1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_ggtt.h"
7
8 #include <kunit/visibility.h>
9 #include <linux/fault-inject.h>
10 #include <linux/io-64-nonatomic-lo-hi.h>
11 #include <linux/sizes.h>
12
13 #include <drm/drm_drv.h>
14 #include <drm/drm_managed.h>
15 #include <drm/intel/i915_drm.h>
16 #include <generated/xe_wa_oob.h>
17
18 #include "regs/xe_gt_regs.h"
19 #include "regs/xe_gtt_defs.h"
20 #include "regs/xe_regs.h"
21 #include "xe_assert.h"
22 #include "xe_bo.h"
23 #include "xe_device.h"
24 #include "xe_gt.h"
25 #include "xe_gt_printk.h"
26 #include "xe_map.h"
27 #include "xe_mmio.h"
28 #include "xe_pm.h"
29 #include "xe_res_cursor.h"
30 #include "xe_sriov.h"
31 #include "xe_tile_printk.h"
32 #include "xe_tile_sriov_vf.h"
33 #include "xe_tlb_inval.h"
34 #include "xe_wa.h"
35 #include "xe_wopcm.h"
36
37 /**
38 * DOC: Global Graphics Translation Table (GGTT)
39 *
40 * Xe GGTT implements the support for a Global Virtual Address space that is used
41 * for resources that are accessible to privileged (i.e. kernel-mode) processes,
42 * and not tied to a specific user-level process. For example, the Graphics
43 * micro-Controller (GuC) and Display Engine (if present) utilize this Global
44 * address space.
45 *
46 * The Global GTT (GGTT) translates from the Global virtual address to a physical
47 * address that can be accessed by HW. The GGTT is a flat, single-level table.
48 *
49 * Xe implements a simplified version of the GGTT specifically managing only a
50 * certain range of it that goes from the Write Once Protected Content Memory (WOPCM)
51 * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to
52 * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space
53 * is limited on both ends of the GGTT, because the GuC shim HW redirects
54 * accesses to those addresses to other HW areas instead of going through the
55 * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size,
56 * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things
57 * simple, instead of checking each object to see if they are accessed by GuC or
58 * not, we just exclude those areas from the allocator. Additionally, to simplify
59 * the driver load, we use the maximum WOPCM size in this logic instead of the
60 * programmed one, so we don't need to wait until the actual size to be
61 * programmed is determined (which requires FW fetch) before initializing the
62 * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs
63 * depending on the platform) but we can live with this. Another benefit of this
64 * is the GuC bootrom can't access anything below the WOPCM max size so anything
65 * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT
66 * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max
67 * give us the correct placement for free.
68 */
69
xelp_ggtt_pte_flags(struct xe_bo * bo,u16 pat_index)70 static u64 xelp_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index)
71 {
72 u64 pte = XE_PAGE_PRESENT;
73
74 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
75 pte |= XE_GGTT_PTE_DM;
76
77 return pte;
78 }
79
xelpg_ggtt_pte_flags(struct xe_bo * bo,u16 pat_index)80 static u64 xelpg_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index)
81 {
82 struct xe_device *xe = xe_bo_device(bo);
83 u64 pte;
84
85 pte = xelp_ggtt_pte_flags(bo, pat_index);
86
87 xe_assert(xe, pat_index <= 3);
88
89 if (pat_index & BIT(0))
90 pte |= XELPG_GGTT_PTE_PAT0;
91
92 if (pat_index & BIT(1))
93 pte |= XELPG_GGTT_PTE_PAT1;
94
95 return pte;
96 }
97
probe_gsm_size(struct pci_dev * pdev)98 static unsigned int probe_gsm_size(struct pci_dev *pdev)
99 {
100 u16 gmch_ctl, ggms;
101
102 pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl);
103 ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK;
104 return ggms ? SZ_1M << ggms : 0;
105 }
106
ggtt_update_access_counter(struct xe_ggtt * ggtt)107 static void ggtt_update_access_counter(struct xe_ggtt *ggtt)
108 {
109 struct xe_tile *tile = ggtt->tile;
110 struct xe_gt *affected_gt = XE_GT_WA(tile->primary_gt, 22019338487) ?
111 tile->primary_gt : tile->media_gt;
112 struct xe_mmio *mmio = &affected_gt->mmio;
113 u32 max_gtt_writes = XE_GT_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63;
114 /*
115 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit
116 * to wait for completion of prior GTT writes before letting this through.
117 * This needs to be done for all GGTT writes originating from the CPU.
118 */
119 lockdep_assert_held(&ggtt->lock);
120
121 if ((++ggtt->access_count % max_gtt_writes) == 0) {
122 xe_mmio_write32(mmio, GMD_ID, 0x0);
123 ggtt->access_count = 0;
124 }
125 }
126
xe_ggtt_set_pte(struct xe_ggtt * ggtt,u64 addr,u64 pte)127 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte)
128 {
129 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK));
130 xe_tile_assert(ggtt->tile, addr < ggtt->size);
131
132 writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]);
133 }
134
xe_ggtt_set_pte_and_flush(struct xe_ggtt * ggtt,u64 addr,u64 pte)135 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte)
136 {
137 xe_ggtt_set_pte(ggtt, addr, pte);
138 ggtt_update_access_counter(ggtt);
139 }
140
xe_ggtt_clear(struct xe_ggtt * ggtt,u64 start,u64 size)141 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size)
142 {
143 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB];
144 u64 end = start + size - 1;
145 u64 scratch_pte;
146
147 xe_tile_assert(ggtt->tile, start < end);
148
149 if (ggtt->scratch)
150 scratch_pte = xe_bo_addr(ggtt->scratch, 0, XE_PAGE_SIZE) |
151 ggtt->pt_ops->pte_encode_flags(ggtt->scratch,
152 pat_index);
153 else
154 scratch_pte = 0;
155
156 while (start < end) {
157 ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte);
158 start += XE_PAGE_SIZE;
159 }
160 }
161
162 /**
163 * xe_ggtt_alloc - Allocate a GGTT for a given &xe_tile
164 * @tile: &xe_tile
165 *
166 * Allocates a &xe_ggtt for a given tile.
167 *
168 * Return: &xe_ggtt on success, or NULL when out of memory.
169 */
xe_ggtt_alloc(struct xe_tile * tile)170 struct xe_ggtt *xe_ggtt_alloc(struct xe_tile *tile)
171 {
172 struct xe_ggtt *ggtt = drmm_kzalloc(&tile_to_xe(tile)->drm, sizeof(*ggtt), GFP_KERNEL);
173 if (ggtt)
174 ggtt->tile = tile;
175 return ggtt;
176 }
177
ggtt_fini_early(struct drm_device * drm,void * arg)178 static void ggtt_fini_early(struct drm_device *drm, void *arg)
179 {
180 struct xe_ggtt *ggtt = arg;
181
182 destroy_workqueue(ggtt->wq);
183 mutex_destroy(&ggtt->lock);
184 drm_mm_takedown(&ggtt->mm);
185 }
186
ggtt_fini(void * arg)187 static void ggtt_fini(void *arg)
188 {
189 struct xe_ggtt *ggtt = arg;
190
191 ggtt->scratch = NULL;
192 }
193
194 #ifdef CONFIG_LOCKDEP
xe_ggtt_might_lock(struct xe_ggtt * ggtt)195 void xe_ggtt_might_lock(struct xe_ggtt *ggtt)
196 {
197 might_lock(&ggtt->lock);
198 }
199 #endif
200
primelockdep(struct xe_ggtt * ggtt)201 static void primelockdep(struct xe_ggtt *ggtt)
202 {
203 if (!IS_ENABLED(CONFIG_LOCKDEP))
204 return;
205
206 fs_reclaim_acquire(GFP_KERNEL);
207 might_lock(&ggtt->lock);
208 fs_reclaim_release(GFP_KERNEL);
209 }
210
211 static const struct xe_ggtt_pt_ops xelp_pt_ops = {
212 .pte_encode_flags = xelp_ggtt_pte_flags,
213 .ggtt_set_pte = xe_ggtt_set_pte,
214 };
215
216 static const struct xe_ggtt_pt_ops xelpg_pt_ops = {
217 .pte_encode_flags = xelpg_ggtt_pte_flags,
218 .ggtt_set_pte = xe_ggtt_set_pte,
219 };
220
221 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = {
222 .pte_encode_flags = xelpg_ggtt_pte_flags,
223 .ggtt_set_pte = xe_ggtt_set_pte_and_flush,
224 };
225
__xe_ggtt_init_early(struct xe_ggtt * ggtt,u32 reserved)226 static void __xe_ggtt_init_early(struct xe_ggtt *ggtt, u32 reserved)
227 {
228 drm_mm_init(&ggtt->mm, reserved,
229 ggtt->size - reserved);
230 mutex_init(&ggtt->lock);
231 primelockdep(ggtt);
232 }
233
xe_ggtt_init_kunit(struct xe_ggtt * ggtt,u32 reserved,u32 size)234 int xe_ggtt_init_kunit(struct xe_ggtt *ggtt, u32 reserved, u32 size)
235 {
236 ggtt->size = size;
237 __xe_ggtt_init_early(ggtt, reserved);
238 return 0;
239 }
240 EXPORT_SYMBOL_IF_KUNIT(xe_ggtt_init_kunit);
241
dev_fini_ggtt(void * arg)242 static void dev_fini_ggtt(void *arg)
243 {
244 struct xe_ggtt *ggtt = arg;
245
246 drain_workqueue(ggtt->wq);
247 }
248
249 /**
250 * xe_ggtt_init_early - Early GGTT initialization
251 * @ggtt: the &xe_ggtt to be initialized
252 *
253 * It allows to create new mappings usable by the GuC.
254 * Mappings are not usable by the HW engines, as it doesn't have scratch nor
255 * initial clear done to it yet. That will happen in the regular, non-early
256 * GGTT initialization.
257 *
258 * Return: 0 on success or a negative error code on failure.
259 */
xe_ggtt_init_early(struct xe_ggtt * ggtt)260 int xe_ggtt_init_early(struct xe_ggtt *ggtt)
261 {
262 struct xe_device *xe = tile_to_xe(ggtt->tile);
263 struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
264 unsigned int gsm_size;
265 int err;
266
267 if (IS_SRIOV_VF(xe) || GRAPHICS_VERx100(xe) >= 1250)
268 gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */
269 else
270 gsm_size = probe_gsm_size(pdev);
271
272 if (gsm_size == 0) {
273 xe_tile_err(ggtt->tile, "Hardware reported no preallocated GSM\n");
274 return -ENOMEM;
275 }
276
277 ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M;
278 ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE;
279
280 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
281 ggtt->flags |= XE_GGTT_FLAGS_64K;
282
283 if (ggtt->size > GUC_GGTT_TOP)
284 ggtt->size = GUC_GGTT_TOP;
285
286 if (GRAPHICS_VERx100(xe) >= 1270)
287 ggtt->pt_ops = (ggtt->tile->media_gt &&
288 XE_GT_WA(ggtt->tile->media_gt, 22019338487)) ||
289 XE_GT_WA(ggtt->tile->primary_gt, 22019338487) ?
290 &xelpg_pt_wa_ops : &xelpg_pt_ops;
291 else
292 ggtt->pt_ops = &xelp_pt_ops;
293
294 ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM);
295 if (!ggtt->wq)
296 return -ENOMEM;
297
298 __xe_ggtt_init_early(ggtt, xe_wopcm_size(xe));
299
300 err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt);
301 if (err)
302 return err;
303
304 err = devm_add_action_or_reset(xe->drm.dev, dev_fini_ggtt, ggtt);
305 if (err)
306 return err;
307
308 if (IS_SRIOV_VF(xe)) {
309 err = xe_tile_sriov_vf_prepare_ggtt(ggtt->tile);
310 if (err)
311 return err;
312 }
313
314 return 0;
315 }
316 ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */
317
318 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt);
319
xe_ggtt_initial_clear(struct xe_ggtt * ggtt)320 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt)
321 {
322 struct drm_mm_node *hole;
323 u64 start, end;
324
325 /* Display may have allocated inside ggtt, so be careful with clearing here */
326 mutex_lock(&ggtt->lock);
327 drm_mm_for_each_hole(hole, &ggtt->mm, start, end)
328 xe_ggtt_clear(ggtt, start, end - start);
329
330 xe_ggtt_invalidate(ggtt);
331 mutex_unlock(&ggtt->lock);
332 }
333
ggtt_node_remove(struct xe_ggtt_node * node)334 static void ggtt_node_remove(struct xe_ggtt_node *node)
335 {
336 struct xe_ggtt *ggtt = node->ggtt;
337 struct xe_device *xe = tile_to_xe(ggtt->tile);
338 bool bound;
339 int idx;
340
341 bound = drm_dev_enter(&xe->drm, &idx);
342
343 mutex_lock(&ggtt->lock);
344 if (bound)
345 xe_ggtt_clear(ggtt, node->base.start, node->base.size);
346 drm_mm_remove_node(&node->base);
347 node->base.size = 0;
348 mutex_unlock(&ggtt->lock);
349
350 if (!bound)
351 goto free_node;
352
353 if (node->invalidate_on_remove)
354 xe_ggtt_invalidate(ggtt);
355
356 drm_dev_exit(idx);
357
358 free_node:
359 xe_ggtt_node_fini(node);
360 }
361
ggtt_node_remove_work_func(struct work_struct * work)362 static void ggtt_node_remove_work_func(struct work_struct *work)
363 {
364 struct xe_ggtt_node *node = container_of(work, typeof(*node),
365 delayed_removal_work);
366 struct xe_device *xe = tile_to_xe(node->ggtt->tile);
367
368 xe_pm_runtime_get(xe);
369 ggtt_node_remove(node);
370 xe_pm_runtime_put(xe);
371 }
372
373 /**
374 * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT
375 * @node: the &xe_ggtt_node to be removed
376 * @invalidate: if node needs invalidation upon removal
377 */
xe_ggtt_node_remove(struct xe_ggtt_node * node,bool invalidate)378 void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate)
379 {
380 struct xe_ggtt *ggtt;
381 struct xe_device *xe;
382
383 if (!node || !node->ggtt)
384 return;
385
386 ggtt = node->ggtt;
387 xe = tile_to_xe(ggtt->tile);
388
389 node->invalidate_on_remove = invalidate;
390
391 if (xe_pm_runtime_get_if_active(xe)) {
392 ggtt_node_remove(node);
393 xe_pm_runtime_put(xe);
394 } else {
395 queue_work(ggtt->wq, &node->delayed_removal_work);
396 }
397 }
398
399 /**
400 * xe_ggtt_init - Regular non-early GGTT initialization
401 * @ggtt: the &xe_ggtt to be initialized
402 *
403 * Return: 0 on success or a negative error code on failure.
404 */
xe_ggtt_init(struct xe_ggtt * ggtt)405 int xe_ggtt_init(struct xe_ggtt *ggtt)
406 {
407 struct xe_device *xe = tile_to_xe(ggtt->tile);
408 unsigned int flags;
409 int err;
410
411 /*
412 * So we don't need to worry about 64K GGTT layout when dealing with
413 * scratch entries, rather keep the scratch page in system memory on
414 * platforms where 64K pages are needed for VRAM.
415 */
416 flags = 0;
417 if (ggtt->flags & XE_GGTT_FLAGS_64K)
418 flags |= XE_BO_FLAG_SYSTEM;
419 else
420 flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile);
421
422 ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags);
423 if (IS_ERR(ggtt->scratch)) {
424 err = PTR_ERR(ggtt->scratch);
425 goto err;
426 }
427
428 xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, xe_bo_size(ggtt->scratch));
429
430 xe_ggtt_initial_clear(ggtt);
431
432 return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt);
433 err:
434 ggtt->scratch = NULL;
435 return err;
436 }
437
ggtt_invalidate_gt_tlb(struct xe_gt * gt)438 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt)
439 {
440 int err;
441
442 if (!gt)
443 return;
444
445 err = xe_tlb_inval_ggtt(>->tlb_inval);
446 xe_gt_WARN(gt, err, "Failed to invalidate GGTT (%pe)", ERR_PTR(err));
447 }
448
xe_ggtt_invalidate(struct xe_ggtt * ggtt)449 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt)
450 {
451 struct xe_device *xe = tile_to_xe(ggtt->tile);
452
453 /*
454 * XXX: Barrier for GGTT pages. Unsure exactly why this required but
455 * without this LNL is having issues with the GuC reading scratch page
456 * vs. correct GGTT page. Not particularly a hot code path so blindly
457 * do a mmio read here which results in GuC reading correct GGTT page.
458 */
459 xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG);
460
461 /* Each GT in a tile has its own TLB to cache GGTT lookups */
462 ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt);
463 ggtt_invalidate_gt_tlb(ggtt->tile->media_gt);
464 }
465
xe_ggtt_dump_node(struct xe_ggtt * ggtt,const struct drm_mm_node * node,const char * description)466 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt,
467 const struct drm_mm_node *node, const char *description)
468 {
469 char buf[10];
470
471 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
472 string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf));
473 xe_tile_dbg(ggtt->tile, "GGTT %#llx-%#llx (%s) %s\n",
474 node->start, node->start + node->size, buf, description);
475 }
476 }
477
478 /**
479 * xe_ggtt_node_insert_balloon_locked - prevent allocation of specified GGTT addresses
480 * @node: the &xe_ggtt_node to hold reserved GGTT node
481 * @start: the starting GGTT address of the reserved region
482 * @end: then end GGTT address of the reserved region
483 *
484 * To be used in cases where ggtt->lock is already taken.
485 * Use xe_ggtt_node_remove_balloon_locked() to release a reserved GGTT node.
486 *
487 * Return: 0 on success or a negative error code on failure.
488 */
xe_ggtt_node_insert_balloon_locked(struct xe_ggtt_node * node,u64 start,u64 end)489 int xe_ggtt_node_insert_balloon_locked(struct xe_ggtt_node *node, u64 start, u64 end)
490 {
491 struct xe_ggtt *ggtt = node->ggtt;
492 int err;
493
494 xe_tile_assert(ggtt->tile, start < end);
495 xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE));
496 xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE));
497 xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base));
498 lockdep_assert_held(&ggtt->lock);
499
500 node->base.color = 0;
501 node->base.start = start;
502 node->base.size = end - start;
503
504 err = drm_mm_reserve_node(&ggtt->mm, &node->base);
505
506 if (xe_tile_WARN(ggtt->tile, err, "Failed to balloon GGTT %#llx-%#llx (%pe)\n",
507 node->base.start, node->base.start + node->base.size, ERR_PTR(err)))
508 return err;
509
510 xe_ggtt_dump_node(ggtt, &node->base, "balloon");
511 return 0;
512 }
513
514 /**
515 * xe_ggtt_node_remove_balloon_locked - release a reserved GGTT region
516 * @node: the &xe_ggtt_node with reserved GGTT region
517 *
518 * To be used in cases where ggtt->lock is already taken.
519 * See xe_ggtt_node_insert_balloon_locked() for details.
520 */
xe_ggtt_node_remove_balloon_locked(struct xe_ggtt_node * node)521 void xe_ggtt_node_remove_balloon_locked(struct xe_ggtt_node *node)
522 {
523 if (!xe_ggtt_node_allocated(node))
524 return;
525
526 lockdep_assert_held(&node->ggtt->lock);
527
528 xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon");
529
530 drm_mm_remove_node(&node->base);
531 }
532
xe_ggtt_assert_fit(struct xe_ggtt * ggtt,u64 start,u64 size)533 static void xe_ggtt_assert_fit(struct xe_ggtt *ggtt, u64 start, u64 size)
534 {
535 struct xe_tile *tile = ggtt->tile;
536 struct xe_device *xe = tile_to_xe(tile);
537 u64 __maybe_unused wopcm = xe_wopcm_size(xe);
538
539 xe_tile_assert(tile, start >= wopcm);
540 xe_tile_assert(tile, start + size < ggtt->size - wopcm);
541 }
542
543 /**
544 * xe_ggtt_shift_nodes_locked - Shift GGTT nodes to adjust for a change in usable address range.
545 * @ggtt: the &xe_ggtt struct instance
546 * @shift: change to the location of area provisioned for current VF
547 *
548 * This function moves all nodes from the GGTT VM, to a temp list. These nodes are expected
549 * to represent allocations in range formerly assigned to current VF, before the range changed.
550 * When the GGTT VM is completely clear of any nodes, they are re-added with shifted offsets.
551 *
552 * The function has no ability of failing - because it shifts existing nodes, without
553 * any additional processing. If the nodes were successfully existing at the old address,
554 * they will do the same at the new one. A fail inside this function would indicate that
555 * the list of nodes was either already damaged, or that the shift brings the address range
556 * outside of valid bounds. Both cases justify an assert rather than error code.
557 */
xe_ggtt_shift_nodes_locked(struct xe_ggtt * ggtt,s64 shift)558 void xe_ggtt_shift_nodes_locked(struct xe_ggtt *ggtt, s64 shift)
559 {
560 struct xe_tile *tile __maybe_unused = ggtt->tile;
561 struct drm_mm_node *node, *tmpn;
562 LIST_HEAD(temp_list_head);
563
564 lockdep_assert_held(&ggtt->lock);
565
566 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG))
567 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm)
568 xe_ggtt_assert_fit(ggtt, node->start + shift, node->size);
569
570 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) {
571 drm_mm_remove_node(node);
572 list_add(&node->node_list, &temp_list_head);
573 }
574
575 list_for_each_entry_safe(node, tmpn, &temp_list_head, node_list) {
576 list_del(&node->node_list);
577 node->start += shift;
578 drm_mm_reserve_node(&ggtt->mm, node);
579 xe_tile_assert(tile, drm_mm_node_allocated(node));
580 }
581 }
582
583 /**
584 * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT
585 * @node: the &xe_ggtt_node to be inserted
586 * @size: size of the node
587 * @align: alignment constrain of the node
588 * @mm_flags: flags to control the node behavior
589 *
590 * It cannot be called without first having called xe_ggtt_init() once.
591 * To be used in cases where ggtt->lock is already taken.
592 *
593 * Return: 0 on success or a negative error code on failure.
594 */
xe_ggtt_node_insert_locked(struct xe_ggtt_node * node,u32 size,u32 align,u32 mm_flags)595 int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node,
596 u32 size, u32 align, u32 mm_flags)
597 {
598 return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0,
599 mm_flags);
600 }
601
602 /**
603 * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT
604 * @node: the &xe_ggtt_node to be inserted
605 * @size: size of the node
606 * @align: alignment constrain of the node
607 *
608 * It cannot be called without first having called xe_ggtt_init() once.
609 *
610 * Return: 0 on success or a negative error code on failure.
611 */
xe_ggtt_node_insert(struct xe_ggtt_node * node,u32 size,u32 align)612 int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align)
613 {
614 int ret;
615
616 if (!node || !node->ggtt)
617 return -ENOENT;
618
619 mutex_lock(&node->ggtt->lock);
620 ret = xe_ggtt_node_insert_locked(node, size, align,
621 DRM_MM_INSERT_HIGH);
622 mutex_unlock(&node->ggtt->lock);
623
624 return ret;
625 }
626
627 /**
628 * xe_ggtt_node_init - Initialize %xe_ggtt_node struct
629 * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved.
630 *
631 * This function will allocate the struct %xe_ggtt_node and return its pointer.
632 * This struct will then be freed after the node removal upon xe_ggtt_node_remove()
633 * or xe_ggtt_node_remove_balloon_locked().
634 * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated
635 * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
636 * xe_ggtt_node_insert_balloon_locked() will ensure the node is inserted or reserved in GGTT.
637 *
638 * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise.
639 **/
xe_ggtt_node_init(struct xe_ggtt * ggtt)640 struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt)
641 {
642 struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS);
643
644 if (!node)
645 return ERR_PTR(-ENOMEM);
646
647 INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func);
648 node->ggtt = ggtt;
649
650 return node;
651 }
652
653 /**
654 * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct
655 * @node: the &xe_ggtt_node to be freed
656 *
657 * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
658 * or xe_ggtt_node_insert_balloon_locked(); and this @node is not going to be reused, then,
659 * this function needs to be called to free the %xe_ggtt_node struct
660 **/
xe_ggtt_node_fini(struct xe_ggtt_node * node)661 void xe_ggtt_node_fini(struct xe_ggtt_node *node)
662 {
663 kfree(node);
664 }
665
666 /**
667 * xe_ggtt_node_allocated - Check if node is allocated in GGTT
668 * @node: the &xe_ggtt_node to be inspected
669 *
670 * Return: True if allocated, False otherwise.
671 */
xe_ggtt_node_allocated(const struct xe_ggtt_node * node)672 bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node)
673 {
674 if (!node || !node->ggtt)
675 return false;
676
677 return drm_mm_node_allocated(&node->base);
678 }
679
680 /**
681 * xe_ggtt_map_bo - Map the BO into GGTT
682 * @ggtt: the &xe_ggtt where node will be mapped
683 * @node: the &xe_ggtt_node where this BO is mapped
684 * @bo: the &xe_bo to be mapped
685 * @pat_index: Which pat_index to use.
686 */
xe_ggtt_map_bo(struct xe_ggtt * ggtt,struct xe_ggtt_node * node,struct xe_bo * bo,u16 pat_index)687 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_ggtt_node *node,
688 struct xe_bo *bo, u16 pat_index)
689 {
690
691 u64 start, pte, end;
692 struct xe_res_cursor cur;
693
694 if (XE_WARN_ON(!node))
695 return;
696
697 start = node->base.start;
698 end = start + xe_bo_size(bo);
699
700 pte = ggtt->pt_ops->pte_encode_flags(bo, pat_index);
701 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
702 xe_assert(xe_bo_device(bo), bo->ttm.ttm);
703
704 for (xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &cur);
705 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE))
706 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining,
707 pte | xe_res_dma(&cur));
708 } else {
709 /* Prepend GPU offset */
710 pte |= vram_region_gpu_offset(bo->ttm.resource);
711
712 for (xe_res_first(bo->ttm.resource, 0, xe_bo_size(bo), &cur);
713 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE))
714 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining,
715 pte + cur.start);
716 }
717 }
718
719 /**
720 * xe_ggtt_map_bo_unlocked - Restore a mapping of a BO into GGTT
721 * @ggtt: the &xe_ggtt where node will be mapped
722 * @bo: the &xe_bo to be mapped
723 *
724 * This is used to restore a GGTT mapping after suspend.
725 */
xe_ggtt_map_bo_unlocked(struct xe_ggtt * ggtt,struct xe_bo * bo)726 void xe_ggtt_map_bo_unlocked(struct xe_ggtt *ggtt, struct xe_bo *bo)
727 {
728 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
729 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode];
730
731 mutex_lock(&ggtt->lock);
732 xe_ggtt_map_bo(ggtt, bo->ggtt_node[ggtt->tile->id], bo, pat_index);
733 mutex_unlock(&ggtt->lock);
734 }
735
__xe_ggtt_insert_bo_at(struct xe_ggtt * ggtt,struct xe_bo * bo,u64 start,u64 end,struct drm_exec * exec)736 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
737 u64 start, u64 end, struct drm_exec *exec)
738 {
739 u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE;
740 u8 tile_id = ggtt->tile->id;
741 int err;
742
743 if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K)
744 alignment = SZ_64K;
745
746 if (XE_WARN_ON(bo->ggtt_node[tile_id])) {
747 /* Someone's already inserted this BO in the GGTT */
748 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo));
749 return 0;
750 }
751
752 err = xe_bo_validate(bo, NULL, false, exec);
753 if (err)
754 return err;
755
756 xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile));
757
758 bo->ggtt_node[tile_id] = xe_ggtt_node_init(ggtt);
759 if (IS_ERR(bo->ggtt_node[tile_id])) {
760 err = PTR_ERR(bo->ggtt_node[tile_id]);
761 bo->ggtt_node[tile_id] = NULL;
762 goto out;
763 }
764
765 mutex_lock(&ggtt->lock);
766 err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node[tile_id]->base,
767 xe_bo_size(bo), alignment, 0, start, end, 0);
768 if (err) {
769 xe_ggtt_node_fini(bo->ggtt_node[tile_id]);
770 bo->ggtt_node[tile_id] = NULL;
771 } else {
772 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
773 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode];
774
775 xe_ggtt_map_bo(ggtt, bo->ggtt_node[tile_id], bo, pat_index);
776 }
777 mutex_unlock(&ggtt->lock);
778
779 if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE)
780 xe_ggtt_invalidate(ggtt);
781
782 out:
783 xe_pm_runtime_put(tile_to_xe(ggtt->tile));
784
785 return err;
786 }
787
788 /**
789 * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space
790 * @ggtt: the &xe_ggtt where bo will be inserted
791 * @bo: the &xe_bo to be inserted
792 * @start: address where it will be inserted
793 * @end: end of the range where it will be inserted
794 * @exec: The drm_exec transaction to use for exhaustive eviction.
795 *
796 * Return: 0 on success or a negative error code on failure.
797 */
xe_ggtt_insert_bo_at(struct xe_ggtt * ggtt,struct xe_bo * bo,u64 start,u64 end,struct drm_exec * exec)798 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
799 u64 start, u64 end, struct drm_exec *exec)
800 {
801 return __xe_ggtt_insert_bo_at(ggtt, bo, start, end, exec);
802 }
803
804 /**
805 * xe_ggtt_insert_bo - Insert BO into GGTT
806 * @ggtt: the &xe_ggtt where bo will be inserted
807 * @bo: the &xe_bo to be inserted
808 * @exec: The drm_exec transaction to use for exhaustive eviction.
809 *
810 * Return: 0 on success or a negative error code on failure.
811 */
xe_ggtt_insert_bo(struct xe_ggtt * ggtt,struct xe_bo * bo,struct drm_exec * exec)812 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo,
813 struct drm_exec *exec)
814 {
815 return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX, exec);
816 }
817
818 /**
819 * xe_ggtt_remove_bo - Remove a BO from the GGTT
820 * @ggtt: the &xe_ggtt where node will be removed
821 * @bo: the &xe_bo to be removed
822 */
xe_ggtt_remove_bo(struct xe_ggtt * ggtt,struct xe_bo * bo)823 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
824 {
825 u8 tile_id = ggtt->tile->id;
826
827 if (XE_WARN_ON(!bo->ggtt_node[tile_id]))
828 return;
829
830 /* This BO is not currently in the GGTT */
831 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo));
832
833 xe_ggtt_node_remove(bo->ggtt_node[tile_id],
834 bo->flags & XE_BO_FLAG_GGTT_INVALIDATE);
835 }
836
837 /**
838 * xe_ggtt_largest_hole - Largest GGTT hole
839 * @ggtt: the &xe_ggtt that will be inspected
840 * @alignment: minimum alignment
841 * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare
842 *
843 * Return: size of the largest continuous GGTT region
844 */
xe_ggtt_largest_hole(struct xe_ggtt * ggtt,u64 alignment,u64 * spare)845 u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare)
846 {
847 const struct drm_mm *mm = &ggtt->mm;
848 const struct drm_mm_node *entry;
849 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
850 u64 hole_start, hole_end, hole_size;
851 u64 max_hole = 0;
852
853 mutex_lock(&ggtt->lock);
854
855 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
856 hole_start = max(hole_start, hole_min_start);
857 hole_start = ALIGN(hole_start, alignment);
858 hole_end = ALIGN_DOWN(hole_end, alignment);
859 if (hole_start >= hole_end)
860 continue;
861 hole_size = hole_end - hole_start;
862 if (spare)
863 *spare -= min3(*spare, hole_size, max_hole);
864 max_hole = max(max_hole, hole_size);
865 }
866
867 mutex_unlock(&ggtt->lock);
868
869 return max_hole;
870 }
871
872 #ifdef CONFIG_PCI_IOV
xe_encode_vfid_pte(u16 vfid)873 static u64 xe_encode_vfid_pte(u16 vfid)
874 {
875 return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT;
876 }
877
xe_ggtt_assign_locked(struct xe_ggtt * ggtt,const struct drm_mm_node * node,u16 vfid)878 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid)
879 {
880 u64 start = node->start;
881 u64 size = node->size;
882 u64 end = start + size - 1;
883 u64 pte = xe_encode_vfid_pte(vfid);
884
885 lockdep_assert_held(&ggtt->lock);
886
887 if (!drm_mm_node_allocated(node))
888 return;
889
890 while (start < end) {
891 ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte);
892 start += XE_PAGE_SIZE;
893 }
894
895 xe_ggtt_invalidate(ggtt);
896 }
897
898 /**
899 * xe_ggtt_assign - assign a GGTT region to the VF
900 * @node: the &xe_ggtt_node to update
901 * @vfid: the VF identifier
902 *
903 * This function is used by the PF driver to assign a GGTT region to the VF.
904 * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some
905 * platforms VFs can't modify that either.
906 */
xe_ggtt_assign(const struct xe_ggtt_node * node,u16 vfid)907 void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid)
908 {
909 mutex_lock(&node->ggtt->lock);
910 xe_ggtt_assign_locked(node->ggtt, &node->base, vfid);
911 mutex_unlock(&node->ggtt->lock);
912 }
913 #endif
914
915 /**
916 * xe_ggtt_dump - Dump GGTT for debug
917 * @ggtt: the &xe_ggtt to be dumped
918 * @p: the &drm_mm_printer helper handle to be used to dump the information
919 *
920 * Return: 0 on success or a negative error code on failure.
921 */
xe_ggtt_dump(struct xe_ggtt * ggtt,struct drm_printer * p)922 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p)
923 {
924 int err;
925
926 err = mutex_lock_interruptible(&ggtt->lock);
927 if (err)
928 return err;
929
930 drm_mm_print(&ggtt->mm, p);
931 mutex_unlock(&ggtt->lock);
932 return err;
933 }
934
935 /**
936 * xe_ggtt_print_holes - Print holes
937 * @ggtt: the &xe_ggtt to be inspected
938 * @alignment: min alignment
939 * @p: the &drm_printer
940 *
941 * Print GGTT ranges that are available and return total size available.
942 *
943 * Return: Total available size.
944 */
xe_ggtt_print_holes(struct xe_ggtt * ggtt,u64 alignment,struct drm_printer * p)945 u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p)
946 {
947 const struct drm_mm *mm = &ggtt->mm;
948 const struct drm_mm_node *entry;
949 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
950 u64 hole_start, hole_end, hole_size;
951 u64 total = 0;
952 char buf[10];
953
954 mutex_lock(&ggtt->lock);
955
956 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
957 hole_start = max(hole_start, hole_min_start);
958 hole_start = ALIGN(hole_start, alignment);
959 hole_end = ALIGN_DOWN(hole_end, alignment);
960 if (hole_start >= hole_end)
961 continue;
962 hole_size = hole_end - hole_start;
963 total += hole_size;
964
965 string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf));
966 drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n",
967 hole_start, hole_end - 1, buf);
968 }
969
970 mutex_unlock(&ggtt->lock);
971
972 return total;
973 }
974
975 /**
976 * xe_ggtt_encode_pte_flags - Get PTE encoding flags for BO
977 * @ggtt: &xe_ggtt
978 * @bo: &xe_bo
979 * @pat_index: The pat_index for the PTE.
980 *
981 * This function returns the pte_flags for a given BO, without address.
982 * It's used for DPT to fill a GGTT mapped BO with a linear lookup table.
983 */
xe_ggtt_encode_pte_flags(struct xe_ggtt * ggtt,struct xe_bo * bo,u16 pat_index)984 u64 xe_ggtt_encode_pte_flags(struct xe_ggtt *ggtt,
985 struct xe_bo *bo, u16 pat_index)
986 {
987 return ggtt->pt_ops->pte_encode_flags(bo, pat_index);
988 }
989
990 /**
991 * xe_ggtt_read_pte - Read a PTE from the GGTT
992 * @ggtt: &xe_ggtt
993 * @offset: the offset for which the mapping should be read.
994 *
995 * Used by testcases, and by display reading out an inherited bios FB.
996 */
xe_ggtt_read_pte(struct xe_ggtt * ggtt,u64 offset)997 u64 xe_ggtt_read_pte(struct xe_ggtt *ggtt, u64 offset)
998 {
999 return ioread64(ggtt->gsm + (offset / XE_PAGE_SIZE));
1000 }
1001