1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include "xe_guc_ct.h"
7
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 #include <linux/fault-inject.h>
12
13 #include <kunit/static_stub.h>
14
15 #include <drm/drm_managed.h>
16
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_sriov_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "xe_bo.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_gt.h"
24 #include "xe_gt_pagefault.h"
25 #include "xe_gt_printk.h"
26 #include "xe_gt_sriov_pf_control.h"
27 #include "xe_gt_sriov_pf_monitor.h"
28 #include "xe_gt_sriov_printk.h"
29 #include "xe_guc.h"
30 #include "xe_guc_log.h"
31 #include "xe_guc_relay.h"
32 #include "xe_guc_submit.h"
33 #include "xe_guc_tlb_inval.h"
34 #include "xe_map.h"
35 #include "xe_pm.h"
36 #include "xe_trace_guc.h"
37
38 static void receive_g2h(struct xe_guc_ct *ct);
39 static void g2h_worker_func(struct work_struct *w);
40 static void safe_mode_worker_func(struct work_struct *w);
41 static void ct_exit_safe_mode(struct xe_guc_ct *ct);
42 static void guc_ct_change_state(struct xe_guc_ct *ct,
43 enum xe_guc_ct_state state);
44
45 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
46 enum {
47 /* Internal states, not error conditions */
48 CT_DEAD_STATE_REARM, /* 0x0001 */
49 CT_DEAD_STATE_CAPTURE, /* 0x0002 */
50
51 /* Error conditions */
52 CT_DEAD_SETUP, /* 0x0004 */
53 CT_DEAD_H2G_WRITE, /* 0x0008 */
54 CT_DEAD_H2G_HAS_ROOM, /* 0x0010 */
55 CT_DEAD_G2H_READ, /* 0x0020 */
56 CT_DEAD_G2H_RECV, /* 0x0040 */
57 CT_DEAD_G2H_RELEASE, /* 0x0080 */
58 CT_DEAD_DEADLOCK, /* 0x0100 */
59 CT_DEAD_PROCESS_FAILED, /* 0x0200 */
60 CT_DEAD_FAST_G2H, /* 0x0400 */
61 CT_DEAD_PARSE_G2H_RESPONSE, /* 0x0800 */
62 CT_DEAD_PARSE_G2H_UNKNOWN, /* 0x1000 */
63 CT_DEAD_PARSE_G2H_ORIGIN, /* 0x2000 */
64 CT_DEAD_PARSE_G2H_TYPE, /* 0x4000 */
65 CT_DEAD_CRASH, /* 0x8000 */
66 };
67
68 static void ct_dead_worker_func(struct work_struct *w);
69 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code);
70
71 #define CT_DEAD(ct, ctb, reason_code) ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code)
72 #else
73 #define CT_DEAD(ct, ctb, reason) \
74 do { \
75 struct guc_ctb *_ctb = (ctb); \
76 if (_ctb) \
77 _ctb->info.broken = true; \
78 } while (0)
79 #endif
80
81 /* Used when a CT send wants to block and / or receive data */
82 struct g2h_fence {
83 u32 *response_buffer;
84 u32 seqno;
85 u32 response_data;
86 u16 response_len;
87 u16 error;
88 u16 hint;
89 u16 reason;
90 bool cancel;
91 bool retry;
92 bool fail;
93 bool done;
94 };
95
96 #define make_u64(hi, lo) ((u64)((u64)(u32)(hi) << 32 | (u32)(lo)))
97
g2h_fence_init(struct g2h_fence * g2h_fence,u32 * response_buffer)98 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
99 {
100 memset(g2h_fence, 0, sizeof(*g2h_fence));
101 g2h_fence->response_buffer = response_buffer;
102 g2h_fence->seqno = ~0x0;
103 }
104
g2h_fence_cancel(struct g2h_fence * g2h_fence)105 static void g2h_fence_cancel(struct g2h_fence *g2h_fence)
106 {
107 g2h_fence->cancel = true;
108 g2h_fence->fail = true;
109 g2h_fence->done = true;
110 }
111
g2h_fence_needs_alloc(struct g2h_fence * g2h_fence)112 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
113 {
114 return g2h_fence->seqno == ~0x0;
115 }
116
117 static struct xe_guc *
ct_to_guc(struct xe_guc_ct * ct)118 ct_to_guc(struct xe_guc_ct *ct)
119 {
120 return container_of(ct, struct xe_guc, ct);
121 }
122
123 static struct xe_gt *
ct_to_gt(struct xe_guc_ct * ct)124 ct_to_gt(struct xe_guc_ct *ct)
125 {
126 return container_of(ct, struct xe_gt, uc.guc.ct);
127 }
128
129 static struct xe_device *
ct_to_xe(struct xe_guc_ct * ct)130 ct_to_xe(struct xe_guc_ct *ct)
131 {
132 return gt_to_xe(ct_to_gt(ct));
133 }
134
135 /**
136 * DOC: GuC CTB Blob
137 *
138 * We allocate single blob to hold both CTB descriptors and buffers:
139 *
140 * +--------+-----------------------------------------------+------+
141 * | offset | contents | size |
142 * +========+===============================================+======+
143 * | 0x0000 | H2G CTB Descriptor (send) | |
144 * +--------+-----------------------------------------------+ 4K |
145 * | 0x0800 | G2H CTB Descriptor (g2h) | |
146 * +--------+-----------------------------------------------+------+
147 * | 0x1000 | H2G CT Buffer (send) | n*4K |
148 * | | | |
149 * +--------+-----------------------------------------------+------+
150 * | 0x1000 | G2H CT Buffer (g2h) | m*4K |
151 * | + n*4K | | |
152 * +--------+-----------------------------------------------+------+
153 *
154 * Size of each ``CT Buffer`` must be multiple of 4K.
155 * We don't expect too many messages in flight at any time, unless we are
156 * using the GuC submission. In that case each request requires a minimum
157 * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
158 * enough space to avoid backpressure on the driver. We increase the size
159 * of the receive buffer (relative to the send) to ensure a G2H response
160 * CTB has a landing spot.
161 *
162 * In addition to submissions, the G2H buffer needs to be able to hold
163 * enough space for recoverable page fault notifications. The number of
164 * page faults is interrupt driven and can be as much as the number of
165 * compute resources available. However, most of the actual work for these
166 * is in a separate page fault worker thread. Therefore we only need to
167 * make sure the queue has enough space to handle all of the submissions
168 * and responses and an extra buffer for incoming page faults.
169 */
170
171 #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
172 #define CTB_H2G_BUFFER_SIZE (SZ_4K)
173 #define CTB_G2H_BUFFER_SIZE (SZ_128K)
174 #define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 2)
175
176 /**
177 * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
178 * CT command queue
179 * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
180 *
181 * Observation is that a 4KiB buffer full of commands takes a little over a
182 * second to process. Use that to calculate maximum time to process a full CT
183 * command queue.
184 *
185 * Return: Maximum time to process a full CT queue in jiffies.
186 */
xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct * ct)187 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
188 {
189 BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
190 return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
191 }
192
guc_ct_size(void)193 static size_t guc_ct_size(void)
194 {
195 return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
196 CTB_G2H_BUFFER_SIZE;
197 }
198
guc_ct_fini(struct drm_device * drm,void * arg)199 static void guc_ct_fini(struct drm_device *drm, void *arg)
200 {
201 struct xe_guc_ct *ct = arg;
202
203 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
204 cancel_work_sync(&ct->dead.worker);
205 #endif
206 ct_exit_safe_mode(ct);
207 destroy_workqueue(ct->g2h_wq);
208 xa_destroy(&ct->fence_lookup);
209 }
210
primelockdep(struct xe_guc_ct * ct)211 static void primelockdep(struct xe_guc_ct *ct)
212 {
213 if (!IS_ENABLED(CONFIG_LOCKDEP))
214 return;
215
216 fs_reclaim_acquire(GFP_KERNEL);
217 might_lock(&ct->lock);
218 fs_reclaim_release(GFP_KERNEL);
219 }
220
xe_guc_ct_init_noalloc(struct xe_guc_ct * ct)221 int xe_guc_ct_init_noalloc(struct xe_guc_ct *ct)
222 {
223 struct xe_device *xe = ct_to_xe(ct);
224 struct xe_gt *gt = ct_to_gt(ct);
225 int err;
226
227 xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
228
229 ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", WQ_MEM_RECLAIM);
230 if (!ct->g2h_wq)
231 return -ENOMEM;
232
233 spin_lock_init(&ct->fast_lock);
234 xa_init(&ct->fence_lookup);
235 INIT_WORK(&ct->g2h_worker, g2h_worker_func);
236 INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func);
237 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
238 spin_lock_init(&ct->dead.lock);
239 INIT_WORK(&ct->dead.worker, ct_dead_worker_func);
240 #endif
241 init_waitqueue_head(&ct->wq);
242 init_waitqueue_head(&ct->g2h_fence_wq);
243
244 err = drmm_mutex_init(&xe->drm, &ct->lock);
245 if (err)
246 return err;
247
248 primelockdep(ct);
249
250 err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
251 if (err)
252 return err;
253
254 xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
255 ct->state = XE_GUC_CT_STATE_DISABLED;
256 return 0;
257 }
258 ALLOW_ERROR_INJECTION(xe_guc_ct_init_noalloc, ERRNO); /* See xe_pci_probe() */
259
guc_action_disable_ct(void * arg)260 static void guc_action_disable_ct(void *arg)
261 {
262 struct xe_guc_ct *ct = arg;
263
264 guc_ct_change_state(ct, XE_GUC_CT_STATE_DISABLED);
265 }
266
xe_guc_ct_init(struct xe_guc_ct * ct)267 int xe_guc_ct_init(struct xe_guc_ct *ct)
268 {
269 struct xe_device *xe = ct_to_xe(ct);
270 struct xe_gt *gt = ct_to_gt(ct);
271 struct xe_tile *tile = gt_to_tile(gt);
272 struct xe_bo *bo;
273
274 bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
275 XE_BO_FLAG_SYSTEM |
276 XE_BO_FLAG_GGTT |
277 XE_BO_FLAG_GGTT_INVALIDATE |
278 XE_BO_FLAG_PINNED_NORESTORE);
279 if (IS_ERR(bo))
280 return PTR_ERR(bo);
281
282 ct->bo = bo;
283
284 return devm_add_action_or_reset(xe->drm.dev, guc_action_disable_ct, ct);
285 }
286 ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */
287
288 /**
289 * xe_guc_ct_init_post_hwconfig - Reinitialize the GuC CTB in VRAM
290 * @ct: the &xe_guc_ct
291 *
292 * Allocate a new BO in VRAM and free the previous BO that was allocated
293 * in system memory (SMEM). Applicable only for DGFX products.
294 *
295 * Return: 0 on success, or a negative errno on failure.
296 */
xe_guc_ct_init_post_hwconfig(struct xe_guc_ct * ct)297 int xe_guc_ct_init_post_hwconfig(struct xe_guc_ct *ct)
298 {
299 struct xe_device *xe = ct_to_xe(ct);
300 struct xe_gt *gt = ct_to_gt(ct);
301 struct xe_tile *tile = gt_to_tile(gt);
302 int ret;
303
304 xe_assert(xe, !xe_guc_ct_enabled(ct));
305
306 if (IS_DGFX(xe)) {
307 ret = xe_managed_bo_reinit_in_vram(xe, tile, &ct->bo);
308 if (ret)
309 return ret;
310 }
311
312 devm_remove_action(xe->drm.dev, guc_action_disable_ct, ct);
313 return devm_add_action_or_reset(xe->drm.dev, guc_action_disable_ct, ct);
314 }
315
316 #define desc_read(xe_, guc_ctb__, field_) \
317 xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \
318 struct guc_ct_buffer_desc, field_)
319
320 #define desc_write(xe_, guc_ctb__, field_, val_) \
321 xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \
322 struct guc_ct_buffer_desc, field_, val_)
323
guc_ct_ctb_h2g_init(struct xe_device * xe,struct guc_ctb * h2g,struct iosys_map * map)324 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
325 struct iosys_map *map)
326 {
327 h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
328 h2g->info.resv_space = 0;
329 h2g->info.tail = 0;
330 h2g->info.head = 0;
331 h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
332 h2g->info.size) -
333 h2g->info.resv_space;
334 h2g->info.broken = false;
335
336 h2g->desc = *map;
337 xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
338
339 h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
340 }
341
guc_ct_ctb_g2h_init(struct xe_device * xe,struct guc_ctb * g2h,struct iosys_map * map)342 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
343 struct iosys_map *map)
344 {
345 g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
346 g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
347 g2h->info.head = 0;
348 g2h->info.tail = 0;
349 g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
350 g2h->info.size) -
351 g2h->info.resv_space;
352 g2h->info.broken = false;
353
354 g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
355 xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
356
357 g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
358 CTB_H2G_BUFFER_SIZE);
359 }
360
guc_ct_ctb_h2g_register(struct xe_guc_ct * ct)361 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
362 {
363 struct xe_guc *guc = ct_to_guc(ct);
364 u32 desc_addr, ctb_addr, size;
365 int err;
366
367 desc_addr = xe_bo_ggtt_addr(ct->bo);
368 ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
369 size = ct->ctbs.h2g.info.size * sizeof(u32);
370
371 err = xe_guc_self_cfg64(guc,
372 GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
373 desc_addr);
374 if (err)
375 return err;
376
377 err = xe_guc_self_cfg64(guc,
378 GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
379 ctb_addr);
380 if (err)
381 return err;
382
383 return xe_guc_self_cfg32(guc,
384 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
385 size);
386 }
387
guc_ct_ctb_g2h_register(struct xe_guc_ct * ct)388 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
389 {
390 struct xe_guc *guc = ct_to_guc(ct);
391 u32 desc_addr, ctb_addr, size;
392 int err;
393
394 desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
395 ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
396 CTB_H2G_BUFFER_SIZE;
397 size = ct->ctbs.g2h.info.size * sizeof(u32);
398
399 err = xe_guc_self_cfg64(guc,
400 GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
401 desc_addr);
402 if (err)
403 return err;
404
405 err = xe_guc_self_cfg64(guc,
406 GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
407 ctb_addr);
408 if (err)
409 return err;
410
411 return xe_guc_self_cfg32(guc,
412 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
413 size);
414 }
415
guc_ct_control_toggle(struct xe_guc_ct * ct,bool enable)416 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
417 {
418 u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
419 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
420 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
421 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
422 GUC_ACTION_HOST2GUC_CONTROL_CTB),
423 FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
424 enable ? GUC_CTB_CONTROL_ENABLE :
425 GUC_CTB_CONTROL_DISABLE),
426 };
427 int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
428
429 return ret > 0 ? -EPROTO : ret;
430 }
431
guc_ct_change_state(struct xe_guc_ct * ct,enum xe_guc_ct_state state)432 static void guc_ct_change_state(struct xe_guc_ct *ct,
433 enum xe_guc_ct_state state)
434 {
435 struct xe_gt *gt = ct_to_gt(ct);
436 struct g2h_fence *g2h_fence;
437 unsigned long idx;
438
439 mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */
440 spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */
441
442 xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
443 state == XE_GUC_CT_STATE_STOPPED);
444
445 if (ct->g2h_outstanding)
446 xe_pm_runtime_put(ct_to_xe(ct));
447 ct->g2h_outstanding = 0;
448 ct->state = state;
449
450 xe_gt_dbg(gt, "GuC CT communication channel %s\n",
451 state == XE_GUC_CT_STATE_STOPPED ? "stopped" :
452 str_enabled_disabled(state == XE_GUC_CT_STATE_ENABLED));
453
454 spin_unlock_irq(&ct->fast_lock);
455
456 /* cancel all in-flight send-recv requests */
457 xa_for_each(&ct->fence_lookup, idx, g2h_fence)
458 g2h_fence_cancel(g2h_fence);
459
460 /* make sure guc_ct_send_recv() will see g2h_fence changes */
461 smp_mb();
462 wake_up_all(&ct->g2h_fence_wq);
463
464 /*
465 * Lockdep doesn't like this under the fast lock and he destroy only
466 * needs to be serialized with the send path which ct lock provides.
467 */
468 xa_destroy(&ct->fence_lookup);
469
470 mutex_unlock(&ct->lock);
471 }
472
ct_needs_safe_mode(struct xe_guc_ct * ct)473 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
474 {
475 return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
476 }
477
ct_restart_safe_mode_worker(struct xe_guc_ct * ct)478 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
479 {
480 if (!ct_needs_safe_mode(ct))
481 return false;
482
483 queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
484 return true;
485 }
486
safe_mode_worker_func(struct work_struct * w)487 static void safe_mode_worker_func(struct work_struct *w)
488 {
489 struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
490
491 receive_g2h(ct);
492
493 if (!ct_restart_safe_mode_worker(ct))
494 xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
495 }
496
ct_enter_safe_mode(struct xe_guc_ct * ct)497 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
498 {
499 if (ct_restart_safe_mode_worker(ct))
500 xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
501 }
502
ct_exit_safe_mode(struct xe_guc_ct * ct)503 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
504 {
505 if (cancel_delayed_work_sync(&ct->safe_mode_worker))
506 xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
507 }
508
xe_guc_ct_enable(struct xe_guc_ct * ct)509 int xe_guc_ct_enable(struct xe_guc_ct *ct)
510 {
511 struct xe_device *xe = ct_to_xe(ct);
512 struct xe_gt *gt = ct_to_gt(ct);
513 int err;
514
515 xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
516
517 xe_map_memset(xe, &ct->bo->vmap, 0, 0, xe_bo_size(ct->bo));
518 guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
519 guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
520
521 err = guc_ct_ctb_h2g_register(ct);
522 if (err)
523 goto err_out;
524
525 err = guc_ct_ctb_g2h_register(ct);
526 if (err)
527 goto err_out;
528
529 err = guc_ct_control_toggle(ct, true);
530 if (err)
531 goto err_out;
532
533 guc_ct_change_state(ct, XE_GUC_CT_STATE_ENABLED);
534
535 smp_mb();
536 wake_up_all(&ct->wq);
537
538 if (ct_needs_safe_mode(ct))
539 ct_enter_safe_mode(ct);
540
541 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
542 /*
543 * The CT has now been reset so the dumper can be re-armed
544 * after any existing dead state has been dumped.
545 */
546 spin_lock_irq(&ct->dead.lock);
547 if (ct->dead.reason) {
548 ct->dead.reason |= (1 << CT_DEAD_STATE_REARM);
549 queue_work(system_unbound_wq, &ct->dead.worker);
550 }
551 spin_unlock_irq(&ct->dead.lock);
552 #endif
553
554 return 0;
555
556 err_out:
557 xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
558 CT_DEAD(ct, NULL, SETUP);
559
560 return err;
561 }
562
stop_g2h_handler(struct xe_guc_ct * ct)563 static void stop_g2h_handler(struct xe_guc_ct *ct)
564 {
565 cancel_work_sync(&ct->g2h_worker);
566 }
567
568 /**
569 * xe_guc_ct_disable - Set GuC to disabled state
570 * @ct: the &xe_guc_ct
571 *
572 * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
573 * in this transition.
574 */
xe_guc_ct_disable(struct xe_guc_ct * ct)575 void xe_guc_ct_disable(struct xe_guc_ct *ct)
576 {
577 guc_ct_change_state(ct, XE_GUC_CT_STATE_DISABLED);
578 ct_exit_safe_mode(ct);
579 stop_g2h_handler(ct);
580 }
581
582 /**
583 * xe_guc_ct_stop - Set GuC to stopped state
584 * @ct: the &xe_guc_ct
585 *
586 * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
587 */
xe_guc_ct_stop(struct xe_guc_ct * ct)588 void xe_guc_ct_stop(struct xe_guc_ct *ct)
589 {
590 if (!xe_guc_ct_initialized(ct))
591 return;
592
593 guc_ct_change_state(ct, XE_GUC_CT_STATE_STOPPED);
594 stop_g2h_handler(ct);
595 }
596
h2g_has_room(struct xe_guc_ct * ct,u32 cmd_len)597 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
598 {
599 struct guc_ctb *h2g = &ct->ctbs.h2g;
600
601 lockdep_assert_held(&ct->lock);
602
603 if (cmd_len > h2g->info.space) {
604 h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
605
606 if (h2g->info.head > h2g->info.size) {
607 struct xe_device *xe = ct_to_xe(ct);
608 u32 desc_status = desc_read(xe, h2g, status);
609
610 desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
611
612 xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n",
613 h2g->info.head, h2g->info.size);
614 CT_DEAD(ct, h2g, H2G_HAS_ROOM);
615 return false;
616 }
617
618 h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
619 h2g->info.size) -
620 h2g->info.resv_space;
621 if (cmd_len > h2g->info.space)
622 return false;
623 }
624
625 return true;
626 }
627
g2h_has_room(struct xe_guc_ct * ct,u32 g2h_len)628 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
629 {
630 if (!g2h_len)
631 return true;
632
633 lockdep_assert_held(&ct->fast_lock);
634
635 return ct->ctbs.g2h.info.space > g2h_len;
636 }
637
has_room(struct xe_guc_ct * ct,u32 cmd_len,u32 g2h_len)638 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
639 {
640 lockdep_assert_held(&ct->lock);
641
642 if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
643 return -EBUSY;
644
645 return 0;
646 }
647
h2g_reserve_space(struct xe_guc_ct * ct,u32 cmd_len)648 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
649 {
650 lockdep_assert_held(&ct->lock);
651 ct->ctbs.h2g.info.space -= cmd_len;
652 }
653
__g2h_reserve_space(struct xe_guc_ct * ct,u32 g2h_len,u32 num_g2h)654 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
655 {
656 xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
657 xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
658 (g2h_len && num_g2h));
659
660 if (g2h_len) {
661 lockdep_assert_held(&ct->fast_lock);
662
663 if (!ct->g2h_outstanding)
664 xe_pm_runtime_get_noresume(ct_to_xe(ct));
665
666 ct->ctbs.g2h.info.space -= g2h_len;
667 ct->g2h_outstanding += num_g2h;
668 }
669 }
670
__g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)671 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
672 {
673 bool bad = false;
674
675 lockdep_assert_held(&ct->fast_lock);
676
677 bad = ct->ctbs.g2h.info.space + g2h_len >
678 ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space;
679 bad |= !ct->g2h_outstanding;
680
681 if (bad) {
682 xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n",
683 ct->ctbs.g2h.info.space, g2h_len,
684 ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space,
685 ct->ctbs.g2h.info.space + g2h_len,
686 ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space,
687 ct->g2h_outstanding);
688 CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE);
689 return;
690 }
691
692 ct->ctbs.g2h.info.space += g2h_len;
693 if (!--ct->g2h_outstanding)
694 xe_pm_runtime_put(ct_to_xe(ct));
695 }
696
g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)697 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
698 {
699 spin_lock_irq(&ct->fast_lock);
700 __g2h_release_space(ct, g2h_len);
701 spin_unlock_irq(&ct->fast_lock);
702 }
703
704 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
fast_req_track(struct xe_guc_ct * ct,u16 fence,u16 action)705 static void fast_req_track(struct xe_guc_ct *ct, u16 fence, u16 action)
706 {
707 unsigned int slot = fence % ARRAY_SIZE(ct->fast_req);
708 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
709 unsigned long entries[SZ_32];
710 unsigned int n;
711
712 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
713
714 /* May be called under spinlock, so avoid sleeping */
715 ct->fast_req[slot].stack = stack_depot_save(entries, n, GFP_NOWAIT);
716 #endif
717 ct->fast_req[slot].fence = fence;
718 ct->fast_req[slot].action = action;
719 }
720 #else
fast_req_track(struct xe_guc_ct * ct,u16 fence,u16 action)721 static void fast_req_track(struct xe_guc_ct *ct, u16 fence, u16 action)
722 {
723 }
724 #endif
725
726 /*
727 * The CT protocol accepts a 16 bits fence. This field is fully owned by the
728 * driver, the GuC will just copy it to the reply message. Since we need to
729 * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
730 * we use one bit of the seqno as an indicator for that and a rolling counter
731 * for the remaining 15 bits.
732 */
733 #define CT_SEQNO_MASK GENMASK(14, 0)
734 #define CT_SEQNO_UNTRACKED BIT(15)
next_ct_seqno(struct xe_guc_ct * ct,bool is_g2h_fence)735 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
736 {
737 u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
738
739 if (!is_g2h_fence)
740 seqno |= CT_SEQNO_UNTRACKED;
741
742 return seqno;
743 }
744
745 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
746
h2g_write(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 ct_fence_value,bool want_response)747 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
748 u32 ct_fence_value, bool want_response)
749 {
750 struct xe_device *xe = ct_to_xe(ct);
751 struct xe_gt *gt = ct_to_gt(ct);
752 struct guc_ctb *h2g = &ct->ctbs.h2g;
753 u32 cmd[H2G_CT_HEADERS];
754 u32 tail = h2g->info.tail;
755 u32 full_len;
756 struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
757 tail * sizeof(u32));
758 u32 desc_status;
759
760 full_len = len + GUC_CTB_HDR_LEN;
761
762 lockdep_assert_held(&ct->lock);
763 xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
764
765 desc_status = desc_read(xe, h2g, status);
766 if (desc_status) {
767 xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status);
768 goto corrupted;
769 }
770
771 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
772 u32 desc_tail = desc_read(xe, h2g, tail);
773 u32 desc_head = desc_read(xe, h2g, head);
774
775 if (tail != desc_tail) {
776 desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH);
777 xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail);
778 goto corrupted;
779 }
780
781 if (tail > h2g->info.size) {
782 desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
783 xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n",
784 tail, h2g->info.size);
785 goto corrupted;
786 }
787
788 if (desc_head >= h2g->info.size) {
789 desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
790 xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n",
791 desc_head, h2g->info.size);
792 goto corrupted;
793 }
794 }
795
796 /* Command will wrap, zero fill (NOPs), return and check credits again */
797 if (tail + full_len > h2g->info.size) {
798 xe_map_memset(xe, &map, 0, 0,
799 (h2g->info.size - tail) * sizeof(u32));
800 h2g_reserve_space(ct, (h2g->info.size - tail));
801 h2g->info.tail = 0;
802 desc_write(xe, h2g, tail, h2g->info.tail);
803
804 return -EAGAIN;
805 }
806
807 /*
808 * dw0: CT header (including fence)
809 * dw1: HXG header (including action code)
810 * dw2+: action data
811 */
812 cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
813 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
814 FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
815 if (want_response) {
816 cmd[1] =
817 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
818 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
819 GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
820 } else {
821 fast_req_track(ct, ct_fence_value,
822 FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, action[0]));
823
824 cmd[1] =
825 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
826 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
827 GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
828 }
829
830 /* H2G header in cmd[1] replaces action[0] so: */
831 --len;
832 ++action;
833
834 /* Write H2G ensuring visible before descriptor update */
835 xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
836 xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
837 xe_device_wmb(xe);
838
839 /* Update local copies */
840 h2g->info.tail = (tail + full_len) % h2g->info.size;
841 h2g_reserve_space(ct, full_len);
842
843 /* Update descriptor */
844 desc_write(xe, h2g, tail, h2g->info.tail);
845
846 trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
847 desc_read(xe, h2g, head), h2g->info.tail);
848
849 return 0;
850
851 corrupted:
852 CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE);
853 return -EPIPE;
854 }
855
__guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)856 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
857 u32 len, u32 g2h_len, u32 num_g2h,
858 struct g2h_fence *g2h_fence)
859 {
860 struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
861 u16 seqno;
862 int ret;
863
864 xe_gt_assert(gt, xe_guc_ct_initialized(ct));
865 xe_gt_assert(gt, !g2h_len || !g2h_fence);
866 xe_gt_assert(gt, !num_g2h || !g2h_fence);
867 xe_gt_assert(gt, !g2h_len || num_g2h);
868 xe_gt_assert(gt, g2h_len || !num_g2h);
869 lockdep_assert_held(&ct->lock);
870
871 if (unlikely(ct->ctbs.h2g.info.broken)) {
872 ret = -EPIPE;
873 goto out;
874 }
875
876 if (ct->state == XE_GUC_CT_STATE_DISABLED) {
877 ret = -ENODEV;
878 goto out;
879 }
880
881 if (ct->state == XE_GUC_CT_STATE_STOPPED) {
882 ret = -ECANCELED;
883 goto out;
884 }
885
886 xe_gt_assert(gt, xe_guc_ct_enabled(ct));
887
888 if (g2h_fence) {
889 g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
890 num_g2h = 1;
891
892 if (g2h_fence_needs_alloc(g2h_fence)) {
893 g2h_fence->seqno = next_ct_seqno(ct, true);
894 ret = xa_err(xa_store(&ct->fence_lookup,
895 g2h_fence->seqno, g2h_fence,
896 GFP_ATOMIC));
897 if (ret)
898 goto out;
899 }
900
901 seqno = g2h_fence->seqno;
902 } else {
903 seqno = next_ct_seqno(ct, false);
904 }
905
906 if (g2h_len)
907 spin_lock_irq(&ct->fast_lock);
908 retry:
909 ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
910 if (unlikely(ret))
911 goto out_unlock;
912
913 ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
914 if (unlikely(ret)) {
915 if (ret == -EAGAIN)
916 goto retry;
917 goto out_unlock;
918 }
919
920 __g2h_reserve_space(ct, g2h_len, num_g2h);
921 xe_guc_notify(ct_to_guc(ct));
922 out_unlock:
923 if (g2h_len)
924 spin_unlock_irq(&ct->fast_lock);
925 out:
926 return ret;
927 }
928
kick_reset(struct xe_guc_ct * ct)929 static void kick_reset(struct xe_guc_ct *ct)
930 {
931 xe_gt_reset_async(ct_to_gt(ct));
932 }
933
934 static int dequeue_one_g2h(struct xe_guc_ct *ct);
935
guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)936 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
937 u32 g2h_len, u32 num_g2h,
938 struct g2h_fence *g2h_fence)
939 {
940 struct xe_device *xe = ct_to_xe(ct);
941 struct xe_gt *gt = ct_to_gt(ct);
942 unsigned int sleep_period_ms = 1;
943 int ret;
944
945 xe_gt_assert(gt, !g2h_len || !g2h_fence);
946 lockdep_assert_held(&ct->lock);
947 xe_device_assert_mem_access(ct_to_xe(ct));
948
949 try_again:
950 ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
951 g2h_fence);
952
953 /*
954 * We wait to try to restore credits for about 1 second before bailing.
955 * In the case of H2G credits we have no choice but just to wait for the
956 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
957 * the case of G2H we process any G2H in the channel, hopefully freeing
958 * credits as we consume the G2H messages.
959 */
960 if (unlikely(ret == -EBUSY &&
961 !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
962 struct guc_ctb *h2g = &ct->ctbs.h2g;
963
964 if (sleep_period_ms == 1024)
965 goto broken;
966
967 trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
968 h2g->info.size,
969 h2g->info.space,
970 len + GUC_CTB_HDR_LEN);
971 msleep(sleep_period_ms);
972 sleep_period_ms <<= 1;
973
974 goto try_again;
975 } else if (unlikely(ret == -EBUSY)) {
976 struct xe_device *xe = ct_to_xe(ct);
977 struct guc_ctb *g2h = &ct->ctbs.g2h;
978
979 trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
980 desc_read(xe, g2h, tail),
981 g2h->info.size,
982 g2h->info.space,
983 g2h_fence ?
984 GUC_CTB_HXG_MSG_MAX_LEN :
985 g2h_len);
986
987 #define g2h_avail(ct) \
988 (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
989 if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
990 g2h_avail(ct), HZ))
991 goto broken;
992 #undef g2h_avail
993
994 ret = dequeue_one_g2h(ct);
995 if (ret < 0) {
996 if (ret != -ECANCELED)
997 xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)",
998 ERR_PTR(ret));
999 goto broken;
1000 }
1001
1002 goto try_again;
1003 }
1004
1005 return ret;
1006
1007 broken:
1008 xe_gt_err(gt, "No forward process on H2G, reset required\n");
1009 CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK);
1010
1011 return -EDEADLK;
1012 }
1013
guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)1014 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
1015 u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
1016 {
1017 int ret;
1018
1019 xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
1020
1021 mutex_lock(&ct->lock);
1022 ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
1023 mutex_unlock(&ct->lock);
1024
1025 return ret;
1026 }
1027
xe_guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)1028 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
1029 u32 g2h_len, u32 num_g2h)
1030 {
1031 int ret;
1032
1033 ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
1034 if (ret == -EDEADLK)
1035 kick_reset(ct);
1036
1037 return ret;
1038 }
1039
xe_guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)1040 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
1041 u32 g2h_len, u32 num_g2h)
1042 {
1043 int ret;
1044
1045 ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
1046 if (ret == -EDEADLK)
1047 kick_reset(ct);
1048
1049 return ret;
1050 }
1051
xe_guc_ct_send_g2h_handler(struct xe_guc_ct * ct,const u32 * action,u32 len)1052 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
1053 {
1054 int ret;
1055
1056 lockdep_assert_held(&ct->lock);
1057
1058 ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
1059 if (ret == -EDEADLK)
1060 kick_reset(ct);
1061
1062 return ret;
1063 }
1064
1065 /*
1066 * Check if a GT reset is in progress or will occur and if GT reset brought the
1067 * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
1068 */
retry_failure(struct xe_guc_ct * ct,int ret)1069 static bool retry_failure(struct xe_guc_ct *ct, int ret)
1070 {
1071 if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
1072 return false;
1073
1074 #define ct_alive(ct) \
1075 (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
1076 !ct->ctbs.g2h.info.broken)
1077 if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
1078 return false;
1079 #undef ct_alive
1080
1081 return true;
1082 }
1083
1084 #define GUC_SEND_RETRY_LIMIT 50
1085 #define GUC_SEND_RETRY_MSLEEP 5
1086
guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer,bool no_fail)1087 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1088 u32 *response_buffer, bool no_fail)
1089 {
1090 struct xe_gt *gt = ct_to_gt(ct);
1091 struct g2h_fence g2h_fence;
1092 unsigned int retries = 0;
1093 int ret = 0;
1094
1095 /*
1096 * We use a fence to implement blocking sends / receiving response data.
1097 * The seqno of the fence is sent in the H2G, returned in the G2H, and
1098 * an xarray is used as storage media with the seqno being to key.
1099 * Fields in the fence hold success, failure, retry status and the
1100 * response data. Safe to allocate on the stack as the xarray is the
1101 * only reference and it cannot be present after this function exits.
1102 */
1103 retry:
1104 g2h_fence_init(&g2h_fence, response_buffer);
1105 retry_same_fence:
1106 ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
1107 if (unlikely(ret == -ENOMEM)) {
1108 /* Retry allocation /w GFP_KERNEL */
1109 ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
1110 &g2h_fence, GFP_KERNEL));
1111 if (ret)
1112 return ret;
1113
1114 goto retry_same_fence;
1115 } else if (unlikely(ret)) {
1116 if (ret == -EDEADLK)
1117 kick_reset(ct);
1118
1119 if (no_fail && retry_failure(ct, ret))
1120 goto retry_same_fence;
1121
1122 if (!g2h_fence_needs_alloc(&g2h_fence))
1123 xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1124
1125 return ret;
1126 }
1127
1128 ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
1129 if (!ret) {
1130 LNL_FLUSH_WORK(&ct->g2h_worker);
1131 if (g2h_fence.done) {
1132 xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
1133 g2h_fence.seqno, action[0]);
1134 ret = 1;
1135 }
1136 }
1137
1138 /*
1139 * Ensure we serialize with completion side to prevent UAF with fence going out of scope on
1140 * the stack, since we have no clue if it will fire after the timeout before we can erase
1141 * from the xa. Also we have some dependent loads and stores below for which we need the
1142 * correct ordering, and we lack the needed barriers.
1143 */
1144 mutex_lock(&ct->lock);
1145 if (!ret) {
1146 xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
1147 g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
1148 xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1149 mutex_unlock(&ct->lock);
1150 return -ETIME;
1151 }
1152
1153 if (g2h_fence.retry) {
1154 xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
1155 action[0], g2h_fence.reason);
1156 mutex_unlock(&ct->lock);
1157 if (++retries > GUC_SEND_RETRY_LIMIT) {
1158 xe_gt_err(gt, "H2G action %#x reached retry limit=%u, aborting\n",
1159 action[0], GUC_SEND_RETRY_LIMIT);
1160 return -ELOOP;
1161 }
1162 msleep(GUC_SEND_RETRY_MSLEEP * retries);
1163 goto retry;
1164 }
1165 if (g2h_fence.fail) {
1166 if (g2h_fence.cancel) {
1167 xe_gt_dbg(gt, "H2G request %#x canceled!\n", action[0]);
1168 ret = -ECANCELED;
1169 goto unlock;
1170 }
1171 xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
1172 action[0], g2h_fence.error, g2h_fence.hint);
1173 ret = -EIO;
1174 }
1175
1176 if (ret > 0)
1177 ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
1178
1179 unlock:
1180 mutex_unlock(&ct->lock);
1181
1182 return ret;
1183 }
1184
1185 /**
1186 * xe_guc_ct_send_recv - Send and receive HXG to the GuC
1187 * @ct: the &xe_guc_ct
1188 * @action: the dword array with `HXG Request`_ message (can't be NULL)
1189 * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
1190 * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
1191 *
1192 * Send a `HXG Request`_ message to the GuC over CT communication channel and
1193 * blocks until GuC replies with a `HXG Response`_ message.
1194 *
1195 * For non-blocking communication with GuC use xe_guc_ct_send().
1196 *
1197 * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
1198 *
1199 * Return: response length (in dwords) if &response_buffer was not NULL, or
1200 * DATA0 from `HXG Response`_ if &response_buffer was NULL, or
1201 * a negative error code on failure.
1202 */
xe_guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1203 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1204 u32 *response_buffer)
1205 {
1206 KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
1207 return guc_ct_send_recv(ct, action, len, response_buffer, false);
1208 }
1209 ALLOW_ERROR_INJECTION(xe_guc_ct_send_recv, ERRNO);
1210
xe_guc_ct_send_recv_no_fail(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1211 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
1212 u32 len, u32 *response_buffer)
1213 {
1214 return guc_ct_send_recv(ct, action, len, response_buffer, true);
1215 }
1216
msg_to_hxg(u32 * msg)1217 static u32 *msg_to_hxg(u32 *msg)
1218 {
1219 return msg + GUC_CTB_MSG_MIN_LEN;
1220 }
1221
msg_len_to_hxg_len(u32 len)1222 static u32 msg_len_to_hxg_len(u32 len)
1223 {
1224 return len - GUC_CTB_MSG_MIN_LEN;
1225 }
1226
parse_g2h_event(struct xe_guc_ct * ct,u32 * msg,u32 len)1227 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
1228 {
1229 u32 *hxg = msg_to_hxg(msg);
1230 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1231
1232 lockdep_assert_held(&ct->lock);
1233
1234 switch (action) {
1235 case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1236 case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1237 case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1238 case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1239 g2h_release_space(ct, len);
1240 }
1241
1242 return 0;
1243 }
1244
guc_crash_process_msg(struct xe_guc_ct * ct,u32 action)1245 static int guc_crash_process_msg(struct xe_guc_ct *ct, u32 action)
1246 {
1247 struct xe_gt *gt = ct_to_gt(ct);
1248
1249 if (action == XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
1250 xe_gt_err(gt, "GuC Crash dump notification\n");
1251 else if (action == XE_GUC_ACTION_NOTIFY_EXCEPTION)
1252 xe_gt_err(gt, "GuC Exception notification\n");
1253 else
1254 xe_gt_err(gt, "Unknown GuC crash notification: 0x%04X\n", action);
1255
1256 CT_DEAD(ct, NULL, CRASH);
1257
1258 kick_reset(ct);
1259
1260 return 0;
1261 }
1262
1263 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
fast_req_report(struct xe_guc_ct * ct,u16 fence)1264 static void fast_req_report(struct xe_guc_ct *ct, u16 fence)
1265 {
1266 u16 fence_min = U16_MAX, fence_max = 0;
1267 struct xe_gt *gt = ct_to_gt(ct);
1268 bool found = false;
1269 unsigned int n;
1270 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
1271 char *buf;
1272 #endif
1273
1274 lockdep_assert_held(&ct->lock);
1275
1276 for (n = 0; n < ARRAY_SIZE(ct->fast_req); n++) {
1277 if (ct->fast_req[n].fence < fence_min)
1278 fence_min = ct->fast_req[n].fence;
1279 if (ct->fast_req[n].fence > fence_max)
1280 fence_max = ct->fast_req[n].fence;
1281
1282 if (ct->fast_req[n].fence != fence)
1283 continue;
1284 found = true;
1285
1286 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_GUC)
1287 buf = kmalloc(SZ_4K, GFP_NOWAIT);
1288 if (buf && stack_depot_snprint(ct->fast_req[n].stack, buf, SZ_4K, 0))
1289 xe_gt_err(gt, "Fence 0x%x was used by action %#04x sent at:\n%s",
1290 fence, ct->fast_req[n].action, buf);
1291 else
1292 xe_gt_err(gt, "Fence 0x%x was used by action %#04x [failed to retrieve stack]\n",
1293 fence, ct->fast_req[n].action);
1294 kfree(buf);
1295 #else
1296 xe_gt_err(gt, "Fence 0x%x was used by action %#04x\n",
1297 fence, ct->fast_req[n].action);
1298 #endif
1299 break;
1300 }
1301
1302 if (!found)
1303 xe_gt_warn(gt, "Fence 0x%x not found - tracking buffer wrapped? [range = 0x%x -> 0x%x, next = 0x%X]\n",
1304 fence, fence_min, fence_max, ct->fence_seqno);
1305 }
1306 #else
fast_req_report(struct xe_guc_ct * ct,u16 fence)1307 static void fast_req_report(struct xe_guc_ct *ct, u16 fence)
1308 {
1309 }
1310 #endif
1311
parse_g2h_response(struct xe_guc_ct * ct,u32 * msg,u32 len)1312 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
1313 {
1314 struct xe_gt *gt = ct_to_gt(ct);
1315 u32 *hxg = msg_to_hxg(msg);
1316 u32 hxg_len = msg_len_to_hxg_len(len);
1317 u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
1318 u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1319 struct g2h_fence *g2h_fence;
1320
1321 lockdep_assert_held(&ct->lock);
1322
1323 /*
1324 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
1325 * Those messages should never fail, so if we do get an error back it
1326 * means we're likely doing an illegal operation and the GuC is
1327 * rejecting it. We have no way to inform the code that submitted the
1328 * H2G that the message was rejected, so we need to escalate the
1329 * failure to trigger a reset.
1330 */
1331 if (fence & CT_SEQNO_UNTRACKED) {
1332 if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
1333 xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
1334 fence,
1335 FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1336 FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1337 else
1338 xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1339 type, fence);
1340
1341 fast_req_report(ct, fence);
1342
1343 CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE);
1344
1345 return -EPROTO;
1346 }
1347
1348 g2h_fence = xa_erase(&ct->fence_lookup, fence);
1349 if (unlikely(!g2h_fence)) {
1350 /* Don't tear down channel, as send could've timed out */
1351 /* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */
1352 xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1353 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1354 return 0;
1355 }
1356
1357 xe_gt_assert(gt, fence == g2h_fence->seqno);
1358
1359 if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1360 g2h_fence->fail = true;
1361 g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1362 g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1363 } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1364 g2h_fence->retry = true;
1365 g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1366 } else if (g2h_fence->response_buffer) {
1367 g2h_fence->response_len = hxg_len;
1368 memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1369 } else {
1370 g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1371 }
1372
1373 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1374
1375 g2h_fence->done = true;
1376 smp_mb();
1377
1378 wake_up_all(&ct->g2h_fence_wq);
1379
1380 return 0;
1381 }
1382
parse_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1383 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1384 {
1385 struct xe_gt *gt = ct_to_gt(ct);
1386 u32 *hxg = msg_to_hxg(msg);
1387 u32 origin, type;
1388 int ret;
1389
1390 lockdep_assert_held(&ct->lock);
1391
1392 origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1393 if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1394 xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1395 origin);
1396 CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN);
1397
1398 return -EPROTO;
1399 }
1400
1401 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1402 switch (type) {
1403 case GUC_HXG_TYPE_EVENT:
1404 ret = parse_g2h_event(ct, msg, len);
1405 break;
1406 case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1407 case GUC_HXG_TYPE_RESPONSE_FAILURE:
1408 case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1409 ret = parse_g2h_response(ct, msg, len);
1410 break;
1411 default:
1412 xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1413 type);
1414 CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE);
1415
1416 ret = -EOPNOTSUPP;
1417 }
1418
1419 return ret;
1420 }
1421
process_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1422 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1423 {
1424 struct xe_guc *guc = ct_to_guc(ct);
1425 struct xe_gt *gt = ct_to_gt(ct);
1426 u32 hxg_len = msg_len_to_hxg_len(len);
1427 u32 *hxg = msg_to_hxg(msg);
1428 u32 action, adj_len;
1429 u32 *payload;
1430 int ret = 0;
1431
1432 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1433 return 0;
1434
1435 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1436 payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1437 adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1438
1439 switch (action) {
1440 case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1441 ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1442 break;
1443 case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1444 ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1445 break;
1446 case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1447 ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1448 break;
1449 case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1450 ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1451 adj_len);
1452 break;
1453 case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1454 /* Selftest only at the moment */
1455 break;
1456 case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1457 ret = xe_guc_error_capture_handler(guc, payload, adj_len);
1458 break;
1459 case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1460 /* FIXME: Handle this */
1461 break;
1462 case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1463 ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1464 adj_len);
1465 break;
1466 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1467 ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1468 break;
1469 case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1470 ret = xe_guc_tlb_inval_done_handler(guc, payload, adj_len);
1471 break;
1472 case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1473 ret = xe_guc_access_counter_notify_handler(guc, payload,
1474 adj_len);
1475 break;
1476 case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1477 ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1478 break;
1479 case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1480 ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1481 break;
1482 case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1483 ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1484 break;
1485 case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1486 ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1487 break;
1488 case XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1489 case XE_GUC_ACTION_NOTIFY_EXCEPTION:
1490 ret = guc_crash_process_msg(ct, action);
1491 break;
1492 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1493 case XE_GUC_ACTION_TEST_G2G_RECV:
1494 ret = xe_guc_g2g_test_notification(guc, payload, adj_len);
1495 break;
1496 #endif
1497 default:
1498 xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1499 }
1500
1501 if (ret) {
1502 xe_gt_err(gt, "G2H action %#04x failed (%pe) len %u msg %*ph\n",
1503 action, ERR_PTR(ret), hxg_len, (int)sizeof(u32) * hxg_len, hxg);
1504 CT_DEAD(ct, NULL, PROCESS_FAILED);
1505 }
1506
1507 return 0;
1508 }
1509
g2h_read(struct xe_guc_ct * ct,u32 * msg,bool fast_path)1510 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1511 {
1512 struct xe_device *xe = ct_to_xe(ct);
1513 struct xe_gt *gt = ct_to_gt(ct);
1514 struct guc_ctb *g2h = &ct->ctbs.g2h;
1515 u32 tail, head, len, desc_status;
1516 s32 avail;
1517 u32 action;
1518 u32 *hxg;
1519
1520 xe_gt_assert(gt, xe_guc_ct_initialized(ct));
1521 lockdep_assert_held(&ct->fast_lock);
1522
1523 if (ct->state == XE_GUC_CT_STATE_DISABLED)
1524 return -ENODEV;
1525
1526 if (ct->state == XE_GUC_CT_STATE_STOPPED)
1527 return -ECANCELED;
1528
1529 if (g2h->info.broken)
1530 return -EPIPE;
1531
1532 xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1533
1534 desc_status = desc_read(xe, g2h, status);
1535 if (desc_status) {
1536 if (desc_status & GUC_CTB_STATUS_DISABLED) {
1537 /*
1538 * Potentially valid if a CLIENT_RESET request resulted in
1539 * contexts/engines being reset. But should never happen as
1540 * no contexts should be active when CLIENT_RESET is sent.
1541 */
1542 xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n");
1543 desc_status &= ~GUC_CTB_STATUS_DISABLED;
1544 }
1545
1546 if (desc_status) {
1547 xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status);
1548 goto corrupted;
1549 }
1550 }
1551
1552 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
1553 u32 desc_tail = desc_read(xe, g2h, tail);
1554 /*
1555 u32 desc_head = desc_read(xe, g2h, head);
1556
1557 * info.head and desc_head are updated back-to-back at the end of
1558 * this function and nowhere else. Hence, they cannot be different
1559 * unless two g2h_read calls are running concurrently. Which is not
1560 * possible because it is guarded by ct->fast_lock. And yet, some
1561 * discrete platforms are regularly hitting this error :(.
1562 *
1563 * desc_head rolling backwards shouldn't cause any noticeable
1564 * problems - just a delay in GuC being allowed to proceed past that
1565 * point in the queue. So for now, just disable the error until it
1566 * can be root caused.
1567 *
1568 if (g2h->info.head != desc_head) {
1569 desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH);
1570 xe_gt_err(gt, "CT read: head was modified %u != %u\n",
1571 desc_head, g2h->info.head);
1572 goto corrupted;
1573 }
1574 */
1575
1576 if (g2h->info.head > g2h->info.size) {
1577 desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1578 xe_gt_err(gt, "CT read: head out of range: %u vs %u\n",
1579 g2h->info.head, g2h->info.size);
1580 goto corrupted;
1581 }
1582
1583 if (desc_tail >= g2h->info.size) {
1584 desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1585 xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n",
1586 desc_tail, g2h->info.size);
1587 goto corrupted;
1588 }
1589 }
1590
1591 /* Calculate DW available to read */
1592 tail = desc_read(xe, g2h, tail);
1593 avail = tail - g2h->info.head;
1594 if (unlikely(avail == 0))
1595 return 0;
1596
1597 if (avail < 0)
1598 avail += g2h->info.size;
1599
1600 /* Read header */
1601 xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1602 sizeof(u32));
1603 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1604 if (len > avail) {
1605 xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1606 avail, len);
1607 goto corrupted;
1608 }
1609
1610 head = (g2h->info.head + 1) % g2h->info.size;
1611 avail = len - 1;
1612
1613 /* Read G2H message */
1614 if (avail + head > g2h->info.size) {
1615 u32 avail_til_wrap = g2h->info.size - head;
1616
1617 xe_map_memcpy_from(xe, msg + 1,
1618 &g2h->cmds, sizeof(u32) * head,
1619 avail_til_wrap * sizeof(u32));
1620 xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1621 &g2h->cmds, 0,
1622 (avail - avail_til_wrap) * sizeof(u32));
1623 } else {
1624 xe_map_memcpy_from(xe, msg + 1,
1625 &g2h->cmds, sizeof(u32) * head,
1626 avail * sizeof(u32));
1627 }
1628
1629 hxg = msg_to_hxg(msg);
1630 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1631
1632 if (fast_path) {
1633 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1634 return 0;
1635
1636 switch (action) {
1637 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1638 case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1639 break; /* Process these in fast-path */
1640 default:
1641 return 0;
1642 }
1643 }
1644
1645 /* Update local / descriptor header */
1646 g2h->info.head = (head + avail) % g2h->info.size;
1647 desc_write(xe, g2h, head, g2h->info.head);
1648
1649 trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1650 action, len, g2h->info.head, tail);
1651
1652 return len;
1653
1654 corrupted:
1655 CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ);
1656 return -EPROTO;
1657 }
1658
g2h_fast_path(struct xe_guc_ct * ct,u32 * msg,u32 len)1659 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1660 {
1661 struct xe_gt *gt = ct_to_gt(ct);
1662 struct xe_guc *guc = ct_to_guc(ct);
1663 u32 hxg_len = msg_len_to_hxg_len(len);
1664 u32 *hxg = msg_to_hxg(msg);
1665 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1666 u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1667 u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1668 int ret = 0;
1669
1670 switch (action) {
1671 case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1672 ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1673 break;
1674 case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1675 __g2h_release_space(ct, len);
1676 ret = xe_guc_tlb_inval_done_handler(guc, payload, adj_len);
1677 break;
1678 default:
1679 xe_gt_warn(gt, "NOT_POSSIBLE");
1680 }
1681
1682 if (ret) {
1683 xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1684 action, ERR_PTR(ret));
1685 CT_DEAD(ct, NULL, FAST_G2H);
1686 }
1687 }
1688
1689 /**
1690 * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1691 * @ct: GuC CT object
1692 *
1693 * Anything related to page faults is critical for performance, process these
1694 * critical G2H in the IRQ. This is safe as these handlers either just wake up
1695 * waiters or queue another worker.
1696 */
xe_guc_ct_fast_path(struct xe_guc_ct * ct)1697 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1698 {
1699 struct xe_device *xe = ct_to_xe(ct);
1700 bool ongoing;
1701 int len;
1702
1703 ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1704 if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1705 return;
1706
1707 spin_lock(&ct->fast_lock);
1708 do {
1709 len = g2h_read(ct, ct->fast_msg, true);
1710 if (len > 0)
1711 g2h_fast_path(ct, ct->fast_msg, len);
1712 } while (len > 0);
1713 spin_unlock(&ct->fast_lock);
1714
1715 if (ongoing)
1716 xe_pm_runtime_put(xe);
1717 }
1718
1719 /* Returns less than zero on error, 0 on done, 1 on more available */
dequeue_one_g2h(struct xe_guc_ct * ct)1720 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1721 {
1722 int len;
1723 int ret;
1724
1725 lockdep_assert_held(&ct->lock);
1726
1727 spin_lock_irq(&ct->fast_lock);
1728 len = g2h_read(ct, ct->msg, false);
1729 spin_unlock_irq(&ct->fast_lock);
1730 if (len <= 0)
1731 return len;
1732
1733 ret = parse_g2h_msg(ct, ct->msg, len);
1734 if (unlikely(ret < 0))
1735 return ret;
1736
1737 ret = process_g2h_msg(ct, ct->msg, len);
1738 if (unlikely(ret < 0))
1739 return ret;
1740
1741 return 1;
1742 }
1743
receive_g2h(struct xe_guc_ct * ct)1744 static void receive_g2h(struct xe_guc_ct *ct)
1745 {
1746 bool ongoing;
1747 int ret;
1748
1749 /*
1750 * Normal users must always hold mem_access.ref around CT calls. However
1751 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1752 * at this stage we can't rely on mem_access.ref and even the
1753 * callback_task will be different than current. For such cases we just
1754 * need to ensure we always process the responses from any blocking
1755 * ct_send requests or where we otherwise expect some response when
1756 * initiated from those callbacks (which will need to wait for the below
1757 * dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if
1758 * the device has suspended to the point that the CT communication has
1759 * been disabled.
1760 *
1761 * If we are inside the runtime pm callback, we can be the only task
1762 * still issuing CT requests (since that requires having the
1763 * mem_access.ref). It seems like it might in theory be possible to
1764 * receive unsolicited events from the GuC just as we are
1765 * suspending-resuming, but those will currently anyway be lost when
1766 * eventually exiting from suspend, hence no need to wake up the device
1767 * here. If we ever need something stronger than get_if_ongoing() then
1768 * we need to be careful with blocking the pm callbacks from getting CT
1769 * responses, if the worker here is blocked on those callbacks
1770 * completing, creating a deadlock.
1771 */
1772 ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1773 if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1774 return;
1775
1776 do {
1777 mutex_lock(&ct->lock);
1778 ret = dequeue_one_g2h(ct);
1779 mutex_unlock(&ct->lock);
1780
1781 if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1782 xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret);
1783 CT_DEAD(ct, NULL, G2H_RECV);
1784 kick_reset(ct);
1785 }
1786 } while (ret == 1);
1787
1788 if (ongoing)
1789 xe_pm_runtime_put(ct_to_xe(ct));
1790 }
1791
g2h_worker_func(struct work_struct * w)1792 static void g2h_worker_func(struct work_struct *w)
1793 {
1794 struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1795
1796 receive_g2h(ct);
1797 }
1798
xe_fixup_u64_in_cmds(struct xe_device * xe,struct iosys_map * cmds,u32 size,u32 idx,s64 shift)1799 static void xe_fixup_u64_in_cmds(struct xe_device *xe, struct iosys_map *cmds,
1800 u32 size, u32 idx, s64 shift)
1801 {
1802 u32 hi, lo;
1803 u64 offset;
1804
1805 lo = xe_map_rd_ring_u32(xe, cmds, idx, size);
1806 hi = xe_map_rd_ring_u32(xe, cmds, idx + 1, size);
1807 offset = make_u64(hi, lo);
1808 offset += shift;
1809 lo = lower_32_bits(offset);
1810 hi = upper_32_bits(offset);
1811 xe_map_wr_ring_u32(xe, cmds, idx, size, lo);
1812 xe_map_wr_ring_u32(xe, cmds, idx + 1, size, hi);
1813 }
1814
1815 /*
1816 * Shift any GGTT addresses within a single message left within CTB from
1817 * before post-migration recovery.
1818 * @ct: pointer to CT struct of the target GuC
1819 * @cmds: iomap buffer containing CT messages
1820 * @head: start of the target message within the buffer
1821 * @len: length of the target message
1822 * @size: size of the commands buffer
1823 * @shift: the address shift to be added to each GGTT reference
1824 * Return: true if the message was fixed or needed no fixups, false on failure
1825 */
ct_fixup_ggtt_in_message(struct xe_guc_ct * ct,struct iosys_map * cmds,u32 head,u32 len,u32 size,s64 shift)1826 static bool ct_fixup_ggtt_in_message(struct xe_guc_ct *ct,
1827 struct iosys_map *cmds, u32 head,
1828 u32 len, u32 size, s64 shift)
1829 {
1830 struct xe_gt *gt = ct_to_gt(ct);
1831 struct xe_device *xe = ct_to_xe(ct);
1832 u32 msg[GUC_HXG_MSG_MIN_LEN];
1833 u32 action, i, n;
1834
1835 xe_gt_assert(gt, len >= GUC_HXG_MSG_MIN_LEN);
1836
1837 msg[0] = xe_map_rd_ring_u32(xe, cmds, head, size);
1838 action = FIELD_GET(GUC_HXG_REQUEST_MSG_0_ACTION, msg[0]);
1839
1840 xe_gt_sriov_dbg_verbose(gt, "fixing H2G %#x\n", action);
1841
1842 switch (action) {
1843 case XE_GUC_ACTION_REGISTER_CONTEXT:
1844 if (len != XE_GUC_REGISTER_CONTEXT_MSG_LEN)
1845 goto err_len;
1846 xe_fixup_u64_in_cmds(xe, cmds, size, head +
1847 XE_GUC_REGISTER_CONTEXT_DATA_5_WQ_DESC_ADDR_LOWER,
1848 shift);
1849 xe_fixup_u64_in_cmds(xe, cmds, size, head +
1850 XE_GUC_REGISTER_CONTEXT_DATA_7_WQ_BUF_BASE_LOWER,
1851 shift);
1852 xe_fixup_u64_in_cmds(xe, cmds, size, head +
1853 XE_GUC_REGISTER_CONTEXT_DATA_10_HW_LRC_ADDR, shift);
1854 break;
1855 case XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC:
1856 if (len < XE_GUC_REGISTER_CONTEXT_MULTI_LRC_MSG_MIN_LEN)
1857 goto err_len;
1858 n = xe_map_rd_ring_u32(xe, cmds, head +
1859 XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_10_NUM_CTXS, size);
1860 if (len != XE_GUC_REGISTER_CONTEXT_MULTI_LRC_MSG_MIN_LEN + 2 * n)
1861 goto err_len;
1862 xe_fixup_u64_in_cmds(xe, cmds, size, head +
1863 XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_5_WQ_DESC_ADDR_LOWER,
1864 shift);
1865 xe_fixup_u64_in_cmds(xe, cmds, size, head +
1866 XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_7_WQ_BUF_BASE_LOWER,
1867 shift);
1868 for (i = 0; i < n; i++)
1869 xe_fixup_u64_in_cmds(xe, cmds, size, head +
1870 XE_GUC_REGISTER_CONTEXT_MULTI_LRC_DATA_11_HW_LRC_ADDR
1871 + 2 * i, shift);
1872 break;
1873 default:
1874 break;
1875 }
1876 return true;
1877
1878 err_len:
1879 xe_gt_err(gt, "Skipped G2G %#x message fixups, unexpected length (%u)\n", action, len);
1880 return false;
1881 }
1882
1883 /*
1884 * Apply fixups to the next outgoing CT message within given CTB
1885 * @ct: the &xe_guc_ct struct instance representing the target GuC
1886 * @h2g: the &guc_ctb struct instance of the target buffer
1887 * @shift: shift to be added to all GGTT addresses within the CTB
1888 * @mhead: pointer to an integer storing message start position; the
1889 * position is changed to next message before this function return
1890 * @avail: size of the area available for parsing, that is length
1891 * of all remaining messages stored within the CTB
1892 * Return: size of the area available for parsing after one message
1893 * has been parsed, that is length remaining from the updated mhead
1894 */
ct_fixup_ggtt_in_buffer(struct xe_guc_ct * ct,struct guc_ctb * h2g,s64 shift,u32 * mhead,s32 avail)1895 static int ct_fixup_ggtt_in_buffer(struct xe_guc_ct *ct, struct guc_ctb *h2g,
1896 s64 shift, u32 *mhead, s32 avail)
1897 {
1898 struct xe_gt *gt = ct_to_gt(ct);
1899 struct xe_device *xe = ct_to_xe(ct);
1900 u32 msg[GUC_HXG_MSG_MIN_LEN];
1901 u32 size = h2g->info.size;
1902 u32 head = *mhead;
1903 u32 len;
1904
1905 xe_gt_assert(gt, avail >= (s32)GUC_CTB_MSG_MIN_LEN);
1906
1907 /* Read header */
1908 msg[0] = xe_map_rd_ring_u32(xe, &h2g->cmds, head, size);
1909 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1910
1911 if (unlikely(len > (u32)avail)) {
1912 xe_gt_err(gt, "H2G channel broken on read, avail=%d, len=%d, fixups skipped\n",
1913 avail, len);
1914 return 0;
1915 }
1916
1917 head = (head + GUC_CTB_MSG_MIN_LEN) % size;
1918 if (!ct_fixup_ggtt_in_message(ct, &h2g->cmds, head, msg_len_to_hxg_len(len), size, shift))
1919 return 0;
1920 *mhead = (head + msg_len_to_hxg_len(len)) % size;
1921
1922 return avail - len;
1923 }
1924
1925 /**
1926 * xe_guc_ct_fixup_messages_with_ggtt - Fixup any pending H2G CTB messages
1927 * @ct: pointer to CT struct of the target GuC
1928 * @ggtt_shift: shift to be added to all GGTT addresses within the CTB
1929 *
1930 * Messages in GuC to Host CTB are owned by GuC and any fixups in them
1931 * are made by GuC. But content of the Host to GuC CTB is owned by the
1932 * KMD, so fixups to GGTT references in any pending messages need to be
1933 * applied here.
1934 * This function updates GGTT offsets in payloads of pending H2G CTB
1935 * messages (messages which were not consumed by GuC before the VF got
1936 * paused).
1937 */
xe_guc_ct_fixup_messages_with_ggtt(struct xe_guc_ct * ct,s64 ggtt_shift)1938 void xe_guc_ct_fixup_messages_with_ggtt(struct xe_guc_ct *ct, s64 ggtt_shift)
1939 {
1940 struct guc_ctb *h2g = &ct->ctbs.h2g;
1941 struct xe_guc *guc = ct_to_guc(ct);
1942 struct xe_gt *gt = guc_to_gt(guc);
1943 u32 head, tail, size;
1944 s32 avail;
1945
1946 if (unlikely(h2g->info.broken))
1947 return;
1948
1949 h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
1950 head = h2g->info.head;
1951 tail = READ_ONCE(h2g->info.tail);
1952 size = h2g->info.size;
1953
1954 if (unlikely(head > size))
1955 goto corrupted;
1956
1957 if (unlikely(tail >= size))
1958 goto corrupted;
1959
1960 avail = tail - head;
1961
1962 /* beware of buffer wrap case */
1963 if (unlikely(avail < 0))
1964 avail += size;
1965 xe_gt_dbg(gt, "available %d (%u:%u:%u)\n", avail, head, tail, size);
1966 xe_gt_assert(gt, avail >= 0);
1967
1968 while (avail > 0)
1969 avail = ct_fixup_ggtt_in_buffer(ct, h2g, ggtt_shift, &head, avail);
1970
1971 return;
1972
1973 corrupted:
1974 xe_gt_err(gt, "Corrupted H2G descriptor head=%u tail=%u size=%u, fixups not applied\n",
1975 head, tail, size);
1976 h2g->info.broken = true;
1977 }
1978
guc_ct_snapshot_alloc(struct xe_guc_ct * ct,bool atomic,bool want_ctb)1979 static struct xe_guc_ct_snapshot *guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic,
1980 bool want_ctb)
1981 {
1982 struct xe_guc_ct_snapshot *snapshot;
1983
1984 snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL);
1985 if (!snapshot)
1986 return NULL;
1987
1988 if (ct->bo && want_ctb) {
1989 snapshot->ctb_size = xe_bo_size(ct->bo);
1990 snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL);
1991 }
1992
1993 return snapshot;
1994 }
1995
guc_ctb_snapshot_capture(struct xe_device * xe,struct guc_ctb * ctb,struct guc_ctb_snapshot * snapshot)1996 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1997 struct guc_ctb_snapshot *snapshot)
1998 {
1999 xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
2000 sizeof(struct guc_ct_buffer_desc));
2001 memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
2002 }
2003
guc_ctb_snapshot_print(struct guc_ctb_snapshot * snapshot,struct drm_printer * p)2004 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
2005 struct drm_printer *p)
2006 {
2007 drm_printf(p, "\tsize: %d\n", snapshot->info.size);
2008 drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
2009 drm_printf(p, "\thead: %d\n", snapshot->info.head);
2010 drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
2011 drm_printf(p, "\tspace: %d\n", snapshot->info.space);
2012 drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
2013 drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
2014 drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
2015 drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
2016 }
2017
guc_ct_snapshot_capture(struct xe_guc_ct * ct,bool atomic,bool want_ctb)2018 static struct xe_guc_ct_snapshot *guc_ct_snapshot_capture(struct xe_guc_ct *ct, bool atomic,
2019 bool want_ctb)
2020 {
2021 struct xe_device *xe = ct_to_xe(ct);
2022 struct xe_guc_ct_snapshot *snapshot;
2023
2024 snapshot = guc_ct_snapshot_alloc(ct, atomic, want_ctb);
2025 if (!snapshot) {
2026 xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n");
2027 return NULL;
2028 }
2029
2030 if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
2031 snapshot->ct_enabled = true;
2032 snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
2033 guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g);
2034 guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h);
2035 }
2036
2037 if (ct->bo && snapshot->ctb)
2038 xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size);
2039
2040 return snapshot;
2041 }
2042
2043 /**
2044 * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
2045 * @ct: GuC CT object.
2046 *
2047 * This can be printed out in a later stage like during dev_coredump
2048 * analysis. This is safe to be called during atomic context.
2049 *
2050 * Returns: a GuC CT snapshot object that must be freed by the caller
2051 * by using `xe_guc_ct_snapshot_free`.
2052 */
xe_guc_ct_snapshot_capture(struct xe_guc_ct * ct)2053 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct)
2054 {
2055 return guc_ct_snapshot_capture(ct, true, true);
2056 }
2057
2058 /**
2059 * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
2060 * @snapshot: GuC CT snapshot object.
2061 * @p: drm_printer where it will be printed out.
2062 *
2063 * This function prints out a given GuC CT snapshot object.
2064 */
xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot * snapshot,struct drm_printer * p)2065 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
2066 struct drm_printer *p)
2067 {
2068 if (!snapshot)
2069 return;
2070
2071 if (snapshot->ct_enabled) {
2072 drm_puts(p, "H2G CTB (all sizes in DW):\n");
2073 guc_ctb_snapshot_print(&snapshot->h2g, p);
2074
2075 drm_puts(p, "G2H CTB (all sizes in DW):\n");
2076 guc_ctb_snapshot_print(&snapshot->g2h, p);
2077 drm_printf(p, "\tg2h outstanding: %d\n",
2078 snapshot->g2h_outstanding);
2079
2080 if (snapshot->ctb) {
2081 drm_printf(p, "[CTB].length: 0x%zx\n", snapshot->ctb_size);
2082 xe_print_blob_ascii85(p, "[CTB].data", '\n',
2083 snapshot->ctb, 0, snapshot->ctb_size);
2084 }
2085 } else {
2086 drm_puts(p, "CT disabled\n");
2087 }
2088 }
2089
2090 /**
2091 * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
2092 * @snapshot: GuC CT snapshot object.
2093 *
2094 * This function free all the memory that needed to be allocated at capture
2095 * time.
2096 */
xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot * snapshot)2097 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
2098 {
2099 if (!snapshot)
2100 return;
2101
2102 kfree(snapshot->ctb);
2103 kfree(snapshot);
2104 }
2105
2106 /**
2107 * xe_guc_ct_print - GuC CT Print.
2108 * @ct: GuC CT.
2109 * @p: drm_printer where it will be printed out.
2110 * @want_ctb: Should the full CTB content be dumped (vs just the headers)
2111 *
2112 * This function will quickly capture a snapshot of the CT state
2113 * and immediately print it out.
2114 */
xe_guc_ct_print(struct xe_guc_ct * ct,struct drm_printer * p,bool want_ctb)2115 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool want_ctb)
2116 {
2117 struct xe_guc_ct_snapshot *snapshot;
2118
2119 snapshot = guc_ct_snapshot_capture(ct, false, want_ctb);
2120 xe_guc_ct_snapshot_print(snapshot, p);
2121 xe_guc_ct_snapshot_free(snapshot);
2122 }
2123
2124 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
2125
2126 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2127 /*
2128 * This is a helper function which assists the driver in identifying if a fault
2129 * injection test is currently active, allowing it to reduce unnecessary debug
2130 * output. Typically, the function returns zero, but the fault injection
2131 * framework can alter this to return an error. Since faults are injected
2132 * through this function, it's important to ensure the compiler doesn't optimize
2133 * it into an inline function. To avoid such optimization, the 'noinline'
2134 * attribute is applied. Compiler optimizes the static function defined in the
2135 * header file as an inline function.
2136 */
xe_is_injection_active(void)2137 noinline int xe_is_injection_active(void) { return 0; }
2138 ALLOW_ERROR_INJECTION(xe_is_injection_active, ERRNO);
2139 #else
xe_is_injection_active(void)2140 int xe_is_injection_active(void) { return 0; }
2141 #endif
2142
ct_dead_capture(struct xe_guc_ct * ct,struct guc_ctb * ctb,u32 reason_code)2143 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code)
2144 {
2145 struct xe_guc_log_snapshot *snapshot_log;
2146 struct xe_guc_ct_snapshot *snapshot_ct;
2147 struct xe_guc *guc = ct_to_guc(ct);
2148 unsigned long flags;
2149 bool have_capture;
2150
2151 if (ctb)
2152 ctb->info.broken = true;
2153 /*
2154 * Huge dump is getting generated when injecting error for guc CT/MMIO
2155 * functions. So, let us suppress the dump when fault is injected.
2156 */
2157 if (xe_is_injection_active())
2158 return;
2159
2160 /* Ignore further errors after the first dump until a reset */
2161 if (ct->dead.reported)
2162 return;
2163
2164 spin_lock_irqsave(&ct->dead.lock, flags);
2165
2166 /* And only capture one dump at a time */
2167 have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE);
2168 ct->dead.reason |= (1 << reason_code) |
2169 (1 << CT_DEAD_STATE_CAPTURE);
2170
2171 spin_unlock_irqrestore(&ct->dead.lock, flags);
2172
2173 if (have_capture)
2174 return;
2175
2176 snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true);
2177 snapshot_ct = xe_guc_ct_snapshot_capture((ct));
2178
2179 spin_lock_irqsave(&ct->dead.lock, flags);
2180
2181 if (ct->dead.snapshot_log || ct->dead.snapshot_ct) {
2182 xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n");
2183 xe_guc_log_snapshot_free(snapshot_log);
2184 xe_guc_ct_snapshot_free(snapshot_ct);
2185 } else {
2186 ct->dead.snapshot_log = snapshot_log;
2187 ct->dead.snapshot_ct = snapshot_ct;
2188 }
2189
2190 spin_unlock_irqrestore(&ct->dead.lock, flags);
2191
2192 queue_work(system_unbound_wq, &(ct)->dead.worker);
2193 }
2194
ct_dead_print(struct xe_dead_ct * dead)2195 static void ct_dead_print(struct xe_dead_ct *dead)
2196 {
2197 struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead);
2198 struct xe_device *xe = ct_to_xe(ct);
2199 struct xe_gt *gt = ct_to_gt(ct);
2200 static int g_count;
2201 struct drm_printer ip = xe_gt_info_printer(gt);
2202 struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count);
2203
2204 if (!dead->reason) {
2205 xe_gt_err(gt, "CTB is dead for no reason!?\n");
2206 return;
2207 }
2208
2209 /* Can't generate a genuine core dump at this point, so just do the good bits */
2210 drm_puts(&lp, "**** Xe Device Coredump ****\n");
2211 drm_printf(&lp, "Reason: CTB is dead - 0x%X\n", dead->reason);
2212 xe_device_snapshot_print(xe, &lp);
2213
2214 drm_printf(&lp, "**** GT #%d ****\n", gt->info.id);
2215 drm_printf(&lp, "\tTile: %d\n", gt->tile->id);
2216
2217 drm_puts(&lp, "**** GuC Log ****\n");
2218 xe_guc_log_snapshot_print(dead->snapshot_log, &lp);
2219
2220 drm_puts(&lp, "**** GuC CT ****\n");
2221 xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp);
2222
2223 drm_puts(&lp, "Done.\n");
2224 }
2225
ct_dead_worker_func(struct work_struct * w)2226 static void ct_dead_worker_func(struct work_struct *w)
2227 {
2228 struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker);
2229
2230 if (!ct->dead.reported) {
2231 ct->dead.reported = true;
2232 ct_dead_print(&ct->dead);
2233 }
2234
2235 spin_lock_irq(&ct->dead.lock);
2236
2237 xe_guc_log_snapshot_free(ct->dead.snapshot_log);
2238 ct->dead.snapshot_log = NULL;
2239 xe_guc_ct_snapshot_free(ct->dead.snapshot_ct);
2240 ct->dead.snapshot_ct = NULL;
2241
2242 if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) {
2243 /* A reset has occurred so re-arm the error reporting */
2244 ct->dead.reason = 0;
2245 ct->dead.reported = false;
2246 }
2247
2248 spin_unlock_irq(&ct->dead.lock);
2249 }
2250 #endif
2251