs_offsets;
548 		else if (GRAPHICS_VERx100(xe) >= 1270)
549 			return mtl_rcs_offsets;
550 		else if (GRAPHICS_VERx100(xe) >= 1255)
551 			return dg2_rcs_offsets;
552 		else if (GRAPHICS_VERx100(xe) >= 1250)
553 			return xehp_rcs_offsets;
554 		else
555 			return gen12_rcs_offsets;
556 	} else if (class == XE_ENGINE_CLASS_COPY) {
557 		if (GRAPHICS_VER(xe) >= 20)
558 			return xe2_bcs_offsets;
559 		else
560 			return gen12_xcs_offsets;
561 	} else {
562 		if (GRAPHICS_VER(xe) >= 20)
563 			return xe2_xcs_offsets;
564 		else if (GRAPHICS_VERx100(xe) >= 1255)
565 			return dg2_xcs_offsets;
566 		else
567 			return gen12_xcs_offsets;
568 	}
569 }
570 
571 static void set_context_control(u32 *regs, struct xe_hw_engine *hwe)
572 {
573 	regs[CTX_CONTEXT_CONTROL] = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
574 						       CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
575 
576 	if (xe_gt_has_indirect_ring_state(hwe->gt))
577 		regs[CTX_CONTEXT_CONTROL] |=
578 			_MASKED_BIT_ENABLE(CTX_CTRL_INDIRECT_RING_STATE_ENABLE);
579 
580 	/* TODO: Timestamp */
581 }
582 
583 static void set_memory_based_intr(u32 *regs, struct xe_hw_engine *hwe)
584 {
585 	struct xe_memirq *memirq = &gt_to_tile(hwe->gt)->memirq;
586 	struct xe_device *xe = gt_to_xe(hwe->gt);
587 	u8 num_regs;
588 
589 	if (!xe_device_uses_memirq(xe))
590 		return;
591 
592 	regs[CTX_LRM_INT_MASK_ENABLE] = MI_LOAD_REGISTER_MEM |
593 					MI_LRI_LRM_CS_MMIO | MI_LRM_USE_GGTT;
594 	regs[CTX_INT_MASK_ENABLE_REG] = RING_IMR(0).addr;
595 	regs[CTX_INT_MASK_ENABLE_PTR] = xe_memirq_enable_ptr(memirq);
596 
597 	num_regs = xe_device_has_msix(xe) ? 3 : 2;
598 	regs[CTX_LRI_INT_REPORT_PTR] = MI_LOAD_REGISTER_IMM | MI_LRI_NUM_REGS(num_regs) |
599 				       MI_LRI_LRM_CS_MMIO | MI_LRI_FORCE_POSTED;
600 	regs[CTX_INT_STATUS_REPORT_REG] = RING_INT_STATUS_RPT_PTR(0).addr;
601 	regs[CTX_INT_STATUS_REPORT_PTR] = xe_memirq_status_ptr(memirq, hwe);
602 	regs[CTX_INT_SRC_REPORT_REG] = RING_INT_SRC_RPT_PTR(0).addr;
603 	regs[CTX_INT_SRC_REPORT_PTR] = xe_memirq_source_ptr(memirq, hwe);
604 
605 	if (xe_device_has_msix(xe)) {
606 		regs[CTX_CS_INT_VEC_REG] = CS_INT_VEC(0).addr;
607 		/* CTX_CS_INT_VEC_DATA will be set in xe_lrc_init */
608 	}
609 }
610 
611 static int lrc_ring_mi_mode(struct xe_hw_engine *hwe)
612 {
613 	struct xe_device *xe = gt_to_xe(hwe->gt);
614 
615 	if (GRAPHICS_VERx100(xe) >= 1250)
616 		return 0x70;
617 	else
618 		return 0x60;
619 }
620 
621 static void reset_stop_ring(u32 *regs, struct xe_hw_engine *hwe)
622 {
623 	int x;
624 
625 	x = lrc_ring_mi_mode(hwe);
626 	regs[x + 1] &= ~STOP_RING;
627 	regs[x + 1] |= STOP_RING << 16;
628 }
629 
630 static inline bool xe_lrc_has_indirect_ring_state(struct xe_lrc *lrc)
631 {
632 	return lrc->flags & XE_LRC_FLAG_INDIRECT_RING_STATE;
633 }
634 
635 static inline u32 __xe_lrc_ring_offset(struct xe_lrc *lrc)
636 {
637 	return 0;
638 }
639 
640 u32 xe_lrc_pphwsp_offset(struct xe_lrc *lrc)
641 {
642 	return lrc->ring.size;
643 }
644 
645 /* Make the magic macros work */
646 #define __xe_lrc_pphwsp_offset xe_lrc_pphwsp_offset
647 #define __xe_lrc_regs_offset xe_lrc_regs_offset
648 
649 #define LRC_SEQNO_PPHWSP_OFFSET 512
650 #define LRC_START_SEQNO_PPHWSP_OFFSET (LRC_SEQNO_PPHWSP_OFFSET + 8)
651 #define LRC_CTX_JOB_TIMESTAMP_OFFSET (LRC_START_SEQNO_PPHWSP_OFFSET + 8)
652 #define LRC_PARALLEL_PPHWSP_OFFSET 2048
653 #define LRC_PPHWSP_SIZE SZ_4K
654 
655 u32 xe_lrc_regs_offset(struct xe_lrc *lrc)
656 {
657 	return xe_lrc_pphwsp_offset(lrc) + LRC_PPHWSP_SIZE;
658 }
659 
660 static size_t lrc_reg_size(struct xe_device *xe)
661 {
662 	if (GRAPHICS_VERx100(xe) >= 1250)
663 		return 96 * sizeof(u32);
664 	else
665 		return 80 * sizeof(u32);
666 }
667 
668 size_t xe_lrc_skip_size(struct xe_device *xe)
669 {
670 	return LRC_PPHWSP_SIZE + lrc_reg_size(xe);
671 }
672 
673 static inline u32 __xe_lrc_seqno_offset(struct xe_lrc *lrc)
674 {
675 	/* The seqno is stored in the driver-defined portion of PPHWSP */
676 	return xe_lrc_pphwsp_offset(lrc) + LRC_SEQNO_PPHWSP_OFFSET;
677 }
678 
679 static inline u32 __xe_lrc_start_seqno_offset(struct xe_lrc *lrc)
680 {
681 	/* The start seqno is stored in the driver-defined portion of PPHWSP */
682 	return xe_lrc_pphwsp_offset(lrc) + LRC_START_SEQNO_PPHWSP_OFFSET;
683 }
684 
685 static u32 __xe_lrc_ctx_job_timestamp_offset(struct xe_lrc *lrc)
686 {
687 	/* The start seqno is stored in the driver-defined portion of PPHWSP */
688 	return xe_lrc_pphwsp_offset(lrc) + LRC_CTX_JOB_TIMESTAMP_OFFSET;
689 }
690 
691 static inline u32 __xe_lrc_parallel_offset(struct xe_lrc *lrc)
692 {
693 	/* The parallel is stored in the driver-defined portion of PPHWSP */
694 	return xe_lrc_pphwsp_offset(lrc) + LRC_PARALLEL_PPHWSP_OFFSET;
695 }
696 
697 static u32 __xe_lrc_ctx_timestamp_offset(struct xe_lrc *lrc)
698 {
699 	return __xe_lrc_regs_offset(lrc) + CTX_TIMESTAMP * sizeof(u32);
700 }
701 
702 static inline u32 __xe_lrc_indirect_ring_offset(struct xe_lrc *lrc)
703 {
704 	/* Indirect ring state page is at the very end of LRC */
705 	return lrc->size - LRC_INDIRECT_RING_STATE_SIZE;
706 }
707 
708 #define DECL_MAP_ADDR_HELPERS(elem) \
709 static inline struct iosys_map __xe_lrc_##elem##_map(struct xe_lrc *lrc) \
710 { \
711 	struct iosys_map map = lrc->bo->vmap; \
712 \
713 	xe_assert(lrc_to_xe(lrc), !iosys_map_is_null(&map));  \
714 	iosys_map_incr(&map, __xe_lrc_##elem##_offset(lrc)); \
715 	return map; \
716 } \
717 static inline u32 __maybe_unused __xe_lrc_##elem##_ggtt_addr(struct xe_lrc *lrc) \
718 { \
719 	return xe_bo_ggtt_addr(lrc->bo) + __xe_lrc_##elem##_offset(lrc); \
720 } \
721 
722 DECL_MAP_ADDR_HELPERS(ring)
723 DECL_MAP_ADDR_HELPERS(pphwsp)
724 DECL_MAP_ADDR_HELPERS(seqno)
725 DECL_MAP_ADDR_HELPERS(regs)
726 DECL_MAP_ADDR_HELPERS(start_seqno)
727 DECL_MAP_ADDR_HELPERS(ctx_job_timestamp)
728 DECL_MAP_ADDR_HELPERS(ctx_timestamp)
729 DECL_MAP_ADDR_HELPERS(parallel)
730 DECL_MAP_ADDR_HELPERS(indirect_ring)
731 
732 #undef DECL_MAP_ADDR_HELPERS
733 
734 /**
735  * xe_lrc_ctx_timestamp_ggtt_addr() - Get ctx timestamp GGTT address
736  * @lrc: Pointer to the lrc.
737  *
738  * Returns: ctx timestamp GGTT address
739  */
740 u32 xe_lrc_ctx_timestamp_ggtt_addr(struct xe_lrc *lrc)
741 {
742 	return __xe_lrc_ctx_timestamp_ggtt_addr(lrc);
743 }
744 
745 /**
746  * xe_lrc_ctx_timestamp() - Read ctx timestamp value
747  * @lrc: Pointer to the lrc.
748  *
749  * Returns: ctx timestamp value
750  */
751 u32 xe_lrc_ctx_timestamp(struct xe_lrc *lrc)
752 {
753 	struct xe_device *xe = lrc_to_xe(lrc);
754 	struct iosys_map map;
755 
756 	map = __xe_lrc_ctx_timestamp_map(lrc);
757 	return xe_map_read32(xe, &map);
758 }
759 
760 /**
761  * xe_lrc_ctx_job_timestamp_ggtt_addr() - Get ctx job timestamp GGTT address
762  * @lrc: Pointer to the lrc.
763  *
764  * Returns: ctx timestamp job GGTT address
765  */
766 u32 xe_lrc_ctx_job_timestamp_ggtt_addr(struct xe_lrc *lrc)
767 {
768 	return __xe_lrc_ctx_job_timestamp_ggtt_addr(lrc);
769 }
770 
771 /**
772  * xe_lrc_ctx_job_timestamp() - Read ctx job timestamp value
773  * @lrc: Pointer to the lrc.
774  *
775  * Returns: ctx timestamp job value
776  */
777 u32 xe_lrc_ctx_job_timestamp(struct xe_lrc *lrc)
778 {
779 	struct xe_device *xe = lrc_to_xe(lrc);
780 	struct iosys_map map;
781 
782 	map = __xe_lrc_ctx_job_timestamp_map(lrc);
783 	return xe_map_read32(xe, &map);
784 }
785 
786 u32 xe_lrc_ggtt_addr(struct xe_lrc *lrc)
787 {
788 	return __xe_lrc_pphwsp_ggtt_addr(lrc);
789 }
790 
791 u32 xe_lrc_indirect_ring_ggtt_addr(struct xe_lrc *lrc)
792 {
793 	if (!xe_lrc_has_indirect_ring_state(lrc))
794 		return 0;
795 
796 	return __xe_lrc_indirect_ring_ggtt_addr(lrc);
797 }
798 
799 static u32 xe_lrc_read_indirect_ctx_reg(struct xe_lrc *lrc, int reg_nr)
800 {
801 	struct xe_device *xe = lrc_to_xe(lrc);
802 	struct iosys_map map;
803 
804 	map = __xe_lrc_indirect_ring_map(lrc);
805 	iosys_map_incr(&map, reg_nr * sizeof(u32));
806 	return xe_map_read32(xe, &map);
807 }
808 
809 static void xe_lrc_write_indirect_ctx_reg(struct xe_lrc *lrc,
810 					  int reg_nr, u32 val)
811 {
812 	struct xe_device *xe = lrc_to_xe(lrc);
813 	struct iosys_map map;
814 
815 	map = __xe_lrc_indirect_ring_map(lrc);
816 	iosys_map_incr(&map, reg_nr * sizeof(u32));
817 	xe_map_write32(xe, &map, val);
818 }
819 
820 u32 xe_lrc_read_ctx_reg(struct xe_lrc *lrc, int reg_nr)
821 {
822 	struct xe_device *xe = lrc_to_xe(lrc);
823 	struct iosys_map map;
824 
825 	map = __xe_lrc_regs_map(lrc);
826 	iosys_map_incr(&map, reg_nr * sizeof(u32));
827 	return xe_map_read32(xe, &map);
828 }
829 
830 void xe_lrc_write_ctx_reg(struct xe_lrc *lrc, int reg_nr, u32 val)
831 {
832 	struct xe_device *xe = lrc_to_xe(lrc);
833 	struct iosys_map map;
834 
835 	map = __xe_lrc_regs_map(lrc);
836 	iosys_map_incr(&map, reg_nr * sizeof(u32));
837 	xe_map_write32(xe, &map, val);
838 }
839 
840 static void *empty_lrc_data(struct xe_hw_engine *hwe)
841 {
842 	struct xe_gt *gt = hwe->gt;
843 	void *data;
844 	u32 *regs;
845 
846 	data = kzalloc(xe_gt_lrc_size(gt, hwe->class), GFP_KERNEL);
847 	if (!data)
848 		return NULL;
849 
850 	/* 1st page: Per-Process of HW status Page */
851 	regs = data + LRC_PPHWSP_SIZE;
852 	set_offsets(regs, reg_offsets(gt_to_xe(gt), hwe->class), hwe);
853 	set_context_control(regs, hwe);
854 	set_memory_based_intr(regs, hwe);
855 	reset_stop_ring(regs, hwe);
856 	if (xe_gt_has_indirect_ring_state(gt)) {
857 		regs = data + xe_gt_lrc_size(gt, hwe->class) -
858 		       LRC_INDIRECT_RING_STATE_SIZE;
859 		set_offsets(regs, xe2_indirect_ring_state_offsets, hwe);
860 	}
861 
862 	return data;
863 }
864 
865 static void xe_lrc_set_ppgtt(struct xe_lrc *lrc, struct xe_vm *vm)
866 {
867 	u64 desc = xe_vm_pdp4_descriptor(vm, lrc->tile);
868 
869 	xe_lrc_write_ctx_reg(lrc, CTX_PDP0_UDW, upper_32_bits(desc));
870 	xe_lrc_write_ctx_reg(lrc, CTX_PDP0_LDW, lower_32_bits(desc));
871 }
872 
873 static void xe_lrc_finish(struct xe_lrc *lrc)
874 {
875 	xe_hw_fence_ctx_finish(&lrc->fence_ctx);
876 	xe_bo_lock(lrc->bo, false);
877 	xe_bo_unpin(lrc->bo);
878 	xe_bo_unlock(lrc->bo);
879 	xe_bo_put(lrc->bo);
880 }
881 
882 #define PVC_CTX_ASID		(0x2e + 1)
883 #define PVC_CTX_ACC_CTR_THOLD	(0x2a + 1)
884 
885 static int xe_lrc_init(struct xe_lrc *lrc, struct xe_hw_engine *hwe,
886 		       struct xe_vm *vm, u32 ring_size, u16 msix_vec,
887 		       u32 init_flags)
888 {
889 	struct xe_gt *gt = hwe->gt;
890 	struct xe_tile *tile = gt_to_tile(gt);
891 	struct xe_device *xe = gt_to_xe(gt);
892 	struct iosys_map map;
893 	void *init_data = NULL;
894 	u32 arb_enable;
895 	u32 lrc_size;
896 	int err;
897 
898 	kref_init(&lrc->refcount);
899 	lrc->flags = 0;
900 	lrc_size = ring_size + xe_gt_lrc_size(gt, hwe->class);
901 	if (xe_gt_has_indirect_ring_state(gt))
902 		lrc->flags |= XE_LRC_FLAG_INDIRECT_RING_STATE;
903 
904 	/*
905 	 * FIXME: Perma-pinning LRC as we don't yet support moving GGTT address
906 	 * via VM bind calls.
907 	 */
908 	lrc->bo = xe_bo_create_pin_map(xe, tile, vm, lrc_size,
909 				       ttm_bo_type_kernel,
910 				       XE_BO_FLAG_VRAM_IF_DGFX(tile) |
911 				       XE_BO_FLAG_GGTT |
912 				       XE_BO_FLAG_GGTT_INVALIDATE);
913 	if (IS_ERR(lrc->bo))
914 		return PTR_ERR(lrc->bo);
915 
916 	lrc->size = lrc_size;
917 	lrc->tile = gt_to_tile(hwe->gt);
918 	lrc->ring.size = ring_size;
919 	lrc->ring.tail = 0;
920 	lrc->ctx_timestamp = 0;
921 
922 	xe_hw_fence_ctx_init(&lrc->fence_ctx, hwe->gt,
923 			     hwe->fence_irq, hwe->name);
924 
925 	if (!gt->default_lrc[hwe->class]) {
926 		init_data = empty_lrc_data(hwe);
927 		if (!init_data) {
928 			err = -ENOMEM;
929 			goto err_lrc_finish;
930 		}
931 	}
932 
933 	/*
934 	 * Init Per-Process of HW status Page, LRC / context state to known
935 	 * values
936 	 */
937 	map = __xe_lrc_pphwsp_map(lrc);
938 	if (!init_data) {
939 		xe_map_memset(xe, &map, 0, 0, LRC_PPHWSP_SIZE);	/* PPHWSP */
940 		xe_map_memcpy_to(xe, &map, LRC_PPHWSP_SIZE,
941 				 gt->default_lrc[hwe->class] + LRC_PPHWSP_SIZE,
942 				 xe_gt_lrc_size(gt, hwe->class) - LRC_PPHWSP_SIZE);
943 	} else {
944 		xe_map_memcpy_to(xe, &map, 0, init_data,
945 				 xe_gt_lrc_size(gt, hwe->class));
946 		kfree(init_data);
947 	}
948 
949 	if (vm) {
950 		xe_lrc_set_ppgtt(lrc, vm);
951 
952 		if (vm->xef)
953 			xe_drm_client_add_bo(vm->xef->client, lrc->bo);
954 	}
955 
956 	if (xe_device_has_msix(xe)) {
957 		xe_lrc_write_ctx_reg(lrc, CTX_INT_STATUS_REPORT_PTR,
958 				     xe_memirq_status_ptr(&tile->memirq, hwe));
959 		xe_lrc_write_ctx_reg(lrc, CTX_INT_SRC_REPORT_PTR,
960 				     xe_memirq_source_ptr(&tile->memirq, hwe));
961 		xe_lrc_write_ctx_reg(lrc, CTX_CS_INT_VEC_DATA, msix_vec << 16 | msix_vec);
962 	}
963 
964 	if (xe_gt_has_indirect_ring_state(gt)) {
965 		xe_lrc_write_ctx_reg(lrc, CTX_INDIRECT_RING_STATE,
966 				     __xe_lrc_indirect_ring_ggtt_addr(lrc));
967 
968 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_START,
969 					      __xe_lrc_ring_ggtt_addr(lrc));
970 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_START_UDW, 0);
971 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_HEAD, 0);
972 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_TAIL, lrc->ring.tail);
973 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_CTL,
974 					      RING_CTL_SIZE(lrc->ring.size) | RING_VALID);
975 	} else {
976 		xe_lrc_write_ctx_reg(lrc, CTX_RING_START, __xe_lrc_ring_ggtt_addr(lrc));
977 		xe_lrc_write_ctx_reg(lrc, CTX_RING_HEAD, 0);
978 		xe_lrc_write_ctx_reg(lrc, CTX_RING_TAIL, lrc->ring.tail);
979 		xe_lrc_write_ctx_reg(lrc, CTX_RING_CTL,
980 				     RING_CTL_SIZE(lrc->ring.size) | RING_VALID);
981 	}
982 
983 	if (init_flags & XE_LRC_CREATE_RUNALONE)
984 		xe_lrc_write_ctx_reg(lrc, CTX_CONTEXT_CONTROL,
985 				     xe_lrc_read_ctx_reg(lrc, CTX_CONTEXT_CONTROL) |
986 				     _MASKED_BIT_ENABLE(CTX_CTRL_RUN_ALONE));
987 
988 	if (init_flags & XE_LRC_CREATE_PXP)
989 		xe_lrc_write_ctx_reg(lrc, CTX_CONTEXT_CONTROL,
990 				     xe_lrc_read_ctx_reg(lrc, CTX_CONTEXT_CONTROL) |
991 				     _MASKED_BIT_ENABLE(CTX_CTRL_PXP_ENABLE));
992 
993 	xe_lrc_write_ctx_reg(lrc, CTX_TIMESTAMP, 0);
994 
995 	if (xe->info.has_asid && vm)
996 		xe_lrc_write_ctx_reg(lrc, PVC_CTX_ASID, vm->usm.asid);
997 
998 	lrc->desc = LRC_VALID;
999 	lrc->desc |= FIELD_PREP(LRC_ADDRESSING_MODE, LRC_LEGACY_64B_CONTEXT);
1000 	/* TODO: Priority */
1001 
1002 	/* While this appears to have something about privileged batches or
1003 	 * some such, it really just means PPGTT mode.
1004 	 */
1005 	if (vm)
1006 		lrc->desc |= LRC_PRIVILEGE;
1007 
1008 	if (GRAPHICS_VERx100(xe) < 1250) {
1009 		lrc->desc |= FIELD_PREP(LRC_ENGINE_INSTANCE, hwe->instance);
1010 		lrc->desc |= FIELD_PREP(LRC_ENGINE_CLASS, hwe->class);
1011 	}
1012 
1013 	arb_enable = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1014 	xe_lrc_write_ring(lrc, &arb_enable, sizeof(arb_enable));
1015 
1016 	map = __xe_lrc_seqno_map(lrc);
1017 	xe_map_write32(lrc_to_xe(lrc), &map, lrc->fence_ctx.next_seqno - 1);
1018 
1019 	map = __xe_lrc_start_seqno_map(lrc);
1020 	xe_map_write32(lrc_to_xe(lrc), &map, lrc->fence_ctx.next_seqno - 1);
1021 
1022 	return 0;
1023 
1024 err_lrc_finish:
1025 	xe_lrc_finish(lrc);
1026 	return err;
1027 }
1028 
1029 /**
1030  * xe_lrc_create - Create a LRC
1031  * @hwe: Hardware Engine
1032  * @vm: The VM (address space)
1033  * @ring_size: LRC ring size
1034  * @msix_vec: MSI-X interrupt vector (for platforms that support it)
1035  * @flags: LRC initialization flags
1036  *
1037  * Allocate and initialize the Logical Ring Context (LRC).
1038  *
1039  * Return pointer to created LRC upon success and an error pointer
1040  * upon failure.
1041  */
1042 struct xe_lrc *xe_lrc_create(struct xe_hw_engine *hwe, struct xe_vm *vm,
1043 			     u32 ring_size, u16 msix_vec, u32 flags)
1044 {
1045 	struct xe_lrc *lrc;
1046 	int err;
1047 
1048 	lrc = kzalloc(sizeof(*lrc), GFP_KERNEL);
1049 	if (!lrc)
1050 		return ERR_PTR(-ENOMEM);
1051 
1052 	err = xe_lrc_init(lrc, hwe, vm, ring_size, msix_vec, flags);
1053 	if (err) {
1054 		kfree(lrc);
1055 		return ERR_PTR(err);
1056 	}
1057 
1058 	return lrc;
1059 }
1060 
1061 /**
1062  * xe_lrc_destroy - Destroy the LRC
1063  * @ref: reference to LRC
1064  *
1065  * Called when ref == 0, release resources held by the Logical Ring Context
1066  * (LRC) and free the LRC memory.
1067  */
1068 void xe_lrc_destroy(struct kref *ref)
1069 {
1070 	struct xe_lrc *lrc = container_of(ref, struct xe_lrc, refcount);
1071 
1072 	xe_lrc_finish(lrc);
1073 	kfree(lrc);
1074 }
1075 
1076 void xe_lrc_set_ring_tail(struct xe_lrc *lrc, u32 tail)
1077 {
1078 	if (xe_lrc_has_indirect_ring_state(lrc))
1079 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_TAIL, tail);
1080 	else
1081 		xe_lrc_write_ctx_reg(lrc, CTX_RING_TAIL, tail);
1082 }
1083 
1084 u32 xe_lrc_ring_tail(struct xe_lrc *lrc)
1085 {
1086 	if (xe_lrc_has_indirect_ring_state(lrc))
1087 		return xe_lrc_read_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_TAIL) & TAIL_ADDR;
1088 	else
1089 		return xe_lrc_read_ctx_reg(lrc, CTX_RING_TAIL) & TAIL_ADDR;
1090 }
1091 
1092 static u32 xe_lrc_ring_start(struct xe_lrc *lrc)
1093 {
1094 	if (xe_lrc_has_indirect_ring_state(lrc))
1095 		return xe_lrc_read_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_START);
1096 	else
1097 		return xe_lrc_read_ctx_reg(lrc, CTX_RING_START);
1098 }
1099 
1100 void xe_lrc_set_ring_head(struct xe_lrc *lrc, u32 head)
1101 {
1102 	if (xe_lrc_has_indirect_ring_state(lrc))
1103 		xe_lrc_write_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_HEAD, head);
1104 	else
1105 		xe_lrc_write_ctx_reg(lrc, CTX_RING_HEAD, head);
1106 }
1107 
1108 u32 xe_lrc_ring_head(struct xe_lrc *lrc)
1109 {
1110 	if (xe_lrc_has_indirect_ring_state(lrc))
1111 		return xe_lrc_read_indirect_ctx_reg(lrc, INDIRECT_CTX_RING_HEAD) & HEAD_ADDR;
1112 	else
1113 		return xe_lrc_read_ctx_reg(lrc, CTX_RING_HEAD) & HEAD_ADDR;
1114 }
1115 
1116 u32 xe_lrc_ring_space(struct xe_lrc *lrc)
1117 {
1118 	const u32 head = xe_lrc_ring_head(lrc);
1119 	const u32 tail = lrc->ring.tail;
1120 	const u32 size = lrc->ring.size;
1121 
1122 	return ((head - tail - 1) & (size - 1)) + 1;
1123 }
1124 
1125 static void __xe_lrc_write_ring(struct xe_lrc *lrc, struct iosys_map ring,
1126 				const void *data, size_t size)
1127 {
1128 	struct xe_device *xe = lrc_to_xe(lrc);
1129 
1130 	iosys_map_incr(&ring, lrc->ring.tail);
1131 	xe_map_memcpy_to(xe, &ring, 0, data, size);
1132 	lrc->ring.tail = (lrc->ring.tail + size) & (lrc->ring.size - 1);
1133 }
1134 
1135 void xe_lrc_write_ring(struct xe_lrc *lrc, const void *data, size_t size)
1136 {
1137 	struct xe_device *xe = lrc_to_xe(lrc);
1138 	struct iosys_map ring;
1139 	u32 rhs;
1140 	size_t aligned_size;
1141 
1142 	xe_assert(xe, IS_ALIGNED(size, 4));
1143 	aligned_size = ALIGN(size, 8);
1144 
1145 	ring = __xe_lrc_ring_map(lrc);
1146 
1147 	xe_assert(xe, lrc->ring.tail < lrc->ring.size);
1148 	rhs = lrc->ring.size - lrc->ring.tail;
1149 	if (size > rhs) {
1150 		__xe_lrc_write_ring(lrc, ring, data, rhs);
1151 		__xe_lrc_write_ring(lrc, ring, data + rhs, size - rhs);
1152 	} else {
1153 		__xe_lrc_write_ring(lrc, ring, data, size);
1154 	}
1155 
1156 	if (aligned_size > size) {
1157 		u32 noop = MI_NOOP;
1158 
1159 		__xe_lrc_write_ring(lrc, ring, &noop, sizeof(noop));
1160 	}
1161 }
1162 
1163 u64 xe_lrc_descriptor(struct xe_lrc *lrc)
1164 {
1165 	return lrc->desc | xe_lrc_ggtt_addr(lrc);
1166 }
1167 
1168 u32 xe_lrc_seqno_ggtt_addr(struct xe_lrc *lrc)
1169 {
1170 	return __xe_lrc_seqno_ggtt_addr(lrc);
1171 }
1172 
1173 /**
1174  * xe_lrc_alloc_seqno_fence() - Allocate an lrc seqno fence.
1175  *
1176  * Allocate but don't initialize an lrc seqno fence.
1177  *
1178  * Return: Pointer to the allocated fence or
1179  * negative error pointer on error.
1180  */
1181 struct dma_fence *xe_lrc_alloc_seqno_fence(void)
1182 {
1183 	return xe_hw_fence_alloc();
1184 }
1185 
1186 /**
1187  * xe_lrc_free_seqno_fence() - Free an lrc seqno fence.
1188  * @fence: Pointer to the fence to free.
1189  *
1190  * Frees an lrc seqno fence that hasn't yet been
1191  * initialized.
1192  */
1193 void xe_lrc_free_seqno_fence(struct dma_fence *fence)
1194 {
1195 	xe_hw_fence_free(fence);
1196 }
1197 
1198 /**
1199  * xe_lrc_init_seqno_fence() - Initialize an lrc seqno fence.
1200  * @lrc: Pointer to the lrc.
1201  * @fence: Pointer to the fence to initialize.
1202  *
1203  * Initializes a pre-allocated lrc seqno fence.
1204  * After initialization, the fence is subject to normal
1205  * dma-fence refcounting.
1206  */
1207 void xe_lrc_init_seqno_fence(struct xe_lrc *lrc, struct dma_fence *fence)
1208 {
1209 	xe_hw_fence_init(fence, &lrc->fence_ctx, __xe_lrc_seqno_map(lrc));
1210 }
1211 
1212 s32 xe_lrc_seqno(struct xe_lrc *lrc)
1213 {
1214 	struct iosys_map map = __xe_lrc_seqno_map(lrc);
1215 
1216 	return xe_map_read32(lrc_to_xe(lrc), &map);
1217 }
1218 
1219 s32 xe_lrc_start_seqno(struct xe_lrc *lrc)
1220 {
1221 	struct iosys_map map = __xe_lrc_start_seqno_map(lrc);
1222 
1223 	return xe_map_read32(lrc_to_xe(lrc), &map);
1224 }
1225 
1226 u32 xe_lrc_start_seqno_ggtt_addr(struct xe_lrc *lrc)
1227 {
1228 	return __xe_lrc_start_seqno_ggtt_addr(lrc);
1229 }
1230 
1231 u32 xe_lrc_parallel_ggtt_addr(struct xe_lrc *lrc)
1232 {
1233 	return __xe_lrc_parallel_ggtt_addr(lrc);
1234 }
1235 
1236 struct iosys_map xe_lrc_parallel_map(struct xe_lrc *lrc)
1237 {
1238 	return __xe_lrc_parallel_map(lrc);
1239 }
1240 
1241 static int instr_dw(u32 cmd_header)
1242 {
1243 	/* GFXPIPE "SINGLE_DW" opcodes are a single dword */
1244 	if ((cmd_header & (XE_INSTR_CMD_TYPE | GFXPIPE_PIPELINE)) ==
1245 	    GFXPIPE_SINGLE_DW_CMD(0, 0))
1246 		return 1;
1247 
1248 	/* 3DSTATE_SO_DECL_LIST has a 9-bit dword length rather than 8 */
1249 	if ((cmd_header & GFXPIPE_MATCH_MASK) == CMD_3DSTATE_SO_DECL_LIST)
1250 		return REG_FIELD_GET(CMD_3DSTATE_SO_DECL_LIST_DW_LEN, cmd_header) + 2;
1251 
1252 	/* Most instructions have the # of dwords (minus 2) in 7:0 */
1253 	return REG_FIELD_GET(XE_INSTR_LEN_MASK, cmd_header) + 2;
1254 }
1255 
1256 static int dump_mi_command(struct drm_printer *p,
1257 			   struct xe_gt *gt,
1258 			   u32 *dw,
1259 			   int remaining_dw)
1260 {
1261 	u32 inst_header = *dw;
1262 	u32 numdw = instr_dw(inst_header);
1263 	u32 opcode = REG_FIELD_GET(MI_OPCODE, inst_header);
1264 	int num_noop;
1265 
1266 	/* First check for commands that don't have/use a '# DW' field */
1267 	switch (inst_header & MI_OPCODE) {
1268 	case MI_NOOP:
1269 		num_noop = 1;
1270 		while (num_noop < remaining_dw &&
1271 		       (*(++dw) & REG_GENMASK(31, 23)) == MI_NOOP)
1272 			num_noop++;
1273 		drm_printf(p, "[%#010x] MI_NOOP (%d dwords)\n", inst_header, num_noop);
1274 		return num_noop;
1275 
1276 	case MI_TOPOLOGY_FILTER:
1277 		drm_printf(p, "[%#010x] MI_TOPOLOGY_FILTER\n", inst_header);
1278 		return 1;
1279 
1280 	case MI_BATCH_BUFFER_END:
1281 		drm_printf(p, "[%#010x] MI_BATCH_BUFFER_END\n", inst_header);
1282 		/* Return 'remaining_dw' to consume the rest of the LRC */
1283 		return remaining_dw;
1284 	}
1285 
1286 	/*
1287 	 * Any remaining commands include a # of dwords.  We should make sure
1288 	 * it doesn't exceed the remaining size of the LRC.
1289 	 */
1290 	if (xe_gt_WARN_ON(gt, numdw > remaining_dw))
1291 		numdw = remaining_dw;
1292 
1293 	switch (inst_header & MI_OPCODE) {
1294 	case MI_LOAD_REGISTER_IMM:
1295 		drm_printf(p, "[%#010x] MI_LOAD_REGISTER_IMM: %d regs\n",
1296 			   inst_header, (numdw - 1) / 2);
1297 		for (int i = 1; i < numdw; i += 2)
1298 			drm_printf(p, " - %#6x = %#010x\n", dw[i], dw[i + 1]);
1299 		return numdw;
1300 
1301 	case MI_LOAD_REGISTER_MEM & MI_OPCODE:
1302 		drm_printf(p, "[%#010x] MI_LOAD_REGISTER_MEM: %s%s\n",
1303 			   inst_header,
1304 			   dw[0] & MI_LRI_LRM_CS_MMIO ? "CS_MMIO " : "",
1305 			   dw[0] & MI_LRM_USE_GGTT ? "USE_GGTT " : "");
1306 		if (numdw == 4)
1307 			drm_printf(p, " - %#6x = %#010llx\n",
1308 				   dw[1], ((u64)(dw[3]) << 32 | (u64)(dw[2])));
1309 		else
1310 			drm_printf(p, " - %*ph (%s)\n",
1311 				   (int)sizeof(u32) * (numdw - 1), dw + 1,
1312 				   numdw < 4 ? "truncated" : "malformed");
1313 		return numdw;
1314 
1315 	case MI_FORCE_WAKEUP:
1316 		drm_printf(p, "[%#010x] MI_FORCE_WAKEUP\n", inst_header);
1317 		return numdw;
1318 
1319 	default:
1320 		drm_printf(p, "[%#010x] unknown MI opcode %#x, likely %d dwords\n",
1321 			   inst_header, opcode, numdw);
1322 		return numdw;
1323 	}
1324 }
1325 
1326 static int dump_gfxpipe_command(struct drm_printer *p,
1327 				struct xe_gt *gt,
1328 				u32 *dw,
1329 				int remaining_dw)
1330 {
1331 	u32 numdw = instr_dw(*dw);
1332 	u32 pipeline = REG_FIELD_GET(GFXPIPE_PIPELINE, *dw);
1333 	u32 opcode = REG_FIELD_GET(GFXPIPE_OPCODE, *dw);
1334 	u32 subopcode = REG_FIELD_GET(GFXPIPE_SUBOPCODE, *dw);
1335 
1336 	/*
1337 	 * Make sure we haven't mis-parsed a number of dwords that exceeds the
1338 	 * remaining size of the LRC.
1339 	 */
1340 	if (xe_gt_WARN_ON(gt, numdw > remaining_dw))
1341 		numdw = remaining_dw;
1342 
1343 	switch (*dw & GFXPIPE_MATCH_MASK) {
1344 #define MATCH(cmd) \
1345 	case cmd: \
1346 		drm_printf(p, "[%#010x] " #cmd " (%d dwords)\n", *dw, numdw); \
1347 		return numdw
1348 #define MATCH3D(cmd) \
1349 	case CMD_##cmd: \
1350 		drm_printf(p, "[%#010x] " #cmd " (%d dwords)\n", *dw, numdw); \
1351 		return numdw
1352 
1353 	MATCH(STATE_BASE_ADDRESS);
1354 	MATCH(STATE_SIP);
1355 	MATCH(GPGPU_CSR_BASE_ADDRESS);
1356 	MATCH(STATE_COMPUTE_MODE);
1357 	MATCH3D(3DSTATE_BTD);
1358 	MATCH(STATE_SYSTEM_MEM_FENCE_ADDRESS);
1359 	MATCH(STATE_CONTEXT_DATA_BASE_ADDRESS);
1360 
1361 	MATCH3D(3DSTATE_VF_STATISTICS);
1362 
1363 	MATCH(PIPELINE_SELECT);
1364 
1365 	MATCH3D(3DSTATE_DRAWING_RECTANGLE_FAST);
1366 	MATCH3D(3DSTATE_CLEAR_PARAMS);
1367 	MATCH3D(3DSTATE_DEPTH_BUFFER);
1368 	MATCH3D(3DSTATE_STENCIL_BUFFER);
1369 	MATCH3D(3DSTATE_HIER_DEPTH_BUFFER);
1370 	MATCH3D(3DSTATE_VERTEX_BUFFERS);
1371 	MATCH3D(3DSTATE_VERTEX_ELEMENTS);
1372 	MATCH3D(3DSTATE_INDEX_BUFFER);
1373 	MATCH3D(3DSTATE_VF);
1374 	MATCH3D(3DSTATE_MULTISAMPLE);
1375 	MATCH3D(3DSTATE_CC_STATE_POINTERS);
1376 	MATCH3D(3DSTATE_SCISSOR_STATE_POINTERS);
1377 	MATCH3D(3DSTATE_VS);
1378 	MATCH3D(3DSTATE_GS);
1379 	MATCH3D(3DSTATE_CLIP);
1380 	MATCH3D(3DSTATE_SF);
1381 	MATCH3D(3DSTATE_WM);
1382 	MATCH3D(3DSTATE_CONSTANT_VS);
1383 	MATCH3D(3DSTATE_CONSTANT_GS);
1384 	MATCH3D(3DSTATE_CONSTANT_PS);
1385 	MATCH3D(3DSTATE_SAMPLE_MASK);
1386 	MATCH3D(3DSTATE_CONSTANT_HS);
1387 	MATCH3D(3DSTATE_CONSTANT_DS);
1388 	MATCH3D(3DSTATE_HS);
1389 	MATCH3D(3DSTATE_TE);
1390 	MATCH3D(3DSTATE_DS);
1391 	MATCH3D(3DSTATE_STREAMOUT);
1392 	MATCH3D(3DSTATE_SBE);
1393 	MATCH3D(3DSTATE_PS);
1394 	MATCH3D(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP);
1395 	MATCH3D(3DSTATE_CPS_POINTERS);
1396 	MATCH3D(3DSTATE_VIEWPORT_STATE_POINTERS_CC);
1397 	MATCH3D(3DSTATE_BLEND_STATE_POINTERS);
1398 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_VS);
1399 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_HS);
1400 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_DS);
1401 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_GS);
1402 	MATCH3D(3DSTATE_BINDING_TABLE_POINTERS_PS);
1403 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_VS);
1404 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_HS);
1405 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_DS);
1406 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_GS);
1407 	MATCH3D(3DSTATE_SAMPLER_STATE_POINTERS_PS);
1408 	MATCH3D(3DSTATE_VF_INSTANCING);
1409 	MATCH3D(3DSTATE_VF_SGVS);
1410 	MATCH3D(3DSTATE_VF_TOPOLOGY);
1411 	MATCH3D(3DSTATE_WM_CHROMAKEY);
1412 	MATCH3D(3DSTATE_PS_BLEND);
1413 	MATCH3D(3DSTATE_WM_DEPTH_STENCIL);
1414 	MATCH3D(3DSTATE_PS_EXTRA);
1415 	MATCH3D(3DSTATE_RASTER);
1416 	MATCH3D(3DSTATE_SBE_SWIZ);
1417 	MATCH3D(3DSTATE_WM_HZ_OP);
1418 	MATCH3D(3DSTATE_VF_COMPONENT_PACKING);
1419 	MATCH3D(3DSTATE_VF_SGVS_2);
1420 	MATCH3D(3DSTATE_VFG);
1421 	MATCH3D(3DSTATE_URB_ALLOC_VS);
1422 	MATCH3D(3DSTATE_URB_ALLOC_HS);
1423 	MATCH3D(3DSTATE_URB_ALLOC_DS);
1424 	MATCH3D(3DSTATE_URB_ALLOC_GS);
1425 	MATCH3D(3DSTATE_SO_BUFFER_INDEX_0);
1426 	MATCH3D(3DSTATE_SO_BUFFER_INDEX_1);
1427 	MATCH3D(3DSTATE_SO_BUFFER_INDEX_2);
1428 	MATCH3D(3DSTATE_SO_BUFFER_INDEX_3);
1429 	MATCH3D(3DSTATE_PRIMITIVE_REPLICATION);
1430 	MATCH3D(3DSTATE_TBIMR_TILE_PASS_INFO);
1431 	MATCH3D(3DSTATE_AMFS);
1432 	MATCH3D(3DSTATE_DEPTH_BOUNDS);
1433 	MATCH3D(3DSTATE_AMFS_TEXTURE_POINTERS);
1434 	MATCH3D(3DSTATE_CONSTANT_TS_POINTER);
1435 	MATCH3D(3DSTATE_MESH_CONTROL);
1436 	MATCH3D(3DSTATE_MESH_DISTRIB);
1437 	MATCH3D(3DSTATE_TASK_REDISTRIB);
1438 	MATCH3D(3DSTATE_MESH_SHADER);
1439 	MATCH3D(3DSTATE_MESH_SHADER_DATA);
1440 	MATCH3D(3DSTATE_TASK_CONTROL);
1441 	MATCH3D(3DSTATE_TASK_SHADER);
1442 	MATCH3D(3DSTATE_TASK_SHADER_DATA);
1443 	MATCH3D(3DSTATE_URB_ALLOC_MESH);
1444 	MATCH3D(3DSTATE_URB_ALLOC_TASK);
1445 	MATCH3D(3DSTATE_CLIP_MESH);
1446 	MATCH3D(3DSTATE_SBE_MESH);
1447 	MATCH3D(3DSTATE_CPSIZE_CONTROL_BUFFER);
1448 
1449 	MATCH3D(3DSTATE_DRAWING_RECTANGLE);
1450 	MATCH3D(3DSTATE_CHROMA_KEY);
1451 	MATCH3D(3DSTATE_POLY_STIPPLE_OFFSET);
1452 	MATCH3D(3DSTATE_POLY_STIPPLE_PATTERN);
1453 	MATCH3D(3DSTATE_LINE_STIPPLE);
1454 	MATCH3D(3DSTATE_AA_LINE_PARAMETERS);
1455 	MATCH3D(3DSTATE_MONOFILTER_SIZE);
1456 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_VS);
1457 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_HS);
1458 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_DS);
1459 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_GS);
1460 	MATCH3D(3DSTATE_PUSH_CONSTANT_ALLOC_PS);
1461 	MATCH3D(3DSTATE_SO_DECL_LIST);
1462 	MATCH3D(3DSTATE_SO_BUFFER);
1463 	MATCH3D(3DSTATE_BINDING_TABLE_POOL_ALLOC);
1464 	MATCH3D(3DSTATE_SAMPLE_PATTERN);
1465 	MATCH3D(3DSTATE_3D_MODE);
1466 	MATCH3D(3DSTATE_SUBSLICE_HASH_TABLE);
1467 	MATCH3D(3DSTATE_SLICE_TABLE_STATE_POINTERS);
1468 	MATCH3D(3DSTATE_PTBR_TILE_PASS_INFO);
1469 
1470 	default:
1471 		drm_printf(p, "[%#010x] unknown GFXPIPE command (pipeline=%#x, opcode=%#x, subopcode=%#x), likely %d dwords\n",
1472 			   *dw, pipeline, opcode, subopcode, numdw);
1473 		return numdw;
1474 	}
1475 }
1476 
1477 static int dump_gfx_state_command(struct drm_printer *p,
1478 				  struct xe_gt *gt,
1479 				  u32 *dw,
1480 				  int remaining_dw)
1481 {
1482 	u32 numdw = instr_dw(*dw);
1483 	u32 opcode = REG_FIELD_GET(GFX_STATE_OPCODE, *dw);
1484 
1485 	/*
1486 	 * Make sure we haven't mis-parsed a number of dwords that exceeds the
1487 	 * remaining size of the LRC.
1488 	 */
1489 	if (xe_gt_WARN_ON(gt, numdw > remaining_dw))
1490 		numdw = remaining_dw;
1491 
1492 	switch (*dw & (XE_INSTR_GFX_STATE | GFX_STATE_OPCODE)) {
1493 	MATCH(STATE_WRITE_INLINE);
1494 
1495 	default:
1496 		drm_printf(p, "[%#010x] unknown GFX_STATE command (opcode=%#x), likely %d dwords\n",
1497 			   *dw, opcode, numdw);
1498 		return numdw;
1499 	}
1500 }
1501 
1502 void xe_lrc_dump_default(struct drm_printer *p,
1503 			 struct xe_gt *gt,
1504 			 enum xe_engine_class hwe_class)
1505 {
1506 	u32 *dw;
1507 	int remaining_dw, num_dw;
1508 
1509 	if (!gt->default_lrc[hwe_class]) {
1510 		drm_printf(p, "No default LRC for class %d\n", hwe_class);
1511 		return;
1512 	}
1513 
1514 	/*
1515 	 * Skip the beginning of the LRC since it contains the per-process
1516 	 * hardware status page.
1517 	 */
1518 	dw = gt->default_lrc[hwe_class] + LRC_PPHWSP_SIZE;
1519 	remaining_dw = (xe_gt_lrc_size(gt, hwe_class) - LRC_PPHWSP_SIZE) / 4;
1520 
1521 	while (remaining_dw > 0) {
1522 		if ((*dw & XE_INSTR_CMD_TYPE) == XE_INSTR_MI) {
1523 			num_dw = dump_mi_command(p, gt, dw, remaining_dw);
1524 		} else if ((*dw & XE_INSTR_CMD_TYPE) == XE_INSTR_GFXPIPE) {
1525 			num_dw = dump_gfxpipe_command(p, gt, dw, remaining_dw);
1526 		} else if ((*dw & XE_INSTR_CMD_TYPE) == XE_INSTR_GFX_STATE) {
1527 			num_dw = dump_gfx_state_command(p, gt, dw, remaining_dw);
1528 		} else {
1529 			num_dw = min(instr_dw(*dw), remaining_dw);
1530 			drm_printf(p, "[%#10x] Unknown instruction of type %#x, likely %d dwords\n",
1531 				   *dw, REG_FIELD_GET(XE_INSTR_CMD_TYPE, *dw),
1532 				   num_dw);
1533 		}
1534 
1535 		dw += num_dw;
1536 		remaining_dw -= num_dw;
1537 	}
1538 }
1539 
1540 struct instr_state {
1541 	u32 instr;
1542 	u16 num_dw;
1543 };
1544 
1545 static const struct instr_state xe_hpg_svg_state[] = {
1546 	{ .instr = CMD_3DSTATE_CONSTANT_VS, .num_dw = 11 },
1547 	{ .instr = CMD_3DSTATE_CONSTANT_HS, .num_dw = 11 },
1548 	{ .instr = CMD_3DSTATE_CONSTANT_DS, .num_dw = 11 },
1549 	{ .instr = CMD_3DSTATE_CONSTANT_GS, .num_dw = 11 },
1550 	{ .instr = CMD_3DSTATE_VERTEX_ELEMENTS, .num_dw = 69 },
1551 	{ .instr = CMD_3DSTATE_VF_COMPONENT_PACKING, .num_dw = 5 },
1552 	{ .instr = CMD_3DSTATE_VF_SGVS, .num_dw = 2 },
1553 	{ .instr = CMD_3DSTATE_VF_SGVS_2, .num_dw = 3 },
1554 	{ .instr = CMD_3DSTATE_VS, .num_dw = 9 },
1555 	{ .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_VS, .num_dw = 2 },
1556 	{ .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_VS, .num_dw = 2 },
1557 	{ .instr = CMD_3DSTATE_URB_ALLOC_VS, .num_dw = 3 },
1558 	{ .instr = CMD_3DSTATE_STREAMOUT, .num_dw = 5 },
1559 	{ .instr = CMD_3DSTATE_SO_BUFFER_INDEX_0, .num_dw = 8 },
1560 	{ .instr = CMD_3DSTATE_SO_BUFFER_INDEX_1, .num_dw = 8 },
1561 	{ .instr = CMD_3DSTATE_SO_BUFFER_INDEX_2, .num_dw = 8 },
1562 	{ .instr = CMD_3DSTATE_SO_BUFFER_INDEX_3, .num_dw = 8 },
1563 	{ .instr = CMD_3DSTATE_CLIP, .num_dw = 4 },
1564 	{ .instr = CMD_3DSTATE_PRIMITIVE_REPLICATION, .num_dw = 6 },
1565 	{ .instr = CMD_3DSTATE_CLIP_MESH, .num_dw = 2 },
1566 	{ .instr = CMD_3DSTATE_SF, .num_dw = 4 },
1567 	{ .instr = CMD_3DSTATE_SCISSOR_STATE_POINTERS, .num_dw = 2 },
1568 	{ .instr = CMD_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, .num_dw = 2 },
1569 	{ .instr = CMD_3DSTATE_RASTER, .num_dw = 5 },
1570 	{ .instr = CMD_3DSTATE_TBIMR_TILE_PASS_INFO, .num_dw = 4 },
1571 	{ .instr = CMD_3DSTATE_WM_HZ_OP, .num_dw = 6 },
1572 	{ .instr = CMD_3DSTATE_MULTISAMPLE, .num_dw = 2 },
1573 	{ .instr = CMD_3DSTATE_HS, .num_dw = 9 },
1574 	{ .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_HS, .num_dw = 2 },
1575 	{ .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_HS, .num_dw = 2 },
1576 	{ .instr = CMD_3DSTATE_URB_ALLOC_HS, .num_dw = 3 },
1577 	{ .instr = CMD_3DSTATE_TASK_CONTROL, .num_dw = 3 },
1578 	{ .instr = CMD_3DSTATE_TASK_SHADER, .num_dw = 7 },
1579 	{ .instr = CMD_3DSTATE_TASK_SHADER_DATA, .num_dw = 10 },
1580 	{ .instr = CMD_3DSTATE_URB_ALLOC_TASK, .num_dw = 3 },
1581 	{ .instr = CMD_3DSTATE_TE, .num_dw = 5 },
1582 	{ .instr = CMD_3DSTATE_TASK_REDISTRIB, .num_dw = 2 },
1583 	{ .instr = CMD_3DSTATE_DS, .num_dw = 11 },
1584 	{ .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_DS, .num_dw = 2 },
1585 	{ .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_DS, .num_dw = 2 },
1586 	{ .instr = CMD_3DSTATE_URB_ALLOC_DS, .num_dw = 3 },
1587 	{ .instr = CMD_3DSTATE_GS, .num_dw = 10 },
1588 	{ .instr = CMD_3DSTATE_BINDING_TABLE_POINTERS_GS, .num_dw = 2 },
1589 	{ .instr = CMD_3DSTATE_SAMPLER_STATE_POINTERS_GS, .num_dw = 2 },
1590 	{ .instr = CMD_3DSTATE_URB_ALLOC_GS, .num_dw = 3 },
1591 	{ .instr = CMD_3DSTATE_MESH_CONTROL, .num_dw = 3 },
1592 	{ .instr = CMD_3DSTATE_MESH_SHADER_DATA, .num_dw = 10 },
1593 	{ .instr = CMD_3DSTATE_URB_ALLOC_MESH, .num_dw = 3 },
1594 	{ .instr = CMD_3DSTATE_MESH_SHADER, .num_dw = 8 },
1595 	{ .instr = CMD_3DSTATE_DRAWING_RECTANGLE, .num_dw = 4 },
1596 };
1597 
1598 void xe_lrc_emit_hwe_state_instructions(struct xe_exec_queue *q, struct xe_bb *bb)
1599 {
1600 	struct xe_gt *gt = q->hwe->gt;
1601 	struct xe_device *xe = gt_to_xe(gt);
1602 	const struct instr_state *state_table = NULL;
1603 	int state_table_size = 0;
1604 
1605 	/*
1606 	 * Wa_14019789679
1607 	 *
1608 	 * If the driver doesn't explicitly emit the SVG instructions while
1609 	 * setting up the default LRC, the context switch will write 0's
1610 	 * (noops) into the LRC memory rather than the expected instruction
1611 	 * headers.  Application contexts start out as a copy of the default
1612 	 * LRC, and if they also do not emit specific settings for some SVG
1613 	 * state, then on context restore they'll unintentionally inherit
1614 	 * whatever state setting the previous context had programmed into the
1615 	 * hardware (i.e., the lack of a 3DSTATE_* instruction in the LRC will
1616 	 * prevent the hardware from resetting that state back to any specific
1617 	 * value).
1618 	 *
1619 	 * The official workaround only requires emitting 3DSTATE_MESH_CONTROL
1620 	 * since that's a specific state setting that can easily cause GPU
1621 	 * hangs if unintentionally inherited.  However to be safe we'll
1622 	 * continue to emit all of the SVG state since it's best not to leak
1623 	 * any of the state between contexts, even if that leakage is harmless.
1624 	 */
1625 	if (XE_WA(gt, 14019789679) && q->hwe->class == XE_ENGINE_CLASS_RENDER) {
1626 		state_table = xe_hpg_svg_state;
1627 		state_table_size = ARRAY_SIZE(xe_hpg_svg_state);
1628 	}
1629 
1630 	if (!state_table) {
1631 		xe_gt_dbg(gt, "No non-register state to emit on graphics ver %d.%02d\n",
1632 			  GRAPHICS_VER(xe), GRAPHICS_VERx100(xe) % 100);
1633 		return;
1634 	}
1635 
1636 	for (int i = 0; i < state_table_size; i++) {
1637 		u32 instr = state_table[i].instr;
1638 		u16 num_dw = state_table[i].num_dw;
1639 		bool is_single_dw = ((instr & GFXPIPE_PIPELINE) == PIPELINE_SINGLE_DW);
1640 
1641 		xe_gt_assert(gt, (instr & XE_INSTR_CMD_TYPE) == XE_INSTR_GFXPIPE);
1642 		xe_gt_assert(gt, num_dw != 0);
1643 		xe_gt_assert(gt, is_single_dw ^ (num_dw > 1));
1644 
1645 		/*
1646 		 * Xe2's SVG context is the same as the one on DG2 / MTL
1647 		 * except that 3DSTATE_DRAWING_RECTANGLE (non-pipelined) has
1648 		 * been replaced by 3DSTATE_DRAWING_RECTANGLE_FAST (pipelined).
1649 		 * Just make the replacement here rather than defining a
1650 		 * whole separate table for the single trivial change.
1651 		 */
1652 		if (GRAPHICS_VER(xe) >= 20 &&
1653 		    instr == CMD_3DSTATE_DRAWING_RECTANGLE)
1654 			instr = CMD_3DSTATE_DRAWING_RECTANGLE_FAST;
1655 
1656 		bb->cs[bb->len] = instr;
1657 		if (!is_single_dw)
1658 			bb->cs[bb->len] |= (num_dw - 2);
1659 
1660 		bb->len += num_dw;
1661 	}
1662 }
1663 
1664 struct xe_lrc_snapshot *xe_lrc_snapshot_capture(struct xe_lrc *lrc)
1665 {
1666 	struct xe_lrc_snapshot *snapshot = kmalloc(sizeof(*snapshot), GFP_NOWAIT);
1667 
1668 	if (!snapshot)
1669 		return NULL;
1670 
1671 	if (lrc->bo->vm)
1672 		xe_vm_get(lrc->bo->vm);
1673 
1674 	snapshot->context_desc = xe_lrc_ggtt_addr(lrc);
1675 	snapshot->ring_addr = __xe_lrc_ring_ggtt_addr(lrc);
1676 	snapshot->indirect_context_desc = xe_lrc_indirect_ring_ggtt_addr(lrc);
1677 	snapshot->head = xe_lrc_ring_head(lrc);
1678 	snapshot->tail.internal = lrc->ring.tail;
1679 	snapshot->tail.memory = xe_lrc_ring_tail(lrc);
1680 	snapshot->start = xe_lrc_ring_start(lrc);
1681 	snapshot->start_seqno = xe_lrc_start_seqno(lrc);
1682 	snapshot->seqno = xe_lrc_seqno(lrc);
1683 	snapshot->lrc_bo = xe_bo_get(lrc->bo);
1684 	snapshot->lrc_offset = xe_lrc_pphwsp_offset(lrc);
1685 	snapshot->lrc_size = lrc->bo->size - snapshot->lrc_offset;
1686 	snapshot->lrc_snapshot = NULL;
1687 	snapshot->ctx_timestamp = xe_lrc_ctx_timestamp(lrc);
1688 	snapshot->ctx_job_timestamp = xe_lrc_ctx_job_timestamp(lrc);
1689 	return snapshot;
1690 }
1691 
1692 void xe_lrc_snapshot_capture_delayed(struct xe_lrc_snapshot *snapshot)
1693 {
1694 	struct xe_bo *bo;
1695 	struct xe_vm *vm;
1696 	struct iosys_map src;
1697 
1698 	if (!snapshot)
1699 		return;
1700 
1701 	bo = snapshot->lrc_bo;
1702 	vm = bo->vm;
1703 	snapshot->lrc_bo = NULL;
1704 
1705 	snapshot->lrc_snapshot = kvmalloc(snapshot->lrc_size, GFP_KERNEL);
1706 	if (!snapshot->lrc_snapshot)
1707 		goto put_bo;
1708 
1709 	xe_bo_lock(bo, false);
1710 	if (!ttm_bo_vmap(&bo->ttm, &src)) {
1711 		xe_map_memcpy_from(xe_bo_device(bo),
1712 				   snapshot->lrc_snapshot, &src, snapshot->lrc_offset,
1713 				   snapshot->lrc_size);
1714 		ttm_bo_vunmap(&bo->ttm, &src);
1715 	} else {
1716 		kvfree(snapshot->lrc_snapshot);
1717 		snapshot->lrc_snapshot = NULL;
1718 	}
1719 	xe_bo_unlock(bo);
1720 put_bo:
1721 	xe_bo_put(bo);
1722 	if (vm)
1723 		xe_vm_put(vm);
1724 }
1725 
1726 void xe_lrc_snapshot_print(struct xe_lrc_snapshot *snapshot, struct drm_printer *p)
1727 {
1728 	unsigned long i;
1729 
1730 	if (!snapshot)
1731 		return;
1732 
1733 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", snapshot->context_desc);
1734 	drm_printf(p, "\tHW Ring address: 0x%08x\n",
1735 		   snapshot->ring_addr);
1736 	drm_printf(p, "\tHW Indirect Ring State: 0x%08x\n",
1737 		   snapshot->indirect_context_desc);
1738 	drm_printf(p, "\tLRC Head: (memory) %u\n", snapshot->head);
1739 	drm_printf(p, "\tLRC Tail: (internal) %u, (memory) %u\n",
1740 		   snapshot->tail.internal, snapshot->tail.memory);
1741 	drm_printf(p, "\tRing start: (memory) 0x%08x\n", snapshot->start);
1742 	drm_printf(p, "\tStart seqno: (memory) %d\n", snapshot->start_seqno);
1743 	drm_printf(p, "\tSeqno: (memory) %d\n", snapshot->seqno);
1744 	drm_printf(p, "\tTimestamp: 0x%08x\n", snapshot->ctx_timestamp);
1745 	drm_printf(p, "\tJob Timestamp: 0x%08x\n", snapshot->ctx_job_timestamp);
1746 
1747 	if (!snapshot->lrc_snapshot)
1748 		return;
1749 
1750 	drm_printf(p, "\t[HWSP].length: 0x%x\n", LRC_PPHWSP_SIZE);
1751 	drm_puts(p, "\t[HWSP].data: ");
1752 	for (i = 0; i < LRC_PPHWSP_SIZE; i += sizeof(u32)) {
1753 		u32 *val = snapshot->lrc_snapshot + i;
1754 		char dumped[ASCII85_BUFSZ];
1755 
1756 		drm_puts(p, ascii85_encode(*val, dumped));
1757 	}
1758 
1759 	drm_printf(p, "\n\t[HWCTX].length: 0x%lx\n", snapshot->lrc_size - LRC_PPHWSP_SIZE);
1760 	drm_puts(p, "\t[HWCTX].data: ");
1761 	for (; i < snapshot->lrc_size; i += sizeof(u32)) {
1762 		u32 *val = snapshot->lrc_snapshot + i;
1763 		char dumped[ASCII85_BUFSZ];
1764 
1765 		drm_puts(p, ascii85_encode(*val, dumped));
1766 	}
1767 	drm_puts(p, "\n");
1768 }
1769 
1770 void xe_lrc_snapshot_free(struct xe_lrc_snapshot *snapshot)
1771 {
1772 	if (!snapshot)
1773 		return;
1774 
1775 	kvfree(snapshot->lrc_snapshot);
1776 	if (snapshot->lrc_bo) {
1777 		struct xe_vm *vm;
1778 
1779 		vm = snapshot->lrc_bo->vm;
1780 		xe_bo_put(snapshot->lrc_bo);
1781 		if (vm)
1782 			xe_vm_put(vm);
1783 	}
1784 	kfree(snapshot);
1785 }
1786 
1787 /**
1788  * xe_lrc_update_timestamp() - Update ctx timestamp
1789  * @lrc: Pointer to the lrc.
1790  * @old_ts: Old timestamp value
1791  *
1792  * Populate @old_ts current saved ctx timestamp, read new ctx timestamp and
1793  * update saved value.
1794  *
1795  * Returns: New ctx timestamp value
1796  */
1797 u32 xe_lrc_update_timestamp(struct xe_lrc *lrc, u32 *old_ts)
1798 {
1799 	*old_ts = lrc->ctx_timestamp;
1800 
1801 	lrc->ctx_timestamp = xe_lrc_ctx_timestamp(lrc);
1802 
1803 	trace_xe_lrc_update_timestamp(lrc, *old_ts);
1804 
1805 	return lrc->ctx_timestamp;
1806 }
1807 
1808 /**
1809  * xe_lrc_ring_is_idle() - LRC is idle
1810  * @lrc: Pointer to the lrc.
1811  *
1812  * Compare LRC ring head and tail to determine if idle.
1813  *
1814  * Return: True is ring is idle, False otherwise
1815  */
1816 bool xe_lrc_ring_is_idle(struct xe_lrc *lrc)
1817 {
1818 	return xe_lrc_ring_head(lrc) == xe_lrc_ring_tail(lrc);
1819 }
1820