xref: /linux/drivers/gpu/drm/xe/xe_hw_engine.c (revision 6e5bea1c93062a43bc0435ae6cd589448094edaa)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_hw_engine.h"
7 
8 #include <linux/nospec.h>
9 
10 #include <drm/drm_managed.h>
11 #include <drm/drm_print.h>
12 #include <uapi/drm/xe_drm.h>
13 #include <generated/xe_wa_oob.h>
14 
15 #include "regs/xe_engine_regs.h"
16 #include "regs/xe_gt_regs.h"
17 #include "regs/xe_irq_regs.h"
18 #include "xe_assert.h"
19 #include "xe_bo.h"
20 #include "xe_device.h"
21 #include "xe_execlist.h"
22 #include "xe_force_wake.h"
23 #include "xe_gsc.h"
24 #include "xe_gt.h"
25 #include "xe_gt_ccs_mode.h"
26 #include "xe_gt_clock.h"
27 #include "xe_gt_printk.h"
28 #include "xe_gt_mcr.h"
29 #include "xe_gt_topology.h"
30 #include "xe_guc_capture.h"
31 #include "xe_hw_engine_group.h"
32 #include "xe_hw_fence.h"
33 #include "xe_irq.h"
34 #include "xe_lrc.h"
35 #include "xe_macros.h"
36 #include "xe_mmio.h"
37 #include "xe_reg_sr.h"
38 #include "xe_reg_whitelist.h"
39 #include "xe_rtp.h"
40 #include "xe_sched_job.h"
41 #include "xe_sriov.h"
42 #include "xe_tuning.h"
43 #include "xe_uc_fw.h"
44 #include "xe_wa.h"
45 
46 #define MAX_MMIO_BASES 3
47 struct engine_info {
48 	const char *name;
49 	unsigned int class : 8;
50 	unsigned int instance : 8;
51 	unsigned int irq_offset : 8;
52 	enum xe_force_wake_domains domain;
53 	u32 mmio_base;
54 };
55 
56 static const struct engine_info engine_infos[] = {
57 	[XE_HW_ENGINE_RCS0] = {
58 		.name = "rcs0",
59 		.class = XE_ENGINE_CLASS_RENDER,
60 		.instance = 0,
61 		.irq_offset = ilog2(INTR_RCS0),
62 		.domain = XE_FW_RENDER,
63 		.mmio_base = RENDER_RING_BASE,
64 	},
65 	[XE_HW_ENGINE_BCS0] = {
66 		.name = "bcs0",
67 		.class = XE_ENGINE_CLASS_COPY,
68 		.instance = 0,
69 		.irq_offset = ilog2(INTR_BCS(0)),
70 		.domain = XE_FW_RENDER,
71 		.mmio_base = BLT_RING_BASE,
72 	},
73 	[XE_HW_ENGINE_BCS1] = {
74 		.name = "bcs1",
75 		.class = XE_ENGINE_CLASS_COPY,
76 		.instance = 1,
77 		.irq_offset = ilog2(INTR_BCS(1)),
78 		.domain = XE_FW_RENDER,
79 		.mmio_base = XEHPC_BCS1_RING_BASE,
80 	},
81 	[XE_HW_ENGINE_BCS2] = {
82 		.name = "bcs2",
83 		.class = XE_ENGINE_CLASS_COPY,
84 		.instance = 2,
85 		.irq_offset = ilog2(INTR_BCS(2)),
86 		.domain = XE_FW_RENDER,
87 		.mmio_base = XEHPC_BCS2_RING_BASE,
88 	},
89 	[XE_HW_ENGINE_BCS3] = {
90 		.name = "bcs3",
91 		.class = XE_ENGINE_CLASS_COPY,
92 		.instance = 3,
93 		.irq_offset = ilog2(INTR_BCS(3)),
94 		.domain = XE_FW_RENDER,
95 		.mmio_base = XEHPC_BCS3_RING_BASE,
96 	},
97 	[XE_HW_ENGINE_BCS4] = {
98 		.name = "bcs4",
99 		.class = XE_ENGINE_CLASS_COPY,
100 		.instance = 4,
101 		.irq_offset = ilog2(INTR_BCS(4)),
102 		.domain = XE_FW_RENDER,
103 		.mmio_base = XEHPC_BCS4_RING_BASE,
104 	},
105 	[XE_HW_ENGINE_BCS5] = {
106 		.name = "bcs5",
107 		.class = XE_ENGINE_CLASS_COPY,
108 		.instance = 5,
109 		.irq_offset = ilog2(INTR_BCS(5)),
110 		.domain = XE_FW_RENDER,
111 		.mmio_base = XEHPC_BCS5_RING_BASE,
112 	},
113 	[XE_HW_ENGINE_BCS6] = {
114 		.name = "bcs6",
115 		.class = XE_ENGINE_CLASS_COPY,
116 		.instance = 6,
117 		.irq_offset = ilog2(INTR_BCS(6)),
118 		.domain = XE_FW_RENDER,
119 		.mmio_base = XEHPC_BCS6_RING_BASE,
120 	},
121 	[XE_HW_ENGINE_BCS7] = {
122 		.name = "bcs7",
123 		.class = XE_ENGINE_CLASS_COPY,
124 		.irq_offset = ilog2(INTR_BCS(7)),
125 		.instance = 7,
126 		.domain = XE_FW_RENDER,
127 		.mmio_base = XEHPC_BCS7_RING_BASE,
128 	},
129 	[XE_HW_ENGINE_BCS8] = {
130 		.name = "bcs8",
131 		.class = XE_ENGINE_CLASS_COPY,
132 		.instance = 8,
133 		.irq_offset = ilog2(INTR_BCS8),
134 		.domain = XE_FW_RENDER,
135 		.mmio_base = XEHPC_BCS8_RING_BASE,
136 	},
137 
138 	[XE_HW_ENGINE_VCS0] = {
139 		.name = "vcs0",
140 		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
141 		.instance = 0,
142 		.irq_offset = 32 + ilog2(INTR_VCS(0)),
143 		.domain = XE_FW_MEDIA_VDBOX0,
144 		.mmio_base = BSD_RING_BASE,
145 	},
146 	[XE_HW_ENGINE_VCS1] = {
147 		.name = "vcs1",
148 		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
149 		.instance = 1,
150 		.irq_offset = 32 + ilog2(INTR_VCS(1)),
151 		.domain = XE_FW_MEDIA_VDBOX1,
152 		.mmio_base = BSD2_RING_BASE,
153 	},
154 	[XE_HW_ENGINE_VCS2] = {
155 		.name = "vcs2",
156 		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
157 		.instance = 2,
158 		.irq_offset = 32 + ilog2(INTR_VCS(2)),
159 		.domain = XE_FW_MEDIA_VDBOX2,
160 		.mmio_base = BSD3_RING_BASE,
161 	},
162 	[XE_HW_ENGINE_VCS3] = {
163 		.name = "vcs3",
164 		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
165 		.instance = 3,
166 		.irq_offset = 32 + ilog2(INTR_VCS(3)),
167 		.domain = XE_FW_MEDIA_VDBOX3,
168 		.mmio_base = BSD4_RING_BASE,
169 	},
170 	[XE_HW_ENGINE_VCS4] = {
171 		.name = "vcs4",
172 		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
173 		.instance = 4,
174 		.irq_offset = 32 + ilog2(INTR_VCS(4)),
175 		.domain = XE_FW_MEDIA_VDBOX4,
176 		.mmio_base = XEHP_BSD5_RING_BASE,
177 	},
178 	[XE_HW_ENGINE_VCS5] = {
179 		.name = "vcs5",
180 		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
181 		.instance = 5,
182 		.irq_offset = 32 + ilog2(INTR_VCS(5)),
183 		.domain = XE_FW_MEDIA_VDBOX5,
184 		.mmio_base = XEHP_BSD6_RING_BASE,
185 	},
186 	[XE_HW_ENGINE_VCS6] = {
187 		.name = "vcs6",
188 		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
189 		.instance = 6,
190 		.irq_offset = 32 + ilog2(INTR_VCS(6)),
191 		.domain = XE_FW_MEDIA_VDBOX6,
192 		.mmio_base = XEHP_BSD7_RING_BASE,
193 	},
194 	[XE_HW_ENGINE_VCS7] = {
195 		.name = "vcs7",
196 		.class = XE_ENGINE_CLASS_VIDEO_DECODE,
197 		.instance = 7,
198 		.irq_offset = 32 + ilog2(INTR_VCS(7)),
199 		.domain = XE_FW_MEDIA_VDBOX7,
200 		.mmio_base = XEHP_BSD8_RING_BASE,
201 	},
202 	[XE_HW_ENGINE_VECS0] = {
203 		.name = "vecs0",
204 		.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
205 		.instance = 0,
206 		.irq_offset = 32 + ilog2(INTR_VECS(0)),
207 		.domain = XE_FW_MEDIA_VEBOX0,
208 		.mmio_base = VEBOX_RING_BASE,
209 	},
210 	[XE_HW_ENGINE_VECS1] = {
211 		.name = "vecs1",
212 		.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
213 		.instance = 1,
214 		.irq_offset = 32 + ilog2(INTR_VECS(1)),
215 		.domain = XE_FW_MEDIA_VEBOX1,
216 		.mmio_base = VEBOX2_RING_BASE,
217 	},
218 	[XE_HW_ENGINE_VECS2] = {
219 		.name = "vecs2",
220 		.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
221 		.instance = 2,
222 		.irq_offset = 32 + ilog2(INTR_VECS(2)),
223 		.domain = XE_FW_MEDIA_VEBOX2,
224 		.mmio_base = XEHP_VEBOX3_RING_BASE,
225 	},
226 	[XE_HW_ENGINE_VECS3] = {
227 		.name = "vecs3",
228 		.class = XE_ENGINE_CLASS_VIDEO_ENHANCE,
229 		.instance = 3,
230 		.irq_offset = 32 + ilog2(INTR_VECS(3)),
231 		.domain = XE_FW_MEDIA_VEBOX3,
232 		.mmio_base = XEHP_VEBOX4_RING_BASE,
233 	},
234 	[XE_HW_ENGINE_CCS0] = {
235 		.name = "ccs0",
236 		.class = XE_ENGINE_CLASS_COMPUTE,
237 		.instance = 0,
238 		.irq_offset = ilog2(INTR_CCS(0)),
239 		.domain = XE_FW_RENDER,
240 		.mmio_base = COMPUTE0_RING_BASE,
241 	},
242 	[XE_HW_ENGINE_CCS1] = {
243 		.name = "ccs1",
244 		.class = XE_ENGINE_CLASS_COMPUTE,
245 		.instance = 1,
246 		.irq_offset = ilog2(INTR_CCS(1)),
247 		.domain = XE_FW_RENDER,
248 		.mmio_base = COMPUTE1_RING_BASE,
249 	},
250 	[XE_HW_ENGINE_CCS2] = {
251 		.name = "ccs2",
252 		.class = XE_ENGINE_CLASS_COMPUTE,
253 		.instance = 2,
254 		.irq_offset = ilog2(INTR_CCS(2)),
255 		.domain = XE_FW_RENDER,
256 		.mmio_base = COMPUTE2_RING_BASE,
257 	},
258 	[XE_HW_ENGINE_CCS3] = {
259 		.name = "ccs3",
260 		.class = XE_ENGINE_CLASS_COMPUTE,
261 		.instance = 3,
262 		.irq_offset = ilog2(INTR_CCS(3)),
263 		.domain = XE_FW_RENDER,
264 		.mmio_base = COMPUTE3_RING_BASE,
265 	},
266 	[XE_HW_ENGINE_GSCCS0] = {
267 		.name = "gsccs0",
268 		.class = XE_ENGINE_CLASS_OTHER,
269 		.instance = OTHER_GSC_INSTANCE,
270 		.domain = XE_FW_GSC,
271 		.mmio_base = GSCCS_RING_BASE,
272 	},
273 };
274 
hw_engine_fini(void * arg)275 static void hw_engine_fini(void *arg)
276 {
277 	struct xe_hw_engine *hwe = arg;
278 
279 	if (hwe->exl_port)
280 		xe_execlist_port_destroy(hwe->exl_port);
281 
282 	hwe->gt = NULL;
283 }
284 
285 /**
286  * xe_hw_engine_mmio_write32() - Write engine register
287  * @hwe: engine
288  * @reg: register to write into
289  * @val: desired 32-bit value to write
290  *
291  * This function will write val into an engine specific register.
292  * Forcewake must be held by the caller.
293  *
294  */
xe_hw_engine_mmio_write32(struct xe_hw_engine * hwe,struct xe_reg reg,u32 val)295 void xe_hw_engine_mmio_write32(struct xe_hw_engine *hwe,
296 			       struct xe_reg reg, u32 val)
297 {
298 	xe_gt_assert(hwe->gt, !(reg.addr & hwe->mmio_base));
299 	xe_force_wake_assert_held(gt_to_fw(hwe->gt), hwe->domain);
300 
301 	reg.addr += hwe->mmio_base;
302 
303 	xe_mmio_write32(&hwe->gt->mmio, reg, val);
304 }
305 
306 /**
307  * xe_hw_engine_mmio_read32() - Read engine register
308  * @hwe: engine
309  * @reg: register to read from
310  *
311  * This function will read from an engine specific register.
312  * Forcewake must be held by the caller.
313  *
314  * Return: value of the 32-bit register.
315  */
xe_hw_engine_mmio_read32(struct xe_hw_engine * hwe,struct xe_reg reg)316 u32 xe_hw_engine_mmio_read32(struct xe_hw_engine *hwe, struct xe_reg reg)
317 {
318 	xe_gt_assert(hwe->gt, !(reg.addr & hwe->mmio_base));
319 	xe_force_wake_assert_held(gt_to_fw(hwe->gt), hwe->domain);
320 
321 	reg.addr += hwe->mmio_base;
322 
323 	return xe_mmio_read32(&hwe->gt->mmio, reg);
324 }
325 
xe_hw_engine_enable_ring(struct xe_hw_engine * hwe)326 void xe_hw_engine_enable_ring(struct xe_hw_engine *hwe)
327 {
328 	u32 ccs_mask =
329 		xe_hw_engine_mask_per_class(hwe->gt, XE_ENGINE_CLASS_COMPUTE);
330 	u32 ring_mode = _MASKED_BIT_ENABLE(GFX_DISABLE_LEGACY_MODE);
331 
332 	if (hwe->class == XE_ENGINE_CLASS_COMPUTE && ccs_mask)
333 		xe_mmio_write32(&hwe->gt->mmio, RCU_MODE,
334 				_MASKED_BIT_ENABLE(RCU_MODE_CCS_ENABLE));
335 
336 	xe_hw_engine_mmio_write32(hwe, RING_HWSTAM(0), ~0x0);
337 	xe_hw_engine_mmio_write32(hwe, RING_HWS_PGA(0),
338 				  xe_bo_ggtt_addr(hwe->hwsp));
339 
340 	if (xe_device_has_msix(gt_to_xe(hwe->gt)))
341 		ring_mode |= _MASKED_BIT_ENABLE(GFX_MSIX_INTERRUPT_ENABLE);
342 	xe_hw_engine_mmio_write32(hwe, RING_MODE(0), ring_mode);
343 	xe_hw_engine_mmio_write32(hwe, RING_MI_MODE(0),
344 				  _MASKED_BIT_DISABLE(STOP_RING));
345 	xe_hw_engine_mmio_read32(hwe, RING_MI_MODE(0));
346 }
347 
xe_hw_engine_match_fixed_cslice_mode(const struct xe_gt * gt,const struct xe_hw_engine * hwe)348 static bool xe_hw_engine_match_fixed_cslice_mode(const struct xe_gt *gt,
349 						 const struct xe_hw_engine *hwe)
350 {
351 	return xe_gt_ccs_mode_enabled(gt) &&
352 	       xe_rtp_match_first_render_or_compute(gt, hwe);
353 }
354 
xe_rtp_cfeg_wmtp_disabled(const struct xe_gt * gt,const struct xe_hw_engine * hwe)355 static bool xe_rtp_cfeg_wmtp_disabled(const struct xe_gt *gt,
356 				      const struct xe_hw_engine *hwe)
357 {
358 	if (GRAPHICS_VER(gt_to_xe(gt)) < 20)
359 		return false;
360 
361 	if (hwe->class != XE_ENGINE_CLASS_COMPUTE &&
362 	    hwe->class != XE_ENGINE_CLASS_RENDER)
363 		return false;
364 
365 	return xe_mmio_read32(&hwe->gt->mmio, XEHP_FUSE4) & CFEG_WMTP_DISABLE;
366 }
367 
368 void
xe_hw_engine_setup_default_lrc_state(struct xe_hw_engine * hwe)369 xe_hw_engine_setup_default_lrc_state(struct xe_hw_engine *hwe)
370 {
371 	struct xe_gt *gt = hwe->gt;
372 	const u8 mocs_write_idx = gt->mocs.uc_index;
373 	const u8 mocs_read_idx = gt->mocs.uc_index;
374 	u32 blit_cctl_val = REG_FIELD_PREP(BLIT_CCTL_DST_MOCS_MASK, mocs_write_idx) |
375 			    REG_FIELD_PREP(BLIT_CCTL_SRC_MOCS_MASK, mocs_read_idx);
376 	struct xe_rtp_process_ctx ctx = XE_RTP_PROCESS_CTX_INITIALIZER(hwe);
377 	const struct xe_rtp_entry_sr lrc_setup[] = {
378 		/*
379 		 * Some blitter commands do not have a field for MOCS, those
380 		 * commands will use MOCS index pointed by BLIT_CCTL.
381 		 * BLIT_CCTL registers are needed to be programmed to un-cached.
382 		 */
383 		{ XE_RTP_NAME("BLIT_CCTL_default_MOCS"),
384 		  XE_RTP_RULES(GRAPHICS_VERSION_RANGE(1200, XE_RTP_END_VERSION_UNDEFINED),
385 			       ENGINE_CLASS(COPY)),
386 		  XE_RTP_ACTIONS(FIELD_SET(BLIT_CCTL(0),
387 				 BLIT_CCTL_DST_MOCS_MASK |
388 				 BLIT_CCTL_SRC_MOCS_MASK,
389 				 blit_cctl_val,
390 				 XE_RTP_ACTION_FLAG(ENGINE_BASE)))
391 		},
392 		/* Disable WMTP if HW doesn't support it */
393 		{ XE_RTP_NAME("DISABLE_WMTP_ON_UNSUPPORTED_HW"),
394 		  XE_RTP_RULES(FUNC(xe_rtp_cfeg_wmtp_disabled)),
395 		  XE_RTP_ACTIONS(FIELD_SET(CS_CHICKEN1(0),
396 					   PREEMPT_GPGPU_LEVEL_MASK,
397 					   PREEMPT_GPGPU_THREAD_GROUP_LEVEL)),
398 		  XE_RTP_ENTRY_FLAG(FOREACH_ENGINE)
399 		},
400 	};
401 
402 	xe_rtp_process_to_sr(&ctx, lrc_setup, ARRAY_SIZE(lrc_setup), &hwe->reg_lrc);
403 }
404 
405 static void
hw_engine_setup_default_state(struct xe_hw_engine * hwe)406 hw_engine_setup_default_state(struct xe_hw_engine *hwe)
407 {
408 	struct xe_gt *gt = hwe->gt;
409 	struct xe_device *xe = gt_to_xe(gt);
410 	/*
411 	 * RING_CMD_CCTL specifies the default MOCS entry that will be
412 	 * used by the command streamer when executing commands that
413 	 * don't have a way to explicitly specify a MOCS setting.
414 	 * The default should usually reference whichever MOCS entry
415 	 * corresponds to uncached behavior, although use of a WB cached
416 	 * entry is recommended by the spec in certain circumstances on
417 	 * specific platforms.
418 	 * Bspec: 72161
419 	 */
420 	const u8 mocs_write_idx = gt->mocs.uc_index;
421 	const u8 mocs_read_idx = hwe->class == XE_ENGINE_CLASS_COMPUTE && IS_DGFX(xe) &&
422 				 (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC) ?
423 				 gt->mocs.wb_index : gt->mocs.uc_index;
424 	u32 ring_cmd_cctl_val = REG_FIELD_PREP(CMD_CCTL_WRITE_OVERRIDE_MASK, mocs_write_idx) |
425 				REG_FIELD_PREP(CMD_CCTL_READ_OVERRIDE_MASK, mocs_read_idx);
426 	struct xe_rtp_process_ctx ctx = XE_RTP_PROCESS_CTX_INITIALIZER(hwe);
427 	const struct xe_rtp_entry_sr engine_entries[] = {
428 		{ XE_RTP_NAME("RING_CMD_CCTL_default_MOCS"),
429 		  XE_RTP_RULES(GRAPHICS_VERSION_RANGE(1200, XE_RTP_END_VERSION_UNDEFINED)),
430 		  XE_RTP_ACTIONS(FIELD_SET(RING_CMD_CCTL(0),
431 					   CMD_CCTL_WRITE_OVERRIDE_MASK |
432 					   CMD_CCTL_READ_OVERRIDE_MASK,
433 					   ring_cmd_cctl_val,
434 					   XE_RTP_ACTION_FLAG(ENGINE_BASE)))
435 		},
436 		/*
437 		 * To allow the GSC engine to go idle on MTL we need to enable
438 		 * idle messaging and set the hysteresis value (we use 0xA=5us
439 		 * as recommended in spec). On platforms after MTL this is
440 		 * enabled by default.
441 		 */
442 		{ XE_RTP_NAME("MTL GSCCS IDLE MSG enable"),
443 		  XE_RTP_RULES(MEDIA_VERSION(1300), ENGINE_CLASS(OTHER)),
444 		  XE_RTP_ACTIONS(CLR(RING_PSMI_CTL(0),
445 				     IDLE_MSG_DISABLE,
446 				     XE_RTP_ACTION_FLAG(ENGINE_BASE)),
447 				 FIELD_SET(RING_PWRCTX_MAXCNT(0),
448 					   IDLE_WAIT_TIME,
449 					   0xA,
450 					   XE_RTP_ACTION_FLAG(ENGINE_BASE)))
451 		},
452 		/* Enable Priority Mem Read */
453 		{ XE_RTP_NAME("Priority_Mem_Read"),
454 		  XE_RTP_RULES(GRAPHICS_VERSION_RANGE(2001, XE_RTP_END_VERSION_UNDEFINED)),
455 		  XE_RTP_ACTIONS(SET(CSFE_CHICKEN1(0), CS_PRIORITY_MEM_READ,
456 				     XE_RTP_ACTION_FLAG(ENGINE_BASE)))
457 		},
458 		/* Use Fixed slice CCS mode */
459 		{ XE_RTP_NAME("RCU_MODE_FIXED_SLICE_CCS_MODE"),
460 		  XE_RTP_RULES(FUNC(xe_hw_engine_match_fixed_cslice_mode)),
461 		  XE_RTP_ACTIONS(FIELD_SET(RCU_MODE, RCU_MODE_FIXED_SLICE_CCS_MODE,
462 					   RCU_MODE_FIXED_SLICE_CCS_MODE))
463 		},
464 	};
465 
466 	xe_rtp_process_to_sr(&ctx, engine_entries, ARRAY_SIZE(engine_entries), &hwe->reg_sr);
467 }
468 
find_engine_info(enum xe_engine_class class,int instance)469 static const struct engine_info *find_engine_info(enum xe_engine_class class, int instance)
470 {
471 	const struct engine_info *info;
472 	enum xe_hw_engine_id id;
473 
474 	for (id = 0; id < XE_NUM_HW_ENGINES; ++id) {
475 		info = &engine_infos[id];
476 		if (info->class == class && info->instance == instance)
477 			return info;
478 	}
479 
480 	return NULL;
481 }
482 
get_msix_irq_offset(struct xe_gt * gt,enum xe_engine_class class)483 static u16 get_msix_irq_offset(struct xe_gt *gt, enum xe_engine_class class)
484 {
485 	/* For MSI-X, hw engines report to offset of engine instance zero */
486 	const struct engine_info *info = find_engine_info(class, 0);
487 
488 	xe_gt_assert(gt, info);
489 
490 	return info ? info->irq_offset : 0;
491 }
492 
hw_engine_init_early(struct xe_gt * gt,struct xe_hw_engine * hwe,enum xe_hw_engine_id id)493 static void hw_engine_init_early(struct xe_gt *gt, struct xe_hw_engine *hwe,
494 				 enum xe_hw_engine_id id)
495 {
496 	const struct engine_info *info;
497 
498 	if (WARN_ON(id >= ARRAY_SIZE(engine_infos) || !engine_infos[id].name))
499 		return;
500 
501 	if (!(gt->info.engine_mask & BIT(id)))
502 		return;
503 
504 	info = &engine_infos[id];
505 
506 	xe_gt_assert(gt, !hwe->gt);
507 
508 	hwe->gt = gt;
509 	hwe->class = info->class;
510 	hwe->instance = info->instance;
511 	hwe->mmio_base = info->mmio_base;
512 	hwe->irq_offset = xe_device_has_msix(gt_to_xe(gt)) ?
513 		get_msix_irq_offset(gt, info->class) :
514 		info->irq_offset;
515 	hwe->domain = info->domain;
516 	hwe->name = info->name;
517 	hwe->fence_irq = &gt->fence_irq[info->class];
518 	hwe->engine_id = id;
519 
520 	hwe->eclass = &gt->eclass[hwe->class];
521 	if (!hwe->eclass->sched_props.job_timeout_ms) {
522 		hwe->eclass->sched_props.job_timeout_ms = 5 * 1000;
523 		hwe->eclass->sched_props.job_timeout_min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
524 		hwe->eclass->sched_props.job_timeout_max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
525 		hwe->eclass->sched_props.timeslice_us = 1 * 1000;
526 		hwe->eclass->sched_props.timeslice_min = XE_HW_ENGINE_TIMESLICE_MIN;
527 		hwe->eclass->sched_props.timeslice_max = XE_HW_ENGINE_TIMESLICE_MAX;
528 		hwe->eclass->sched_props.preempt_timeout_us = XE_HW_ENGINE_PREEMPT_TIMEOUT;
529 		hwe->eclass->sched_props.preempt_timeout_min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
530 		hwe->eclass->sched_props.preempt_timeout_max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
531 
532 		/*
533 		 * The GSC engine can accept submissions while the GSC shim is
534 		 * being reset, during which time the submission is stalled. In
535 		 * the worst case, the shim reset can take up to the maximum GSC
536 		 * command execution time (250ms), so the request start can be
537 		 * delayed by that much; the request itself can take that long
538 		 * without being preemptible, which means worst case it can
539 		 * theoretically take up to 500ms for a preemption to go through
540 		 * on the GSC engine. Adding to that an extra 100ms as a safety
541 		 * margin, we get a minimum recommended timeout of 600ms.
542 		 * The preempt_timeout value can't be tuned for OTHER_CLASS
543 		 * because the class is reserved for kernel usage, so we just
544 		 * need to make sure that the starting value is above that
545 		 * threshold; since our default value (640ms) is greater than
546 		 * 600ms, the only way we can go below is via a kconfig setting.
547 		 * If that happens, log it in dmesg and update the value.
548 		 */
549 		if (hwe->class == XE_ENGINE_CLASS_OTHER) {
550 			const u32 min_preempt_timeout = 600 * 1000;
551 			if (hwe->eclass->sched_props.preempt_timeout_us < min_preempt_timeout) {
552 				hwe->eclass->sched_props.preempt_timeout_us = min_preempt_timeout;
553 				xe_gt_notice(gt, "Increasing preempt_timeout for GSC to 600ms\n");
554 			}
555 		}
556 
557 		/* Record default props */
558 		hwe->eclass->defaults = hwe->eclass->sched_props;
559 	}
560 
561 	xe_reg_sr_init(&hwe->reg_sr, hwe->name, gt_to_xe(gt));
562 	xe_tuning_process_engine(hwe);
563 	xe_wa_process_engine(hwe);
564 	hw_engine_setup_default_state(hwe);
565 
566 	xe_reg_sr_init(&hwe->reg_whitelist, hwe->name, gt_to_xe(gt));
567 	xe_reg_whitelist_process_engine(hwe);
568 }
569 
adjust_idledly(struct xe_hw_engine * hwe)570 static void adjust_idledly(struct xe_hw_engine *hwe)
571 {
572 	struct xe_gt *gt = hwe->gt;
573 	u32 idledly, maxcnt;
574 	u32 idledly_units_ps = 8 * gt->info.timestamp_base;
575 	u32 maxcnt_units_ns = 640;
576 	bool inhibit_switch = 0;
577 
578 	if (!IS_SRIOV_VF(gt_to_xe(hwe->gt)) && XE_WA(gt, 16023105232)) {
579 		idledly = xe_mmio_read32(&gt->mmio, RING_IDLEDLY(hwe->mmio_base));
580 		maxcnt = xe_mmio_read32(&gt->mmio, RING_PWRCTX_MAXCNT(hwe->mmio_base));
581 
582 		inhibit_switch = idledly & INHIBIT_SWITCH_UNTIL_PREEMPTED;
583 		idledly = REG_FIELD_GET(IDLE_DELAY, idledly);
584 		idledly = DIV_ROUND_CLOSEST(idledly * idledly_units_ps, 1000);
585 		maxcnt = REG_FIELD_GET(IDLE_WAIT_TIME, maxcnt);
586 		maxcnt *= maxcnt_units_ns;
587 
588 		if (xe_gt_WARN_ON(gt, idledly >= maxcnt || inhibit_switch)) {
589 			idledly = DIV_ROUND_CLOSEST(((maxcnt - 1) * maxcnt_units_ns),
590 						    idledly_units_ps);
591 			idledly = DIV_ROUND_CLOSEST(idledly, 1000);
592 			xe_mmio_write32(&gt->mmio, RING_IDLEDLY(hwe->mmio_base), idledly);
593 		}
594 	}
595 }
596 
hw_engine_init(struct xe_gt * gt,struct xe_hw_engine * hwe,enum xe_hw_engine_id id)597 static int hw_engine_init(struct xe_gt *gt, struct xe_hw_engine *hwe,
598 			  enum xe_hw_engine_id id)
599 {
600 	struct xe_device *xe = gt_to_xe(gt);
601 	struct xe_tile *tile = gt_to_tile(gt);
602 	int err;
603 
604 	xe_gt_assert(gt, id < ARRAY_SIZE(engine_infos) && engine_infos[id].name);
605 	xe_gt_assert(gt, gt->info.engine_mask & BIT(id));
606 
607 	xe_reg_sr_apply_mmio(&hwe->reg_sr, gt);
608 
609 	hwe->hwsp = xe_managed_bo_create_pin_map(xe, tile, SZ_4K,
610 						 XE_BO_FLAG_VRAM_IF_DGFX(tile) |
611 						 XE_BO_FLAG_GGTT |
612 						 XE_BO_FLAG_GGTT_INVALIDATE);
613 	if (IS_ERR(hwe->hwsp)) {
614 		err = PTR_ERR(hwe->hwsp);
615 		goto err_name;
616 	}
617 
618 	if (!xe_device_uc_enabled(xe)) {
619 		hwe->exl_port = xe_execlist_port_create(xe, hwe);
620 		if (IS_ERR(hwe->exl_port)) {
621 			err = PTR_ERR(hwe->exl_port);
622 			goto err_hwsp;
623 		}
624 	} else {
625 		/* GSCCS has a special interrupt for reset */
626 		if (hwe->class == XE_ENGINE_CLASS_OTHER)
627 			hwe->irq_handler = xe_gsc_hwe_irq_handler;
628 
629 		if (!IS_SRIOV_VF(xe))
630 			xe_hw_engine_enable_ring(hwe);
631 	}
632 
633 	/* We reserve the highest BCS instance for USM */
634 	if (xe->info.has_usm && hwe->class == XE_ENGINE_CLASS_COPY)
635 		gt->usm.reserved_bcs_instance = hwe->instance;
636 
637 	/* Ensure IDLEDLY is lower than MAXCNT */
638 	adjust_idledly(hwe);
639 
640 	return devm_add_action_or_reset(xe->drm.dev, hw_engine_fini, hwe);
641 
642 err_hwsp:
643 	xe_bo_unpin_map_no_vm(hwe->hwsp);
644 err_name:
645 	hwe->name = NULL;
646 
647 	return err;
648 }
649 
hw_engine_setup_logical_mapping(struct xe_gt * gt)650 static void hw_engine_setup_logical_mapping(struct xe_gt *gt)
651 {
652 	int class;
653 
654 	/* FIXME: Doing a simple logical mapping that works for most hardware */
655 	for (class = 0; class < XE_ENGINE_CLASS_MAX; ++class) {
656 		struct xe_hw_engine *hwe;
657 		enum xe_hw_engine_id id;
658 		int logical_instance = 0;
659 
660 		for_each_hw_engine(hwe, gt, id)
661 			if (hwe->class == class)
662 				hwe->logical_instance = logical_instance++;
663 	}
664 }
665 
read_media_fuses(struct xe_gt * gt)666 static void read_media_fuses(struct xe_gt *gt)
667 {
668 	struct xe_device *xe = gt_to_xe(gt);
669 	u32 media_fuse;
670 	u16 vdbox_mask;
671 	u16 vebox_mask;
672 	int i, j;
673 
674 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
675 
676 	media_fuse = xe_mmio_read32(&gt->mmio, GT_VEBOX_VDBOX_DISABLE);
677 
678 	/*
679 	 * Pre-Xe_HP platforms had register bits representing absent engines,
680 	 * whereas Xe_HP and beyond have bits representing present engines.
681 	 * Invert the polarity on old platforms so that we can use common
682 	 * handling below.
683 	 */
684 	if (GRAPHICS_VERx100(xe) < 1250)
685 		media_fuse = ~media_fuse;
686 
687 	vdbox_mask = REG_FIELD_GET(GT_VDBOX_DISABLE_MASK, media_fuse);
688 	vebox_mask = REG_FIELD_GET(GT_VEBOX_DISABLE_MASK, media_fuse);
689 
690 	for (i = XE_HW_ENGINE_VCS0, j = 0; i <= XE_HW_ENGINE_VCS7; ++i, ++j) {
691 		if (!(gt->info.engine_mask & BIT(i)))
692 			continue;
693 
694 		if (!(BIT(j) & vdbox_mask)) {
695 			gt->info.engine_mask &= ~BIT(i);
696 			drm_info(&xe->drm, "vcs%u fused off\n", j);
697 		}
698 	}
699 
700 	for (i = XE_HW_ENGINE_VECS0, j = 0; i <= XE_HW_ENGINE_VECS3; ++i, ++j) {
701 		if (!(gt->info.engine_mask & BIT(i)))
702 			continue;
703 
704 		if (!(BIT(j) & vebox_mask)) {
705 			gt->info.engine_mask &= ~BIT(i);
706 			drm_info(&xe->drm, "vecs%u fused off\n", j);
707 		}
708 	}
709 }
710 
read_copy_fuses(struct xe_gt * gt)711 static void read_copy_fuses(struct xe_gt *gt)
712 {
713 	struct xe_device *xe = gt_to_xe(gt);
714 	u32 bcs_mask;
715 
716 	if (GRAPHICS_VERx100(xe) < 1260 || GRAPHICS_VERx100(xe) >= 1270)
717 		return;
718 
719 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
720 
721 	bcs_mask = xe_mmio_read32(&gt->mmio, MIRROR_FUSE3);
722 	bcs_mask = REG_FIELD_GET(MEML3_EN_MASK, bcs_mask);
723 
724 	/* BCS0 is always present; only BCS1-BCS8 may be fused off */
725 	for (int i = XE_HW_ENGINE_BCS1, j = 0; i <= XE_HW_ENGINE_BCS8; ++i, ++j) {
726 		if (!(gt->info.engine_mask & BIT(i)))
727 			continue;
728 
729 		if (!(BIT(j / 2) & bcs_mask)) {
730 			gt->info.engine_mask &= ~BIT(i);
731 			drm_info(&xe->drm, "bcs%u fused off\n", j);
732 		}
733 	}
734 }
735 
read_compute_fuses_from_dss(struct xe_gt * gt)736 static void read_compute_fuses_from_dss(struct xe_gt *gt)
737 {
738 	struct xe_device *xe = gt_to_xe(gt);
739 
740 	/*
741 	 * CCS fusing based on DSS masks only applies to platforms that can
742 	 * have more than one CCS.
743 	 */
744 	if (hweight64(gt->info.engine_mask &
745 		      GENMASK_ULL(XE_HW_ENGINE_CCS3, XE_HW_ENGINE_CCS0)) <= 1)
746 		return;
747 
748 	/*
749 	 * CCS availability on Xe_HP is inferred from the presence of DSS in
750 	 * each quadrant.
751 	 */
752 	for (int i = XE_HW_ENGINE_CCS0, j = 0; i <= XE_HW_ENGINE_CCS3; ++i, ++j) {
753 		if (!(gt->info.engine_mask & BIT(i)))
754 			continue;
755 
756 		if (!xe_gt_topology_has_dss_in_quadrant(gt, j)) {
757 			gt->info.engine_mask &= ~BIT(i);
758 			drm_info(&xe->drm, "ccs%u fused off\n", j);
759 		}
760 	}
761 }
762 
read_compute_fuses_from_reg(struct xe_gt * gt)763 static void read_compute_fuses_from_reg(struct xe_gt *gt)
764 {
765 	struct xe_device *xe = gt_to_xe(gt);
766 	u32 ccs_mask;
767 
768 	ccs_mask = xe_mmio_read32(&gt->mmio, XEHP_FUSE4);
769 	ccs_mask = REG_FIELD_GET(CCS_EN_MASK, ccs_mask);
770 
771 	for (int i = XE_HW_ENGINE_CCS0, j = 0; i <= XE_HW_ENGINE_CCS3; ++i, ++j) {
772 		if (!(gt->info.engine_mask & BIT(i)))
773 			continue;
774 
775 		if ((ccs_mask & BIT(j)) == 0) {
776 			gt->info.engine_mask &= ~BIT(i);
777 			drm_info(&xe->drm, "ccs%u fused off\n", j);
778 		}
779 	}
780 }
781 
read_compute_fuses(struct xe_gt * gt)782 static void read_compute_fuses(struct xe_gt *gt)
783 {
784 	if (GRAPHICS_VER(gt_to_xe(gt)) >= 20)
785 		read_compute_fuses_from_reg(gt);
786 	else
787 		read_compute_fuses_from_dss(gt);
788 }
789 
check_gsc_availability(struct xe_gt * gt)790 static void check_gsc_availability(struct xe_gt *gt)
791 {
792 	struct xe_device *xe = gt_to_xe(gt);
793 
794 	if (!(gt->info.engine_mask & BIT(XE_HW_ENGINE_GSCCS0)))
795 		return;
796 
797 	/*
798 	 * The GSCCS is only used to communicate with the GSC FW, so if we don't
799 	 * have the FW there is nothing we need the engine for and can therefore
800 	 * skip its initialization.
801 	 */
802 	if (!xe_uc_fw_is_available(&gt->uc.gsc.fw)) {
803 		gt->info.engine_mask &= ~BIT(XE_HW_ENGINE_GSCCS0);
804 
805 		/* interrupts where previously enabled, so turn them off */
806 		xe_mmio_write32(&gt->mmio, GUNIT_GSC_INTR_ENABLE, 0);
807 		xe_mmio_write32(&gt->mmio, GUNIT_GSC_INTR_MASK, ~0);
808 
809 		drm_dbg(&xe->drm, "GSC FW not used, disabling gsccs\n");
810 	}
811 }
812 
xe_hw_engines_init_early(struct xe_gt * gt)813 int xe_hw_engines_init_early(struct xe_gt *gt)
814 {
815 	int i;
816 
817 	read_media_fuses(gt);
818 	read_copy_fuses(gt);
819 	read_compute_fuses(gt);
820 	check_gsc_availability(gt);
821 
822 	BUILD_BUG_ON(XE_HW_ENGINE_PREEMPT_TIMEOUT < XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN);
823 	BUILD_BUG_ON(XE_HW_ENGINE_PREEMPT_TIMEOUT > XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX);
824 
825 	for (i = 0; i < ARRAY_SIZE(gt->hw_engines); i++)
826 		hw_engine_init_early(gt, &gt->hw_engines[i], i);
827 
828 	return 0;
829 }
830 
xe_hw_engines_init(struct xe_gt * gt)831 int xe_hw_engines_init(struct xe_gt *gt)
832 {
833 	int err;
834 	struct xe_hw_engine *hwe;
835 	enum xe_hw_engine_id id;
836 
837 	for_each_hw_engine(hwe, gt, id) {
838 		err = hw_engine_init(gt, hwe, id);
839 		if (err)
840 			return err;
841 	}
842 
843 	hw_engine_setup_logical_mapping(gt);
844 	err = xe_hw_engine_setup_groups(gt);
845 	if (err)
846 		return err;
847 
848 	return 0;
849 }
850 
xe_hw_engine_handle_irq(struct xe_hw_engine * hwe,u16 intr_vec)851 void xe_hw_engine_handle_irq(struct xe_hw_engine *hwe, u16 intr_vec)
852 {
853 	wake_up_all(&gt_to_xe(hwe->gt)->ufence_wq);
854 
855 	if (hwe->irq_handler)
856 		hwe->irq_handler(hwe, intr_vec);
857 
858 	if (intr_vec & GT_RENDER_USER_INTERRUPT)
859 		xe_hw_fence_irq_run(hwe->fence_irq);
860 }
861 
862 /**
863  * xe_hw_engine_snapshot_capture - Take a quick snapshot of the HW Engine.
864  * @hwe: Xe HW Engine.
865  * @q: The exec queue object.
866  *
867  * This can be printed out in a later stage like during dev_coredump
868  * analysis.
869  *
870  * Returns: a Xe HW Engine snapshot object that must be freed by the
871  * caller, using `xe_hw_engine_snapshot_free`.
872  */
873 struct xe_hw_engine_snapshot *
xe_hw_engine_snapshot_capture(struct xe_hw_engine * hwe,struct xe_exec_queue * q)874 xe_hw_engine_snapshot_capture(struct xe_hw_engine *hwe, struct xe_exec_queue *q)
875 {
876 	struct xe_hw_engine_snapshot *snapshot;
877 	struct __guc_capture_parsed_output *node;
878 
879 	if (!xe_hw_engine_is_valid(hwe))
880 		return NULL;
881 
882 	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
883 
884 	if (!snapshot)
885 		return NULL;
886 
887 	snapshot->name = kstrdup(hwe->name, GFP_ATOMIC);
888 	snapshot->hwe = hwe;
889 	snapshot->logical_instance = hwe->logical_instance;
890 	snapshot->forcewake.domain = hwe->domain;
891 	snapshot->forcewake.ref = xe_force_wake_ref(gt_to_fw(hwe->gt),
892 						    hwe->domain);
893 	snapshot->mmio_base = hwe->mmio_base;
894 	snapshot->kernel_reserved = xe_hw_engine_is_reserved(hwe);
895 
896 	/* no more VF accessible data below this point */
897 	if (IS_SRIOV_VF(gt_to_xe(hwe->gt)))
898 		return snapshot;
899 
900 	if (q) {
901 		/* If got guc capture, set source to GuC */
902 		node = xe_guc_capture_get_matching_and_lock(q);
903 		if (node) {
904 			struct xe_device *xe = gt_to_xe(hwe->gt);
905 			struct xe_devcoredump *coredump = &xe->devcoredump;
906 
907 			coredump->snapshot.matched_node = node;
908 			xe_gt_dbg(hwe->gt, "Found and locked GuC-err-capture node");
909 			return snapshot;
910 		}
911 	}
912 
913 	/* otherwise, do manual capture */
914 	xe_engine_manual_capture(hwe, snapshot);
915 	xe_gt_dbg(hwe->gt, "Proceeding with manual engine snapshot");
916 
917 	return snapshot;
918 }
919 
920 /**
921  * xe_hw_engine_snapshot_free - Free all allocated objects for a given snapshot.
922  * @snapshot: Xe HW Engine snapshot object.
923  *
924  * This function free all the memory that needed to be allocated at capture
925  * time.
926  */
xe_hw_engine_snapshot_free(struct xe_hw_engine_snapshot * snapshot)927 void xe_hw_engine_snapshot_free(struct xe_hw_engine_snapshot *snapshot)
928 {
929 	struct xe_gt *gt;
930 	if (!snapshot)
931 		return;
932 
933 	gt = snapshot->hwe->gt;
934 	/*
935 	 * xe_guc_capture_put_matched_nodes is called here and from
936 	 * xe_devcoredump_snapshot_free, to cover the 2 calling paths
937 	 * of hw_engines - debugfs and devcoredump free.
938 	 */
939 	xe_guc_capture_put_matched_nodes(&gt->uc.guc);
940 
941 	kfree(snapshot->name);
942 	kfree(snapshot);
943 }
944 
945 /**
946  * xe_hw_engine_print - Xe HW Engine Print.
947  * @hwe: Hardware Engine.
948  * @p: drm_printer.
949  *
950  * This function quickly capture a snapshot and immediately print it out.
951  */
xe_hw_engine_print(struct xe_hw_engine * hwe,struct drm_printer * p)952 void xe_hw_engine_print(struct xe_hw_engine *hwe, struct drm_printer *p)
953 {
954 	struct xe_hw_engine_snapshot *snapshot;
955 
956 	snapshot = xe_hw_engine_snapshot_capture(hwe, NULL);
957 	xe_engine_snapshot_print(snapshot, p);
958 	xe_hw_engine_snapshot_free(snapshot);
959 }
960 
xe_hw_engine_mask_per_class(struct xe_gt * gt,enum xe_engine_class engine_class)961 u32 xe_hw_engine_mask_per_class(struct xe_gt *gt,
962 				enum xe_engine_class engine_class)
963 {
964 	u32 mask = 0;
965 	enum xe_hw_engine_id id;
966 
967 	for (id = 0; id < XE_NUM_HW_ENGINES; ++id) {
968 		if (engine_infos[id].class == engine_class &&
969 		    gt->info.engine_mask & BIT(id))
970 			mask |= BIT(engine_infos[id].instance);
971 	}
972 	return mask;
973 }
974 
xe_hw_engine_is_reserved(struct xe_hw_engine * hwe)975 bool xe_hw_engine_is_reserved(struct xe_hw_engine *hwe)
976 {
977 	struct xe_gt *gt = hwe->gt;
978 	struct xe_device *xe = gt_to_xe(gt);
979 
980 	if (hwe->class == XE_ENGINE_CLASS_OTHER)
981 		return true;
982 
983 	/* Check for engines disabled by ccs_mode setting */
984 	if (xe_gt_ccs_mode_enabled(gt) &&
985 	    hwe->class == XE_ENGINE_CLASS_COMPUTE &&
986 	    hwe->logical_instance >= gt->ccs_mode)
987 		return true;
988 
989 	return xe->info.has_usm && hwe->class == XE_ENGINE_CLASS_COPY &&
990 		hwe->instance == gt->usm.reserved_bcs_instance;
991 }
992 
xe_hw_engine_class_to_str(enum xe_engine_class class)993 const char *xe_hw_engine_class_to_str(enum xe_engine_class class)
994 {
995 	switch (class) {
996 	case XE_ENGINE_CLASS_RENDER:
997 		return "rcs";
998 	case XE_ENGINE_CLASS_VIDEO_DECODE:
999 		return "vcs";
1000 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
1001 		return "vecs";
1002 	case XE_ENGINE_CLASS_COPY:
1003 		return "bcs";
1004 	case XE_ENGINE_CLASS_OTHER:
1005 		return "other";
1006 	case XE_ENGINE_CLASS_COMPUTE:
1007 		return "ccs";
1008 	case XE_ENGINE_CLASS_MAX:
1009 		break;
1010 	}
1011 
1012 	return NULL;
1013 }
1014 
xe_hw_engine_read_timestamp(struct xe_hw_engine * hwe)1015 u64 xe_hw_engine_read_timestamp(struct xe_hw_engine *hwe)
1016 {
1017 	return xe_mmio_read64_2x32(&hwe->gt->mmio, RING_TIMESTAMP(hwe->mmio_base));
1018 }
1019 
xe_hw_engine_to_fw_domain(struct xe_hw_engine * hwe)1020 enum xe_force_wake_domains xe_hw_engine_to_fw_domain(struct xe_hw_engine *hwe)
1021 {
1022 	return engine_infos[hwe->engine_id].domain;
1023 }
1024 
1025 static const enum xe_engine_class user_to_xe_engine_class[] = {
1026 	[DRM_XE_ENGINE_CLASS_RENDER] = XE_ENGINE_CLASS_RENDER,
1027 	[DRM_XE_ENGINE_CLASS_COPY] = XE_ENGINE_CLASS_COPY,
1028 	[DRM_XE_ENGINE_CLASS_VIDEO_DECODE] = XE_ENGINE_CLASS_VIDEO_DECODE,
1029 	[DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE] = XE_ENGINE_CLASS_VIDEO_ENHANCE,
1030 	[DRM_XE_ENGINE_CLASS_COMPUTE] = XE_ENGINE_CLASS_COMPUTE,
1031 };
1032 
1033 /**
1034  * xe_hw_engine_lookup() - Lookup hardware engine for class:instance
1035  * @xe: xe device
1036  * @eci: engine class and instance
1037  *
1038  * This function will find a hardware engine for given engine
1039  * class and instance.
1040  *
1041  * Return: If found xe_hw_engine pointer, NULL otherwise.
1042  */
1043 struct xe_hw_engine *
xe_hw_engine_lookup(struct xe_device * xe,struct drm_xe_engine_class_instance eci)1044 xe_hw_engine_lookup(struct xe_device *xe,
1045 		    struct drm_xe_engine_class_instance eci)
1046 {
1047 	unsigned int idx;
1048 
1049 	if (eci.engine_class >= ARRAY_SIZE(user_to_xe_engine_class))
1050 		return NULL;
1051 
1052 	if (eci.gt_id >= xe->info.gt_count)
1053 		return NULL;
1054 
1055 	idx = array_index_nospec(eci.engine_class,
1056 				 ARRAY_SIZE(user_to_xe_engine_class));
1057 
1058 	return xe_gt_hw_engine(xe_device_get_gt(xe, eci.gt_id),
1059 			       user_to_xe_engine_class[idx],
1060 			       eci.engine_instance, true);
1061 }
1062