xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision 89748acdf226fd1a8775ff6fa2703f8412b286c8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 #include <linux/fault-inject.h>
12 
13 #include <kunit/static_stub.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_sriov_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "xe_bo.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_gt.h"
24 #include "xe_gt_pagefault.h"
25 #include "xe_gt_printk.h"
26 #include "xe_gt_sriov_pf_control.h"
27 #include "xe_gt_sriov_pf_monitor.h"
28 #include "xe_gt_sriov_printk.h"
29 #include "xe_gt_tlb_invalidation.h"
30 #include "xe_guc.h"
31 #include "xe_guc_log.h"
32 #include "xe_guc_relay.h"
33 #include "xe_guc_submit.h"
34 #include "xe_map.h"
35 #include "xe_pm.h"
36 #include "xe_trace_guc.h"
37 
38 static void receive_g2h(struct xe_guc_ct *ct);
39 static void g2h_worker_func(struct work_struct *w);
40 static void safe_mode_worker_func(struct work_struct *w);
41 static void ct_exit_safe_mode(struct xe_guc_ct *ct);
42 
43 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
44 enum {
45 	/* Internal states, not error conditions */
46 	CT_DEAD_STATE_REARM,			/* 0x0001 */
47 	CT_DEAD_STATE_CAPTURE,			/* 0x0002 */
48 
49 	/* Error conditions */
50 	CT_DEAD_SETUP,				/* 0x0004 */
51 	CT_DEAD_H2G_WRITE,			/* 0x0008 */
52 	CT_DEAD_H2G_HAS_ROOM,			/* 0x0010 */
53 	CT_DEAD_G2H_READ,			/* 0x0020 */
54 	CT_DEAD_G2H_RECV,			/* 0x0040 */
55 	CT_DEAD_G2H_RELEASE,			/* 0x0080 */
56 	CT_DEAD_DEADLOCK,			/* 0x0100 */
57 	CT_DEAD_PROCESS_FAILED,			/* 0x0200 */
58 	CT_DEAD_FAST_G2H,			/* 0x0400 */
59 	CT_DEAD_PARSE_G2H_RESPONSE,		/* 0x0800 */
60 	CT_DEAD_PARSE_G2H_UNKNOWN,		/* 0x1000 */
61 	CT_DEAD_PARSE_G2H_ORIGIN,		/* 0x2000 */
62 	CT_DEAD_PARSE_G2H_TYPE,			/* 0x4000 */
63 	CT_DEAD_CRASH,				/* 0x8000 */
64 };
65 
66 static void ct_dead_worker_func(struct work_struct *w);
67 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code);
68 
69 #define CT_DEAD(ct, ctb, reason_code)		ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code)
70 #else
71 #define CT_DEAD(ct, ctb, reason)			\
72 	do {						\
73 		struct guc_ctb *_ctb = (ctb);		\
74 		if (_ctb)				\
75 			_ctb->info.broken = true;	\
76 	} while (0)
77 #endif
78 
79 /* Used when a CT send wants to block and / or receive data */
80 struct g2h_fence {
81 	u32 *response_buffer;
82 	u32 seqno;
83 	u32 response_data;
84 	u16 response_len;
85 	u16 error;
86 	u16 hint;
87 	u16 reason;
88 	bool cancel;
89 	bool retry;
90 	bool fail;
91 	bool done;
92 };
93 
94 #define make_u64(hi, lo) ((u64)((u64)(u32)(hi) << 32 | (u32)(lo)))
95 
g2h_fence_init(struct g2h_fence * g2h_fence,u32 * response_buffer)96 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
97 {
98 	memset(g2h_fence, 0, sizeof(*g2h_fence));
99 	g2h_fence->response_buffer = response_buffer;
100 	g2h_fence->seqno = ~0x0;
101 }
102 
g2h_fence_cancel(struct g2h_fence * g2h_fence)103 static void g2h_fence_cancel(struct g2h_fence *g2h_fence)
104 {
105 	g2h_fence->cancel = true;
106 	g2h_fence->fail = true;
107 	g2h_fence->done = true;
108 }
109 
g2h_fence_needs_alloc(struct g2h_fence * g2h_fence)110 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
111 {
112 	return g2h_fence->seqno == ~0x0;
113 }
114 
115 static struct xe_guc *
ct_to_guc(struct xe_guc_ct * ct)116 ct_to_guc(struct xe_guc_ct *ct)
117 {
118 	return container_of(ct, struct xe_guc, ct);
119 }
120 
121 static struct xe_gt *
ct_to_gt(struct xe_guc_ct * ct)122 ct_to_gt(struct xe_guc_ct *ct)
123 {
124 	return container_of(ct, struct xe_gt, uc.guc.ct);
125 }
126 
127 static struct xe_device *
ct_to_xe(struct xe_guc_ct * ct)128 ct_to_xe(struct xe_guc_ct *ct)
129 {
130 	return gt_to_xe(ct_to_gt(ct));
131 }
132 
133 /**
134  * DOC: GuC CTB Blob
135  *
136  * We allocate single blob to hold both CTB descriptors and buffers:
137  *
138  *      +--------+-----------------------------------------------+------+
139  *      | offset | contents                                      | size |
140  *      +========+===============================================+======+
141  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
142  *      +--------+-----------------------------------------------+  4K  |
143  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
144  *      +--------+-----------------------------------------------+------+
145  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
146  *      |        |                                               |      |
147  *      +--------+-----------------------------------------------+------+
148  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
149  *      | + n*4K |                                               |      |
150  *      +--------+-----------------------------------------------+------+
151  *
152  * Size of each ``CT Buffer`` must be multiple of 4K.
153  * We don't expect too many messages in flight at any time, unless we are
154  * using the GuC submission. In that case each request requires a minimum
155  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
156  * enough space to avoid backpressure on the driver. We increase the size
157  * of the receive buffer (relative to the send) to ensure a G2H response
158  * CTB has a landing spot.
159  *
160  * In addition to submissions, the G2H buffer needs to be able to hold
161  * enough space for recoverable page fault notifications. The number of
162  * page faults is interrupt driven and can be as much as the number of
163  * compute resources available. However, most of the actual work for these
164  * is in a separate page fault worker thread. Therefore we only need to
165  * make sure the queue has enough space to handle all of the submissions
166  * and responses and an extra buffer for incoming page faults.
167  */
168 
169 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
170 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
171 #define CTB_G2H_BUFFER_SIZE	(SZ_128K)
172 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 2)
173 
174 /**
175  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
176  * CT command queue
177  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
178  *
179  * Observation is that a 4KiB buffer full of commands takes a little over a
180  * second to process. Use that to calculate maximum time to process a full CT
181  * command queue.
182  *
183  * Return: Maximum time to process a full CT queue in jiffies.
184  */
xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct * ct)185 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
186 {
187 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
188 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
189 }
190 
guc_ct_size(void)191 static size_t guc_ct_size(void)
192 {
193 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
194 		CTB_G2H_BUFFER_SIZE;
195 }
196 
guc_ct_fini(struct drm_device * drm,void * arg)197 static void guc_ct_fini(struct drm_device *drm, void *arg)
198 {
199 	struct xe_guc_ct *ct = arg;
200 
201 	ct_exit_safe_mode(ct);
202 	destroy_workqueue(ct->g2h_wq);
203 	xa_destroy(&ct->fence_lookup);
204 }
205 
primelockdep(struct xe_guc_ct * ct)206 static void primelockdep(struct xe_guc_ct *ct)
207 {
208 	if (!IS_ENABLED(CONFIG_LOCKDEP))
209 		return;
210 
211 	fs_reclaim_acquire(GFP_KERNEL);
212 	might_lock(&ct->lock);
213 	fs_reclaim_release(GFP_KERNEL);
214 }
215 
xe_guc_ct_init_noalloc(struct xe_guc_ct * ct)216 int xe_guc_ct_init_noalloc(struct xe_guc_ct *ct)
217 {
218 	struct xe_device *xe = ct_to_xe(ct);
219 	struct xe_gt *gt = ct_to_gt(ct);
220 	int err;
221 
222 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
223 
224 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", WQ_MEM_RECLAIM);
225 	if (!ct->g2h_wq)
226 		return -ENOMEM;
227 
228 	spin_lock_init(&ct->fast_lock);
229 	xa_init(&ct->fence_lookup);
230 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
231 	INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func);
232 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
233 	spin_lock_init(&ct->dead.lock);
234 	INIT_WORK(&ct->dead.worker, ct_dead_worker_func);
235 #endif
236 	init_waitqueue_head(&ct->wq);
237 	init_waitqueue_head(&ct->g2h_fence_wq);
238 
239 	err = drmm_mutex_init(&xe->drm, &ct->lock);
240 	if (err)
241 		return err;
242 
243 	primelockdep(ct);
244 
245 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
246 	if (err)
247 		return err;
248 
249 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
250 	ct->state = XE_GUC_CT_STATE_DISABLED;
251 	return 0;
252 }
253 ALLOW_ERROR_INJECTION(xe_guc_ct_init_noalloc, ERRNO); /* See xe_pci_probe() */
254 
xe_guc_ct_init(struct xe_guc_ct * ct)255 int xe_guc_ct_init(struct xe_guc_ct *ct)
256 {
257 	struct xe_device *xe = ct_to_xe(ct);
258 	struct xe_gt *gt = ct_to_gt(ct);
259 	struct xe_tile *tile = gt_to_tile(gt);
260 	struct xe_bo *bo;
261 
262 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
263 					  XE_BO_FLAG_SYSTEM |
264 					  XE_BO_FLAG_GGTT |
265 					  XE_BO_FLAG_GGTT_INVALIDATE |
266 					  XE_BO_FLAG_PINNED_NORESTORE);
267 	if (IS_ERR(bo))
268 		return PTR_ERR(bo);
269 
270 	ct->bo = bo;
271 	return 0;
272 }
273 ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */
274 
275 #define desc_read(xe_, guc_ctb__, field_)			\
276 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
277 			struct guc_ct_buffer_desc, field_)
278 
279 #define desc_write(xe_, guc_ctb__, field_, val_)		\
280 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
281 			struct guc_ct_buffer_desc, field_, val_)
282 
guc_ct_ctb_h2g_init(struct xe_device * xe,struct guc_ctb * h2g,struct iosys_map * map)283 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
284 				struct iosys_map *map)
285 {
286 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
287 	h2g->info.resv_space = 0;
288 	h2g->info.tail = 0;
289 	h2g->info.head = 0;
290 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
291 				     h2g->info.size) -
292 			  h2g->info.resv_space;
293 	h2g->info.broken = false;
294 
295 	h2g->desc = *map;
296 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
297 
298 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
299 }
300 
guc_ct_ctb_g2h_init(struct xe_device * xe,struct guc_ctb * g2h,struct iosys_map * map)301 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
302 				struct iosys_map *map)
303 {
304 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
305 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
306 	g2h->info.head = 0;
307 	g2h->info.tail = 0;
308 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
309 				     g2h->info.size) -
310 			  g2h->info.resv_space;
311 	g2h->info.broken = false;
312 
313 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
314 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
315 
316 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
317 					    CTB_H2G_BUFFER_SIZE);
318 }
319 
guc_ct_ctb_h2g_register(struct xe_guc_ct * ct)320 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
321 {
322 	struct xe_guc *guc = ct_to_guc(ct);
323 	u32 desc_addr, ctb_addr, size;
324 	int err;
325 
326 	desc_addr = xe_bo_ggtt_addr(ct->bo);
327 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
328 	size = ct->ctbs.h2g.info.size * sizeof(u32);
329 
330 	err = xe_guc_self_cfg64(guc,
331 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
332 				desc_addr);
333 	if (err)
334 		return err;
335 
336 	err = xe_guc_self_cfg64(guc,
337 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
338 				ctb_addr);
339 	if (err)
340 		return err;
341 
342 	return xe_guc_self_cfg32(guc,
343 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
344 				 size);
345 }
346 
guc_ct_ctb_g2h_register(struct xe_guc_ct * ct)347 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
348 {
349 	struct xe_guc *guc = ct_to_guc(ct);
350 	u32 desc_addr, ctb_addr, size;
351 	int err;
352 
353 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
354 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
355 		CTB_H2G_BUFFER_SIZE;
356 	size = ct->ctbs.g2h.info.size * sizeof(u32);
357 
358 	err = xe_guc_self_cfg64(guc,
359 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
360 				desc_addr);
361 	if (err)
362 		return err;
363 
364 	err = xe_guc_self_cfg64(guc,
365 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
366 				ctb_addr);
367 	if (err)
368 		return err;
369 
370 	return xe_guc_self_cfg32(guc,
371 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
372 				 size);
373 }
374 
guc_ct_control_toggle(struct xe_guc_ct * ct,bool enable)375 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
376 {
377 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
378 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
379 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
380 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
381 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
382 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
383 			   enable ? GUC_CTB_CONTROL_ENABLE :
384 			   GUC_CTB_CONTROL_DISABLE),
385 	};
386 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
387 
388 	return ret > 0 ? -EPROTO : ret;
389 }
390 
guc_ct_change_state(struct xe_guc_ct * ct,enum xe_guc_ct_state state)391 static void guc_ct_change_state(struct xe_guc_ct *ct,
392 				enum xe_guc_ct_state state)
393 {
394 	struct xe_gt *gt = ct_to_gt(ct);
395 	struct g2h_fence *g2h_fence;
396 	unsigned long idx;
397 
398 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
399 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
400 
401 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
402 		     state == XE_GUC_CT_STATE_STOPPED);
403 
404 	if (ct->g2h_outstanding)
405 		xe_pm_runtime_put(ct_to_xe(ct));
406 	ct->g2h_outstanding = 0;
407 	ct->state = state;
408 
409 	xe_gt_dbg(gt, "GuC CT communication channel %s\n",
410 		  state == XE_GUC_CT_STATE_STOPPED ? "stopped" :
411 		  str_enabled_disabled(state == XE_GUC_CT_STATE_ENABLED));
412 
413 	spin_unlock_irq(&ct->fast_lock);
414 
415 	/* cancel all in-flight send-recv requests */
416 	xa_for_each(&ct->fence_lookup, idx, g2h_fence)
417 		g2h_fence_cancel(g2h_fence);
418 
419 	/* make sure guc_ct_send_recv() will see g2h_fence changes */
420 	smp_mb();
421 	wake_up_all(&ct->g2h_fence_wq);
422 
423 	/*
424 	 * Lockdep doesn't like this under the fast lock and he destroy only
425 	 * needs to be serialized with the send path which ct lock provides.
426 	 */
427 	xa_destroy(&ct->fence_lookup);
428 
429 	mutex_unlock(&ct->lock);
430 }
431 
ct_needs_safe_mode(struct xe_guc_ct * ct)432 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
433 {
434 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
435 }
436 
ct_restart_safe_mode_worker(struct xe_guc_ct * ct)437 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
438 {
439 	if (!ct_needs_safe_mode(ct))
440 		return false;
441 
442 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
443 	return true;
444 }
445 
safe_mode_worker_func(struct work_struct * w)446 static void safe_mode_worker_func(struct work_struct *w)
447 {
448 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
449 
450 	receive_g2h(ct);
451 
452 	if (!ct_restart_safe_mode_worker(ct))
453 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
454 }
455 
ct_enter_safe_mode(struct xe_guc_ct * ct)456 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
457 {
458 	if (ct_restart_safe_mode_worker(ct))
459 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
460 }
461 
ct_exit_safe_mode(struct xe_guc_ct * ct)462 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
463 {
464 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
465 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
466 }
467 
xe_guc_ct_enable(struct xe_guc_ct * ct)468 int xe_guc_ct_enable(struct xe_guc_ct *ct)
469 {
470 	struct xe_device *xe = ct_to_xe(ct);
471 	struct xe_gt *gt = ct_to_gt(ct);
472 	int err;
473 
474 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
475 
476 	xe_map_memset(xe, &ct->bo->vmap, 0, 0, xe_bo_size(ct->bo));
477 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
478 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
479 
480 	err = guc_ct_ctb_h2g_register(ct);
481 	if (err)
482 		goto err_out;
483 
484 	err = guc_ct_ctb_g2h_register(ct);
485 	if (err)
486 		goto err_out;
487 
488 	err = guc_ct_control_toggle(ct, true);
489 	if (err)
490 		goto err_out;
491 
492 	guc_ct_change_state(ct, XE_GUC_CT_STATE_ENABLED);
493 
494 	smp_mb();
495 	wake_up_all(&ct->wq);
496 
497 	if (ct_needs_safe_mode(ct))
498 		ct_enter_safe_mode(ct);
499 
500 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
501 	/*
502 	 * The CT has now been reset so the dumper can be re-armed
503 	 * after any existing dead state has been dumped.
504 	 */
505 	spin_lock_irq(&ct->dead.lock);
506 	if (ct->dead.reason) {
507 		ct->dead.reason |= (1 << CT_DEAD_STATE_REARM);
508 		queue_work(system_unbound_wq, &ct->dead.worker);
509 	}
510 	spin_unlock_irq(&ct->dead.lock);
511 #endif
512 
513 	return 0;
514 
515 err_out:
516 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
517 	CT_DEAD(ct, NULL, SETUP);
518 
519 	return err;
520 }
521 
stop_g2h_handler(struct xe_guc_ct * ct)522 static void stop_g2h_handler(struct xe_guc_ct *ct)
523 {
524 	cancel_work_sync(&ct->g2h_worker);
525 }
526 
527 /**
528  * xe_guc_ct_disable - Set GuC to disabled state
529  * @ct: the &xe_guc_ct
530  *
531  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
532  * in this transition.
533  */
xe_guc_ct_disable(struct xe_guc_ct * ct)534 void xe_guc_ct_disable(struct xe_guc_ct *ct)
535 {
536 	guc_ct_change_state(ct, XE_GUC_CT_STATE_DISABLED);
537 	ct_exit_safe_mode(ct);
538 	stop_g2h_handler(ct);
539 }
540 
541 /**
542  * xe_guc_ct_stop - Set GuC to stopped state
543  * @ct: the &xe_guc_ct
544  *
545  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
546  */
xe_guc_ct_stop(struct xe_guc_ct * ct)547 void xe_guc_ct_stop(struct xe_guc_ct *ct)
548 {
549 	if (!xe_guc_ct_initialized(ct))
550 		return;
551 
552 	guc_ct_change_state(ct, XE_GUC_CT_STATE_STOPPED);
553 	stop_g2h_handler(ct);
554 }
555 
h2g_has_room(struct xe_guc_ct * ct,u32 cmd_len)556 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
557 {
558 	struct guc_ctb *h2g = &ct->ctbs.h2g;
559 
560 	lockdep_assert_held(&ct->lock);
561 
562 	if (cmd_len > h2g->info.space) {
563 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
564 
565 		if (h2g->info.head > h2g->info.size) {
566 			struct xe_device *xe = ct_to_xe(ct);
567 			u32 desc_status = desc_read(xe, h2g, status);
568 
569 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
570 
571 			xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n",
572 				  h2g->info.head, h2g->info.size);
573 			CT_DEAD(ct, h2g, H2G_HAS_ROOM);
574 			return false;
575 		}
576 
577 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
578 					     h2g->info.size) -
579 				  h2g->info.resv_space;
580 		if (cmd_len > h2g->info.space)
581 			return false;
582 	}
583 
584 	return true;
585 }
586 
g2h_has_room(struct xe_guc_ct * ct,u32 g2h_len)587 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
588 {
589 	if (!g2h_len)
590 		return true;
591 
592 	lockdep_assert_held(&ct->fast_lock);
593 
594 	return ct->ctbs.g2h.info.space > g2h_len;
595 }
596 
has_room(struct xe_guc_ct * ct,u32 cmd_len,u32 g2h_len)597 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
598 {
599 	lockdep_assert_held(&ct->lock);
600 
601 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
602 		return -EBUSY;
603 
604 	return 0;
605 }
606 
h2g_reserve_space(struct xe_guc_ct * ct,u32 cmd_len)607 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
608 {
609 	lockdep_assert_held(&ct->lock);
610 	ct->ctbs.h2g.info.space -= cmd_len;
611 }
612 
__g2h_reserve_space(struct xe_guc_ct * ct,u32 g2h_len,u32 num_g2h)613 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
614 {
615 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
616 	xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
617 		     (g2h_len && num_g2h));
618 
619 	if (g2h_len) {
620 		lockdep_assert_held(&ct->fast_lock);
621 
622 		if (!ct->g2h_outstanding)
623 			xe_pm_runtime_get_noresume(ct_to_xe(ct));
624 
625 		ct->ctbs.g2h.info.space -= g2h_len;
626 		ct->g2h_outstanding += num_g2h;
627 	}
628 }
629 
__g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)630 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
631 {
632 	bool bad = false;
633 
634 	lockdep_assert_held(&ct->fast_lock);
635 
636 	bad = ct->ctbs.g2h.info.space + g2h_len >
637 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space;
638 	bad |= !ct->g2h_outstanding;
639 
640 	if (bad) {
641 		xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n",
642 			  ct->ctbs.g2h.info.space, g2h_len,
643 			  ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space,
644 			  ct->ctbs.g2h.info.space + g2h_len,
645 			  ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space,
646 			  ct->g2h_outstanding);
647 		CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE);
648 		return;
649 	}
650 
651 	ct->ctbs.g2h.info.space += g2h_len;
652 	if (!--ct->g2h_outstanding)
653 		xe_pm_runtime_put(ct_to_xe(ct));
654 }
655 
g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)656 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
657 {
658 	spin_lock_irq(&ct->fast_lock);
659 	__g2h_release_space(ct, g2h_len);
660 	spin_unlock_irq(&ct->fast_lock);
661 }
662 
663 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
fast_req_track(struct xe_guc_ct * ct,u16 fence,u16 action)664 static void fast_req_track(struct xe_guc_ct *ct, u16 fence, u16 action)
665 {
666 	unsigned int slot = fence % ARRAY_SIZE(ct->fast_req);
667 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
668 	unsigned long entries[SZ_32];
669 	unsigned int n;
670 
671 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
672 
673 	/* May be called under spinlock, so avoid sleeping */
674 	ct->fast_req[slot].stack = stack_depot_save(entries, n, GFP_NOWAIT);
675 #endif
676 	ct->fast_req[slot].fence = fence;
677 	ct->fast_req[slot].action = action;
678 }
679 #else
fast_req_track(struct xe_guc_ct * ct,u16 fence,u16 action)680 static void fast_req_track(struct xe_guc_ct *ct, u16 fence, u16 action)
681 {
682 }
683 #endif
684 
685 /*
686  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
687  * driver, the GuC will just copy it to the reply message. Since we need to
688  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
689  * we use one bit of the seqno as an indicator for that and a rolling counter
690  * for the remaining 15 bits.
691  */
692 #define CT_SEQNO_MASK GENMASK(14, 0)
693 #define CT_SEQNO_UNTRACKED BIT(15)
next_ct_seqno(struct xe_guc_ct * ct,bool is_g2h_fence)694 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
695 {
696 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
697 
698 	if (!is_g2h_fence)
699 		seqno |= CT_SEQNO_UNTRACKED;
700 
701 	return seqno;
702 }
703 
704 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
705 
h2g_write(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 ct_fence_value,bool want_response)706 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
707 		     u32 ct_fence_value, bool want_response)
708 {
709 	struct xe_device *xe = ct_to_xe(ct);
710 	struct xe_gt *gt = ct_to_gt(ct);
711 	struct guc_ctb *h2g = &ct->ctbs.h2g;
712 	u32 cmd[H2G_CT_HEADERS];
713 	u32 tail = h2g->info.tail;
714 	u32 full_len;
715 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
716 							 tail * sizeof(u32));
717 	u32 desc_status;
718 
719 	full_len = len + GUC_CTB_HDR_LEN;
720 
721 	lockdep_assert_held(&ct->lock);
722 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
723 
724 	desc_status = desc_read(xe, h2g, status);
725 	if (desc_status) {
726 		xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status);
727 		goto corrupted;
728 	}
729 
730 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
731 		u32 desc_tail = desc_read(xe, h2g, tail);
732 		u32 desc_head = desc_read(xe, h2g, head);
733 
734 		if (tail != desc_tail) {
735 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH);
736 			xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail);
737 			goto corrupted;
738 		}
739 
740 		if (tail > h2g->info.size) {
741 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
742 			xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n",
743 				  tail, h2g->info.size);
744 			goto corrupted;
745 		}
746 
747 		if (desc_head >= h2g->info.size) {
748 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
749 			xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n",
750 				  desc_head, h2g->info.size);
751 			goto corrupted;
752 		}
753 	}
754 
755 	/* Command will wrap, zero fill (NOPs), return and check credits again */
756 	if (tail + full_len > h2g->info.size) {
757 		xe_map_memset(xe, &map, 0, 0,
758 			      (h2g->info.size - tail) * sizeof(u32));
759 		h2g_reserve_space(ct, (h2g->info.size - tail));
760 		h2g->info.tail = 0;
761 		desc_write(xe, h2g, tail, h2g->info.tail);
762 
763 		return -EAGAIN;
764 	}
765 
766 	/*
767 	 * dw0: CT header (including fence)
768 	 * dw1: HXG header (including action code)
769 	 * dw2+: action data
770 	 */
771 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
772 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
773 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
774 	if (want_response) {
775 		cmd[1] =
776 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
777 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
778 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
779 	} else {
780 		fast_req_track(ct, ct_fence_value,
781 			       FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, action[0]));
782 
783 		cmd[1] =
784 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
785 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
786 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
787 	}
788 
789 	/* H2G header in cmd[1] replaces action[0] so: */
790 	--len;
791 	++action;
792 
793 	/* Write H2G ensuring visible before descriptor update */
794 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
795 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
796 	xe_device_wmb(xe);
797 
798 	/* Update local copies */
799 	h2g->info.tail = (tail + full_len) % h2g->info.size;
800 	h2g_reserve_space(ct, full_len);
801 
802 	/* Update descriptor */
803 	desc_write(xe, h2g, tail, h2g->info.tail);
804 
805 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
806 			     desc_read(xe, h2g, head), h2g->info.tail);
807 
808 	return 0;
809 
810 corrupted:
811 	CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE);
812 	return -EPIPE;
813 }
814 
__guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)815 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
816 				u32 len, u32 g2h_len, u32 num_g2h,
817 				struct g2h_fence *g2h_fence)
818 {
819 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
820 	u16 seqno;
821 	int ret;
822 
823 	xe_gt_assert(gt, xe_guc_ct_initialized(ct));
824 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
825 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
826 	xe_gt_assert(gt, !g2h_len || num_g2h);
827 	xe_gt_assert(gt, g2h_len || !num_g2h);
828 	lockdep_assert_held(&ct->lock);
829 
830 	if (unlikely(ct->ctbs.h2g.info.broken)) {
831 		ret = -EPIPE;
832 		goto out;
833 	}
834 
835 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
836 		ret = -ENODEV;
837 		goto out;
838 	}
839 
840 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
841 		ret = -ECANCELED;
842 		goto out;
843 	}
844 
845 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
846 
847 	if (g2h_fence) {
848 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
849 		num_g2h = 1;
850 
851 		if (g2h_fence_needs_alloc(g2h_fence)) {
852 			g2h_fence->seqno = next_ct_seqno(ct, true);
853 			ret = xa_err(xa_store(&ct->fence_lookup,
854 					      g2h_fence->seqno, g2h_fence,
855 					      GFP_ATOMIC));
856 			if (ret)
857 				goto out;
858 		}
859 
860 		seqno = g2h_fence->seqno;
861 	} else {
862 		seqno = next_ct_seqno(ct, false);
863 	}
864 
865 	if (g2h_len)
866 		spin_lock_irq(&ct->fast_lock);
867 retry:
868 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
869 	if (unlikely(ret))
870 		goto out_unlock;
871 
872 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
873 	if (unlikely(ret)) {
874 		if (ret == -EAGAIN)
875 			goto retry;
876 		goto out_unlock;
877 	}
878 
879 	__g2h_reserve_space(ct, g2h_len, num_g2h);
880 	xe_guc_notify(ct_to_guc(ct));
881 out_unlock:
882 	if (g2h_len)
883 		spin_unlock_irq(&ct->fast_lock);
884 out:
885 	return ret;
886 }
887 
kick_reset(struct xe_guc_ct * ct)888 static void kick_reset(struct xe_guc_ct *ct)
889 {
890 	xe_gt_reset_async(ct_to_gt(ct));
891 }
892 
893 static int dequeue_one_g2h(struct xe_guc_ct *ct);
894 
guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)895 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
896 			      u32 g2h_len, u32 num_g2h,
897 			      struct g2h_fence *g2h_fence)
898 {
899 	struct xe_device *xe = ct_to_xe(ct);
900 	struct xe_gt *gt = ct_to_gt(ct);
901 	unsigned int sleep_period_ms = 1;
902 	int ret;
903 
904 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
905 	lockdep_assert_held(&ct->lock);
906 	xe_device_assert_mem_access(ct_to_xe(ct));
907 
908 try_again:
909 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
910 				   g2h_fence);
911 
912 	/*
913 	 * We wait to try to restore credits for about 1 second before bailing.
914 	 * In the case of H2G credits we have no choice but just to wait for the
915 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
916 	 * the case of G2H we process any G2H in the channel, hopefully freeing
917 	 * credits as we consume the G2H messages.
918 	 */
919 	if (unlikely(ret == -EBUSY &&
920 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
921 		struct guc_ctb *h2g = &ct->ctbs.h2g;
922 
923 		if (sleep_period_ms == 1024)
924 			goto broken;
925 
926 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
927 						 h2g->info.size,
928 						 h2g->info.space,
929 						 len + GUC_CTB_HDR_LEN);
930 		msleep(sleep_period_ms);
931 		sleep_period_ms <<= 1;
932 
933 		goto try_again;
934 	} else if (unlikely(ret == -EBUSY)) {
935 		struct xe_device *xe = ct_to_xe(ct);
936 		struct guc_ctb *g2h = &ct->ctbs.g2h;
937 
938 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
939 						 desc_read(xe, g2h, tail),
940 						 g2h->info.size,
941 						 g2h->info.space,
942 						 g2h_fence ?
943 						 GUC_CTB_HXG_MSG_MAX_LEN :
944 						 g2h_len);
945 
946 #define g2h_avail(ct)	\
947 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
948 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
949 					g2h_avail(ct), HZ))
950 			goto broken;
951 #undef g2h_avail
952 
953 		ret = dequeue_one_g2h(ct);
954 		if (ret < 0) {
955 			if (ret != -ECANCELED)
956 				xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)",
957 					  ERR_PTR(ret));
958 			goto broken;
959 		}
960 
961 		goto try_again;
962 	}
963 
964 	return ret;
965 
966 broken:
967 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
968 	CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK);
969 
970 	return -EDEADLK;
971 }
972 
guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)973 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
974 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
975 {
976 	int ret;
977 
978 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
979 
980 	mutex_lock(&ct->lock);
981 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
982 	mutex_unlock(&ct->lock);
983 
984 	return ret;
985 }
986 
xe_guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)987 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
988 		   u32 g2h_len, u32 num_g2h)
989 {
990 	int ret;
991 
992 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
993 	if (ret == -EDEADLK)
994 		kick_reset(ct);
995 
996 	return ret;
997 }
998 
xe_guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)999 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
1000 			  u32 g2h_len, u32 num_g2h)
1001 {
1002 	int ret;
1003 
1004 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
1005 	if (ret == -EDEADLK)
1006 		kick_reset(ct);
1007 
1008 	return ret;
1009 }
1010 
xe_guc_ct_send_g2h_handler(struct xe_guc_ct * ct,const u32 * action,u32 len)1011 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
1012 {
1013 	int ret;
1014 
1015 	lockdep_assert_held(&ct->lock);
1016 
1017 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
1018 	if (ret == -EDEADLK)
1019 		kick_reset(ct);
1020 
1021 	return ret;
1022 }
1023 
1024 /*
1025  * Check if a GT reset is in progress or will occur and if GT reset brought the
1026  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
1027  */
retry_failure(struct xe_guc_ct * ct,int ret)1028 static bool retry_failure(struct xe_guc_ct *ct, int ret)
1029 {
1030 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
1031 		return false;
1032 
1033 #define ct_alive(ct)	\
1034 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
1035 	 !ct->ctbs.g2h.info.broken)
1036 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
1037 		return false;
1038 #undef ct_alive
1039 
1040 	return true;
1041 }
1042 
guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer,bool no_fail)1043 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1044 			    u32 *response_buffer, bool no_fail)
1045 {
1046 	struct xe_gt *gt = ct_to_gt(ct);
1047 	struct g2h_fence g2h_fence;
1048 	int ret = 0;
1049 
1050 	/*
1051 	 * We use a fence to implement blocking sends / receiving response data.
1052 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
1053 	 * an xarray is used as storage media with the seqno being to key.
1054 	 * Fields in the fence hold success, failure, retry status and the
1055 	 * response data. Safe to allocate on the stack as the xarray is the
1056 	 * only reference and it cannot be present after this function exits.
1057 	 */
1058 retry:
1059 	g2h_fence_init(&g2h_fence, response_buffer);
1060 retry_same_fence:
1061 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
1062 	if (unlikely(ret == -ENOMEM)) {
1063 		/* Retry allocation /w GFP_KERNEL */
1064 		ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
1065 				      &g2h_fence, GFP_KERNEL));
1066 		if (ret)
1067 			return ret;
1068 
1069 		goto retry_same_fence;
1070 	} else if (unlikely(ret)) {
1071 		if (ret == -EDEADLK)
1072 			kick_reset(ct);
1073 
1074 		if (no_fail && retry_failure(ct, ret))
1075 			goto retry_same_fence;
1076 
1077 		if (!g2h_fence_needs_alloc(&g2h_fence))
1078 			xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1079 
1080 		return ret;
1081 	}
1082 
1083 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
1084 	if (!ret) {
1085 		LNL_FLUSH_WORK(&ct->g2h_worker);
1086 		if (g2h_fence.done) {
1087 			xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
1088 				   g2h_fence.seqno, action[0]);
1089 			ret = 1;
1090 		}
1091 	}
1092 
1093 	/*
1094 	 * Ensure we serialize with completion side to prevent UAF with fence going out of scope on
1095 	 * the stack, since we have no clue if it will fire after the timeout before we can erase
1096 	 * from the xa. Also we have some dependent loads and stores below for which we need the
1097 	 * correct ordering, and we lack the needed barriers.
1098 	 */
1099 	mutex_lock(&ct->lock);
1100 	if (!ret) {
1101 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
1102 			  g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
1103 		xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1104 		mutex_unlock(&ct->lock);
1105 		return -ETIME;
1106 	}
1107 
1108 	if (g2h_fence.retry) {
1109 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
1110 			  action[0], g2h_fence.reason);
1111 		mutex_unlock(&ct->lock);
1112 		goto retry;
1113 	}
1114 	if (g2h_fence.fail) {
1115 		if (g2h_fence.cancel) {
1116 			xe_gt_dbg(gt, "H2G request %#x canceled!\n", action[0]);
1117 			ret = -ECANCELED;
1118 			goto unlock;
1119 		}
1120 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
1121 			  action[0], g2h_fence.error, g2h_fence.hint);
1122 		ret = -EIO;
1123 	}
1124 
1125 	if (ret > 0)
1126 		ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
1127 
1128 unlock:
1129 	mutex_unlock(&ct->lock);
1130 
1131 	return ret;
1132 }
1133 
1134 /**
1135  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
1136  * @ct: the &xe_guc_ct
1137  * @action: the dword array with `HXG Request`_ message (can't be NULL)
1138  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
1139  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
1140  *
1141  * Send a `HXG Request`_ message to the GuC over CT communication channel and
1142  * blocks until GuC replies with a `HXG Response`_ message.
1143  *
1144  * For non-blocking communication with GuC use xe_guc_ct_send().
1145  *
1146  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
1147  *
1148  * Return: response length (in dwords) if &response_buffer was not NULL, or
1149  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
1150  *         a negative error code on failure.
1151  */
xe_guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1152 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1153 			u32 *response_buffer)
1154 {
1155 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
1156 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
1157 }
1158 ALLOW_ERROR_INJECTION(xe_guc_ct_send_recv, ERRNO);
1159 
xe_guc_ct_send_recv_no_fail(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1160 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
1161 				u32 len, u32 *response_buffer)
1162 {
1163 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
1164 }
1165 
msg_to_hxg(u32 * msg)1166 static u32 *msg_to_hxg(u32 *msg)
1167 {
1168 	return msg + GUC_CTB_MSG_MIN_LEN;
1169 }
1170 
msg_len_to_hxg_len(u32 len)1171 static u32 msg_len_to_hxg_len(u32 len)
1172 {
1173 	return len - GUC_CTB_MSG_MIN_LEN;
1174 }
1175 
parse_g2h_event(struct xe_guc_ct * ct,u32 * msg,u32 len)1176 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
1177 {
1178 	u32 *hxg = msg_to_hxg(msg);
1179 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1180 
1181 	lockdep_assert_held(&ct->lock);
1182 
1183 	switch (action) {
1184 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1185 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1186 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1187 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1188 		g2h_release_space(ct, len);
1189 	}
1190 
1191 	return 0;
1192 }
1193 
guc_crash_process_msg(struct xe_guc_ct * ct,u32 action)1194 static int guc_crash_process_msg(struct xe_guc_ct *ct, u32 action)
1195 {
1196 	struct xe_gt *gt = ct_to_gt(ct);
1197 
1198 	if (action == XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
1199 		xe_gt_err(gt, "GuC Crash dump notification\n");
1200 	else if (action == XE_GUC_ACTION_NOTIFY_EXCEPTION)
1201 		xe_gt_err(gt, "GuC Exception notification\n");
1202 	else
1203 		xe_gt_err(gt, "Unknown GuC crash notification: 0x%04X\n", action);
1204 
1205 	CT_DEAD(ct, NULL, CRASH);
1206 
1207 	kick_reset(ct);
1208 
1209 	return 0;
1210 }
1211 
1212 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
fast_req_report(struct xe_guc_ct * ct,u16 fence)1213 static void fast_req_report(struct xe_guc_ct *ct, u16 fence)
1214 {
1215 	u16 fence_min = U16_MAX, fence_max = 0;
1216 	struct xe_gt *gt = ct_to_gt(ct);
1217 	bool found = false;
1218 	unsigned int n;
1219 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
1220 	char *buf;
1221 #endif
1222 
1223 	lockdep_assert_held(&ct->lock);
1224 
1225 	for (n = 0; n < ARRAY_SIZE(ct->fast_req); n++) {
1226 		if (ct->fast_req[n].fence < fence_min)
1227 			fence_min = ct->fast_req[n].fence;
1228 		if (ct->fast_req[n].fence > fence_max)
1229 			fence_max = ct->fast_req[n].fence;
1230 
1231 		if (ct->fast_req[n].fence != fence)
1232 			continue;
1233 		found = true;
1234 
1235 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
1236 		buf = kmalloc(SZ_4K, GFP_NOWAIT);
1237 		if (buf && stack_depot_snprint(ct->fast_req[n].stack, buf, SZ_4K, 0))
1238 			xe_gt_err(gt, "Fence 0x%x was used by action %#04x sent at:\n%s",
1239 				  fence, ct->fast_req[n].action, buf);
1240 		else
1241 			xe_gt_err(gt, "Fence 0x%x was used by action %#04x [failed to retrieve stack]\n",
1242 				  fence, ct->fast_req[n].action);
1243 		kfree(buf);
1244 #else
1245 		xe_gt_err(gt, "Fence 0x%x was used by action %#04x\n",
1246 			  fence, ct->fast_req[n].action);
1247 #endif
1248 		break;
1249 	}
1250 
1251 	if (!found)
1252 		xe_gt_warn(gt, "Fence 0x%x not found - tracking buffer wrapped? [range = 0x%x -> 0x%x, next = 0x%X]\n",
1253 			   fence, fence_min, fence_max, ct->fence_seqno);
1254 }
1255 #else
fast_req_report(struct xe_guc_ct * ct,u16 fence)1256 static void fast_req_report(struct xe_guc_ct *ct, u16 fence)
1257 {
1258 }
1259 #endif
1260 
parse_g2h_response(struct xe_guc_ct * ct,u32 * msg,u32 len)1261 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
1262 {
1263 	struct xe_gt *gt =  ct_to_gt(ct);
1264 	u32 *hxg = msg_to_hxg(msg);
1265 	u32 hxg_len = msg_len_to_hxg_len(len);
1266 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
1267 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1268 	struct g2h_fence *g2h_fence;
1269 
1270 	lockdep_assert_held(&ct->lock);
1271 
1272 	/*
1273 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
1274 	 * Those messages should never fail, so if we do get an error back it
1275 	 * means we're likely doing an illegal operation and the GuC is
1276 	 * rejecting it. We have no way to inform the code that submitted the
1277 	 * H2G that the message was rejected, so we need to escalate the
1278 	 * failure to trigger a reset.
1279 	 */
1280 	if (fence & CT_SEQNO_UNTRACKED) {
1281 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
1282 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
1283 				  fence,
1284 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1285 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1286 		else
1287 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1288 				  type, fence);
1289 
1290 		fast_req_report(ct, fence);
1291 
1292 		CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE);
1293 
1294 		return -EPROTO;
1295 	}
1296 
1297 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1298 	if (unlikely(!g2h_fence)) {
1299 		/* Don't tear down channel, as send could've timed out */
1300 		/* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */
1301 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1302 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1303 		return 0;
1304 	}
1305 
1306 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1307 
1308 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1309 		g2h_fence->fail = true;
1310 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1311 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1312 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1313 		g2h_fence->retry = true;
1314 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1315 	} else if (g2h_fence->response_buffer) {
1316 		g2h_fence->response_len = hxg_len;
1317 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1318 	} else {
1319 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1320 	}
1321 
1322 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1323 
1324 	g2h_fence->done = true;
1325 	smp_mb();
1326 
1327 	wake_up_all(&ct->g2h_fence_wq);
1328 
1329 	return 0;
1330 }
1331 
parse_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1332 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1333 {
1334 	struct xe_gt *gt = ct_to_gt(ct);
1335 	u32 *hxg = msg_to_hxg(msg);
1336 	u32 origin, type;
1337 	int ret;
1338 
1339 	lockdep_assert_held(&ct->lock);
1340 
1341 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1342 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1343 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1344 			  origin);
1345 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN);
1346 
1347 		return -EPROTO;
1348 	}
1349 
1350 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1351 	switch (type) {
1352 	case GUC_HXG_TYPE_EVENT:
1353 		ret = parse_g2h_event(ct, msg, len);
1354 		break;
1355 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1356 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1357 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1358 		ret = parse_g2h_response(ct, msg, len);
1359 		break;
1360 	default:
1361 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1362 			  type);
1363 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE);
1364 
1365 		ret = -EOPNOTSUPP;
1366 	}
1367 
1368 	return ret;
1369 }
1370 
process_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1371 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1372 {
1373 	struct xe_guc *guc = ct_to_guc(ct);
1374 	struct xe_gt *gt = ct_to_gt(ct);
1375 	u32 hxg_len = msg_len_to_hxg_len(len);
1376 	u32 *hxg = msg_to_hxg(msg);
1377 	u32 action, adj_len;
1378 	u32 *payload;
1379 	int ret = 0;
1380 
1381 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1382 		return 0;
1383 
1384 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1385 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1386 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1387 
1388 	switch (action) {
1389 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1390 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1391 		break;
1392 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1393 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1394 		break;
1395 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1396 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1397 		break;
1398 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1399 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1400 							      adj_len);
1401 		break;
1402 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1403 		/* Selftest only at the moment */
1404 		break;
1405 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1406 		ret = xe_guc_error_capture_handler(guc, payload, adj_len);
1407 		break;
1408 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1409 		/* FIXME: Handle this */
1410 		break;
1411 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1412 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1413 								 adj_len);
1414 		break;
1415 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1416 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1417 		break;
1418 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1419 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1420 							   adj_len);
1421 		break;
1422 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1423 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1424 							   adj_len);
1425 		break;
1426 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1427 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1428 		break;
1429 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1430 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1431 		break;
1432 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1433 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1434 		break;
1435 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1436 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1437 		break;
1438 	case XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1439 	case XE_GUC_ACTION_NOTIFY_EXCEPTION:
1440 		ret = guc_crash_process_msg(ct, action);
1441 		break;
1442 	default:
1443 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1444 	}
1445 
1446 	if (ret) {
1447 		xe_gt_err(gt, "G2H action %#04x failed (%pe) len %u msg %*ph\n",
1448 			  action, ERR_PTR(ret), hxg_len, (int)sizeof(u32) * hxg_len, hxg);
1449 		CT_DEAD(ct, NULL, PROCESS_FAILED);
1450 	}
1451 
1452 	return 0;
1453 }
1454 
g2h_read(struct xe_guc_ct * ct,u32 * msg,bool fast_path)1455 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1456 {
1457 	struct xe_device *xe = ct_to_xe(ct);
1458 	struct xe_gt *gt = ct_to_gt(ct);
1459 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1460 	u32 tail, head, len, desc_status;
1461 	s32 avail;
1462 	u32 action;
1463 	u32 *hxg;
1464 
1465 	xe_gt_assert(gt, xe_guc_ct_initialized(ct));
1466 	lockdep_assert_held(&ct->fast_lock);
1467 
1468 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1469 		return -ENODEV;
1470 
1471 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1472 		return -ECANCELED;
1473 
1474 	if (g2h->info.broken)
1475 		return -EPIPE;
1476 
1477 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1478 
1479 	desc_status = desc_read(xe, g2h, status);
1480 	if (desc_status) {
1481 		if (desc_status & GUC_CTB_STATUS_DISABLED) {
1482 			/*
1483 			 * Potentially valid if a CLIENT_RESET request resulted in
1484 			 * contexts/engines being reset. But should never happen as
1485 			 * no contexts should be active when CLIENT_RESET is sent.
1486 			 */
1487 			xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n");
1488 			desc_status &= ~GUC_CTB_STATUS_DISABLED;
1489 		}
1490 
1491 		if (desc_status) {
1492 			xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status);
1493 			goto corrupted;
1494 		}
1495 	}
1496 
1497 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
1498 		u32 desc_tail = desc_read(xe, g2h, tail);
1499 		/*
1500 		u32 desc_head = desc_read(xe, g2h, head);
1501 
1502 		 * info.head and desc_head are updated back-to-back at the end of
1503 		 * this function and nowhere else. Hence, they cannot be different
1504 		 * unless two g2h_read calls are running concurrently. Which is not
1505 		 * possible because it is guarded by ct->fast_lock. And yet, some
1506 		 * discrete platforms are regularly hitting this error :(.
1507 		 *
1508 		 * desc_head rolling backwards shouldn't cause any noticeable
1509 		 * problems - just a delay in GuC being allowed to proceed past that
1510 		 * point in the queue. So for now, just disable the error until it
1511 		 * can be root caused.
1512 		 *
1513 		if (g2h->info.head != desc_head) {
1514 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH);
1515 			xe_gt_err(gt, "CT read: head was modified %u != %u\n",
1516 				  desc_head, g2h->info.head);
1517 			goto corrupted;
1518 		}
1519 		 */
1520 
1521 		if (g2h->info.head > g2h->info.size) {
1522 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1523 			xe_gt_err(gt, "CT read: head out of range: %u vs %u\n",
1524 				  g2h->info.head, g2h->info.size);
1525 			goto corrupted;
1526 		}
1527 
1528 		if (desc_tail >= g2h->info.size) {
1529 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1530 			xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n",
1531 				  desc_tail, g2h->info.size);
1532 			goto corrupted;
1533 		}
1534 	}
1535 
1536 	/* Calculate DW available to read */
1537 	tail = desc_read(xe, g2h, tail);
1538 	avail = tail - g2h->info.head;
1539 	if (unlikely(avail == 0))
1540 		return 0;
1541 
1542 	if (avail < 0)
1543 		avail += g2h->info.size;
1544 
1545 	/* Read header */
1546 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1547 			   sizeof(u32));
1548 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1549 	if (len > avail) {
1550 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1551 			  avail, len);
1552 		goto corrupted;
1553 	}
1554 
1555 	head = (g2h->info.head + 1) % g2h->info.size;
1556 	avail = len - 1;
1557 
1558 	/* Read G2H message */
1559 	if (avail + head > g2h->info.size) {
1560 		u32 avail_til_wrap = g2h->info.size - head;
1561 
1562 		xe_map_memcpy_from(xe, msg + 1,
1563 				   &g2h->cmds, sizeof(u32) * head,
1564 				   avail_til_wrap * sizeof(u32));
1565 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1566 				   &g2h->cmds, 0,
1567 				   (avail - avail_til_wrap) * sizeof(u32));
1568 	} else {
1569 		xe_map_memcpy_from(xe, msg + 1,
1570 				   &g2h->cmds, sizeof(u32) * head,
1571 				   avail * sizeof(u32));
1572 	}
1573 
1574 	hxg = msg_to_hxg(msg);
1575 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1576 
1577 	if (fast_path) {
1578 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1579 			return 0;
1580 
1581 		switch (action) {
1582 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1583 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1584 			break;	/* Process these in fast-path */
1585 		default:
1586 			return 0;
1587 		}
1588 	}
1589 
1590 	/* Update local / descriptor header */
1591 	g2h->info.head = (head + avail) % g2h->info.size;
1592 	desc_write(xe, g2h, head, g2h->info.head);
1593 
1594 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1595 			     action, len, g2h->info.head, tail);
1596 
1597 	return len;
1598 
1599 corrupted:
1600 	CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ);
1601 	return -EPROTO;
1602 }
1603 
g2h_fast_path(struct xe_guc_ct * ct,u32 * msg,u32 len)1604 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1605 {
1606 	struct xe_gt *gt = ct_to_gt(ct);
1607 	struct xe_guc *guc = ct_to_guc(ct);
1608 	u32 hxg_len = msg_len_to_hxg_len(len);
1609 	u32 *hxg = msg_to_hxg(msg);
1610 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1611 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1612 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1613 	int ret = 0;
1614 
1615 	switch (action) {
1616 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1617 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1618 		break;
1619 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1620 		__g2h_release_space(ct, len);
1621 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1622 							   adj_len);
1623 		break;
1624 	default:
1625 		xe_gt_warn(gt, "NOT_POSSIBLE");
1626 	}
1627 
1628 	if (ret) {
1629 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1630 			  action, ERR_PTR(ret));
1631 		CT_DEAD(ct, NULL, FAST_G2H);
1632 	}
1633 }
1634 
1635 /**
1636  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1637  * @ct: GuC CT object
1638  *
1639  * Anything related to page faults is critical for performance, process these
1640  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1641  * waiters or queue another worker.
1642  */
xe_guc_ct_fast_path(struct xe_guc_ct * ct)1643 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1644 {
1645 	struct xe_device *xe = ct_to_xe(ct);
1646 	bool ongoing;
1647 	int len;
1648 
1649 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1650 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1651 		return;
1652 
1653 	spin_lock(&ct->fast_lock);
1654 	do {
1655 		len = g2h_read(ct, ct->fast_msg, true);
1656 		if (len > 0)
1657 			g2h_fast_path(ct, ct->fast_msg, len);
1658 	} while (len > 0);
1659 	spin_unlock(&ct->fast_lock);
1660 
1661 	if (ongoing)
1662 		xe_pm_runtime_put(xe);
1663 }
1664 
1665 /* Returns less than zero on error, 0 on done, 1 on more available */
dequeue_one_g2h(struct xe_guc_ct * ct)1666 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1667 {
1668 	int len;
1669 	int ret;
1670 
1671 	lockdep_assert_held(&ct->lock);
1672 
1673 	spin_lock_irq(&ct->fast_lock);
1674 	len = g2h_read(ct, ct->msg, false);
1675 	spin_unlock_irq(&ct->fast_lock);
1676 	if (len <= 0)
1677 		return len;
1678 
1679 	ret = parse_g2h_msg(ct, ct->msg, len);
1680 	if (unlikely(ret < 0))
1681 		return ret;
1682 
1683 	ret = process_g2h_msg(ct, ct->msg, len);
1684 	if (unlikely(ret < 0))
1685 		return ret;
1686 
1687 	return 1;
1688 }
1689 
receive_g2h(struct xe_guc_ct * ct)1690 static void receive_g2h(struct xe_guc_ct *ct)
1691 {
1692 	bool ongoing;
1693 	int ret;
1694 
1695 	/*
1696 	 * Normal users must always hold mem_access.ref around CT calls. However
1697 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1698 	 * at this stage we can't rely on mem_access.ref and even the
1699 	 * callback_task will be different than current.  For such cases we just
1700 	 * need to ensure we always process the responses from any blocking
1701 	 * ct_send requests or where we otherwise expect some response when
1702 	 * initiated from those callbacks (which will need to wait for the below
1703 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1704 	 * the device has suspended to the point that the CT communication has
1705 	 * been disabled.
1706 	 *
1707 	 * If we are inside the runtime pm callback, we can be the only task
1708 	 * still issuing CT requests (since that requires having the
1709 	 * mem_access.ref).  It seems like it might in theory be possible to
1710 	 * receive unsolicited events from the GuC just as we are
1711 	 * suspending-resuming, but those will currently anyway be lost when
1712 	 * eventually exiting from suspend, hence no need to wake up the device
1713 	 * here. If we ever need something stronger than get_if_ongoing() then
1714 	 * we need to be careful with blocking the pm callbacks from getting CT
1715 	 * responses, if the worker here is blocked on those callbacks
1716 	 * completing, creating a deadlock.
1717 	 */
1718 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1719 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1720 		return;
1721 
1722 	do {
1723 		mutex_lock(&ct->lock);
1724 		ret = dequeue_one_g2h(ct);
1725 		mutex_unlock(&ct->lock);
1726 
1727 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1728 			xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret);
1729 			CT_DEAD(ct, NULL, G2H_RECV);
1730 			kick_reset(ct);
1731 		}
1732 	} while (ret == 1);
1733 
1734 	if (ongoing)
1735 		xe_pm_runtime_put(ct_to_xe(ct));
1736 }
1737 
g2h_worker_func(struct work_struct * w)1738 static void g2h_worker_func(struct work_struct *w)
1739 {
1740 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1741 
1742 	receive_g2h(ct);
1743 }
1744 
xe_fixup_u64_in_cmds(struct xe_device * xe,struct iosys_map * cmds,u32 size,u32 idx,s64 shift)1745 static void xe_fixup_u64_in_cmds(struct xe_device *xe, struct iosys_map *cmds,
1746 				 u32 size, u32 idx, s64 shift)
1747 {
1748 	u32 hi, lo;
1749 	u64 offset;
1750 
1751 	lo = xe_map_rd_ring_u32(xe, cmds, idx, size);
1752 	hi = xe_map_rd_ring_u32(xe, cmds, idx + 1, size);
1753 	offset = make_u64(hi, lo);
1754 	offset += shift;
1755 	lo = lower_32_bits(offset);
1756 	hi = upper_32_bits(offset);
1757 	xe_map_wr_ring_u32(xe, cmds, idx, size, lo);
1758 	xe_map_wr_ring_u32(xe, cmds, idx + 1, size, hi);
1759 }
1760 
1761 /*
1762  * Shift any GGTT addresses within a single message left within CTB from
1763  * before post-migration recovery.
1764  * @ct: pointer to CT struct of the target GuC
1765  * @cmds: iomap buffer containing CT messages
1766  * @head: start of the target message within the buffer
1767  * @len: length of the target message
1768  * @size: size of the commands buffer
1769  * @shift: the address shift to be added to each GGTT reference
1770  * Return: true if the message was fixed or needed no fixups, false on failure
1771  */
ct_fixup_ggtt_in_message(struct xe_guc_ct * ct,struct iosys_map * cmds,u32 head,u32 len,u32 size,s64 shift)1772 static bool ct_fixup_ggtt_in_message(struct xe_guc_ct *ct,
1773 				     struct iosys_map *cmds, u32 head,
1774 				     u32 len, u32 size, s64 shift)
1775 {
1776 	struct xe_gt *gt = ct_to_gt(ct);
1777 	struct xe_device *xe = ct_to_xe(ct);
1778 	u32 msg[GUC_HXG_MSG_MIN_LEN];
1779 	u32 action, i, n;
1780 
1781 	xe_gt_assert(gt, len >= GUC_HXG_MSG_MIN_LEN);
1782 
1783 	msg[0] = xe_map_rd_ring_u32(xe, cmds, head, size);
1784 	action = FIELD_GET(GUC_HXG_REQUEST_MSG_0_ACTION, msg[0]);
1785 
1786 	xe_gt_sriov_dbg_verbose(gt, "fixing H2G %#x\n", action);
1787 
1788 	switch (action) {
1789 	case XE_GUC_ACTION_REGISTER_CONTEXT:
1790 		if (len != XE_GUC_REGISTER_CONTEXT_MSG_LEN)
1791 			goto err_len;
1792 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1793 				     XE_GUC_REGISTER_CONTEXT_DATA_5_WQ_DESC_ADDR_LOWER,
1794 				     shift);
1795 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1796 				     XE_GUC_REGISTER_CONTEXT_DATA_7_WQ_BUF_BASE_LOWER,
1797 				     shift);
1798 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1799 				     XE_GUC_REGISTER_CONTEXT_DATA_10_HW_LRC_ADDR, shift);
1800 		break;
1801 	case XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC:
1802 		if (len < XE_GUC_REGISTER_CONTEXT_MULTI_LRC_MSG_MIN_LEN)
1803 			goto err_len;
1804 		n = xe_map_rd_ring_u32(xe, cmds, head +
1805 				       XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_10_NUM_CTXS, size);
1806 		if (len != XE_GUC_REGISTER_CONTEXT_MULTI_LRC_MSG_MIN_LEN + 2 * n)
1807 			goto err_len;
1808 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1809 				     XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_5_WQ_DESC_ADDR_LOWER,
1810 				     shift);
1811 		xe_fixup_u64_in_cmds(xe, cmds, size, head +
1812 				     XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_7_WQ_BUF_BASE_LOWER,
1813 				     shift);
1814 		for (i = 0; i < n; i++)
1815 			xe_fixup_u64_in_cmds(xe, cmds, size, head +
1816 					     XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_11_HW_LRC_ADDR
1817 					     + 2 * i, shift);
1818 		break;
1819 	default:
1820 		break;
1821 	}
1822 	return true;
1823 
1824 err_len:
1825 	xe_gt_err(gt, "Skipped G2G %#x message fixups, unexpected length (%u)\n", action, len);
1826 	return false;
1827 }
1828 
1829 /*
1830  * Apply fixups to the next outgoing CT message within given CTB
1831  * @ct: the &xe_guc_ct struct instance representing the target GuC
1832  * @h2g: the &guc_ctb struct instance of the target buffer
1833  * @shift: shift to be added to all GGTT addresses within the CTB
1834  * @mhead: pointer to an integer storing message start position; the
1835  *   position is changed to next message before this function return
1836  * @avail: size of the area available for parsing, that is length
1837  *   of all remaining messages stored within the CTB
1838  * Return: size of the area available for parsing after one message
1839  *   has been parsed, that is length remaining from the updated mhead
1840  */
ct_fixup_ggtt_in_buffer(struct xe_guc_ct * ct,struct guc_ctb * h2g,s64 shift,u32 * mhead,s32 avail)1841 static int ct_fixup_ggtt_in_buffer(struct xe_guc_ct *ct, struct guc_ctb *h2g,
1842 				   s64 shift, u32 *mhead, s32 avail)
1843 {
1844 	struct xe_gt *gt = ct_to_gt(ct);
1845 	struct xe_device *xe = ct_to_xe(ct);
1846 	u32 msg[GUC_HXG_MSG_MIN_LEN];
1847 	u32 size = h2g->info.size;
1848 	u32 head = *mhead;
1849 	u32 len;
1850 
1851 	xe_gt_assert(gt, avail >= (s32)GUC_CTB_MSG_MIN_LEN);
1852 
1853 	/* Read header */
1854 	msg[0] = xe_map_rd_ring_u32(xe, &h2g->cmds, head, size);
1855 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1856 
1857 	if (unlikely(len > (u32)avail)) {
1858 		xe_gt_err(gt, "H2G channel broken on read, avail=%d, len=%d, fixups skipped\n",
1859 			  avail, len);
1860 		return 0;
1861 	}
1862 
1863 	head = (head + GUC_CTB_MSG_MIN_LEN) % size;
1864 	if (!ct_fixup_ggtt_in_message(ct, &h2g->cmds, head, msg_len_to_hxg_len(len), size, shift))
1865 		return 0;
1866 	*mhead = (head + msg_len_to_hxg_len(len)) % size;
1867 
1868 	return avail - len;
1869 }
1870 
1871 /**
1872  * xe_guc_ct_fixup_messages_with_ggtt - Fixup any pending H2G CTB messages
1873  * @ct: pointer to CT struct of the target GuC
1874  * @ggtt_shift: shift to be added to all GGTT addresses within the CTB
1875  *
1876  * Messages in GuC to Host CTB are owned by GuC and any fixups in them
1877  * are made by GuC. But content of the Host to GuC CTB is owned by the
1878  * KMD, so fixups to GGTT references in any pending messages need to be
1879  * applied here.
1880  * This function updates GGTT offsets in payloads of pending H2G CTB
1881  * messages (messages which were not consumed by GuC before the VF got
1882  * paused).
1883  */
xe_guc_ct_fixup_messages_with_ggtt(struct xe_guc_ct * ct,s64 ggtt_shift)1884 void xe_guc_ct_fixup_messages_with_ggtt(struct xe_guc_ct *ct, s64 ggtt_shift)
1885 {
1886 	struct guc_ctb *h2g = &ct->ctbs.h2g;
1887 	struct xe_guc *guc = ct_to_guc(ct);
1888 	struct xe_gt *gt = guc_to_gt(guc);
1889 	u32 head, tail, size;
1890 	s32 avail;
1891 
1892 	if (unlikely(h2g->info.broken))
1893 		return;
1894 
1895 	h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
1896 	head = h2g->info.head;
1897 	tail = READ_ONCE(h2g->info.tail);
1898 	size = h2g->info.size;
1899 
1900 	if (unlikely(head > size))
1901 		goto corrupted;
1902 
1903 	if (unlikely(tail >= size))
1904 		goto corrupted;
1905 
1906 	avail = tail - head;
1907 
1908 	/* beware of buffer wrap case */
1909 	if (unlikely(avail < 0))
1910 		avail += size;
1911 	xe_gt_dbg(gt, "available %d (%u:%u:%u)\n", avail, head, tail, size);
1912 	xe_gt_assert(gt, avail >= 0);
1913 
1914 	while (avail > 0)
1915 		avail = ct_fixup_ggtt_in_buffer(ct, h2g, ggtt_shift, &head, avail);
1916 
1917 	return;
1918 
1919 corrupted:
1920 	xe_gt_err(gt, "Corrupted H2G descriptor head=%u tail=%u size=%u, fixups not applied\n",
1921 		  head, tail, size);
1922 	h2g->info.broken = true;
1923 }
1924 
guc_ct_snapshot_alloc(struct xe_guc_ct * ct,bool atomic,bool want_ctb)1925 static struct xe_guc_ct_snapshot *guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic,
1926 							bool want_ctb)
1927 {
1928 	struct xe_guc_ct_snapshot *snapshot;
1929 
1930 	snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL);
1931 	if (!snapshot)
1932 		return NULL;
1933 
1934 	if (ct->bo && want_ctb) {
1935 		snapshot->ctb_size = xe_bo_size(ct->bo);
1936 		snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL);
1937 	}
1938 
1939 	return snapshot;
1940 }
1941 
guc_ctb_snapshot_capture(struct xe_device * xe,struct guc_ctb * ctb,struct guc_ctb_snapshot * snapshot)1942 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1943 				     struct guc_ctb_snapshot *snapshot)
1944 {
1945 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1946 			   sizeof(struct guc_ct_buffer_desc));
1947 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1948 }
1949 
guc_ctb_snapshot_print(struct guc_ctb_snapshot * snapshot,struct drm_printer * p)1950 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1951 				   struct drm_printer *p)
1952 {
1953 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1954 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1955 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1956 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1957 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1958 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1959 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1960 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1961 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1962 }
1963 
guc_ct_snapshot_capture(struct xe_guc_ct * ct,bool atomic,bool want_ctb)1964 static struct xe_guc_ct_snapshot *guc_ct_snapshot_capture(struct xe_guc_ct *ct, bool atomic,
1965 							  bool want_ctb)
1966 {
1967 	struct xe_device *xe = ct_to_xe(ct);
1968 	struct xe_guc_ct_snapshot *snapshot;
1969 
1970 	snapshot = guc_ct_snapshot_alloc(ct, atomic, want_ctb);
1971 	if (!snapshot) {
1972 		xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n");
1973 		return NULL;
1974 	}
1975 
1976 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
1977 		snapshot->ct_enabled = true;
1978 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1979 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g);
1980 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h);
1981 	}
1982 
1983 	if (ct->bo && snapshot->ctb)
1984 		xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size);
1985 
1986 	return snapshot;
1987 }
1988 
1989 /**
1990  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1991  * @ct: GuC CT object.
1992  *
1993  * This can be printed out in a later stage like during dev_coredump
1994  * analysis. This is safe to be called during atomic context.
1995  *
1996  * Returns: a GuC CT snapshot object that must be freed by the caller
1997  * by using `xe_guc_ct_snapshot_free`.
1998  */
xe_guc_ct_snapshot_capture(struct xe_guc_ct * ct)1999 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct)
2000 {
2001 	return guc_ct_snapshot_capture(ct, true, true);
2002 }
2003 
2004 /**
2005  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
2006  * @snapshot: GuC CT snapshot object.
2007  * @p: drm_printer where it will be printed out.
2008  *
2009  * This function prints out a given GuC CT snapshot object.
2010  */
xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot * snapshot,struct drm_printer * p)2011 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
2012 			      struct drm_printer *p)
2013 {
2014 	if (!snapshot)
2015 		return;
2016 
2017 	if (snapshot->ct_enabled) {
2018 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
2019 		guc_ctb_snapshot_print(&snapshot->h2g, p);
2020 
2021 		drm_puts(p, "G2H CTB (all sizes in DW):\n");
2022 		guc_ctb_snapshot_print(&snapshot->g2h, p);
2023 		drm_printf(p, "\tg2h outstanding: %d\n",
2024 			   snapshot->g2h_outstanding);
2025 
2026 		if (snapshot->ctb) {
2027 			drm_printf(p, "[CTB].length: 0x%zx\n", snapshot->ctb_size);
2028 			xe_print_blob_ascii85(p, "[CTB].data", '\n',
2029 					      snapshot->ctb, 0, snapshot->ctb_size);
2030 		}
2031 	} else {
2032 		drm_puts(p, "CT disabled\n");
2033 	}
2034 }
2035 
2036 /**
2037  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
2038  * @snapshot: GuC CT snapshot object.
2039  *
2040  * This function free all the memory that needed to be allocated at capture
2041  * time.
2042  */
xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot * snapshot)2043 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
2044 {
2045 	if (!snapshot)
2046 		return;
2047 
2048 	kfree(snapshot->ctb);
2049 	kfree(snapshot);
2050 }
2051 
2052 /**
2053  * xe_guc_ct_print - GuC CT Print.
2054  * @ct: GuC CT.
2055  * @p: drm_printer where it will be printed out.
2056  * @want_ctb: Should the full CTB content be dumped (vs just the headers)
2057  *
2058  * This function will quickly capture a snapshot of the CT state
2059  * and immediately print it out.
2060  */
xe_guc_ct_print(struct xe_guc_ct * ct,struct drm_printer * p,bool want_ctb)2061 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool want_ctb)
2062 {
2063 	struct xe_guc_ct_snapshot *snapshot;
2064 
2065 	snapshot = guc_ct_snapshot_capture(ct, false, want_ctb);
2066 	xe_guc_ct_snapshot_print(snapshot, p);
2067 	xe_guc_ct_snapshot_free(snapshot);
2068 }
2069 
2070 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
2071 
2072 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2073 /*
2074  * This is a helper function which assists the driver in identifying if a fault
2075  * injection test is currently active, allowing it to reduce unnecessary debug
2076  * output. Typically, the function returns zero, but the fault injection
2077  * framework can alter this to return an error. Since faults are injected
2078  * through this function, it's important to ensure the compiler doesn't optimize
2079  * it into an inline function. To avoid such optimization, the 'noinline'
2080  * attribute is applied. Compiler optimizes the static function defined in the
2081  * header file as an inline function.
2082  */
xe_is_injection_active(void)2083 noinline int xe_is_injection_active(void) { return 0; }
2084 ALLOW_ERROR_INJECTION(xe_is_injection_active, ERRNO);
2085 #else
xe_is_injection_active(void)2086 int xe_is_injection_active(void) { return 0; }
2087 #endif
2088 
ct_dead_capture(struct xe_guc_ct * ct,struct guc_ctb * ctb,u32 reason_code)2089 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code)
2090 {
2091 	struct xe_guc_log_snapshot *snapshot_log;
2092 	struct xe_guc_ct_snapshot *snapshot_ct;
2093 	struct xe_guc *guc = ct_to_guc(ct);
2094 	unsigned long flags;
2095 	bool have_capture;
2096 
2097 	if (ctb)
2098 		ctb->info.broken = true;
2099 	/*
2100 	 * Huge dump is getting generated when injecting error for guc CT/MMIO
2101 	 * functions. So, let us suppress the dump when fault is injected.
2102 	 */
2103 	if (xe_is_injection_active())
2104 		return;
2105 
2106 	/* Ignore further errors after the first dump until a reset */
2107 	if (ct->dead.reported)
2108 		return;
2109 
2110 	spin_lock_irqsave(&ct->dead.lock, flags);
2111 
2112 	/* And only capture one dump at a time */
2113 	have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE);
2114 	ct->dead.reason |= (1 << reason_code) |
2115 			   (1 << CT_DEAD_STATE_CAPTURE);
2116 
2117 	spin_unlock_irqrestore(&ct->dead.lock, flags);
2118 
2119 	if (have_capture)
2120 		return;
2121 
2122 	snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true);
2123 	snapshot_ct = xe_guc_ct_snapshot_capture((ct));
2124 
2125 	spin_lock_irqsave(&ct->dead.lock, flags);
2126 
2127 	if (ct->dead.snapshot_log || ct->dead.snapshot_ct) {
2128 		xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n");
2129 		xe_guc_log_snapshot_free(snapshot_log);
2130 		xe_guc_ct_snapshot_free(snapshot_ct);
2131 	} else {
2132 		ct->dead.snapshot_log = snapshot_log;
2133 		ct->dead.snapshot_ct = snapshot_ct;
2134 	}
2135 
2136 	spin_unlock_irqrestore(&ct->dead.lock, flags);
2137 
2138 	queue_work(system_unbound_wq, &(ct)->dead.worker);
2139 }
2140 
ct_dead_print(struct xe_dead_ct * dead)2141 static void ct_dead_print(struct xe_dead_ct *dead)
2142 {
2143 	struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead);
2144 	struct xe_device *xe = ct_to_xe(ct);
2145 	struct xe_gt *gt = ct_to_gt(ct);
2146 	static int g_count;
2147 	struct drm_printer ip = xe_gt_info_printer(gt);
2148 	struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count);
2149 
2150 	if (!dead->reason) {
2151 		xe_gt_err(gt, "CTB is dead for no reason!?\n");
2152 		return;
2153 	}
2154 
2155 	/* Can't generate a genuine core dump at this point, so just do the good bits */
2156 	drm_puts(&lp, "**** Xe Device Coredump ****\n");
2157 	drm_printf(&lp, "Reason: CTB is dead - 0x%X\n", dead->reason);
2158 	xe_device_snapshot_print(xe, &lp);
2159 
2160 	drm_printf(&lp, "**** GT #%d ****\n", gt->info.id);
2161 	drm_printf(&lp, "\tTile: %d\n", gt->tile->id);
2162 
2163 	drm_puts(&lp, "**** GuC Log ****\n");
2164 	xe_guc_log_snapshot_print(dead->snapshot_log, &lp);
2165 
2166 	drm_puts(&lp, "**** GuC CT ****\n");
2167 	xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp);
2168 
2169 	drm_puts(&lp, "Done.\n");
2170 }
2171 
ct_dead_worker_func(struct work_struct * w)2172 static void ct_dead_worker_func(struct work_struct *w)
2173 {
2174 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker);
2175 
2176 	if (!ct->dead.reported) {
2177 		ct->dead.reported = true;
2178 		ct_dead_print(&ct->dead);
2179 	}
2180 
2181 	spin_lock_irq(&ct->dead.lock);
2182 
2183 	xe_guc_log_snapshot_free(ct->dead.snapshot_log);
2184 	ct->dead.snapshot_log = NULL;
2185 	xe_guc_ct_snapshot_free(ct->dead.snapshot_ct);
2186 	ct->dead.snapshot_ct = NULL;
2187 
2188 	if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) {
2189 		/* A reset has occurred so re-arm the error reporting */
2190 		ct->dead.reason = 0;
2191 		ct->dead.reported = false;
2192 	}
2193 
2194 	spin_unlock_irq(&ct->dead.lock);
2195 }
2196 #endif
2197