1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_ggtt.h"
7
8 #include <kunit/visibility.h>
9 #include <linux/fault-inject.h>
10 #include <linux/io-64-nonatomic-lo-hi.h>
11 #include <linux/sizes.h>
12
13 #include <drm/drm_drv.h>
14 #include <drm/drm_managed.h>
15 #include <drm/intel/i915_drm.h>
16 #include <generated/xe_wa_oob.h>
17
18 #include "regs/xe_gt_regs.h"
19 #include "regs/xe_gtt_defs.h"
20 #include "regs/xe_regs.h"
21 #include "xe_assert.h"
22 #include "xe_bo.h"
23 #include "xe_device.h"
24 #include "xe_gt.h"
25 #include "xe_gt_printk.h"
26 #include "xe_map.h"
27 #include "xe_mmio.h"
28 #include "xe_pm.h"
29 #include "xe_res_cursor.h"
30 #include "xe_sriov.h"
31 #include "xe_tile_printk.h"
32 #include "xe_tile_sriov_vf.h"
33 #include "xe_tlb_inval.h"
34 #include "xe_wa.h"
35 #include "xe_wopcm.h"
36
37 /**
38 * DOC: Global Graphics Translation Table (GGTT)
39 *
40 * Xe GGTT implements the support for a Global Virtual Address space that is used
41 * for resources that are accessible to privileged (i.e. kernel-mode) processes,
42 * and not tied to a specific user-level process. For example, the Graphics
43 * micro-Controller (GuC) and Display Engine (if present) utilize this Global
44 * address space.
45 *
46 * The Global GTT (GGTT) translates from the Global virtual address to a physical
47 * address that can be accessed by HW. The GGTT is a flat, single-level table.
48 *
49 * Xe implements a simplified version of the GGTT specifically managing only a
50 * certain range of it that goes from the Write Once Protected Content Memory (WOPCM)
51 * Layout to a predefined GUC_GGTT_TOP. This approach avoids complications related to
52 * the GuC (Graphics Microcontroller) hardware limitations. The GuC address space
53 * is limited on both ends of the GGTT, because the GuC shim HW redirects
54 * accesses to those addresses to other HW areas instead of going through the
55 * GGTT. On the bottom end, the GuC can't access offsets below the WOPCM size,
56 * while on the top side the limit is fixed at GUC_GGTT_TOP. To keep things
57 * simple, instead of checking each object to see if they are accessed by GuC or
58 * not, we just exclude those areas from the allocator. Additionally, to simplify
59 * the driver load, we use the maximum WOPCM size in this logic instead of the
60 * programmed one, so we don't need to wait until the actual size to be
61 * programmed is determined (which requires FW fetch) before initializing the
62 * GGTT. These simplifications might waste space in the GGTT (about 20-25 MBs
63 * depending on the platform) but we can live with this. Another benefit of this
64 * is the GuC bootrom can't access anything below the WOPCM max size so anything
65 * the bootrom needs to access (e.g. a RSA key) needs to be placed in the GGTT
66 * above the WOPCM max size. Starting the GGTT allocations above the WOPCM max
67 * give us the correct placement for free.
68 */
69
xelp_ggtt_pte_flags(struct xe_bo * bo,u16 pat_index)70 static u64 xelp_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index)
71 {
72 u64 pte = XE_PAGE_PRESENT;
73
74 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
75 pte |= XE_GGTT_PTE_DM;
76
77 return pte;
78 }
79
xelpg_ggtt_pte_flags(struct xe_bo * bo,u16 pat_index)80 static u64 xelpg_ggtt_pte_flags(struct xe_bo *bo, u16 pat_index)
81 {
82 struct xe_device *xe = xe_bo_device(bo);
83 u64 pte;
84
85 pte = xelp_ggtt_pte_flags(bo, pat_index);
86
87 xe_assert(xe, pat_index <= 3);
88
89 if (pat_index & BIT(0))
90 pte |= XELPG_GGTT_PTE_PAT0;
91
92 if (pat_index & BIT(1))
93 pte |= XELPG_GGTT_PTE_PAT1;
94
95 return pte;
96 }
97
probe_gsm_size(struct pci_dev * pdev)98 static unsigned int probe_gsm_size(struct pci_dev *pdev)
99 {
100 u16 gmch_ctl, ggms;
101
102 pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl);
103 ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK;
104 return ggms ? SZ_1M << ggms : 0;
105 }
106
ggtt_update_access_counter(struct xe_ggtt * ggtt)107 static void ggtt_update_access_counter(struct xe_ggtt *ggtt)
108 {
109 struct xe_tile *tile = ggtt->tile;
110 struct xe_gt *affected_gt;
111 u32 max_gtt_writes;
112
113 if (tile->primary_gt && XE_GT_WA(tile->primary_gt, 22019338487)) {
114 affected_gt = tile->primary_gt;
115 max_gtt_writes = 1100;
116
117 /* Only expected to apply to primary GT on dgpu platforms */
118 xe_tile_assert(tile, IS_DGFX(tile_to_xe(tile)));
119 } else {
120 affected_gt = tile->media_gt;
121 max_gtt_writes = 63;
122
123 /* Only expected to apply to media GT on igpu platforms */
124 xe_tile_assert(tile, !IS_DGFX(tile_to_xe(tile)));
125 }
126
127 /*
128 * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit
129 * to wait for completion of prior GTT writes before letting this through.
130 * This needs to be done for all GGTT writes originating from the CPU.
131 */
132 lockdep_assert_held(&ggtt->lock);
133
134 if ((++ggtt->access_count % max_gtt_writes) == 0) {
135 xe_mmio_write32(&affected_gt->mmio, GMD_ID, 0x0);
136 ggtt->access_count = 0;
137 }
138 }
139
xe_ggtt_set_pte(struct xe_ggtt * ggtt,u64 addr,u64 pte)140 static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte)
141 {
142 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK));
143 xe_tile_assert(ggtt->tile, addr < ggtt->size);
144
145 writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]);
146 }
147
xe_ggtt_set_pte_and_flush(struct xe_ggtt * ggtt,u64 addr,u64 pte)148 static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte)
149 {
150 xe_ggtt_set_pte(ggtt, addr, pte);
151 ggtt_update_access_counter(ggtt);
152 }
153
xe_ggtt_get_pte(struct xe_ggtt * ggtt,u64 addr)154 static u64 xe_ggtt_get_pte(struct xe_ggtt *ggtt, u64 addr)
155 {
156 xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK));
157 xe_tile_assert(ggtt->tile, addr < ggtt->size);
158
159 return readq(&ggtt->gsm[addr >> XE_PTE_SHIFT]);
160 }
161
xe_ggtt_clear(struct xe_ggtt * ggtt,u64 start,u64 size)162 static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size)
163 {
164 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB];
165 u64 end = start + size - 1;
166 u64 scratch_pte;
167
168 xe_tile_assert(ggtt->tile, start < end);
169
170 if (ggtt->scratch)
171 scratch_pte = xe_bo_addr(ggtt->scratch, 0, XE_PAGE_SIZE) |
172 ggtt->pt_ops->pte_encode_flags(ggtt->scratch,
173 pat_index);
174 else
175 scratch_pte = 0;
176
177 while (start < end) {
178 ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte);
179 start += XE_PAGE_SIZE;
180 }
181 }
182
primelockdep(struct xe_ggtt * ggtt)183 static void primelockdep(struct xe_ggtt *ggtt)
184 {
185 if (!IS_ENABLED(CONFIG_LOCKDEP))
186 return;
187
188 fs_reclaim_acquire(GFP_KERNEL);
189 might_lock(&ggtt->lock);
190 fs_reclaim_release(GFP_KERNEL);
191 }
192
193 /**
194 * xe_ggtt_alloc - Allocate a GGTT for a given &xe_tile
195 * @tile: &xe_tile
196 *
197 * Allocates a &xe_ggtt for a given tile.
198 *
199 * Return: &xe_ggtt on success, or NULL when out of memory.
200 */
xe_ggtt_alloc(struct xe_tile * tile)201 struct xe_ggtt *xe_ggtt_alloc(struct xe_tile *tile)
202 {
203 struct xe_device *xe = tile_to_xe(tile);
204 struct xe_ggtt *ggtt;
205
206 ggtt = drmm_kzalloc(&xe->drm, sizeof(*ggtt), GFP_KERNEL);
207 if (!ggtt)
208 return NULL;
209
210 if (drmm_mutex_init(&xe->drm, &ggtt->lock))
211 return NULL;
212
213 primelockdep(ggtt);
214 ggtt->tile = tile;
215
216 return ggtt;
217 }
218
ggtt_fini_early(struct drm_device * drm,void * arg)219 static void ggtt_fini_early(struct drm_device *drm, void *arg)
220 {
221 struct xe_ggtt *ggtt = arg;
222
223 destroy_workqueue(ggtt->wq);
224 drm_mm_takedown(&ggtt->mm);
225 }
226
ggtt_fini(void * arg)227 static void ggtt_fini(void *arg)
228 {
229 struct xe_ggtt *ggtt = arg;
230
231 ggtt->scratch = NULL;
232 }
233
234 #ifdef CONFIG_LOCKDEP
xe_ggtt_might_lock(struct xe_ggtt * ggtt)235 void xe_ggtt_might_lock(struct xe_ggtt *ggtt)
236 {
237 might_lock(&ggtt->lock);
238 }
239 #endif
240
241 static const struct xe_ggtt_pt_ops xelp_pt_ops = {
242 .pte_encode_flags = xelp_ggtt_pte_flags,
243 .ggtt_set_pte = xe_ggtt_set_pte,
244 .ggtt_get_pte = xe_ggtt_get_pte,
245 };
246
247 static const struct xe_ggtt_pt_ops xelpg_pt_ops = {
248 .pte_encode_flags = xelpg_ggtt_pte_flags,
249 .ggtt_set_pte = xe_ggtt_set_pte,
250 .ggtt_get_pte = xe_ggtt_get_pte,
251 };
252
253 static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = {
254 .pte_encode_flags = xelpg_ggtt_pte_flags,
255 .ggtt_set_pte = xe_ggtt_set_pte_and_flush,
256 .ggtt_get_pte = xe_ggtt_get_pte,
257 };
258
__xe_ggtt_init_early(struct xe_ggtt * ggtt,u32 reserved)259 static void __xe_ggtt_init_early(struct xe_ggtt *ggtt, u32 reserved)
260 {
261 drm_mm_init(&ggtt->mm, reserved,
262 ggtt->size - reserved);
263 }
264
xe_ggtt_init_kunit(struct xe_ggtt * ggtt,u32 reserved,u32 size)265 int xe_ggtt_init_kunit(struct xe_ggtt *ggtt, u32 reserved, u32 size)
266 {
267 ggtt->size = size;
268 __xe_ggtt_init_early(ggtt, reserved);
269 return 0;
270 }
271 EXPORT_SYMBOL_IF_KUNIT(xe_ggtt_init_kunit);
272
dev_fini_ggtt(void * arg)273 static void dev_fini_ggtt(void *arg)
274 {
275 struct xe_ggtt *ggtt = arg;
276
277 drain_workqueue(ggtt->wq);
278 }
279
280 /**
281 * xe_ggtt_init_early - Early GGTT initialization
282 * @ggtt: the &xe_ggtt to be initialized
283 *
284 * It allows to create new mappings usable by the GuC.
285 * Mappings are not usable by the HW engines, as it doesn't have scratch nor
286 * initial clear done to it yet. That will happen in the regular, non-early
287 * GGTT initialization.
288 *
289 * Return: 0 on success or a negative error code on failure.
290 */
xe_ggtt_init_early(struct xe_ggtt * ggtt)291 int xe_ggtt_init_early(struct xe_ggtt *ggtt)
292 {
293 struct xe_device *xe = tile_to_xe(ggtt->tile);
294 struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
295 unsigned int gsm_size;
296 int err;
297
298 if (IS_SRIOV_VF(xe) || GRAPHICS_VERx100(xe) >= 1250)
299 gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */
300 else
301 gsm_size = probe_gsm_size(pdev);
302
303 if (gsm_size == 0) {
304 xe_tile_err(ggtt->tile, "Hardware reported no preallocated GSM\n");
305 return -ENOMEM;
306 }
307
308 ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M;
309 ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE;
310
311 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
312 ggtt->flags |= XE_GGTT_FLAGS_64K;
313
314 if (ggtt->size > GUC_GGTT_TOP)
315 ggtt->size = GUC_GGTT_TOP;
316
317 if (GRAPHICS_VERx100(xe) >= 1270)
318 ggtt->pt_ops =
319 (ggtt->tile->media_gt && XE_GT_WA(ggtt->tile->media_gt, 22019338487)) ||
320 (ggtt->tile->primary_gt && XE_GT_WA(ggtt->tile->primary_gt, 22019338487)) ?
321 &xelpg_pt_wa_ops : &xelpg_pt_ops;
322 else
323 ggtt->pt_ops = &xelp_pt_ops;
324
325 ggtt->wq = alloc_workqueue("xe-ggtt-wq", 0, WQ_MEM_RECLAIM);
326 if (!ggtt->wq)
327 return -ENOMEM;
328
329 __xe_ggtt_init_early(ggtt, xe_wopcm_size(xe));
330
331 err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt);
332 if (err)
333 return err;
334
335 err = devm_add_action_or_reset(xe->drm.dev, dev_fini_ggtt, ggtt);
336 if (err)
337 return err;
338
339 if (IS_SRIOV_VF(xe)) {
340 err = xe_tile_sriov_vf_prepare_ggtt(ggtt->tile);
341 if (err)
342 return err;
343 }
344
345 return 0;
346 }
347 ALLOW_ERROR_INJECTION(xe_ggtt_init_early, ERRNO); /* See xe_pci_probe() */
348
349 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt);
350
xe_ggtt_initial_clear(struct xe_ggtt * ggtt)351 static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt)
352 {
353 struct drm_mm_node *hole;
354 u64 start, end;
355
356 /* Display may have allocated inside ggtt, so be careful with clearing here */
357 mutex_lock(&ggtt->lock);
358 drm_mm_for_each_hole(hole, &ggtt->mm, start, end)
359 xe_ggtt_clear(ggtt, start, end - start);
360
361 xe_ggtt_invalidate(ggtt);
362 mutex_unlock(&ggtt->lock);
363 }
364
ggtt_node_remove(struct xe_ggtt_node * node)365 static void ggtt_node_remove(struct xe_ggtt_node *node)
366 {
367 struct xe_ggtt *ggtt = node->ggtt;
368 struct xe_device *xe = tile_to_xe(ggtt->tile);
369 bool bound;
370 int idx;
371
372 bound = drm_dev_enter(&xe->drm, &idx);
373
374 mutex_lock(&ggtt->lock);
375 if (bound)
376 xe_ggtt_clear(ggtt, node->base.start, node->base.size);
377 drm_mm_remove_node(&node->base);
378 node->base.size = 0;
379 mutex_unlock(&ggtt->lock);
380
381 if (!bound)
382 goto free_node;
383
384 if (node->invalidate_on_remove)
385 xe_ggtt_invalidate(ggtt);
386
387 drm_dev_exit(idx);
388
389 free_node:
390 xe_ggtt_node_fini(node);
391 }
392
ggtt_node_remove_work_func(struct work_struct * work)393 static void ggtt_node_remove_work_func(struct work_struct *work)
394 {
395 struct xe_ggtt_node *node = container_of(work, typeof(*node),
396 delayed_removal_work);
397 struct xe_device *xe = tile_to_xe(node->ggtt->tile);
398
399 xe_pm_runtime_get(xe);
400 ggtt_node_remove(node);
401 xe_pm_runtime_put(xe);
402 }
403
404 /**
405 * xe_ggtt_node_remove - Remove a &xe_ggtt_node from the GGTT
406 * @node: the &xe_ggtt_node to be removed
407 * @invalidate: if node needs invalidation upon removal
408 */
xe_ggtt_node_remove(struct xe_ggtt_node * node,bool invalidate)409 void xe_ggtt_node_remove(struct xe_ggtt_node *node, bool invalidate)
410 {
411 struct xe_ggtt *ggtt;
412 struct xe_device *xe;
413
414 if (!node || !node->ggtt)
415 return;
416
417 ggtt = node->ggtt;
418 xe = tile_to_xe(ggtt->tile);
419
420 node->invalidate_on_remove = invalidate;
421
422 if (xe_pm_runtime_get_if_active(xe)) {
423 ggtt_node_remove(node);
424 xe_pm_runtime_put(xe);
425 } else {
426 queue_work(ggtt->wq, &node->delayed_removal_work);
427 }
428 }
429
430 /**
431 * xe_ggtt_init - Regular non-early GGTT initialization
432 * @ggtt: the &xe_ggtt to be initialized
433 *
434 * Return: 0 on success or a negative error code on failure.
435 */
xe_ggtt_init(struct xe_ggtt * ggtt)436 int xe_ggtt_init(struct xe_ggtt *ggtt)
437 {
438 struct xe_device *xe = tile_to_xe(ggtt->tile);
439 unsigned int flags;
440 int err;
441
442 /*
443 * So we don't need to worry about 64K GGTT layout when dealing with
444 * scratch entries, rather keep the scratch page in system memory on
445 * platforms where 64K pages are needed for VRAM.
446 */
447 flags = 0;
448 if (ggtt->flags & XE_GGTT_FLAGS_64K)
449 flags |= XE_BO_FLAG_SYSTEM;
450 else
451 flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile);
452
453 ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags);
454 if (IS_ERR(ggtt->scratch)) {
455 err = PTR_ERR(ggtt->scratch);
456 goto err;
457 }
458
459 xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, xe_bo_size(ggtt->scratch));
460
461 xe_ggtt_initial_clear(ggtt);
462
463 return devm_add_action_or_reset(xe->drm.dev, ggtt_fini, ggtt);
464 err:
465 ggtt->scratch = NULL;
466 return err;
467 }
468
ggtt_invalidate_gt_tlb(struct xe_gt * gt)469 static void ggtt_invalidate_gt_tlb(struct xe_gt *gt)
470 {
471 int err;
472
473 if (!gt)
474 return;
475
476 err = xe_tlb_inval_ggtt(>->tlb_inval);
477 xe_gt_WARN(gt, err, "Failed to invalidate GGTT (%pe)", ERR_PTR(err));
478 }
479
xe_ggtt_invalidate(struct xe_ggtt * ggtt)480 static void xe_ggtt_invalidate(struct xe_ggtt *ggtt)
481 {
482 struct xe_device *xe = tile_to_xe(ggtt->tile);
483
484 /*
485 * XXX: Barrier for GGTT pages. Unsure exactly why this required but
486 * without this LNL is having issues with the GuC reading scratch page
487 * vs. correct GGTT page. Not particularly a hot code path so blindly
488 * do a mmio read here which results in GuC reading correct GGTT page.
489 */
490 xe_mmio_read32(xe_root_tile_mmio(xe), VF_CAP_REG);
491
492 /* Each GT in a tile has its own TLB to cache GGTT lookups */
493 ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt);
494 ggtt_invalidate_gt_tlb(ggtt->tile->media_gt);
495 }
496
xe_ggtt_dump_node(struct xe_ggtt * ggtt,const struct drm_mm_node * node,const char * description)497 static void xe_ggtt_dump_node(struct xe_ggtt *ggtt,
498 const struct drm_mm_node *node, const char *description)
499 {
500 char buf[10];
501
502 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
503 string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf));
504 xe_tile_dbg(ggtt->tile, "GGTT %#llx-%#llx (%s) %s\n",
505 node->start, node->start + node->size, buf, description);
506 }
507 }
508
509 /**
510 * xe_ggtt_node_insert_balloon_locked - prevent allocation of specified GGTT addresses
511 * @node: the &xe_ggtt_node to hold reserved GGTT node
512 * @start: the starting GGTT address of the reserved region
513 * @end: then end GGTT address of the reserved region
514 *
515 * To be used in cases where ggtt->lock is already taken.
516 * Use xe_ggtt_node_remove_balloon_locked() to release a reserved GGTT node.
517 *
518 * Return: 0 on success or a negative error code on failure.
519 */
xe_ggtt_node_insert_balloon_locked(struct xe_ggtt_node * node,u64 start,u64 end)520 int xe_ggtt_node_insert_balloon_locked(struct xe_ggtt_node *node, u64 start, u64 end)
521 {
522 struct xe_ggtt *ggtt = node->ggtt;
523 int err;
524
525 xe_tile_assert(ggtt->tile, start < end);
526 xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE));
527 xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE));
528 xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(&node->base));
529 lockdep_assert_held(&ggtt->lock);
530
531 node->base.color = 0;
532 node->base.start = start;
533 node->base.size = end - start;
534
535 err = drm_mm_reserve_node(&ggtt->mm, &node->base);
536
537 if (xe_tile_WARN(ggtt->tile, err, "Failed to balloon GGTT %#llx-%#llx (%pe)\n",
538 node->base.start, node->base.start + node->base.size, ERR_PTR(err)))
539 return err;
540
541 xe_ggtt_dump_node(ggtt, &node->base, "balloon");
542 return 0;
543 }
544
545 /**
546 * xe_ggtt_node_remove_balloon_locked - release a reserved GGTT region
547 * @node: the &xe_ggtt_node with reserved GGTT region
548 *
549 * To be used in cases where ggtt->lock is already taken.
550 * See xe_ggtt_node_insert_balloon_locked() for details.
551 */
xe_ggtt_node_remove_balloon_locked(struct xe_ggtt_node * node)552 void xe_ggtt_node_remove_balloon_locked(struct xe_ggtt_node *node)
553 {
554 if (!xe_ggtt_node_allocated(node))
555 return;
556
557 lockdep_assert_held(&node->ggtt->lock);
558
559 xe_ggtt_dump_node(node->ggtt, &node->base, "remove-balloon");
560
561 drm_mm_remove_node(&node->base);
562 }
563
xe_ggtt_assert_fit(struct xe_ggtt * ggtt,u64 start,u64 size)564 static void xe_ggtt_assert_fit(struct xe_ggtt *ggtt, u64 start, u64 size)
565 {
566 struct xe_tile *tile = ggtt->tile;
567 struct xe_device *xe = tile_to_xe(tile);
568 u64 __maybe_unused wopcm = xe_wopcm_size(xe);
569
570 xe_tile_assert(tile, start >= wopcm);
571 xe_tile_assert(tile, start + size < ggtt->size - wopcm);
572 }
573
574 /**
575 * xe_ggtt_shift_nodes_locked - Shift GGTT nodes to adjust for a change in usable address range.
576 * @ggtt: the &xe_ggtt struct instance
577 * @shift: change to the location of area provisioned for current VF
578 *
579 * This function moves all nodes from the GGTT VM, to a temp list. These nodes are expected
580 * to represent allocations in range formerly assigned to current VF, before the range changed.
581 * When the GGTT VM is completely clear of any nodes, they are re-added with shifted offsets.
582 *
583 * The function has no ability of failing - because it shifts existing nodes, without
584 * any additional processing. If the nodes were successfully existing at the old address,
585 * they will do the same at the new one. A fail inside this function would indicate that
586 * the list of nodes was either already damaged, or that the shift brings the address range
587 * outside of valid bounds. Both cases justify an assert rather than error code.
588 */
xe_ggtt_shift_nodes_locked(struct xe_ggtt * ggtt,s64 shift)589 void xe_ggtt_shift_nodes_locked(struct xe_ggtt *ggtt, s64 shift)
590 {
591 struct xe_tile *tile __maybe_unused = ggtt->tile;
592 struct drm_mm_node *node, *tmpn;
593 LIST_HEAD(temp_list_head);
594
595 lockdep_assert_held(&ggtt->lock);
596
597 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG))
598 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm)
599 xe_ggtt_assert_fit(ggtt, node->start + shift, node->size);
600
601 drm_mm_for_each_node_safe(node, tmpn, &ggtt->mm) {
602 drm_mm_remove_node(node);
603 list_add(&node->node_list, &temp_list_head);
604 }
605
606 list_for_each_entry_safe(node, tmpn, &temp_list_head, node_list) {
607 list_del(&node->node_list);
608 node->start += shift;
609 drm_mm_reserve_node(&ggtt->mm, node);
610 xe_tile_assert(tile, drm_mm_node_allocated(node));
611 }
612 }
613
614 /**
615 * xe_ggtt_node_insert_locked - Locked version to insert a &xe_ggtt_node into the GGTT
616 * @node: the &xe_ggtt_node to be inserted
617 * @size: size of the node
618 * @align: alignment constrain of the node
619 * @mm_flags: flags to control the node behavior
620 *
621 * It cannot be called without first having called xe_ggtt_init() once.
622 * To be used in cases where ggtt->lock is already taken.
623 *
624 * Return: 0 on success or a negative error code on failure.
625 */
xe_ggtt_node_insert_locked(struct xe_ggtt_node * node,u32 size,u32 align,u32 mm_flags)626 int xe_ggtt_node_insert_locked(struct xe_ggtt_node *node,
627 u32 size, u32 align, u32 mm_flags)
628 {
629 return drm_mm_insert_node_generic(&node->ggtt->mm, &node->base, size, align, 0,
630 mm_flags);
631 }
632
633 /**
634 * xe_ggtt_node_insert - Insert a &xe_ggtt_node into the GGTT
635 * @node: the &xe_ggtt_node to be inserted
636 * @size: size of the node
637 * @align: alignment constrain of the node
638 *
639 * It cannot be called without first having called xe_ggtt_init() once.
640 *
641 * Return: 0 on success or a negative error code on failure.
642 */
xe_ggtt_node_insert(struct xe_ggtt_node * node,u32 size,u32 align)643 int xe_ggtt_node_insert(struct xe_ggtt_node *node, u32 size, u32 align)
644 {
645 int ret;
646
647 if (!node || !node->ggtt)
648 return -ENOENT;
649
650 mutex_lock(&node->ggtt->lock);
651 ret = xe_ggtt_node_insert_locked(node, size, align,
652 DRM_MM_INSERT_HIGH);
653 mutex_unlock(&node->ggtt->lock);
654
655 return ret;
656 }
657
658 /**
659 * xe_ggtt_node_init - Initialize %xe_ggtt_node struct
660 * @ggtt: the &xe_ggtt where the new node will later be inserted/reserved.
661 *
662 * This function will allocate the struct %xe_ggtt_node and return its pointer.
663 * This struct will then be freed after the node removal upon xe_ggtt_node_remove()
664 * or xe_ggtt_node_remove_balloon_locked().
665 * Having %xe_ggtt_node struct allocated doesn't mean that the node is already allocated
666 * in GGTT. Only the xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
667 * xe_ggtt_node_insert_balloon_locked() will ensure the node is inserted or reserved in GGTT.
668 *
669 * Return: A pointer to %xe_ggtt_node struct on success. An ERR_PTR otherwise.
670 **/
xe_ggtt_node_init(struct xe_ggtt * ggtt)671 struct xe_ggtt_node *xe_ggtt_node_init(struct xe_ggtt *ggtt)
672 {
673 struct xe_ggtt_node *node = kzalloc(sizeof(*node), GFP_NOFS);
674
675 if (!node)
676 return ERR_PTR(-ENOMEM);
677
678 INIT_WORK(&node->delayed_removal_work, ggtt_node_remove_work_func);
679 node->ggtt = ggtt;
680
681 return node;
682 }
683
684 /**
685 * xe_ggtt_node_fini - Forcebly finalize %xe_ggtt_node struct
686 * @node: the &xe_ggtt_node to be freed
687 *
688 * If anything went wrong with either xe_ggtt_node_insert(), xe_ggtt_node_insert_locked(),
689 * or xe_ggtt_node_insert_balloon_locked(); and this @node is not going to be reused, then,
690 * this function needs to be called to free the %xe_ggtt_node struct
691 **/
xe_ggtt_node_fini(struct xe_ggtt_node * node)692 void xe_ggtt_node_fini(struct xe_ggtt_node *node)
693 {
694 kfree(node);
695 }
696
697 /**
698 * xe_ggtt_node_allocated - Check if node is allocated in GGTT
699 * @node: the &xe_ggtt_node to be inspected
700 *
701 * Return: True if allocated, False otherwise.
702 */
xe_ggtt_node_allocated(const struct xe_ggtt_node * node)703 bool xe_ggtt_node_allocated(const struct xe_ggtt_node *node)
704 {
705 if (!node || !node->ggtt)
706 return false;
707
708 return drm_mm_node_allocated(&node->base);
709 }
710
711 /**
712 * xe_ggtt_node_pt_size() - Get the size of page table entries needed to map a GGTT node.
713 * @node: the &xe_ggtt_node
714 *
715 * Return: GGTT node page table entries size in bytes.
716 */
xe_ggtt_node_pt_size(const struct xe_ggtt_node * node)717 size_t xe_ggtt_node_pt_size(const struct xe_ggtt_node *node)
718 {
719 if (!node)
720 return 0;
721
722 return node->base.size / XE_PAGE_SIZE * sizeof(u64);
723 }
724
725 /**
726 * xe_ggtt_map_bo - Map the BO into GGTT
727 * @ggtt: the &xe_ggtt where node will be mapped
728 * @node: the &xe_ggtt_node where this BO is mapped
729 * @bo: the &xe_bo to be mapped
730 * @pat_index: Which pat_index to use.
731 */
xe_ggtt_map_bo(struct xe_ggtt * ggtt,struct xe_ggtt_node * node,struct xe_bo * bo,u16 pat_index)732 void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_ggtt_node *node,
733 struct xe_bo *bo, u16 pat_index)
734 {
735
736 u64 start, pte, end;
737 struct xe_res_cursor cur;
738
739 if (XE_WARN_ON(!node))
740 return;
741
742 start = node->base.start;
743 end = start + xe_bo_size(bo);
744
745 pte = ggtt->pt_ops->pte_encode_flags(bo, pat_index);
746 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
747 xe_assert(xe_bo_device(bo), bo->ttm.ttm);
748
749 for (xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &cur);
750 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE))
751 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining,
752 pte | xe_res_dma(&cur));
753 } else {
754 /* Prepend GPU offset */
755 pte |= vram_region_gpu_offset(bo->ttm.resource);
756
757 for (xe_res_first(bo->ttm.resource, 0, xe_bo_size(bo), &cur);
758 cur.remaining; xe_res_next(&cur, XE_PAGE_SIZE))
759 ggtt->pt_ops->ggtt_set_pte(ggtt, end - cur.remaining,
760 pte + cur.start);
761 }
762 }
763
764 /**
765 * xe_ggtt_map_bo_unlocked - Restore a mapping of a BO into GGTT
766 * @ggtt: the &xe_ggtt where node will be mapped
767 * @bo: the &xe_bo to be mapped
768 *
769 * This is used to restore a GGTT mapping after suspend.
770 */
xe_ggtt_map_bo_unlocked(struct xe_ggtt * ggtt,struct xe_bo * bo)771 void xe_ggtt_map_bo_unlocked(struct xe_ggtt *ggtt, struct xe_bo *bo)
772 {
773 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
774 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode];
775
776 mutex_lock(&ggtt->lock);
777 xe_ggtt_map_bo(ggtt, bo->ggtt_node[ggtt->tile->id], bo, pat_index);
778 mutex_unlock(&ggtt->lock);
779 }
780
__xe_ggtt_insert_bo_at(struct xe_ggtt * ggtt,struct xe_bo * bo,u64 start,u64 end,struct drm_exec * exec)781 static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
782 u64 start, u64 end, struct drm_exec *exec)
783 {
784 u64 alignment = bo->min_align > 0 ? bo->min_align : XE_PAGE_SIZE;
785 u8 tile_id = ggtt->tile->id;
786 int err;
787
788 if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K)
789 alignment = SZ_64K;
790
791 if (XE_WARN_ON(bo->ggtt_node[tile_id])) {
792 /* Someone's already inserted this BO in the GGTT */
793 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo));
794 return 0;
795 }
796
797 err = xe_bo_validate(bo, NULL, false, exec);
798 if (err)
799 return err;
800
801 xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile));
802
803 bo->ggtt_node[tile_id] = xe_ggtt_node_init(ggtt);
804 if (IS_ERR(bo->ggtt_node[tile_id])) {
805 err = PTR_ERR(bo->ggtt_node[tile_id]);
806 bo->ggtt_node[tile_id] = NULL;
807 goto out;
808 }
809
810 mutex_lock(&ggtt->lock);
811 err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node[tile_id]->base,
812 xe_bo_size(bo), alignment, 0, start, end, 0);
813 if (err) {
814 xe_ggtt_node_fini(bo->ggtt_node[tile_id]);
815 bo->ggtt_node[tile_id] = NULL;
816 } else {
817 u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB;
818 u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode];
819
820 xe_ggtt_map_bo(ggtt, bo->ggtt_node[tile_id], bo, pat_index);
821 }
822 mutex_unlock(&ggtt->lock);
823
824 if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE)
825 xe_ggtt_invalidate(ggtt);
826
827 out:
828 xe_pm_runtime_put(tile_to_xe(ggtt->tile));
829
830 return err;
831 }
832
833 /**
834 * xe_ggtt_insert_bo_at - Insert BO at a specific GGTT space
835 * @ggtt: the &xe_ggtt where bo will be inserted
836 * @bo: the &xe_bo to be inserted
837 * @start: address where it will be inserted
838 * @end: end of the range where it will be inserted
839 * @exec: The drm_exec transaction to use for exhaustive eviction.
840 *
841 * Return: 0 on success or a negative error code on failure.
842 */
xe_ggtt_insert_bo_at(struct xe_ggtt * ggtt,struct xe_bo * bo,u64 start,u64 end,struct drm_exec * exec)843 int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo,
844 u64 start, u64 end, struct drm_exec *exec)
845 {
846 return __xe_ggtt_insert_bo_at(ggtt, bo, start, end, exec);
847 }
848
849 /**
850 * xe_ggtt_insert_bo - Insert BO into GGTT
851 * @ggtt: the &xe_ggtt where bo will be inserted
852 * @bo: the &xe_bo to be inserted
853 * @exec: The drm_exec transaction to use for exhaustive eviction.
854 *
855 * Return: 0 on success or a negative error code on failure.
856 */
xe_ggtt_insert_bo(struct xe_ggtt * ggtt,struct xe_bo * bo,struct drm_exec * exec)857 int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo,
858 struct drm_exec *exec)
859 {
860 return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX, exec);
861 }
862
863 /**
864 * xe_ggtt_remove_bo - Remove a BO from the GGTT
865 * @ggtt: the &xe_ggtt where node will be removed
866 * @bo: the &xe_bo to be removed
867 */
xe_ggtt_remove_bo(struct xe_ggtt * ggtt,struct xe_bo * bo)868 void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo)
869 {
870 u8 tile_id = ggtt->tile->id;
871
872 if (XE_WARN_ON(!bo->ggtt_node[tile_id]))
873 return;
874
875 /* This BO is not currently in the GGTT */
876 xe_tile_assert(ggtt->tile, bo->ggtt_node[tile_id]->base.size == xe_bo_size(bo));
877
878 xe_ggtt_node_remove(bo->ggtt_node[tile_id],
879 bo->flags & XE_BO_FLAG_GGTT_INVALIDATE);
880 }
881
882 /**
883 * xe_ggtt_largest_hole - Largest GGTT hole
884 * @ggtt: the &xe_ggtt that will be inspected
885 * @alignment: minimum alignment
886 * @spare: If not NULL: in: desired memory size to be spared / out: Adjusted possible spare
887 *
888 * Return: size of the largest continuous GGTT region
889 */
xe_ggtt_largest_hole(struct xe_ggtt * ggtt,u64 alignment,u64 * spare)890 u64 xe_ggtt_largest_hole(struct xe_ggtt *ggtt, u64 alignment, u64 *spare)
891 {
892 const struct drm_mm *mm = &ggtt->mm;
893 const struct drm_mm_node *entry;
894 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
895 u64 hole_start, hole_end, hole_size;
896 u64 max_hole = 0;
897
898 mutex_lock(&ggtt->lock);
899
900 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
901 hole_start = max(hole_start, hole_min_start);
902 hole_start = ALIGN(hole_start, alignment);
903 hole_end = ALIGN_DOWN(hole_end, alignment);
904 if (hole_start >= hole_end)
905 continue;
906 hole_size = hole_end - hole_start;
907 if (spare)
908 *spare -= min3(*spare, hole_size, max_hole);
909 max_hole = max(max_hole, hole_size);
910 }
911
912 mutex_unlock(&ggtt->lock);
913
914 return max_hole;
915 }
916
917 #ifdef CONFIG_PCI_IOV
xe_encode_vfid_pte(u16 vfid)918 static u64 xe_encode_vfid_pte(u16 vfid)
919 {
920 return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT;
921 }
922
xe_ggtt_assign_locked(struct xe_ggtt * ggtt,const struct drm_mm_node * node,u16 vfid)923 static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid)
924 {
925 u64 start = node->start;
926 u64 size = node->size;
927 u64 end = start + size - 1;
928 u64 pte = xe_encode_vfid_pte(vfid);
929
930 lockdep_assert_held(&ggtt->lock);
931
932 if (!drm_mm_node_allocated(node))
933 return;
934
935 while (start < end) {
936 ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte);
937 start += XE_PAGE_SIZE;
938 }
939
940 xe_ggtt_invalidate(ggtt);
941 }
942
943 /**
944 * xe_ggtt_assign - assign a GGTT region to the VF
945 * @node: the &xe_ggtt_node to update
946 * @vfid: the VF identifier
947 *
948 * This function is used by the PF driver to assign a GGTT region to the VF.
949 * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some
950 * platforms VFs can't modify that either.
951 */
xe_ggtt_assign(const struct xe_ggtt_node * node,u16 vfid)952 void xe_ggtt_assign(const struct xe_ggtt_node *node, u16 vfid)
953 {
954 mutex_lock(&node->ggtt->lock);
955 xe_ggtt_assign_locked(node->ggtt, &node->base, vfid);
956 mutex_unlock(&node->ggtt->lock);
957 }
958
959 /**
960 * xe_ggtt_node_save() - Save a &xe_ggtt_node to a buffer.
961 * @node: the &xe_ggtt_node to be saved
962 * @dst: destination buffer
963 * @size: destination buffer size in bytes
964 * @vfid: VF identifier
965 *
966 * Return: 0 on success or a negative error code on failure.
967 */
xe_ggtt_node_save(struct xe_ggtt_node * node,void * dst,size_t size,u16 vfid)968 int xe_ggtt_node_save(struct xe_ggtt_node *node, void *dst, size_t size, u16 vfid)
969 {
970 struct xe_ggtt *ggtt;
971 u64 start, end;
972 u64 *buf = dst;
973 u64 pte;
974
975 if (!node)
976 return -ENOENT;
977
978 guard(mutex)(&node->ggtt->lock);
979
980 if (xe_ggtt_node_pt_size(node) != size)
981 return -EINVAL;
982
983 ggtt = node->ggtt;
984 start = node->base.start;
985 end = start + node->base.size - 1;
986
987 while (start < end) {
988 pte = ggtt->pt_ops->ggtt_get_pte(ggtt, start);
989 if (vfid != u64_get_bits(pte, GGTT_PTE_VFID))
990 return -EPERM;
991
992 *buf++ = u64_replace_bits(pte, 0, GGTT_PTE_VFID);
993 start += XE_PAGE_SIZE;
994 }
995
996 return 0;
997 }
998
999 /**
1000 * xe_ggtt_node_load() - Load a &xe_ggtt_node from a buffer.
1001 * @node: the &xe_ggtt_node to be loaded
1002 * @src: source buffer
1003 * @size: source buffer size in bytes
1004 * @vfid: VF identifier
1005 *
1006 * Return: 0 on success or a negative error code on failure.
1007 */
xe_ggtt_node_load(struct xe_ggtt_node * node,const void * src,size_t size,u16 vfid)1008 int xe_ggtt_node_load(struct xe_ggtt_node *node, const void *src, size_t size, u16 vfid)
1009 {
1010 u64 vfid_pte = xe_encode_vfid_pte(vfid);
1011 const u64 *buf = src;
1012 struct xe_ggtt *ggtt;
1013 u64 start, end;
1014
1015 if (!node)
1016 return -ENOENT;
1017
1018 guard(mutex)(&node->ggtt->lock);
1019
1020 if (xe_ggtt_node_pt_size(node) != size)
1021 return -EINVAL;
1022
1023 ggtt = node->ggtt;
1024 start = node->base.start;
1025 end = start + node->base.size - 1;
1026
1027 while (start < end) {
1028 vfid_pte = u64_replace_bits(*buf++, vfid, GGTT_PTE_VFID);
1029 ggtt->pt_ops->ggtt_set_pte(ggtt, start, vfid_pte);
1030 start += XE_PAGE_SIZE;
1031 }
1032 xe_ggtt_invalidate(ggtt);
1033
1034 return 0;
1035 }
1036
1037 #endif
1038
1039 /**
1040 * xe_ggtt_dump - Dump GGTT for debug
1041 * @ggtt: the &xe_ggtt to be dumped
1042 * @p: the &drm_mm_printer helper handle to be used to dump the information
1043 *
1044 * Return: 0 on success or a negative error code on failure.
1045 */
xe_ggtt_dump(struct xe_ggtt * ggtt,struct drm_printer * p)1046 int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p)
1047 {
1048 int err;
1049
1050 err = mutex_lock_interruptible(&ggtt->lock);
1051 if (err)
1052 return err;
1053
1054 drm_mm_print(&ggtt->mm, p);
1055 mutex_unlock(&ggtt->lock);
1056 return err;
1057 }
1058
1059 /**
1060 * xe_ggtt_print_holes - Print holes
1061 * @ggtt: the &xe_ggtt to be inspected
1062 * @alignment: min alignment
1063 * @p: the &drm_printer
1064 *
1065 * Print GGTT ranges that are available and return total size available.
1066 *
1067 * Return: Total available size.
1068 */
xe_ggtt_print_holes(struct xe_ggtt * ggtt,u64 alignment,struct drm_printer * p)1069 u64 xe_ggtt_print_holes(struct xe_ggtt *ggtt, u64 alignment, struct drm_printer *p)
1070 {
1071 const struct drm_mm *mm = &ggtt->mm;
1072 const struct drm_mm_node *entry;
1073 u64 hole_min_start = xe_wopcm_size(tile_to_xe(ggtt->tile));
1074 u64 hole_start, hole_end, hole_size;
1075 u64 total = 0;
1076 char buf[10];
1077
1078 mutex_lock(&ggtt->lock);
1079
1080 drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
1081 hole_start = max(hole_start, hole_min_start);
1082 hole_start = ALIGN(hole_start, alignment);
1083 hole_end = ALIGN_DOWN(hole_end, alignment);
1084 if (hole_start >= hole_end)
1085 continue;
1086 hole_size = hole_end - hole_start;
1087 total += hole_size;
1088
1089 string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf));
1090 drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n",
1091 hole_start, hole_end - 1, buf);
1092 }
1093
1094 mutex_unlock(&ggtt->lock);
1095
1096 return total;
1097 }
1098
1099 /**
1100 * xe_ggtt_encode_pte_flags - Get PTE encoding flags for BO
1101 * @ggtt: &xe_ggtt
1102 * @bo: &xe_bo
1103 * @pat_index: The pat_index for the PTE.
1104 *
1105 * This function returns the pte_flags for a given BO, without address.
1106 * It's used for DPT to fill a GGTT mapped BO with a linear lookup table.
1107 */
xe_ggtt_encode_pte_flags(struct xe_ggtt * ggtt,struct xe_bo * bo,u16 pat_index)1108 u64 xe_ggtt_encode_pte_flags(struct xe_ggtt *ggtt,
1109 struct xe_bo *bo, u16 pat_index)
1110 {
1111 return ggtt->pt_ops->pte_encode_flags(bo, pat_index);
1112 }
1113
1114 /**
1115 * xe_ggtt_read_pte - Read a PTE from the GGTT
1116 * @ggtt: &xe_ggtt
1117 * @offset: the offset for which the mapping should be read.
1118 *
1119 * Used by testcases, and by display reading out an inherited bios FB.
1120 */
xe_ggtt_read_pte(struct xe_ggtt * ggtt,u64 offset)1121 u64 xe_ggtt_read_pte(struct xe_ggtt *ggtt, u64 offset)
1122 {
1123 return ioread64(ggtt->gsm + (offset / XE_PAGE_SIZE));
1124 }
1125