1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_ggtt.h"
7
8 #include <linux/fault-inject.h>
9 #include <linux/io-64-nonatomic-lo-hi.h>
10 #include <linux/sizes.h>
11
12 #include <drm/drm_drv.h>
13 #include <drm/drm_managed.h>
14 #include <drm/intel/i915_drm.h>
15 #include <generated/xe_wa_oob.h>
16
17 #include "regs/xe_gt_regs.h"
18 #include "regs/xe_gtt_defs.h"
19 #include "regs/xe_regs.h"
20 #include "xe_assert.h"
21 #include "xe_bo.h"
22 #include "xe_device.h"
23 #include "xe_gt.h"
24 #include "xe_gt_printk.h"
25 #include "xe_gt_sriov_vf.h"
26 #include "xe_gt_tlb_invalidation.h"
27 #include "xe_map.h"
28 #include "xe_mmio.h"
29 #include "xe_pm.h"
30 #include "xe_sriov.h"
31 #include "xe_wa.h"
32 #include "xe_wopcm.h"
33
34 /**
35 * DOC: Global Graphics Translation Table (GGTT)
36 *
37 * Xe GGTT implements the support for a Global Virtual Address space that is used
38 * for resources that are accessible to privileged (i.e. kernel-mode) processes,
39 * and not tied to a specific user-level process. For example, the Graphics
40 * micro-Controller (GuC) and Display Engine (if present) utilize this Global
41 * address space.
42 *
43 * The Global GTT (GGTT) translates from the Global virtual address to a physical
44 * address that can be accessed by HW. The GGTT is a flat, single-level table.
45 *
46 * Xe implements a simplified version of the GGTT specifically managing only a
47 * certain range of it that goes from the Write Once Protected Content Memory (WOPCM)
48 * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to
49 * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space
50 * is limited on both ends of the GGTT, because the GuC shim HW redirects
51 * accesses to those addresses to other HW areas instead of going through the
52 * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size,
53 * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things
54 * simple, instead of checking each object to see if they are accessed by GuC or
55 * not, we just exclude those areas from the allocator. Additionally, to simplify
56 * the driver load, we use the maximum WOPCM size in this logic instead of the
57 * programmed one, so we don't need to wait until the actual size to be
58 * programmed is determined (which requires FW fetch) before initializing the
59 * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs
60 * depending on the platform) but we can live with this. Another benefit of this
61 * is the GuC bootrom can't access anything below the WOPCM max size so anything
62 * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT
63 * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max
64 * give us the correct placement for free.
65 */
66
xelp_ggtt_pte_encode_bo(struct xe_bo * bo,u64 bo_offset,u16 pat_index)67 static u64 xelp_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset,
68 u16 pat_index)
69 {
70 u64 pte;
71
72 pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
73 pte |= XE_PAGE_PRESENT;
74
75 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
76 pte |= XE_GGTT_PTE_DM;
77
78 return pte;
79 }
80
xelpg_ggtt_pte_encode_bo(struct xe_bo * bo,u64 bo_offset,u16 pat_index)81 static u64 xelpg_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset,
82 u16 pat_index)
83 {
84 struct xe_device *xe = xe_bo_device(bo);
85 u64 pte;
86
87 pte = xelp_ggtt_pte_encode_bo(bo, bo_offset, pat_index);
88
89 xe_assert(xe, pat_index <= 3);
90
91 if (pat_index & BIT(0))
92 pte |= XELPG_GGTT_PTE_PAT0;
93
94 if (pat_index & BIT(1))
95 pte |= XELPG_GGTT_PTE_PAT1;
96
97 return pte;
98 }
99
probe_gsm_size(struct pci_dev * pdev)100 static unsigned int probe_gsm_size(struct pci_dev *pdev)
101 {
102 u16 gmch_ctl, ggms;
103
104 pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl);
105 ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK;
106 return ggms ? SZ_1M << ggms : 0;
107 }
108
ggtt_update_access_counter(struct xe_ggtt * ggtt)109 static void ggtt_update_access_counter(struct xe_ggtt *ggtt)
110 {
111 struct xe_tile *tile = ggtt->tile;
112 struct xe_gt *affected_gt = XE_WA(tile->primary_gt, 22019338487) ?
113 tile->primary_gt : tile->media_gt;
114 struct xe_mmio *mmio = &affected_gt->mmio;
115 u32 max_gtt_writes = XE_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63;
116 /*
117 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit
118 * to wait for completion of prior GTT writes before letting this through.
119 * This needs to be done for all GGTT writes originating from the CPU.
120 */
121 lockdep_assert_held(&ggtt->lock);
122
123 if ((++ggtt->access_count % max_gtt_writes) == 0) {
124 xe_mmio_write32(mmio, GMD_ID, 0x0);
125 ggtt->access_count = 0;
126 }
127 }
128
xe_ggtt_set_pte(struct xe_ggtt * ggtt,u64 addr,u64 pte)129 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte)
130 {
131 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK));
132 xe_tile_assert(ggtt->tile, addr < ggtt->size);
133
134 writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]);
135 }
136
xe_ggtt_set_pte_and_flush(struct xe_ggtt * ggtt,u64 addr,u64 pte)137 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte)
138 {
139 xe_ggtt_set_pte(ggtt, addr, pte);
140 ggtt_update_access_counter(ggtt);
141 }
142
xe_ggtt_clear(struct xe_ggtt * ggtt,u64 start,u64 size)143 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size)
144 {
145 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB];
146 u64 end = start + size - 1;
147 u64 scratch_pte;
148
149 xe_tile_assert(ggtt->tile, start < end);
150
151 if (ggtt->scratch)
152 scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0,
153 pat_index);
154 else
155 scratch_pte = 0;
156
157 while (start < end) {
158 ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte);
159 start += XE_PAGE_SIZE;
160 }
161 }
162
ggtt_fini_early(struct drm_device * drm,void * arg)163 static void ggtt_fini_early(struct drm_device *drm, void *arg)
164 {
165 struct xe_ggtt *ggtt = arg;
166
167 destroy_workqueue(ggtt->wq);
168 mutex_destroy(&ggtt->lock);
169 drm_mm_takedown(&ggtt->mm);
170 }
171
ggtt_fini(void * arg)172 static void ggtt_fini(void *arg)
173 {
174 struct xe_ggtt *ggtt = arg;
175
176 ggtt->scratch = NULL;
177 }
178
primelockdep(struct xe_ggtt * ggtt)179 static void primelockdep(struct xe_ggtt *ggtt)
180 {
181 if (!IS_ENABLED(CONFIG_LOCKDEP))
182 return;
183
184 fs_reclaim_acquire(GFP_KERNEL);
185 might_lock(&ggtt->lock);
186 fs_reclaim_release(GFP_KERNEL);
187 }
188
189 static const struct xe_ggtt_pt_ops xelp_pt_ops = {
190 .pte_encode_bo = xelp_ggtt_pte_encode_bo,
191 .ggtt_set_pte = xe_ggtt_set_pte,
192 };
193
194 static const struct xe_ggtt_pt_ops xelpg_pt_ops = {
195 .pte_encode_bo = xelpg_ggtt_pte_encode_bo,
196 .ggtt_set_pte = xe_ggtt_set_pte,
197 };
198
199 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = {
200 .pte_encode_bo = xelpg_ggtt_pte_encode_bo,
201 .ggtt_set_pte = xe_ggtt_set_pte_and_flush,
202 };
203
dev_fini_ggtt(void * arg)204 static void dev_fini_ggtt(void *arg)
205 {
206 struct xe_ggtt *ggtt = arg;
207
208 drain_workqueue(ggtt->wq);
209 }
210
211 /**
212 * xe_ggtt_init_early - Early GGTT initialization
213 * @ggtt: the &xe_ggtt to be initialized
214 *
215 * It allows to create new mappings usable by the GuC.
216 * Mappings are not usable by the HW engines, as it doesn't have scratch nor
217 * initial clear done to it yet. That will happen in the regular, non-early
218 * GGTT initialization.
219 *
220 * Return: 0 on success or a negative error code on failure.
221 */
xe_ggtt_init_early(struct xe_ggtt * ggtt)222 int xe_ggtt_init_early(struct xe_ggtt *ggtt)
223 {
224 struct xe_device *xe = tile_to_xe(ggtt->tile);
225 struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
226 unsigned int gsm_size;
227 int err;
228
229 if (IS_SRIOV_VF(xe))
230 gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */
231 else
232 gsm_size = probe_gsm_size(pdev);
233
234 if (gsm_size == 0) {
235 drm_err(&xe->drm, "Hardware reported no preallocated GSM\n");
236 return -ENOMEM;
237 }
238
239 ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M;
240 ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE;
241
242 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
243 ggtt->flags |= XE_GGTT_FLAGS_64K;
244
245 if (ggtt->size > GUC_GGTT_TOP)
246 ggtt->size = GUC_GGTT_TOP;
247
248 if (GRAPHICS_VERx100(xe) >= 1270)
249 ggtt->pt_ops = (ggtt->tile->media_gt &&
250 XE_WA(ggtt->tile->media_gt, 22019338487)) ||
251 XE_WA(ggtt->tile->primary_gt, 22019338487) ?
252 &xelpg_pt_wa_ops : &xelpg_pt_ops;
253 else
254 ggtt->pt_ops = &xelp_pt_ops;
255
256 ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM);
257
258 drm_mm_init(&ggtt->mm, xe_wopcm_size(xe),
259 ggtt->size - xe_wopcm_size(xe));
260 mutex_init(&ggtt->lock);
261 primelockdep(ggtt);
262
263 err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt);
264 if (err)
265 return err;
266
267 err = devm_add_action_or_reset(xe->drm.dev, dev_fini_ggtt, ggtt);
268 if (err)
269 return err;
270
271 if (IS_SRIOV_VF(xe)) {
272 err = xe_gt_sriov_vf_prepare_ggtt(xe_tile_get_gt(ggtt->tile, 0));
273 if (err)
274 return err;
275 }
276
277 return 0;
278 }
279 ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */
280
281 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt);
282
xe_ggtt_initial_clear(struct xe_ggtt * ggtt)283 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt)
284 {
285 struct drm_mm_node *hole;
286 u64 start, end;
287
288 /* Display may have allocated inside ggtt, so be careful with clearing here */
289 mutex_lock(&ggtt->lock);
290 drm_mm_for_each_hole(hole, &ggtt->mm, start, end)
291 xe_ggtt_clear(ggtt, start, end - start);
292
293 xe_ggtt_invalidate(ggtt);
294 mutex_unlock(&ggtt->lock);
295 }
296
ggtt_node_remove(struct xe_ggtt_node * node)297 static void ggtt_node_remove(struct xe_ggtt_node *node)
298 {
299 struct xe_ggtt *ggtt = node->ggtt;
300 struct xe_device *xe = tile_to_xe(ggtt->tile);
301 bool bound;
302 int idx;
303
304 bound = drm_dev_enter(&xe->drm, &idx);
305
306 mutex_lock(&ggtt->lock);
307 if (bound)
308 xe_ggtt_clear(ggtt, node->base.start, node->base.size);
309 drm_mm_remove_node(&node->base);
310 node->base.size = 0;
311 mutex_unlock(&ggtt->lock);
312
313 if (!bound)
314 goto free_node;
315
316 if (node->invalidate_on_remove)
317 xe_ggtt_invalidate(ggtt);
318
319 drm_dev_exit(idx);
320
321 free_node:
322 xe_ggtt_node_fini(node);
323 }
324
ggtt_node_remove_work_func(struct work_struct * work)325 static void ggtt_node_remove_work_func(struct work_struct *work)
326 {
327 struct xe_ggtt_node *node = container_of(work, typeof(*node),
328 delayed_removal_work);
329 struct xe_device *xe = tile_to_xe(node->ggtt->tile);
330
331 xe_pm_runtime_get(xe);
332 ggtt_node_remove(node);
333 xe_pm_runtime_put(xe);
334 }
335
336 /**
337 * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT
338 * @node: the &xe_ggtt_node to be removed
339 * @invalidate: if node needs invalidation upon removal
340 */
xe_ggtt_node_remove(struct xe_ggtt_node * node,bool invalidate)341 void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate)
342 {
343 struct xe_ggtt *ggtt;
344 struct xe_device *xe;
345
346 if (!node || !node->ggtt)
347 return;
348
349 ggtt = node->ggtt;
350 xe = tile_to_xe(ggtt->tile);
351
352 node->invalidate_on_remove = invalidate;
353
354 if (xe_pm_runtime_get_if_active(xe)) {
355 ggtt_node_remove(node);
356 xe_pm_runtime_put(xe);
357 } else {
358 queue_work(ggtt->wq, &node->delayed_removal_work);
359 }
360 }
361
362 /**
363 * xe_ggtt_init - Regular non-early GGTT initialization
364 * @ggtt: the &xe_ggtt to be initialized
365 *
366 * Return: 0 on success or a negative error code on failure.
367 */
xe_ggtt_init(struct xe_ggtt * ggtt)368 int xe_ggtt_init(struct xe_ggtt *ggtt)
369 {
370 struct xe_device *xe = tile_to_xe(ggtt->tile);
371 unsigned int flags;
372 int err;
373
374 /*
375 * So we don't need to worry about 64K GGTT layout when dealing with
376 * scratch entries, rather keep the scratch page in system memory on
377 * platforms where 64K pages are needed for VRAM.
378 */
379 flags = 0;
380 if (ggtt->flags & XE_GGTT_FLAGS_64K)
381 flags |= XE_BO_FLAG_SYSTEM;
382 else
383 flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile);
384
385 ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags);
386 if (IS_ERR(ggtt->scratch)) {
387 err = PTR_ERR(ggtt->scratch);
388 goto err;
389 }
390
391 xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, ggtt->scratch->size);
392
393 xe_ggtt_initial_clear(ggtt);
394
395 return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt);
396 err:
397 ggtt->scratch = NULL;
398 return err;
399 }
400
ggtt_invalidate_gt_tlb(struct xe_gt * gt)401 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt)
402 {
403 int err;
404
405 if (!gt)
406 return;
407
408 err = xe_gt_tlb_invalidation_ggtt(gt);
409 if (err)
410 drm_warn(>_to_xe(gt)->drm, "xe_gt_tlb_invalidation_ggtt error=%d", err);
411 }
412
xe_ggtt_invalidate(struct xe_ggtt * ggtt)413 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt)
414 {
415 struct xe_device *xe = tile_to_xe(ggtt->tile);
416
417 /*
418 * XXX: Barrier for GGTT pages. Unsure exactly why this required but
419 * without this LNL is having issues with the GuC reading scratch page
420 * vs. correct GGTT page. Not particularly a hot code path so blindly
421 * do a mmio read here which results in GuC reading correct GGTT page.
422 */
423 xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG);
424
425 /* Each GT in a tile has its own TLB to cache GGTT lookups */
426 ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt);
427 ggtt_invalidate_gt_tlb(ggtt->tile->media_gt);
428 }
429
xe_ggtt_dump_node(struct xe_ggtt * ggtt,const struct drm_mm_node * node,const char * description)430 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt,
431 const struct drm_mm_node *node, const char *description)
432 {
433 char buf[10];
434
435 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
436 string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf));
437 xe_gt_dbg(ggtt->tile->primary_gt, "GGTT %#llx-%#llx (%s) %s\n",
438 node->start, node->start + node->size, buf, description);
439 }
440 }
441
442 /**
443 * xe_ggtt_node_insert_balloon - prevent allocation of specified GGTT addresses
444 * @node: the &xe_ggtt_node to hold reserved GGTT node
445 * @start: the starting GGTT address of the reserved region
446 * @end: then end GGTT address of the reserved region
447 *
448 * Use xe_ggtt_node_remove_balloon() to release a reserved GGTT node.
449 *
450 * Return: 0 on success or a negative error code on failure.
451 */
xe_ggtt_node_insert_balloon(struct xe_ggtt_node * node,u64 start,u64 end)452 int xe_ggtt_node_insert_balloon(struct xe_ggtt_node *node, u64 start, u64 end)
453 {
454 struct xe_ggtt *ggtt = node->ggtt;
455 int err;
456
457 xe_tile_assert(ggtt->tile, start < end);
458 xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE));
459 xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE));
460 xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base));
461
462 node->base.color = 0;
463 node->base.start = start;
464 node->base.size = end - start;
465
466 mutex_lock(&ggtt->lock);
467 err = drm_mm_reserve_node(&ggtt->mm, &node->base);
468 mutex_unlock(&ggtt->lock);
469
470 if (xe_gt_WARN(ggtt->tile->primary_gt, err,
471 "Failed to balloon GGTT %#llx-%#llx (%pe)\n",
472 node->base.start, node->base.start + node->base.size, ERR_PTR(err)))
473 return err;
474
475 xe_ggtt_dump_node(ggtt, &node->base, "balloon");
476 return 0;
477 }
478
479 /**
480 * xe_ggtt_node_remove_balloon - release a reserved GGTT region
481 * @node: the &xe_ggtt_node with reserved GGTT region
482 *
483 * See xe_ggtt_node_insert_balloon() for details.
484 */
xe_ggtt_node_remove_balloon(struct xe_ggtt_node * node)485 void xe_ggtt_node_remove_balloon(struct xe_ggtt_node *node)
486 {
487 if (!node || !node->ggtt)
488 return;
489
490 if (!drm_mm_node_allocated(&node->base))
491 goto free_node;
492
493 xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon");
494
495 mutex_lock(&node->ggtt->lock);
496 drm_mm_remove_node(&node->base);
497 mutex_unlock(&node->ggtt->lock);
498
499 free_node:
500 xe_ggtt_node_fini(node);
501 }
502
503 /**
504 * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT
505 * @node: the &xe_ggtt_node to be inserted
506 * @size: size of the node
507 * @align: alignment constrain of the node
508 * @mm_flags: flags to control the node behavior
509 *
510 * It cannot be called without first having called xe_ggtt_init() once.
511 * To be used in cases where ggtt->lock is already taken.
512 *
513 * Return: 0 on success or a negative error code on failure.
514 */
xe_ggtt_node_insert_locked(struct xe_ggtt_node * node,u32 size,u32 align,u32 mm_flags)515 int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node,
516 u32 size, u32 align, u32 mm_flags)
517 {
518 return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0,
519 mm_flags);
520 }
521
522 /**
523 * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT
524 * @node: the &xe_ggtt_node to be inserted
525 * @size: size of the node
526 * @align: alignment constrain of the node
527 *
528 * It cannot be called without first having called xe_ggtt_init() once.
529 *
530 * Return: 0 on success or a negative error code on failure.
531 */
xe_ggtt_node_insert(struct xe_ggtt_node * node,u32 size,u32 align)532 int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align)
533 {
534 int ret;
535
536 if (!node || !node->ggtt)
537 return -ENOENT;
538
539 mutex_lock(&node->ggtt->lock);
540 ret = xe_ggtt_node_insert_locked(node, size, align,
541 DRM_MM_INSERT_HIGH);
542 mutex_unlock(&node->ggtt->lock);
543
544 return ret;
545 }
546
547 /**
548 * xe_ggtt_node_init - Initialize %xe_ggtt_node struct
549 * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved.
550 *
551 * This function will allocated the struct %xe_ggtt_node and return it's pointer.
552 * This struct will then be freed after the node removal upon xe_ggtt_node_remove()
553 * or xe_ggtt_node_remove_balloon().
554 * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated
555 * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
556 * xe_ggtt_node_insert_balloon() will ensure the node is inserted or reserved in GGTT.
557 *
558 * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise.
559 **/
xe_ggtt_node_init(struct xe_ggtt * ggtt)560 struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt)
561 {
562 struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS);
563
564 if (!node)
565 return ERR_PTR(-ENOMEM);
566
567 INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func);
568 node->ggtt = ggtt;
569
570 return node;
571 }
572
573 /**
574 * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct
575 * @node: the &xe_ggtt_node to be freed
576 *
577 * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
578 * or xe_ggtt_node_insert_balloon(); and this @node is not going to be reused, then,
579 * this function needs to be called to free the %xe_ggtt_node struct
580 **/
xe_ggtt_node_fini(struct xe_ggtt_node * node)581 void xe_ggtt_node_fini(struct xe_ggtt_node *node)
582 {
583 kfree(node);
584 }
585
586 /**
587 * xe_ggtt_node_allocated - Check if node is allocated in GGTT
588 * @node: the &xe_ggtt_node to be inspected
589 *
590 * Return: True if allocated, False otherwise.
591 */
xe_ggtt_node_allocated(const struct xe_ggtt_node * node)592 bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node)
593 {
594 if (!node || !node->ggtt)
595 return false;
596
597 return drm_mm_node_allocated(&node->base);
598 }
599
600 /**
601 * xe_ggtt_map_bo - Map the BO into GGTT
602 * @ggtt: the &xe_ggtt where node will be mapped
603 * @bo: the &xe_bo to be mapped
604 */
xe_ggtt_map_bo(struct xe_ggtt * ggtt,struct xe_bo * bo)605 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
606 {
607 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
608 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode];
609 u64 start;
610 u64 offset, pte;
611
612 if (XE_WARN_ON(!bo->ggtt_node[ggtt->tile->id]))
613 return;
614
615 start = bo->ggtt_node[ggtt->tile->id]->base.start;
616
617 for (offset = 0; offset < bo->size; offset += XE_PAGE_SIZE) {
618 pte = ggtt->pt_ops->pte_encode_bo(bo, offset, pat_index);
619 ggtt->pt_ops->ggtt_set_pte(ggtt, start + offset, pte);
620 }
621 }
622
__xe_ggtt_insert_bo_at(struct xe_ggtt * ggtt,struct xe_bo * bo,u64 start,u64 end)623 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
624 u64 start, u64 end)
625 {
626 u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE;
627 u8 tile_id = ggtt->tile->id;
628 int err;
629
630 if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K)
631 alignment = SZ_64K;
632
633 if (XE_WARN_ON(bo->ggtt_node[tile_id])) {
634 /* Someone's already inserted this BO in the GGTT */
635 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == bo->size);
636 return 0;
637 }
638
639 err = xe_bo_validate(bo, NULL, false);
640 if (err)
641 return err;
642
643 xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile));
644
645 bo->ggtt_node[tile_id] = xe_ggtt_node_init(ggtt);
646 if (IS_ERR(bo->ggtt_node[tile_id])) {
647 err = PTR_ERR(bo->ggtt_node[tile_id]);
648 bo->ggtt_node[tile_id] = NULL;
649 goto out;
650 }
651
652 mutex_lock(&ggtt->lock);
653 err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node[tile_id]->base,
654 bo->size, alignment, 0, start, end, 0);
655 if (err) {
656 xe_ggtt_node_fini(bo->ggtt_node[tile_id]);
657 bo->ggtt_node[tile_id] = NULL;
658 } else {
659 xe_ggtt_map_bo(ggtt, bo);
660 }
661 mutex_unlock(&ggtt->lock);
662
663 if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE)
664 xe_ggtt_invalidate(ggtt);
665
666 out:
667 xe_pm_runtime_put(tile_to_xe(ggtt->tile));
668
669 return err;
670 }
671
672 /**
673 * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space
674 * @ggtt: the &xe_ggtt where bo will be inserted
675 * @bo: the &xe_bo to be inserted
676 * @start: address where it will be inserted
677 * @end: end of the range where it will be inserted
678 *
679 * Return: 0 on success or a negative error code on failure.
680 */
xe_ggtt_insert_bo_at(struct xe_ggtt * ggtt,struct xe_bo * bo,u64 start,u64 end)681 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
682 u64 start, u64 end)
683 {
684 return __xe_ggtt_insert_bo_at(ggtt, bo, start, end);
685 }
686
687 /**
688 * xe_ggtt_insert_bo - Insert BO into GGTT
689 * @ggtt: the &xe_ggtt where bo will be inserted
690 * @bo: the &xe_bo to be inserted
691 *
692 * Return: 0 on success or a negative error code on failure.
693 */
xe_ggtt_insert_bo(struct xe_ggtt * ggtt,struct xe_bo * bo)694 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
695 {
696 return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX);
697 }
698
699 /**
700 * xe_ggtt_remove_bo - Remove a BO from the GGTT
701 * @ggtt: the &xe_ggtt where node will be removed
702 * @bo: the &xe_bo to be removed
703 */
xe_ggtt_remove_bo(struct xe_ggtt * ggtt,struct xe_bo * bo)704 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
705 {
706 u8 tile_id = ggtt->tile->id;
707
708 if (XE_WARN_ON(!bo->ggtt_node[tile_id]))
709 return;
710
711 /* This BO is not currently in the GGTT */
712 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == bo->size);
713
714 xe_ggtt_node_remove(bo->ggtt_node[tile_id],
715 bo->flags & XE_BO_FLAG_GGTT_INVALIDATE);
716 }
717
718 /**
719 * xe_ggtt_largest_hole - Largest GGTT hole
720 * @ggtt: the &xe_ggtt that will be inspected
721 * @alignment: minimum alignment
722 * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare
723 *
724 * Return: size of the largest continuous GGTT region
725 */
xe_ggtt_largest_hole(struct xe_ggtt * ggtt,u64 alignment,u64 * spare)726 u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare)
727 {
728 const struct drm_mm *mm = &ggtt->mm;
729 const struct drm_mm_node *entry;
730 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
731 u64 hole_start, hole_end, hole_size;
732 u64 max_hole = 0;
733
734 mutex_lock(&ggtt->lock);
735
736 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
737 hole_start = max(hole_start, hole_min_start);
738 hole_start = ALIGN(hole_start, alignment);
739 hole_end = ALIGN_DOWN(hole_end, alignment);
740 if (hole_start >= hole_end)
741 continue;
742 hole_size = hole_end - hole_start;
743 if (spare)
744 *spare -= min3(*spare, hole_size, max_hole);
745 max_hole = max(max_hole, hole_size);
746 }
747
748 mutex_unlock(&ggtt->lock);
749
750 return max_hole;
751 }
752
753 #ifdef CONFIG_PCI_IOV
xe_encode_vfid_pte(u16 vfid)754 static u64 xe_encode_vfid_pte(u16 vfid)
755 {
756 return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT;
757 }
758
xe_ggtt_assign_locked(struct xe_ggtt * ggtt,const struct drm_mm_node * node,u16 vfid)759 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid)
760 {
761 u64 start = node->start;
762 u64 size = node->size;
763 u64 end = start + size - 1;
764 u64 pte = xe_encode_vfid_pte(vfid);
765
766 lockdep_assert_held(&ggtt->lock);
767
768 if (!drm_mm_node_allocated(node))
769 return;
770
771 while (start < end) {
772 ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte);
773 start += XE_PAGE_SIZE;
774 }
775
776 xe_ggtt_invalidate(ggtt);
777 }
778
779 /**
780 * xe_ggtt_assign - assign a GGTT region to the VF
781 * @node: the &xe_ggtt_node to update
782 * @vfid: the VF identifier
783 *
784 * This function is used by the PF driver to assign a GGTT region to the VF.
785 * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some
786 * platforms VFs can't modify that either.
787 */
xe_ggtt_assign(const struct xe_ggtt_node * node,u16 vfid)788 void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid)
789 {
790 mutex_lock(&node->ggtt->lock);
791 xe_ggtt_assign_locked(node->ggtt, &node->base, vfid);
792 mutex_unlock(&node->ggtt->lock);
793 }
794 #endif
795
796 /**
797 * xe_ggtt_dump - Dump GGTT for debug
798 * @ggtt: the &xe_ggtt to be dumped
799 * @p: the &drm_mm_printer helper handle to be used to dump the information
800 *
801 * Return: 0 on success or a negative error code on failure.
802 */
xe_ggtt_dump(struct xe_ggtt * ggtt,struct drm_printer * p)803 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p)
804 {
805 int err;
806
807 err = mutex_lock_interruptible(&ggtt->lock);
808 if (err)
809 return err;
810
811 drm_mm_print(&ggtt->mm, p);
812 mutex_unlock(&ggtt->lock);
813 return err;
814 }
815
816 /**
817 * xe_ggtt_print_holes - Print holes
818 * @ggtt: the &xe_ggtt to be inspected
819 * @alignment: min alignment
820 * @p: the &drm_printer
821 *
822 * Print GGTT ranges that are available and return total size available.
823 *
824 * Return: Total available size.
825 */
xe_ggtt_print_holes(struct xe_ggtt * ggtt,u64 alignment,struct drm_printer * p)826 u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p)
827 {
828 const struct drm_mm *mm = &ggtt->mm;
829 const struct drm_mm_node *entry;
830 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
831 u64 hole_start, hole_end, hole_size;
832 u64 total = 0;
833 char buf[10];
834
835 mutex_lock(&ggtt->lock);
836
837 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
838 hole_start = max(hole_start, hole_min_start);
839 hole_start = ALIGN(hole_start, alignment);
840 hole_end = ALIGN_DOWN(hole_end, alignment);
841 if (hole_start >= hole_end)
842 continue;
843 hole_size = hole_end - hole_start;
844 total += hole_size;
845
846 string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf));
847 drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n",
848 hole_start, hole_end - 1, buf);
849 }
850
851 mutex_unlock(&ggtt->lock);
852
853 return total;
854 }
855