xref: /linux/drivers/gpu/drm/xe/xe_hwmon.c (revision ddb7a62af2e766eabb4ab7080e6ed8d6b8915302)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/hwmon-sysfs.h>
7 #include <linux/hwmon.h>
8 #include <linux/jiffies.h>
9 #include <linux/types.h>
10 #include <linux/units.h>
11 
12 #include <drm/drm_managed.h>
13 #include "regs/xe_gt_regs.h"
14 #include "regs/xe_mchbar_regs.h"
15 #include "regs/xe_pcode_regs.h"
16 #include "xe_device.h"
17 #include "xe_hwmon.h"
18 #include "xe_mmio.h"
19 #include "xe_pcode.h"
20 #include "xe_pcode_api.h"
21 #include "xe_sriov.h"
22 #include "xe_pm.h"
23 #include "xe_vsec.h"
24 #include "regs/xe_pmt.h"
25 
26 enum xe_hwmon_reg {
27 	REG_TEMP,
28 	REG_PKG_RAPL_LIMIT,
29 	REG_PKG_POWER_SKU,
30 	REG_PKG_POWER_SKU_UNIT,
31 	REG_GT_PERF_STATUS,
32 	REG_PKG_ENERGY_STATUS,
33 	REG_FAN_SPEED,
34 };
35 
36 enum xe_hwmon_reg_operation {
37 	REG_READ32,
38 	REG_RMW32,
39 	REG_READ64,
40 };
41 
42 enum xe_hwmon_channel {
43 	CHANNEL_CARD,
44 	CHANNEL_PKG,
45 	CHANNEL_VRAM,
46 	CHANNEL_MAX,
47 };
48 
49 enum xe_fan_channel {
50 	FAN_1,
51 	FAN_2,
52 	FAN_3,
53 	FAN_MAX,
54 };
55 
56 /* Attribute index for powerX_xxx_interval sysfs entries */
57 enum sensor_attr_power {
58 	SENSOR_INDEX_PSYS_PL1,
59 	SENSOR_INDEX_PKG_PL1,
60 	SENSOR_INDEX_PSYS_PL2,
61 	SENSOR_INDEX_PKG_PL2,
62 };
63 
64 /*
65  * For platforms that support mailbox commands for power limits, REG_PKG_POWER_SKU_UNIT is
66  * not supported and below are SKU units to be used.
67  */
68 #define PWR_UNIT	0x3
69 #define ENERGY_UNIT	0xe
70 #define TIME_UNIT	0xa
71 
72 /*
73  * SF_* - scale factors for particular quantities according to hwmon spec.
74  */
75 #define SF_POWER	1000000		/* microwatts */
76 #define SF_CURR		1000		/* milliamperes */
77 #define SF_VOLTAGE	1000		/* millivolts */
78 #define SF_ENERGY	1000000		/* microjoules */
79 #define SF_TIME		1000		/* milliseconds */
80 
81 /*
82  * PL*_HWMON_ATTR - mapping of hardware power limits to corresponding hwmon power attribute.
83  */
84 #define PL1_HWMON_ATTR	hwmon_power_max
85 #define PL2_HWMON_ATTR	hwmon_power_cap
86 
87 #define PWR_ATTR_TO_STR(attr)	(((attr) == hwmon_power_max) ? "PL1" : "PL2")
88 
89 /*
90  * Timeout for power limit write mailbox command.
91  */
92 #define PL_WRITE_MBX_TIMEOUT_MS	(1)
93 
94 /**
95  * struct xe_hwmon_energy_info - to accumulate energy
96  */
97 struct xe_hwmon_energy_info {
98 	/** @reg_val_prev: previous energy reg val */
99 	u32 reg_val_prev;
100 	/** @accum_energy: accumulated energy */
101 	long accum_energy;
102 };
103 
104 /**
105  * struct xe_hwmon_fan_info - to cache previous fan reading
106  */
107 struct xe_hwmon_fan_info {
108 	/** @reg_val_prev: previous fan reg val */
109 	u32 reg_val_prev;
110 	/** @time_prev: previous timestamp */
111 	u64 time_prev;
112 };
113 
114 /**
115  * struct xe_hwmon - xe hwmon data structure
116  */
117 struct xe_hwmon {
118 	/** @hwmon_dev: hwmon device for xe */
119 	struct device *hwmon_dev;
120 	/** @xe: Xe device */
121 	struct xe_device *xe;
122 	/** @hwmon_lock: lock for rw attributes*/
123 	struct mutex hwmon_lock;
124 	/** @scl_shift_power: pkg power unit */
125 	int scl_shift_power;
126 	/** @scl_shift_energy: pkg energy unit */
127 	int scl_shift_energy;
128 	/** @scl_shift_time: pkg time unit */
129 	int scl_shift_time;
130 	/** @ei: Energy info for energyN_input */
131 	struct xe_hwmon_energy_info ei[CHANNEL_MAX];
132 	/** @fi: Fan info for fanN_input */
133 	struct xe_hwmon_fan_info fi[FAN_MAX];
134 	/** @boot_power_limit_read: is boot power limits read */
135 	bool boot_power_limit_read;
136 	/** @pl1_on_boot: power limit PL1 on boot */
137 	u32 pl1_on_boot[CHANNEL_MAX];
138 	/** @pl2_on_boot: power limit PL2 on boot */
139 	u32 pl2_on_boot[CHANNEL_MAX];
140 
141 };
142 
xe_hwmon_pcode_read_power_limit(const struct xe_hwmon * hwmon,u32 attr,int channel,u32 * uval)143 static int xe_hwmon_pcode_read_power_limit(const struct xe_hwmon *hwmon, u32 attr, int channel,
144 					   u32 *uval)
145 {
146 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
147 	u32 val0 = 0, val1 = 0;
148 	int ret = 0;
149 
150 	ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
151 						  (channel == CHANNEL_CARD) ?
152 						  READ_PSYSGPU_POWER_LIMIT :
153 						  READ_PACKAGE_POWER_LIMIT,
154 						  hwmon->boot_power_limit_read ?
155 						  READ_PL_FROM_PCODE : READ_PL_FROM_FW),
156 						  &val0, &val1);
157 
158 	if (ret) {
159 		drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
160 			channel, val0, val1, ret);
161 		*uval = 0;
162 		return ret;
163 	}
164 
165 	/* return the value only if limit is enabled */
166 	if (attr == PL1_HWMON_ATTR)
167 		*uval = (val0 & PWR_LIM_EN) ? val0 : 0;
168 	else if (attr == PL2_HWMON_ATTR)
169 		*uval = (val1 & PWR_LIM_EN) ? val1 : 0;
170 	else if (attr == hwmon_power_label)
171 		*uval = (val0 & PWR_LIM_EN) ? 1 : (val1 & PWR_LIM_EN) ? 1 : 0;
172 	else
173 		*uval = 0;
174 
175 	return ret;
176 }
177 
xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon * hwmon,u32 attr,u8 channel,u32 clr,u32 set)178 static int xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon *hwmon, u32 attr, u8 channel,
179 					  u32 clr, u32 set)
180 {
181 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
182 	u32 val0, val1;
183 	int ret = 0;
184 
185 	ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
186 						  (channel == CHANNEL_CARD) ?
187 						  READ_PSYSGPU_POWER_LIMIT :
188 						  READ_PACKAGE_POWER_LIMIT,
189 						  hwmon->boot_power_limit_read ?
190 						  READ_PL_FROM_PCODE : READ_PL_FROM_FW),
191 						  &val0, &val1);
192 
193 	if (ret)
194 		drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
195 			channel, val0, val1, ret);
196 
197 	if (attr == PL1_HWMON_ATTR)
198 		val0 = (val0 & ~clr) | set;
199 	else if (attr == PL2_HWMON_ATTR)
200 		val1 = (val1 & ~clr) | set;
201 	else
202 		return -EIO;
203 
204 	ret = xe_pcode_write64_timeout(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
205 							     (channel == CHANNEL_CARD) ?
206 							     WRITE_PSYSGPU_POWER_LIMIT :
207 							     WRITE_PACKAGE_POWER_LIMIT, 0),
208 							     val0, val1, PL_WRITE_MBX_TIMEOUT_MS);
209 	if (ret)
210 		drm_dbg(&hwmon->xe->drm, "write failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
211 			channel, val0, val1, ret);
212 	return ret;
213 }
214 
xe_hwmon_get_reg(struct xe_hwmon * hwmon,enum xe_hwmon_reg hwmon_reg,int channel)215 static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
216 				      int channel)
217 {
218 	struct xe_device *xe = hwmon->xe;
219 
220 	switch (hwmon_reg) {
221 	case REG_TEMP:
222 		if (xe->info.platform == XE_BATTLEMAGE) {
223 			if (channel == CHANNEL_PKG)
224 				return BMG_PACKAGE_TEMPERATURE;
225 			else if (channel == CHANNEL_VRAM)
226 				return BMG_VRAM_TEMPERATURE;
227 		} else if (xe->info.platform == XE_DG2) {
228 			if (channel == CHANNEL_PKG)
229 				return PCU_CR_PACKAGE_TEMPERATURE;
230 			else if (channel == CHANNEL_VRAM)
231 				return BMG_VRAM_TEMPERATURE;
232 		}
233 		break;
234 	case REG_PKG_RAPL_LIMIT:
235 		if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
236 			return PVC_GT0_PACKAGE_RAPL_LIMIT;
237 		else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
238 			return PCU_CR_PACKAGE_RAPL_LIMIT;
239 		break;
240 	case REG_PKG_POWER_SKU:
241 		if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
242 			return PVC_GT0_PACKAGE_POWER_SKU;
243 		else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
244 			return PCU_CR_PACKAGE_POWER_SKU;
245 		break;
246 	case REG_PKG_POWER_SKU_UNIT:
247 		if (xe->info.platform == XE_PVC)
248 			return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
249 		else if (xe->info.platform == XE_DG2)
250 			return PCU_CR_PACKAGE_POWER_SKU_UNIT;
251 		break;
252 	case REG_GT_PERF_STATUS:
253 		if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
254 			return GT_PERF_STATUS;
255 		break;
256 	case REG_PKG_ENERGY_STATUS:
257 		if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
258 			return PVC_GT0_PLATFORM_ENERGY_STATUS;
259 		} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
260 			return PCU_CR_PACKAGE_ENERGY_STATUS;
261 		}
262 		break;
263 	case REG_FAN_SPEED:
264 		if (channel == FAN_1)
265 			return BMG_FAN_1_SPEED;
266 		else if (channel == FAN_2)
267 			return BMG_FAN_2_SPEED;
268 		else if (channel == FAN_3)
269 			return BMG_FAN_3_SPEED;
270 		break;
271 	default:
272 		drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
273 		break;
274 	}
275 
276 	return XE_REG(0);
277 }
278 
279 #define PL_DISABLE 0
280 
281 /*
282  * HW allows arbitrary PL1 limits to be set but silently clamps these values to
283  * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
284  * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
285  * clamped values when read.
286  */
xe_hwmon_power_max_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * value)287 static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *value)
288 {
289 	u64 reg_val = 0, min, max;
290 	struct xe_device *xe = hwmon->xe;
291 	struct xe_reg rapl_limit, pkg_power_sku;
292 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
293 
294 	mutex_lock(&hwmon->hwmon_lock);
295 
296 	if (hwmon->xe->info.has_mbx_power_limits) {
297 		xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, (u32 *)&reg_val);
298 	} else {
299 		rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
300 		pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
301 		reg_val = xe_mmio_read32(mmio, rapl_limit);
302 	}
303 
304 	/* Check if PL limits are disabled. */
305 	if (!(reg_val & PWR_LIM_EN)) {
306 		*value = PL_DISABLE;
307 		drm_info(&hwmon->xe->drm, "%s disabled for channel %d, val 0x%016llx\n",
308 			 PWR_ATTR_TO_STR(attr), channel, reg_val);
309 		goto unlock;
310 	}
311 
312 	reg_val = REG_FIELD_GET(PWR_LIM_VAL, reg_val);
313 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
314 
315 	/* For platforms with mailbox power limit support clamping would be done by pcode. */
316 	if (!hwmon->xe->info.has_mbx_power_limits) {
317 		reg_val = xe_mmio_read64_2x32(mmio, pkg_power_sku);
318 		min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
319 		max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
320 		min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
321 		max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
322 		if (min && max)
323 			*value = clamp_t(u64, *value, min, max);
324 	}
325 unlock:
326 	mutex_unlock(&hwmon->hwmon_lock);
327 }
328 
xe_hwmon_power_max_write(struct xe_hwmon * hwmon,u32 attr,int channel,long value)329 static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, u32 attr, int channel, long value)
330 {
331 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
332 	int ret = 0;
333 	u32 reg_val, max;
334 	struct xe_reg rapl_limit;
335 
336 	mutex_lock(&hwmon->hwmon_lock);
337 
338 	rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
339 
340 	/* Disable Power Limit and verify, as limit cannot be disabled on all platforms. */
341 	if (value == PL_DISABLE) {
342 		if (hwmon->xe->info.has_mbx_power_limits) {
343 			drm_dbg(&hwmon->xe->drm, "disabling %s on channel %d\n",
344 				PWR_ATTR_TO_STR(attr), channel);
345 			xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM_EN, 0);
346 			xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &reg_val);
347 		} else {
348 			reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM_EN, 0);
349 			reg_val = xe_mmio_read32(mmio, rapl_limit);
350 		}
351 
352 		if (reg_val & PWR_LIM_EN) {
353 			drm_warn(&hwmon->xe->drm, "Power limit disable is not supported!\n");
354 			ret = -EOPNOTSUPP;
355 		}
356 		goto unlock;
357 	}
358 
359 	/* Computation in 64-bits to avoid overflow. Round to nearest. */
360 	reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
361 
362 	/*
363 	 * Clamp power limit to GPU firmware default as maximum, as an additional protection to
364 	 * pcode clamp.
365 	 */
366 	if (hwmon->xe->info.has_mbx_power_limits) {
367 		max = (attr == PL1_HWMON_ATTR) ?
368 		       hwmon->pl1_on_boot[channel] : hwmon->pl2_on_boot[channel];
369 		max = REG_FIELD_PREP(PWR_LIM_VAL, max);
370 		if (reg_val > max) {
371 			reg_val = max;
372 			drm_dbg(&hwmon->xe->drm,
373 				"Clamping power limit to GPU firmware default 0x%x\n",
374 				reg_val);
375 		}
376 	}
377 
378 	reg_val = PWR_LIM_EN | REG_FIELD_PREP(PWR_LIM_VAL, reg_val);
379 
380 	if (hwmon->xe->info.has_mbx_power_limits)
381 		ret = xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM, reg_val);
382 	else
383 		reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM, reg_val);
384 unlock:
385 	mutex_unlock(&hwmon->hwmon_lock);
386 	return ret;
387 }
388 
xe_hwmon_power_rated_max_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * value)389 static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, u32 attr, int channel,
390 					  long *value)
391 {
392 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
393 	u32 reg_val;
394 
395 	if (hwmon->xe->info.has_mbx_power_limits) {
396 		/* PL1 is rated max if supported. */
397 		xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, channel, &reg_val);
398 	} else {
399 		/*
400 		 * This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
401 		 * for this register can be skipped.
402 		 * See xe_hwmon_power_is_visible.
403 		 */
404 		struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
405 
406 		reg_val = xe_mmio_read32(mmio, reg);
407 	}
408 
409 	reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
410 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
411 }
412 
413 /*
414  * xe_hwmon_energy_get - Obtain energy value
415  *
416  * The underlying energy hardware register is 32-bits and is subject to
417  * overflow. How long before overflow? For example, with an example
418  * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
419  * a power draw of 1000 watts, the 32-bit counter will overflow in
420  * approximately 4.36 minutes.
421  *
422  * Examples:
423  *    1 watt:  (2^32 >> 14) /    1 W / (60 * 60 * 24) secs/day -> 3 days
424  * 1000 watts: (2^32 >> 14) / 1000 W / 60             secs/min -> 4.36 minutes
425  *
426  * The function significantly increases overflow duration (from 4.36
427  * minutes) by accumulating the energy register into a 'long' as allowed by
428  * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
429  * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
430  * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
431  * energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
432  */
433 static void
xe_hwmon_energy_get(struct xe_hwmon * hwmon,int channel,long * energy)434 xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
435 {
436 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
437 	struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
438 	u32 reg_val;
439 	int ret = 0;
440 
441 	/* Energy is supported only for card and pkg */
442 	if (channel > CHANNEL_PKG) {
443 		*energy = 0;
444 		return;
445 	}
446 
447 	if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
448 		u64 pmt_val;
449 
450 		ret = xe_pmt_telem_read(to_pci_dev(hwmon->xe->drm.dev),
451 					xe_mmio_read32(mmio, PUNIT_TELEMETRY_GUID),
452 					&pmt_val, BMG_ENERGY_STATUS_PMT_OFFSET,	sizeof(pmt_val));
453 		if (ret != sizeof(pmt_val)) {
454 			drm_warn(&hwmon->xe->drm, "energy read from pmt failed, ret %d\n", ret);
455 			*energy = 0;
456 			return;
457 		}
458 
459 		if (channel == CHANNEL_PKG)
460 			reg_val = REG_FIELD_GET64(ENERGY_PKG, pmt_val);
461 		else
462 			reg_val = REG_FIELD_GET64(ENERGY_CARD, pmt_val);
463 	} else {
464 		reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
465 								channel));
466 	}
467 
468 	ei->accum_energy += reg_val - ei->reg_val_prev;
469 	ei->reg_val_prev = reg_val;
470 
471 	*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
472 				  hwmon->scl_shift_energy);
473 }
474 
475 static ssize_t
xe_hwmon_power_max_interval_show(struct device * dev,struct device_attribute * attr,char * buf)476 xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
477 				 char *buf)
478 {
479 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
480 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
481 	u32 x, y, x_w = 2; /* 2 bits */
482 	u64 r, tau4, out;
483 	int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
484 	u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
485 
486 	int ret = 0;
487 
488 	xe_pm_runtime_get(hwmon->xe);
489 
490 	mutex_lock(&hwmon->hwmon_lock);
491 
492 	if (hwmon->xe->info.has_mbx_power_limits) {
493 		ret = xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, (u32 *)&r);
494 		if (ret) {
495 			drm_err(&hwmon->xe->drm,
496 				"power interval read fail, ch %d, attr %d, r 0%llx, ret %d\n",
497 				channel, power_attr, r, ret);
498 			r = 0;
499 		}
500 	} else {
501 		r = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel));
502 	}
503 
504 	mutex_unlock(&hwmon->hwmon_lock);
505 
506 	xe_pm_runtime_put(hwmon->xe);
507 
508 	x = REG_FIELD_GET(PWR_LIM_TIME_X, r);
509 	y = REG_FIELD_GET(PWR_LIM_TIME_Y, r);
510 
511 	/*
512 	 * tau = (1 + (x / 4)) * power(2,y), x = bits(23:22), y = bits(21:17)
513 	 *     = (4 | x) << (y - 2)
514 	 *
515 	 * Here (y - 2) ensures a 1.x fixed point representation of 1.x
516 	 * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
517 	 *
518 	 * As y can be < 2, we compute tau4 = (4 | x) << y
519 	 * and then add 2 when doing the final right shift to account for units
520 	 */
521 	tau4 = (u64)((1 << x_w) | x) << y;
522 
523 	/* val in hwmon interface units (millisec) */
524 	out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
525 
526 	return sysfs_emit(buf, "%llu\n", out);
527 }
528 
529 static ssize_t
xe_hwmon_power_max_interval_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)530 xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
531 				  const char *buf, size_t count)
532 {
533 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
534 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
535 	u32 x, y, rxy, x_w = 2; /* 2 bits */
536 	u64 tau4, r, max_win;
537 	unsigned long val;
538 	int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
539 	u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
540 	int ret;
541 
542 	ret = kstrtoul(buf, 0, &val);
543 	if (ret)
544 		return ret;
545 
546 	/*
547 	 * Max HW supported tau in '(1 + (x / 4)) * power(2,y)' format, x = 0, y = 0x12.
548 	 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
549 	 *
550 	 * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
551 	 * However, it is observed that existing discrete GPUs does not provide correct
552 	 * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
553 	 * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
554 	 */
555 #define PKG_MAX_WIN_DEFAULT 0x12ull
556 
557 	/*
558 	 * val must be < max in hwmon interface units. The steps below are
559 	 * explained in xe_hwmon_power_max_interval_show()
560 	 */
561 	r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
562 	x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
563 	y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
564 	tau4 = (u64)((1 << x_w) | x) << y;
565 	max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
566 
567 	if (val > max_win)
568 		return -EINVAL;
569 
570 	/* val in hw units */
571 	val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME) + 1;
572 
573 	/*
574 	 * Convert val to 1.x * power(2,y)
575 	 * y = ilog2(val)
576 	 * x = (val - (1 << y)) >> (y - 2)
577 	 */
578 	if (!val) {
579 		y = 0;
580 		x = 0;
581 	} else {
582 		y = ilog2(val);
583 		x = (val - (1ul << y)) << x_w >> y;
584 	}
585 
586 	rxy = REG_FIELD_PREP(PWR_LIM_TIME_X, x) |
587 			       REG_FIELD_PREP(PWR_LIM_TIME_Y, y);
588 
589 	xe_pm_runtime_get(hwmon->xe);
590 
591 	mutex_lock(&hwmon->hwmon_lock);
592 
593 	if (hwmon->xe->info.has_mbx_power_limits)
594 		xe_hwmon_pcode_rmw_power_limit(hwmon, power_attr, channel, PWR_LIM_TIME, rxy);
595 	else
596 		r = xe_mmio_rmw32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel),
597 				  PWR_LIM_TIME, rxy);
598 
599 	mutex_unlock(&hwmon->hwmon_lock);
600 
601 	xe_pm_runtime_put(hwmon->xe);
602 
603 	return count;
604 }
605 
606 /* PSYS PL1 */
607 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
608 			  xe_hwmon_power_max_interval_show,
609 			  xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL1);
610 /* PKG PL1 */
611 static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
612 			  xe_hwmon_power_max_interval_show,
613 			  xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL1);
614 /* PSYS PL2 */
615 static SENSOR_DEVICE_ATTR(power1_cap_interval, 0664,
616 			  xe_hwmon_power_max_interval_show,
617 			  xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL2);
618 /* PKG PL2 */
619 static SENSOR_DEVICE_ATTR(power2_cap_interval, 0664,
620 			  xe_hwmon_power_max_interval_show,
621 			  xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL2);
622 
623 static struct attribute *hwmon_attributes[] = {
624 	&sensor_dev_attr_power1_max_interval.dev_attr.attr,
625 	&sensor_dev_attr_power2_max_interval.dev_attr.attr,
626 	&sensor_dev_attr_power1_cap_interval.dev_attr.attr,
627 	&sensor_dev_attr_power2_cap_interval.dev_attr.attr,
628 	NULL
629 };
630 
xe_hwmon_attributes_visible(struct kobject * kobj,struct attribute * attr,int index)631 static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
632 					   struct attribute *attr, int index)
633 {
634 	struct device *dev = kobj_to_dev(kobj);
635 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
636 	int ret = 0;
637 	int channel = (index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
638 	u32 power_attr = (index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
639 	u32 uval = 0;
640 	struct xe_reg rapl_limit;
641 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
642 
643 	xe_pm_runtime_get(hwmon->xe);
644 
645 	if (hwmon->xe->info.has_mbx_power_limits) {
646 		xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, &uval);
647 	} else if (power_attr != PL2_HWMON_ATTR) {
648 		rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
649 		if (xe_reg_is_valid(rapl_limit))
650 			uval = xe_mmio_read32(mmio, rapl_limit);
651 	}
652 	ret = (uval & PWR_LIM_EN) ? attr->mode : 0;
653 
654 	xe_pm_runtime_put(hwmon->xe);
655 
656 	return ret;
657 }
658 
659 static const struct attribute_group hwmon_attrgroup = {
660 	.attrs = hwmon_attributes,
661 	.is_visible = xe_hwmon_attributes_visible,
662 };
663 
664 static const struct attribute_group *hwmon_groups[] = {
665 	&hwmon_attrgroup,
666 	NULL
667 };
668 
669 static const struct hwmon_channel_info * const hwmon_info[] = {
670 	HWMON_CHANNEL_INFO(temp, HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL,
671 			   HWMON_T_INPUT | HWMON_T_LABEL),
672 	HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CRIT |
673 			   HWMON_P_CAP,
674 			   HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CAP),
675 	HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
676 	HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
677 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
678 	HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT, HWMON_F_INPUT, HWMON_F_INPUT),
679 	NULL
680 };
681 
682 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
xe_hwmon_pcode_read_i1(const struct xe_hwmon * hwmon,u32 * uval)683 static int xe_hwmon_pcode_read_i1(const struct xe_hwmon *hwmon, u32 *uval)
684 {
685 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
686 
687 	/* Avoid Illegal Subcommand error */
688 	if (hwmon->xe->info.platform == XE_DG2)
689 		return -ENXIO;
690 
691 	return xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
692 			     POWER_SETUP_SUBCOMMAND_READ_I1, 0),
693 			     uval, NULL);
694 }
695 
xe_hwmon_pcode_write_i1(const struct xe_hwmon * hwmon,u32 uval)696 static int xe_hwmon_pcode_write_i1(const struct xe_hwmon *hwmon, u32 uval)
697 {
698 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
699 
700 	return xe_pcode_write(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
701 			      POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
702 			      (uval & POWER_SETUP_I1_DATA_MASK));
703 }
704 
xe_hwmon_pcode_read_fan_control(const struct xe_hwmon * hwmon,u32 subcmd,u32 * uval)705 static int xe_hwmon_pcode_read_fan_control(const struct xe_hwmon *hwmon, u32 subcmd, u32 *uval)
706 {
707 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
708 
709 	/* Platforms that don't return correct value */
710 	if (hwmon->xe->info.platform == XE_DG2 && subcmd == FSC_READ_NUM_FANS) {
711 		*uval = 2;
712 		return 0;
713 	}
714 
715 	return xe_pcode_read(root_tile, PCODE_MBOX(FAN_SPEED_CONTROL, subcmd, 0), uval, NULL);
716 }
717 
xe_hwmon_power_curr_crit_read(struct xe_hwmon * hwmon,int channel,long * value,u32 scale_factor)718 static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
719 					 long *value, u32 scale_factor)
720 {
721 	int ret;
722 	u32 uval;
723 
724 	mutex_lock(&hwmon->hwmon_lock);
725 
726 	ret = xe_hwmon_pcode_read_i1(hwmon, &uval);
727 	if (ret)
728 		goto unlock;
729 
730 	*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
731 				 scale_factor, POWER_SETUP_I1_SHIFT);
732 unlock:
733 	mutex_unlock(&hwmon->hwmon_lock);
734 	return ret;
735 }
736 
xe_hwmon_power_curr_crit_write(struct xe_hwmon * hwmon,int channel,long value,u32 scale_factor)737 static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
738 					  long value, u32 scale_factor)
739 {
740 	int ret;
741 	u32 uval;
742 
743 	mutex_lock(&hwmon->hwmon_lock);
744 
745 	uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
746 	ret = xe_hwmon_pcode_write_i1(hwmon, uval);
747 
748 	mutex_unlock(&hwmon->hwmon_lock);
749 	return ret;
750 }
751 
xe_hwmon_get_voltage(struct xe_hwmon * hwmon,int channel,long * value)752 static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
753 {
754 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
755 	u64 reg_val;
756 
757 	reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
758 	/* HW register value in units of 2.5 millivolt */
759 	*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
760 }
761 
762 static umode_t
xe_hwmon_temp_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)763 xe_hwmon_temp_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
764 {
765 	switch (attr) {
766 	case hwmon_temp_input:
767 	case hwmon_temp_label:
768 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_TEMP, channel)) ? 0444 : 0;
769 	default:
770 		return 0;
771 	}
772 }
773 
774 static int
xe_hwmon_temp_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)775 xe_hwmon_temp_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
776 {
777 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
778 	u64 reg_val;
779 
780 	switch (attr) {
781 	case hwmon_temp_input:
782 		reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_TEMP, channel));
783 
784 		/* HW register value is in degrees Celsius, convert to millidegrees. */
785 		*val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
786 		return 0;
787 	default:
788 		return -EOPNOTSUPP;
789 	}
790 }
791 
792 static umode_t
xe_hwmon_power_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)793 xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
794 {
795 	u32 uval = 0;
796 	struct xe_reg reg;
797 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
798 
799 	switch (attr) {
800 	case hwmon_power_max:
801 	case hwmon_power_cap:
802 		if (hwmon->xe->info.has_mbx_power_limits) {
803 			xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
804 		} else if (attr != PL2_HWMON_ATTR) {
805 			reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
806 			if (xe_reg_is_valid(reg))
807 				uval = xe_mmio_read32(mmio, reg);
808 		}
809 		if (uval & PWR_LIM_EN) {
810 			drm_info(&hwmon->xe->drm, "%s is supported on channel %d\n",
811 				 PWR_ATTR_TO_STR(attr), channel);
812 			return 0664;
813 		}
814 		drm_dbg(&hwmon->xe->drm, "%s is unsupported on channel %d\n",
815 			PWR_ATTR_TO_STR(attr), channel);
816 		return 0;
817 	case hwmon_power_rated_max:
818 		if (hwmon->xe->info.has_mbx_power_limits) {
819 			return 0;
820 		} else {
821 			reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
822 			if (xe_reg_is_valid(reg))
823 				uval = xe_mmio_read32(mmio, reg);
824 			return uval ? 0444 : 0;
825 		}
826 	case hwmon_power_crit:
827 		if (channel == CHANNEL_CARD) {
828 			xe_hwmon_pcode_read_i1(hwmon, &uval);
829 			return (uval & POWER_SETUP_I1_WATTS) ? 0644 : 0;
830 		}
831 		break;
832 	case hwmon_power_label:
833 		if (hwmon->xe->info.has_mbx_power_limits) {
834 			xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
835 		} else {
836 			reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
837 			if (xe_reg_is_valid(reg))
838 				uval = xe_mmio_read32(mmio, reg);
839 
840 			if (!uval) {
841 				reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
842 				if (xe_reg_is_valid(reg))
843 					uval = xe_mmio_read32(mmio, reg);
844 			}
845 		}
846 		if ((!(uval & PWR_LIM_EN)) && channel == CHANNEL_CARD) {
847 			xe_hwmon_pcode_read_i1(hwmon, &uval);
848 			return (uval & POWER_SETUP_I1_WATTS) ? 0444 : 0;
849 		}
850 		return (uval) ? 0444 : 0;
851 	default:
852 		return 0;
853 	}
854 	return 0;
855 }
856 
857 static int
xe_hwmon_power_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)858 xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
859 {
860 	switch (attr) {
861 	case hwmon_power_max:
862 	case hwmon_power_cap:
863 		xe_hwmon_power_max_read(hwmon, attr, channel, val);
864 		return 0;
865 	case hwmon_power_rated_max:
866 		xe_hwmon_power_rated_max_read(hwmon, attr, channel, val);
867 		return 0;
868 	case hwmon_power_crit:
869 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
870 	default:
871 		return -EOPNOTSUPP;
872 	}
873 }
874 
875 static int
xe_hwmon_power_write(struct xe_hwmon * hwmon,u32 attr,int channel,long val)876 xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
877 {
878 	switch (attr) {
879 	case hwmon_power_cap:
880 	case hwmon_power_max:
881 		return xe_hwmon_power_max_write(hwmon, attr, channel, val);
882 	case hwmon_power_crit:
883 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
884 	default:
885 		return -EOPNOTSUPP;
886 	}
887 }
888 
889 static umode_t
xe_hwmon_curr_is_visible(const struct xe_hwmon * hwmon,u32 attr,int channel)890 xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
891 {
892 	u32 uval;
893 
894 	/* hwmon sysfs attribute of current available only for package */
895 	if (channel != CHANNEL_PKG)
896 		return 0;
897 
898 	switch (attr) {
899 	case hwmon_curr_crit:
900 			return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
901 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
902 	case hwmon_curr_label:
903 			return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
904 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
905 		break;
906 	default:
907 		return 0;
908 	}
909 	return 0;
910 }
911 
912 static int
xe_hwmon_curr_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)913 xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
914 {
915 	switch (attr) {
916 	case hwmon_curr_crit:
917 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
918 	default:
919 		return -EOPNOTSUPP;
920 	}
921 }
922 
923 static int
xe_hwmon_curr_write(struct xe_hwmon * hwmon,u32 attr,int channel,long val)924 xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
925 {
926 	switch (attr) {
927 	case hwmon_curr_crit:
928 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
929 	default:
930 		return -EOPNOTSUPP;
931 	}
932 }
933 
934 static umode_t
xe_hwmon_in_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)935 xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
936 {
937 	switch (attr) {
938 	case hwmon_in_input:
939 	case hwmon_in_label:
940 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
941 				       channel)) ? 0444 : 0;
942 	default:
943 		return 0;
944 	}
945 }
946 
947 static int
xe_hwmon_in_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)948 xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
949 {
950 	switch (attr) {
951 	case hwmon_in_input:
952 		xe_hwmon_get_voltage(hwmon, channel, val);
953 		return 0;
954 	default:
955 		return -EOPNOTSUPP;
956 	}
957 }
958 
959 static umode_t
xe_hwmon_energy_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)960 xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
961 {
962 	long energy = 0;
963 
964 	switch (attr) {
965 	case hwmon_energy_input:
966 	case hwmon_energy_label:
967 		if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
968 			xe_hwmon_energy_get(hwmon, channel, &energy);
969 			return energy ? 0444 : 0;
970 		} else {
971 			return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
972 					       channel)) ? 0444 : 0;
973 		}
974 	default:
975 		return 0;
976 	}
977 }
978 
979 static int
xe_hwmon_energy_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)980 xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
981 {
982 	switch (attr) {
983 	case hwmon_energy_input:
984 		xe_hwmon_energy_get(hwmon, channel, val);
985 		return 0;
986 	default:
987 		return -EOPNOTSUPP;
988 	}
989 }
990 
991 static umode_t
xe_hwmon_fan_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)992 xe_hwmon_fan_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
993 {
994 	u32 uval;
995 
996 	if (!hwmon->xe->info.has_fan_control)
997 		return 0;
998 
999 	switch (attr) {
1000 	case hwmon_fan_input:
1001 		if (xe_hwmon_pcode_read_fan_control(hwmon, FSC_READ_NUM_FANS, &uval))
1002 			return 0;
1003 
1004 		return channel < uval ? 0444 : 0;
1005 	default:
1006 		return 0;
1007 	}
1008 }
1009 
1010 static int
xe_hwmon_fan_input_read(struct xe_hwmon * hwmon,int channel,long * val)1011 xe_hwmon_fan_input_read(struct xe_hwmon *hwmon, int channel, long *val)
1012 {
1013 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
1014 	struct xe_hwmon_fan_info *fi = &hwmon->fi[channel];
1015 	u64 rotations, time_now, time;
1016 	u32 reg_val;
1017 	int ret = 0;
1018 
1019 	mutex_lock(&hwmon->hwmon_lock);
1020 
1021 	reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_FAN_SPEED, channel));
1022 	time_now = get_jiffies_64();
1023 
1024 	/*
1025 	 * HW register value is accumulated count of pulses from PWM fan with the scale
1026 	 * of 2 pulses per rotation.
1027 	 */
1028 	rotations = (reg_val - fi->reg_val_prev) / 2;
1029 
1030 	time = jiffies_delta_to_msecs(time_now - fi->time_prev);
1031 	if (unlikely(!time)) {
1032 		ret = -EAGAIN;
1033 		goto unlock;
1034 	}
1035 
1036 	/*
1037 	 * Calculate fan speed in RPM by time averaging two subsequent readings in minutes.
1038 	 * RPM = number of rotations * msecs per minute / time in msecs
1039 	 */
1040 	*val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
1041 
1042 	fi->reg_val_prev = reg_val;
1043 	fi->time_prev = time_now;
1044 unlock:
1045 	mutex_unlock(&hwmon->hwmon_lock);
1046 	return ret;
1047 }
1048 
1049 static int
xe_hwmon_fan_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)1050 xe_hwmon_fan_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
1051 {
1052 	switch (attr) {
1053 	case hwmon_fan_input:
1054 		return xe_hwmon_fan_input_read(hwmon, channel, val);
1055 	default:
1056 		return -EOPNOTSUPP;
1057 	}
1058 }
1059 
1060 static umode_t
xe_hwmon_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)1061 xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1062 		    u32 attr, int channel)
1063 {
1064 	struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
1065 	int ret;
1066 
1067 	xe_pm_runtime_get(hwmon->xe);
1068 
1069 	switch (type) {
1070 	case hwmon_temp:
1071 		ret = xe_hwmon_temp_is_visible(hwmon, attr, channel);
1072 		break;
1073 	case hwmon_power:
1074 		ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
1075 		break;
1076 	case hwmon_curr:
1077 		ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
1078 		break;
1079 	case hwmon_in:
1080 		ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
1081 		break;
1082 	case hwmon_energy:
1083 		ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
1084 		break;
1085 	case hwmon_fan:
1086 		ret = xe_hwmon_fan_is_visible(hwmon, attr, channel);
1087 		break;
1088 	default:
1089 		ret = 0;
1090 		break;
1091 	}
1092 
1093 	xe_pm_runtime_put(hwmon->xe);
1094 
1095 	return ret;
1096 }
1097 
1098 static int
xe_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)1099 xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
1100 	      int channel, long *val)
1101 {
1102 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
1103 	int ret;
1104 
1105 	xe_pm_runtime_get(hwmon->xe);
1106 
1107 	switch (type) {
1108 	case hwmon_temp:
1109 		ret = xe_hwmon_temp_read(hwmon, attr, channel, val);
1110 		break;
1111 	case hwmon_power:
1112 		ret = xe_hwmon_power_read(hwmon, attr, channel, val);
1113 		break;
1114 	case hwmon_curr:
1115 		ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
1116 		break;
1117 	case hwmon_in:
1118 		ret = xe_hwmon_in_read(hwmon, attr, channel, val);
1119 		break;
1120 	case hwmon_energy:
1121 		ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
1122 		break;
1123 	case hwmon_fan:
1124 		ret = xe_hwmon_fan_read(hwmon, attr, channel, val);
1125 		break;
1126 	default:
1127 		ret = -EOPNOTSUPP;
1128 		break;
1129 	}
1130 
1131 	xe_pm_runtime_put(hwmon->xe);
1132 
1133 	return ret;
1134 }
1135 
1136 static int
xe_hwmon_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)1137 xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
1138 	       int channel, long val)
1139 {
1140 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
1141 	int ret;
1142 
1143 	xe_pm_runtime_get(hwmon->xe);
1144 
1145 	switch (type) {
1146 	case hwmon_power:
1147 		ret = xe_hwmon_power_write(hwmon, attr, channel, val);
1148 		break;
1149 	case hwmon_curr:
1150 		ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
1151 		break;
1152 	default:
1153 		ret = -EOPNOTSUPP;
1154 		break;
1155 	}
1156 
1157 	xe_pm_runtime_put(hwmon->xe);
1158 
1159 	return ret;
1160 }
1161 
xe_hwmon_read_label(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1162 static int xe_hwmon_read_label(struct device *dev,
1163 			       enum hwmon_sensor_types type,
1164 			       u32 attr, int channel, const char **str)
1165 {
1166 	switch (type) {
1167 	case hwmon_temp:
1168 		if (channel == CHANNEL_PKG)
1169 			*str = "pkg";
1170 		else if (channel == CHANNEL_VRAM)
1171 			*str = "vram";
1172 		return 0;
1173 	case hwmon_power:
1174 	case hwmon_energy:
1175 	case hwmon_curr:
1176 	case hwmon_in:
1177 		if (channel == CHANNEL_CARD)
1178 			*str = "card";
1179 		else if (channel == CHANNEL_PKG)
1180 			*str = "pkg";
1181 		return 0;
1182 	default:
1183 		return -EOPNOTSUPP;
1184 	}
1185 }
1186 
1187 static const struct hwmon_ops hwmon_ops = {
1188 	.is_visible = xe_hwmon_is_visible,
1189 	.read = xe_hwmon_read,
1190 	.write = xe_hwmon_write,
1191 	.read_string = xe_hwmon_read_label,
1192 };
1193 
1194 static const struct hwmon_chip_info hwmon_chip_info = {
1195 	.ops = &hwmon_ops,
1196 	.info = hwmon_info,
1197 };
1198 
1199 static void
xe_hwmon_get_preregistration_info(struct xe_hwmon * hwmon)1200 xe_hwmon_get_preregistration_info(struct xe_hwmon *hwmon)
1201 {
1202 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
1203 	long energy, fan_speed;
1204 	u64 val_sku_unit = 0;
1205 	int channel;
1206 	struct xe_reg pkg_power_sku_unit;
1207 
1208 	if (hwmon->xe->info.has_mbx_power_limits) {
1209 		/* Check if GPU firmware support mailbox power limits commands. */
1210 		if (xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_CARD,
1211 						    &hwmon->pl1_on_boot[CHANNEL_CARD]) |
1212 		    xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_PKG,
1213 						    &hwmon->pl1_on_boot[CHANNEL_PKG]) |
1214 		    xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_CARD,
1215 						    &hwmon->pl2_on_boot[CHANNEL_CARD]) |
1216 		    xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_PKG,
1217 						    &hwmon->pl2_on_boot[CHANNEL_PKG])) {
1218 			drm_warn(&hwmon->xe->drm,
1219 				 "Failed to read power limits, check GPU firmware !\n");
1220 		} else {
1221 			drm_info(&hwmon->xe->drm, "Using mailbox commands for power limits\n");
1222 			/* Write default limits to read from pcode from now on. */
1223 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
1224 						       CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
1225 						       hwmon->pl1_on_boot[CHANNEL_CARD]);
1226 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
1227 						       CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
1228 						       hwmon->pl1_on_boot[CHANNEL_PKG]);
1229 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
1230 						       CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
1231 						       hwmon->pl2_on_boot[CHANNEL_CARD]);
1232 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
1233 						       CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
1234 						       hwmon->pl2_on_boot[CHANNEL_PKG]);
1235 			hwmon->scl_shift_power = PWR_UNIT;
1236 			hwmon->scl_shift_energy = ENERGY_UNIT;
1237 			hwmon->scl_shift_time = TIME_UNIT;
1238 			hwmon->boot_power_limit_read = true;
1239 		}
1240 	} else {
1241 		drm_info(&hwmon->xe->drm, "Using register for power limits\n");
1242 		/*
1243 		 * The contents of register PKG_POWER_SKU_UNIT do not change,
1244 		 * so read it once and store the shift values.
1245 		 */
1246 		pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
1247 		if (xe_reg_is_valid(pkg_power_sku_unit)) {
1248 			val_sku_unit = xe_mmio_read32(mmio, pkg_power_sku_unit);
1249 			hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
1250 			hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
1251 			hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
1252 		}
1253 	}
1254 	/*
1255 	 * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
1256 	 * first value of the energy register read
1257 	 */
1258 	for (channel = 0; channel < CHANNEL_MAX; channel++)
1259 		if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
1260 			xe_hwmon_energy_get(hwmon, channel, &energy);
1261 
1262 	/* Initialize 'struct xe_hwmon_fan_info' with initial fan register reading. */
1263 	for (channel = 0; channel < FAN_MAX; channel++)
1264 		if (xe_hwmon_is_visible(hwmon, hwmon_fan, hwmon_fan_input, channel))
1265 			xe_hwmon_fan_input_read(hwmon, channel, &fan_speed);
1266 }
1267 
xe_hwmon_mutex_destroy(void * arg)1268 static void xe_hwmon_mutex_destroy(void *arg)
1269 {
1270 	struct xe_hwmon *hwmon = arg;
1271 
1272 	mutex_destroy(&hwmon->hwmon_lock);
1273 }
1274 
xe_hwmon_register(struct xe_device * xe)1275 int xe_hwmon_register(struct xe_device *xe)
1276 {
1277 	struct device *dev = xe->drm.dev;
1278 	struct xe_hwmon *hwmon;
1279 	int ret;
1280 
1281 	/* hwmon is available only for dGfx */
1282 	if (!IS_DGFX(xe))
1283 		return 0;
1284 
1285 	/* hwmon is not available on VFs */
1286 	if (IS_SRIOV_VF(xe))
1287 		return 0;
1288 
1289 	hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
1290 	if (!hwmon)
1291 		return -ENOMEM;
1292 
1293 	mutex_init(&hwmon->hwmon_lock);
1294 	ret = devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon);
1295 	if (ret)
1296 		return ret;
1297 
1298 	/* There's only one instance of hwmon per device */
1299 	hwmon->xe = xe;
1300 	xe->hwmon = hwmon;
1301 
1302 	xe_hwmon_get_preregistration_info(hwmon);
1303 
1304 	drm_dbg(&xe->drm, "Register xe hwmon interface\n");
1305 
1306 	/*  hwmon_dev points to device hwmon<i> */
1307 	hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
1308 								&hwmon_chip_info,
1309 								hwmon_groups);
1310 	if (IS_ERR(hwmon->hwmon_dev)) {
1311 		drm_err(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
1312 		xe->hwmon = NULL;
1313 		return PTR_ERR(hwmon->hwmon_dev);
1314 	}
1315 
1316 	return 0;
1317 }
1318 MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");
1319