xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 4327db89f5e02458001b9c296a961265b8613395)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/iopoll.h>
12 #include <linux/units.h>
13 
14 #include <drm/drm_atomic_helper.h>
15 #include <drm/drm_client.h>
16 #include <drm/drm_gem_ttm_helper.h>
17 #include <drm/drm_ioctl.h>
18 #include <drm/drm_managed.h>
19 #include <drm/drm_print.h>
20 #include <uapi/drm/xe_drm.h>
21 
22 #include "display/xe_display.h"
23 #include "instructions/xe_gpu_commands.h"
24 #include "regs/xe_gt_regs.h"
25 #include "regs/xe_regs.h"
26 #include "xe_bo.h"
27 #include "xe_bo_evict.h"
28 #include "xe_debugfs.h"
29 #include "xe_devcoredump.h"
30 #include "xe_device_sysfs.h"
31 #include "xe_dma_buf.h"
32 #include "xe_drm_client.h"
33 #include "xe_drv.h"
34 #include "xe_exec.h"
35 #include "xe_exec_queue.h"
36 #include "xe_force_wake.h"
37 #include "xe_ggtt.h"
38 #include "xe_gsc_proxy.h"
39 #include "xe_gt.h"
40 #include "xe_gt_mcr.h"
41 #include "xe_gt_printk.h"
42 #include "xe_gt_sriov_vf.h"
43 #include "xe_guc.h"
44 #include "xe_guc_pc.h"
45 #include "xe_hw_engine_group.h"
46 #include "xe_hwmon.h"
47 #include "xe_i2c.h"
48 #include "xe_irq.h"
49 #include "xe_late_bind_fw.h"
50 #include "xe_mmio.h"
51 #include "xe_module.h"
52 #include "xe_nvm.h"
53 #include "xe_oa.h"
54 #include "xe_observation.h"
55 #include "xe_pagefault.h"
56 #include "xe_pat.h"
57 #include "xe_pcode.h"
58 #include "xe_pm.h"
59 #include "xe_pmu.h"
60 #include "xe_psmi.h"
61 #include "xe_pxp.h"
62 #include "xe_query.h"
63 #include "xe_shrinker.h"
64 #include "xe_survivability_mode.h"
65 #include "xe_sriov.h"
66 #include "xe_tile.h"
67 #include "xe_ttm_stolen_mgr.h"
68 #include "xe_ttm_sys_mgr.h"
69 #include "xe_vm.h"
70 #include "xe_vm_madvise.h"
71 #include "xe_vram.h"
72 #include "xe_vram_types.h"
73 #include "xe_vsec.h"
74 #include "xe_wait_user_fence.h"
75 #include "xe_wa.h"
76 
77 #include <generated/xe_device_wa_oob.h>
78 #include <generated/xe_wa_oob.h>
79 
xe_file_open(struct drm_device * dev,struct drm_file * file)80 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
81 {
82 	struct xe_device *xe = to_xe_device(dev);
83 	struct xe_drm_client *client;
84 	struct xe_file *xef;
85 	int ret = -ENOMEM;
86 	struct task_struct *task = NULL;
87 
88 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
89 	if (!xef)
90 		return ret;
91 
92 	client = xe_drm_client_alloc();
93 	if (!client) {
94 		kfree(xef);
95 		return ret;
96 	}
97 
98 	xef->drm = file;
99 	xef->client = client;
100 	xef->xe = xe;
101 
102 	mutex_init(&xef->vm.lock);
103 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
104 
105 	mutex_init(&xef->exec_queue.lock);
106 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
107 
108 	file->driver_priv = xef;
109 	kref_init(&xef->refcount);
110 
111 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
112 	if (task) {
113 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
114 		xef->pid = task->pid;
115 		put_task_struct(task);
116 	}
117 
118 	return 0;
119 }
120 
xe_file_destroy(struct kref * ref)121 static void xe_file_destroy(struct kref *ref)
122 {
123 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
124 
125 	xa_destroy(&xef->exec_queue.xa);
126 	mutex_destroy(&xef->exec_queue.lock);
127 	xa_destroy(&xef->vm.xa);
128 	mutex_destroy(&xef->vm.lock);
129 
130 	xe_drm_client_put(xef->client);
131 	kfree(xef->process_name);
132 	kfree(xef);
133 }
134 
135 /**
136  * xe_file_get() - Take a reference to the xe file object
137  * @xef: Pointer to the xe file
138  *
139  * Anyone with a pointer to xef must take a reference to the xe file
140  * object using this call.
141  *
142  * Return: xe file pointer
143  */
xe_file_get(struct xe_file * xef)144 struct xe_file *xe_file_get(struct xe_file *xef)
145 {
146 	kref_get(&xef->refcount);
147 	return xef;
148 }
149 
150 /**
151  * xe_file_put() - Drop a reference to the xe file object
152  * @xef: Pointer to the xe file
153  *
154  * Used to drop reference to the xef object
155  */
xe_file_put(struct xe_file * xef)156 void xe_file_put(struct xe_file *xef)
157 {
158 	kref_put(&xef->refcount, xe_file_destroy);
159 }
160 
xe_file_close(struct drm_device * dev,struct drm_file * file)161 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
162 {
163 	struct xe_device *xe = to_xe_device(dev);
164 	struct xe_file *xef = file->driver_priv;
165 	struct xe_vm *vm;
166 	struct xe_exec_queue *q;
167 	unsigned long idx;
168 
169 	xe_pm_runtime_get(xe);
170 
171 	/*
172 	 * No need for exec_queue.lock here as there is no contention for it
173 	 * when FD is closing as IOCTLs presumably can't be modifying the
174 	 * xarray. Taking exec_queue.lock here causes undue dependency on
175 	 * vm->lock taken during xe_exec_queue_kill().
176 	 */
177 	xa_for_each(&xef->exec_queue.xa, idx, q) {
178 		if (q->vm && q->hwe->hw_engine_group)
179 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
180 		xe_exec_queue_kill(q);
181 		xe_exec_queue_put(q);
182 	}
183 	xa_for_each(&xef->vm.xa, idx, vm)
184 		xe_vm_close_and_put(vm);
185 
186 	xe_file_put(xef);
187 
188 	xe_pm_runtime_put(xe);
189 }
190 
191 static const struct drm_ioctl_desc xe_ioctls[] = {
192 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
195 			  DRM_RENDER_ALLOW),
196 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
197 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
198 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
199 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
200 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
201 			  DRM_RENDER_ALLOW),
202 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
203 			  DRM_RENDER_ALLOW),
204 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
205 			  DRM_RENDER_ALLOW),
206 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
207 			  DRM_RENDER_ALLOW),
208 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
209 	DRM_IOCTL_DEF_DRV(XE_MADVISE, xe_vm_madvise_ioctl, DRM_RENDER_ALLOW),
210 	DRM_IOCTL_DEF_DRV(XE_VM_QUERY_MEM_RANGE_ATTRS, xe_vm_query_vmas_attrs_ioctl,
211 			  DRM_RENDER_ALLOW),
212 };
213 
xe_drm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)214 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
215 {
216 	struct drm_file *file_priv = file->private_data;
217 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
218 	long ret;
219 
220 	if (xe_device_wedged(xe))
221 		return -ECANCELED;
222 
223 	ret = xe_pm_runtime_get_ioctl(xe);
224 	if (ret >= 0)
225 		ret = drm_ioctl(file, cmd, arg);
226 	xe_pm_runtime_put(xe);
227 
228 	return ret;
229 }
230 
231 #ifdef CONFIG_COMPAT
xe_drm_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)232 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
233 {
234 	struct drm_file *file_priv = file->private_data;
235 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
236 	long ret;
237 
238 	if (xe_device_wedged(xe))
239 		return -ECANCELED;
240 
241 	ret = xe_pm_runtime_get_ioctl(xe);
242 	if (ret >= 0)
243 		ret = drm_compat_ioctl(file, cmd, arg);
244 	xe_pm_runtime_put(xe);
245 
246 	return ret;
247 }
248 #else
249 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
250 #define xe_drm_compat_ioctl NULL
251 #endif
252 
barrier_open(struct vm_area_struct * vma)253 static void barrier_open(struct vm_area_struct *vma)
254 {
255 	drm_dev_get(vma->vm_private_data);
256 }
257 
barrier_close(struct vm_area_struct * vma)258 static void barrier_close(struct vm_area_struct *vma)
259 {
260 	drm_dev_put(vma->vm_private_data);
261 }
262 
barrier_release_dummy_page(struct drm_device * dev,void * res)263 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
264 {
265 	struct page *dummy_page = (struct page *)res;
266 
267 	__free_page(dummy_page);
268 }
269 
barrier_fault(struct vm_fault * vmf)270 static vm_fault_t barrier_fault(struct vm_fault *vmf)
271 {
272 	struct drm_device *dev = vmf->vma->vm_private_data;
273 	struct vm_area_struct *vma = vmf->vma;
274 	vm_fault_t ret = VM_FAULT_NOPAGE;
275 	pgprot_t prot;
276 	int idx;
277 
278 	prot = vm_get_page_prot(vma->vm_flags);
279 
280 	if (drm_dev_enter(dev, &idx)) {
281 		unsigned long pfn;
282 
283 #define LAST_DB_PAGE_OFFSET 0x7ff001
284 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
285 				LAST_DB_PAGE_OFFSET);
286 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
287 					  pgprot_noncached(prot));
288 		drm_dev_exit(idx);
289 	} else {
290 		struct page *page;
291 
292 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
293 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
294 		if (!page)
295 			return VM_FAULT_OOM;
296 
297 		/* Set the page to be freed using drmm release action */
298 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
299 			return VM_FAULT_OOM;
300 
301 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
302 					  prot);
303 	}
304 
305 	return ret;
306 }
307 
308 static const struct vm_operations_struct vm_ops_barrier = {
309 	.open = barrier_open,
310 	.close = barrier_close,
311 	.fault = barrier_fault,
312 };
313 
xe_pci_barrier_mmap(struct file * filp,struct vm_area_struct * vma)314 static int xe_pci_barrier_mmap(struct file *filp,
315 			       struct vm_area_struct *vma)
316 {
317 	struct drm_file *priv = filp->private_data;
318 	struct drm_device *dev = priv->minor->dev;
319 	struct xe_device *xe = to_xe_device(dev);
320 
321 	if (!IS_DGFX(xe))
322 		return -EINVAL;
323 
324 	if (vma->vm_end - vma->vm_start > SZ_4K)
325 		return -EINVAL;
326 
327 	if (is_cow_mapping(vma->vm_flags))
328 		return -EINVAL;
329 
330 	if (vma->vm_flags & (VM_READ | VM_EXEC))
331 		return -EINVAL;
332 
333 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
334 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
335 	vma->vm_ops = &vm_ops_barrier;
336 	vma->vm_private_data = dev;
337 	drm_dev_get(vma->vm_private_data);
338 
339 	return 0;
340 }
341 
xe_mmap(struct file * filp,struct vm_area_struct * vma)342 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
343 {
344 	struct drm_file *priv = filp->private_data;
345 	struct drm_device *dev = priv->minor->dev;
346 
347 	if (drm_dev_is_unplugged(dev))
348 		return -ENODEV;
349 
350 	switch (vma->vm_pgoff) {
351 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
352 		return xe_pci_barrier_mmap(filp, vma);
353 	}
354 
355 	return drm_gem_mmap(filp, vma);
356 }
357 
358 static const struct file_operations xe_driver_fops = {
359 	.owner = THIS_MODULE,
360 	.open = drm_open,
361 	.release = drm_release_noglobal,
362 	.unlocked_ioctl = xe_drm_ioctl,
363 	.mmap = xe_mmap,
364 	.poll = drm_poll,
365 	.read = drm_read,
366 	.compat_ioctl = xe_drm_compat_ioctl,
367 	.llseek = noop_llseek,
368 #ifdef CONFIG_PROC_FS
369 	.show_fdinfo = drm_show_fdinfo,
370 #endif
371 	.fop_flags = FOP_UNSIGNED_OFFSET,
372 };
373 
374 static struct drm_driver driver = {
375 	/* Don't use MTRRs here; the Xserver or userspace app should
376 	 * deal with them for Intel hardware.
377 	 */
378 	.driver_features =
379 	    DRIVER_GEM |
380 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
381 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
382 	.open = xe_file_open,
383 	.postclose = xe_file_close,
384 
385 	.gem_prime_import = xe_gem_prime_import,
386 
387 	.dumb_create = xe_bo_dumb_create,
388 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
389 #ifdef CONFIG_PROC_FS
390 	.show_fdinfo = xe_drm_client_fdinfo,
391 #endif
392 	.ioctls = xe_ioctls,
393 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
394 	.fops = &xe_driver_fops,
395 	.name = DRIVER_NAME,
396 	.desc = DRIVER_DESC,
397 	.major = DRIVER_MAJOR,
398 	.minor = DRIVER_MINOR,
399 	.patchlevel = DRIVER_PATCHLEVEL,
400 };
401 
xe_device_destroy(struct drm_device * dev,void * dummy)402 static void xe_device_destroy(struct drm_device *dev, void *dummy)
403 {
404 	struct xe_device *xe = to_xe_device(dev);
405 
406 	xe_bo_dev_fini(&xe->bo_device);
407 
408 	if (xe->preempt_fence_wq)
409 		destroy_workqueue(xe->preempt_fence_wq);
410 
411 	if (xe->ordered_wq)
412 		destroy_workqueue(xe->ordered_wq);
413 
414 	if (xe->unordered_wq)
415 		destroy_workqueue(xe->unordered_wq);
416 
417 	if (xe->destroy_wq)
418 		destroy_workqueue(xe->destroy_wq);
419 
420 	ttm_device_fini(&xe->ttm);
421 }
422 
xe_device_create(struct pci_dev * pdev,const struct pci_device_id * ent)423 struct xe_device *xe_device_create(struct pci_dev *pdev,
424 				   const struct pci_device_id *ent)
425 {
426 	struct xe_device *xe;
427 	int err;
428 
429 	xe_display_driver_set_hooks(&driver);
430 
431 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
432 	if (err)
433 		return ERR_PTR(err);
434 
435 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
436 	if (IS_ERR(xe))
437 		return xe;
438 
439 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
440 			      xe->drm.anon_inode->i_mapping,
441 			      xe->drm.vma_offset_manager, 0);
442 	if (WARN_ON(err))
443 		goto err;
444 
445 	xe_bo_dev_init(&xe->bo_device);
446 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
447 	if (err)
448 		goto err;
449 
450 	err = xe_shrinker_create(xe);
451 	if (err)
452 		goto err;
453 
454 	xe->info.devid = pdev->device;
455 	xe->info.revid = pdev->revision;
456 	xe->info.force_execlist = xe_modparam.force_execlist;
457 	xe->atomic_svm_timeslice_ms = 5;
458 
459 	err = xe_irq_init(xe);
460 	if (err)
461 		goto err;
462 
463 	xe_validation_device_init(&xe->val);
464 
465 	init_waitqueue_head(&xe->ufence_wq);
466 
467 	init_rwsem(&xe->usm.lock);
468 
469 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
470 
471 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
472 		/* Trigger a large asid and an early asid wrap. */
473 		u32 asid;
474 
475 		BUILD_BUG_ON(XE_MAX_ASID < 2);
476 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
477 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
478 				      &xe->usm.next_asid, GFP_KERNEL);
479 		drm_WARN_ON(&xe->drm, err);
480 		if (err >= 0)
481 			xa_erase(&xe->usm.asid_to_vm, asid);
482 	}
483 
484 	err = xe_bo_pinned_init(xe);
485 	if (err)
486 		goto err;
487 
488 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
489 						       WQ_MEM_RECLAIM);
490 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
491 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
492 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
493 	if (!xe->ordered_wq || !xe->unordered_wq ||
494 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
495 		/*
496 		 * Cleanup done in xe_device_destroy via
497 		 * drmm_add_action_or_reset register above
498 		 */
499 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
500 		err = -ENOMEM;
501 		goto err;
502 	}
503 
504 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
505 	if (err)
506 		goto err;
507 
508 	return xe;
509 
510 err:
511 	return ERR_PTR(err);
512 }
513 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
514 
xe_driver_flr_disabled(struct xe_device * xe)515 static bool xe_driver_flr_disabled(struct xe_device *xe)
516 {
517 	if (IS_SRIOV_VF(xe))
518 		return true;
519 
520 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
521 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
522 		return true;
523 	}
524 
525 	return false;
526 }
527 
528 /*
529  * The driver-initiated FLR is the highest level of reset that we can trigger
530  * from within the driver. It is different from the PCI FLR in that it doesn't
531  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
532  * it doesn't require a re-enumeration of the PCI BARs. However, the
533  * driver-initiated FLR does still cause a reset of both GT and display and a
534  * memory wipe of local and stolen memory, so recovery would require a full HW
535  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
536  * perform the FLR as the very last action before releasing access to the HW
537  * during the driver release flow, we don't attempt recovery at all, because
538  * if/when a new instance of Xe is bound to the device it will do a full
539  * re-init anyway.
540  */
__xe_driver_flr(struct xe_device * xe)541 static void __xe_driver_flr(struct xe_device *xe)
542 {
543 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
544 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
545 	int ret;
546 
547 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
548 
549 	/*
550 	 * Make sure any pending FLR requests have cleared by waiting for the
551 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
552 	 * to make sure it's not still set from a prior attempt (it's a write to
553 	 * clear bit).
554 	 * Note that we should never be in a situation where a previous attempt
555 	 * is still pending (unless the HW is totally dead), but better to be
556 	 * safe in case something unexpected happens
557 	 */
558 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
559 	if (ret) {
560 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
561 		return;
562 	}
563 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
564 
565 	/* Trigger the actual Driver-FLR */
566 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
567 
568 	/* Wait for hardware teardown to complete */
569 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
570 	if (ret) {
571 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
572 		return;
573 	}
574 
575 	/* Wait for hardware/firmware re-init to complete */
576 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
577 			     flr_timeout, NULL, false);
578 	if (ret) {
579 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
580 		return;
581 	}
582 
583 	/* Clear sticky completion status */
584 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
585 }
586 
xe_driver_flr(struct xe_device * xe)587 static void xe_driver_flr(struct xe_device *xe)
588 {
589 	if (xe_driver_flr_disabled(xe))
590 		return;
591 
592 	__xe_driver_flr(xe);
593 }
594 
xe_driver_flr_fini(void * arg)595 static void xe_driver_flr_fini(void *arg)
596 {
597 	struct xe_device *xe = arg;
598 
599 	if (xe->needs_flr_on_fini)
600 		xe_driver_flr(xe);
601 }
602 
xe_device_sanitize(void * arg)603 static void xe_device_sanitize(void *arg)
604 {
605 	struct xe_device *xe = arg;
606 	struct xe_gt *gt;
607 	u8 id;
608 
609 	for_each_gt(gt, xe, id)
610 		xe_gt_sanitize(gt);
611 }
612 
xe_set_dma_info(struct xe_device * xe)613 static int xe_set_dma_info(struct xe_device *xe)
614 {
615 	unsigned int mask_size = xe->info.dma_mask_size;
616 	int err;
617 
618 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
619 
620 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
621 	if (err)
622 		goto mask_err;
623 
624 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
625 	if (err)
626 		goto mask_err;
627 
628 	return 0;
629 
630 mask_err:
631 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
632 	return err;
633 }
634 
lmem_initializing(struct xe_device * xe)635 static int lmem_initializing(struct xe_device *xe)
636 {
637 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT)
638 		return 0;
639 
640 	if (signal_pending(current))
641 		return -EINTR;
642 
643 	return 1;
644 }
645 
wait_for_lmem_ready(struct xe_device * xe)646 static int wait_for_lmem_ready(struct xe_device *xe)
647 {
648 	const unsigned long TIMEOUT_SEC = 60;
649 	unsigned long prev_jiffies;
650 	int initializing;
651 
652 	if (!IS_DGFX(xe))
653 		return 0;
654 
655 	if (IS_SRIOV_VF(xe))
656 		return 0;
657 
658 	if (!lmem_initializing(xe))
659 		return 0;
660 
661 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
662 	prev_jiffies = jiffies;
663 
664 	/*
665 	 * The boot firmware initializes local memory and
666 	 * assesses its health. If memory training fails,
667 	 * the punit will have been instructed to keep the GT powered
668 	 * down.we won't be able to communicate with it
669 	 *
670 	 * If the status check is done before punit updates the register,
671 	 * it can lead to the system being unusable.
672 	 * use a timeout and defer the probe to prevent this.
673 	 */
674 	poll_timeout_us(initializing = lmem_initializing(xe),
675 			initializing <= 0,
676 			20 * USEC_PER_MSEC, TIMEOUT_SEC * USEC_PER_SEC, true);
677 	if (initializing < 0)
678 		return initializing;
679 
680 	if (initializing) {
681 		drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
682 		return -EPROBE_DEFER;
683 	}
684 
685 	drm_dbg(&xe->drm, "lmem ready after %ums",
686 		jiffies_to_msecs(jiffies - prev_jiffies));
687 
688 	return 0;
689 }
690 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
691 
vf_update_device_info(struct xe_device * xe)692 static void vf_update_device_info(struct xe_device *xe)
693 {
694 	xe_assert(xe, IS_SRIOV_VF(xe));
695 	/* disable features that are not available/applicable to VFs */
696 	xe->info.probe_display = 0;
697 	xe->info.has_heci_cscfi = 0;
698 	xe->info.has_heci_gscfi = 0;
699 	xe->info.has_late_bind = 0;
700 	xe->info.skip_guc_pc = 1;
701 	xe->info.skip_pcode = 1;
702 }
703 
xe_device_vram_alloc(struct xe_device * xe)704 static int xe_device_vram_alloc(struct xe_device *xe)
705 {
706 	struct xe_vram_region *vram;
707 
708 	if (!IS_DGFX(xe))
709 		return 0;
710 
711 	vram = drmm_kzalloc(&xe->drm, sizeof(*vram), GFP_KERNEL);
712 	if (!vram)
713 		return -ENOMEM;
714 
715 	xe->mem.vram = vram;
716 	return 0;
717 }
718 
719 /**
720  * xe_device_probe_early: Device early probe
721  * @xe: xe device instance
722  *
723  * Initialize MMIO resources that don't require any
724  * knowledge about tile count. Also initialize pcode and
725  * check vram initialization on root tile.
726  *
727  * Return: 0 on success, error code on failure
728  */
xe_device_probe_early(struct xe_device * xe)729 int xe_device_probe_early(struct xe_device *xe)
730 {
731 	int err;
732 
733 	xe_wa_device_init(xe);
734 	xe_wa_process_device_oob(xe);
735 
736 	err = xe_mmio_probe_early(xe);
737 	if (err)
738 		return err;
739 
740 	xe_sriov_probe_early(xe);
741 
742 	if (IS_SRIOV_VF(xe))
743 		vf_update_device_info(xe);
744 
745 	err = xe_pcode_probe_early(xe);
746 	if (err || xe_survivability_mode_is_requested(xe)) {
747 		int save_err = err;
748 
749 		/*
750 		 * Try to leave device in survivability mode if device is
751 		 * possible, but still return the previous error for error
752 		 * propagation
753 		 */
754 		err = xe_survivability_mode_boot_enable(xe);
755 		if (err)
756 			return err;
757 
758 		return save_err;
759 	}
760 
761 	err = wait_for_lmem_ready(xe);
762 	if (err)
763 		return err;
764 
765 	xe->wedged.mode = xe_modparam.wedged_mode;
766 
767 	err = xe_device_vram_alloc(xe);
768 	if (err)
769 		return err;
770 
771 	return 0;
772 }
773 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
774 
probe_has_flat_ccs(struct xe_device * xe)775 static int probe_has_flat_ccs(struct xe_device *xe)
776 {
777 	struct xe_gt *gt;
778 	unsigned int fw_ref;
779 	u32 reg;
780 
781 	/* Always enabled/disabled, no runtime check to do */
782 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
783 		return 0;
784 
785 	gt = xe_root_mmio_gt(xe);
786 	if (!gt)
787 		return 0;
788 
789 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
790 	if (!fw_ref)
791 		return -ETIMEDOUT;
792 
793 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
794 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
795 
796 	if (!xe->info.has_flat_ccs)
797 		drm_dbg(&xe->drm,
798 			"Flat CCS has been disabled in bios, May lead to performance impact");
799 
800 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
801 
802 	return 0;
803 }
804 
xe_device_probe(struct xe_device * xe)805 int xe_device_probe(struct xe_device *xe)
806 {
807 	struct xe_tile *tile;
808 	struct xe_gt *gt;
809 	int err;
810 	u8 id;
811 
812 	xe_pat_init_early(xe);
813 
814 	err = xe_sriov_init(xe);
815 	if (err)
816 		return err;
817 
818 	xe->info.mem_region_mask = 1;
819 
820 	err = xe_set_dma_info(xe);
821 	if (err)
822 		return err;
823 
824 	err = xe_mmio_probe_tiles(xe);
825 	if (err)
826 		return err;
827 
828 	for_each_gt(gt, xe, id) {
829 		err = xe_gt_init_early(gt);
830 		if (err)
831 			return err;
832 	}
833 
834 	for_each_tile(tile, xe, id) {
835 		err = xe_ggtt_init_early(tile->mem.ggtt);
836 		if (err)
837 			return err;
838 	}
839 
840 	/*
841 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
842 	 */
843 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
844 	if (err)
845 		return err;
846 
847 	err = probe_has_flat_ccs(xe);
848 	if (err)
849 		return err;
850 
851 	err = xe_vram_probe(xe);
852 	if (err)
853 		return err;
854 
855 	for_each_tile(tile, xe, id) {
856 		err = xe_tile_init_noalloc(tile);
857 		if (err)
858 			return err;
859 	}
860 
861 	/*
862 	 * Allow allocations only now to ensure xe_display_init_early()
863 	 * is the first to allocate, always.
864 	 */
865 	err = xe_ttm_sys_mgr_init(xe);
866 	if (err)
867 		return err;
868 
869 	/* Allocate and map stolen after potential VRAM resize */
870 	err = xe_ttm_stolen_mgr_init(xe);
871 	if (err)
872 		return err;
873 
874 	/*
875 	 * Now that GT is initialized (TTM in particular),
876 	 * we can try to init display, and inherit the initial fb.
877 	 * This is the reason the first allocation needs to be done
878 	 * inside display.
879 	 */
880 	err = xe_display_init_early(xe);
881 	if (err)
882 		return err;
883 
884 	for_each_tile(tile, xe, id) {
885 		err = xe_tile_init(tile);
886 		if (err)
887 			return err;
888 	}
889 
890 	err = xe_irq_install(xe);
891 	if (err)
892 		return err;
893 
894 	for_each_gt(gt, xe, id) {
895 		err = xe_gt_init(gt);
896 		if (err)
897 			return err;
898 	}
899 
900 	err = xe_pagefault_init(xe);
901 	if (err)
902 		return err;
903 
904 	if (xe->tiles->media_gt &&
905 	    XE_GT_WA(xe->tiles->media_gt, 15015404425_disable))
906 		XE_DEVICE_WA_DISABLE(xe, 15015404425);
907 
908 	err = xe_devcoredump_init(xe);
909 	if (err)
910 		return err;
911 
912 	xe_nvm_init(xe);
913 
914 	err = xe_heci_gsc_init(xe);
915 	if (err)
916 		return err;
917 
918 	err = xe_late_bind_init(&xe->late_bind);
919 	if (err)
920 		return err;
921 
922 	err = xe_oa_init(xe);
923 	if (err)
924 		return err;
925 
926 	err = xe_display_init(xe);
927 	if (err)
928 		return err;
929 
930 	err = xe_pxp_init(xe);
931 	if (err)
932 		return err;
933 
934 	err = xe_psmi_init(xe);
935 	if (err)
936 		return err;
937 
938 	err = drm_dev_register(&xe->drm, 0);
939 	if (err)
940 		return err;
941 
942 	xe_display_register(xe);
943 
944 	err = xe_oa_register(xe);
945 	if (err)
946 		goto err_unregister_display;
947 
948 	err = xe_pmu_register(&xe->pmu);
949 	if (err)
950 		goto err_unregister_display;
951 
952 	err = xe_device_sysfs_init(xe);
953 	if (err)
954 		goto err_unregister_display;
955 
956 	xe_debugfs_register(xe);
957 
958 	err = xe_hwmon_register(xe);
959 	if (err)
960 		goto err_unregister_display;
961 
962 	err = xe_i2c_probe(xe);
963 	if (err)
964 		goto err_unregister_display;
965 
966 	for_each_gt(gt, xe, id)
967 		xe_gt_sanitize_freq(gt);
968 
969 	xe_vsec_init(xe);
970 
971 	err = xe_sriov_init_late(xe);
972 	if (err)
973 		goto err_unregister_display;
974 
975 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
976 
977 err_unregister_display:
978 	xe_display_unregister(xe);
979 
980 	return err;
981 }
982 
xe_device_remove(struct xe_device * xe)983 void xe_device_remove(struct xe_device *xe)
984 {
985 	xe_display_unregister(xe);
986 
987 	drm_dev_unplug(&xe->drm);
988 
989 	xe_bo_pci_dev_remove_all(xe);
990 }
991 
xe_device_shutdown(struct xe_device * xe)992 void xe_device_shutdown(struct xe_device *xe)
993 {
994 	struct xe_gt *gt;
995 	u8 id;
996 
997 	drm_dbg(&xe->drm, "Shutting down device\n");
998 
999 	xe_display_pm_shutdown(xe);
1000 
1001 	xe_irq_suspend(xe);
1002 
1003 	for_each_gt(gt, xe, id)
1004 		xe_gt_shutdown(gt);
1005 
1006 	xe_display_pm_shutdown_late(xe);
1007 
1008 	if (!xe_driver_flr_disabled(xe)) {
1009 		/* BOOM! */
1010 		__xe_driver_flr(xe);
1011 	}
1012 }
1013 
1014 /**
1015  * xe_device_wmb() - Device specific write memory barrier
1016  * @xe: the &xe_device
1017  *
1018  * While wmb() is sufficient for a barrier if we use system memory, on discrete
1019  * platforms with device memory we additionally need to issue a register write.
1020  * Since it doesn't matter which register we write to, use the read-only VF_CAP
1021  * register that is also marked as accessible by the VFs.
1022  */
xe_device_wmb(struct xe_device * xe)1023 void xe_device_wmb(struct xe_device *xe)
1024 {
1025 	wmb();
1026 	if (IS_DGFX(xe))
1027 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
1028 }
1029 
1030 /*
1031  * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt.
1032  */
tdf_request_sync(struct xe_device * xe)1033 static void tdf_request_sync(struct xe_device *xe)
1034 {
1035 	unsigned int fw_ref;
1036 	struct xe_gt *gt;
1037 	u8 id;
1038 
1039 	for_each_gt(gt, xe, id) {
1040 		if (xe_gt_is_media_type(gt))
1041 			continue;
1042 
1043 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1044 		if (!fw_ref)
1045 			return;
1046 
1047 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
1048 
1049 		/*
1050 		 * FIXME: We can likely do better here with our choice of
1051 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1052 		 * which is believed to be sufficient to cover the worst case
1053 		 * scenario on current platforms if all cache entries are
1054 		 * transient and need to be flushed..
1055 		 */
1056 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1057 				   300, NULL, false))
1058 			xe_gt_err_once(gt, "TD flush timeout\n");
1059 
1060 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1061 	}
1062 }
1063 
xe_device_l2_flush(struct xe_device * xe)1064 void xe_device_l2_flush(struct xe_device *xe)
1065 {
1066 	struct xe_gt *gt;
1067 	unsigned int fw_ref;
1068 
1069 	gt = xe_root_mmio_gt(xe);
1070 	if (!gt)
1071 		return;
1072 
1073 	if (!XE_GT_WA(gt, 16023588340))
1074 		return;
1075 
1076 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1077 	if (!fw_ref)
1078 		return;
1079 
1080 	spin_lock(&gt->global_invl_lock);
1081 
1082 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1083 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 1000, NULL, true))
1084 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1085 
1086 	spin_unlock(&gt->global_invl_lock);
1087 
1088 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1089 }
1090 
1091 /**
1092  * xe_device_td_flush() - Flush transient L3 cache entries
1093  * @xe: The device
1094  *
1095  * Display engine has direct access to memory and is never coherent with L3/L4
1096  * caches (or CPU caches), however KMD is responsible for specifically flushing
1097  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1098  * can happen from such a surface without seeing corruption.
1099  *
1100  * Display surfaces can be tagged as transient by mapping it using one of the
1101  * various L3:XD PAT index modes on Xe2.
1102  *
1103  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1104  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1105  * Media is not coherent with L3 and we want to support render-vs-media
1106  * usescases. For other engines like copy/blt the HW internally forces uncached
1107  * behaviour, hence why we can skip the TDF on such platforms.
1108  */
xe_device_td_flush(struct xe_device * xe)1109 void xe_device_td_flush(struct xe_device *xe)
1110 {
1111 	struct xe_gt *root_gt;
1112 
1113 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1114 		return;
1115 
1116 	root_gt = xe_root_mmio_gt(xe);
1117 	if (!root_gt)
1118 		return;
1119 
1120 	if (XE_GT_WA(root_gt, 16023588340)) {
1121 		/* A transient flush is not sufficient: flush the L2 */
1122 		xe_device_l2_flush(xe);
1123 	} else {
1124 		xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc);
1125 		tdf_request_sync(xe);
1126 		xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc);
1127 	}
1128 }
1129 
xe_device_ccs_bytes(struct xe_device * xe,u64 size)1130 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1131 {
1132 	return xe_device_has_flat_ccs(xe) ?
1133 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1134 }
1135 
1136 /**
1137  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1138  * @xe: xe device instance
1139  *
1140  * To be used before any kind of memory access. It will splat a debug warning
1141  * if the device is currently sleeping. But it doesn't guarantee in any way
1142  * that the device is going to remain awake. Xe PM runtime get and put
1143  * functions might be added to the outer bound of the memory access, while
1144  * this check is intended for inner usage to splat some warning if the worst
1145  * case has just happened.
1146  */
xe_device_assert_mem_access(struct xe_device * xe)1147 void xe_device_assert_mem_access(struct xe_device *xe)
1148 {
1149 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1150 }
1151 
xe_device_snapshot_print(struct xe_device * xe,struct drm_printer * p)1152 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1153 {
1154 	struct xe_gt *gt;
1155 	u8 id;
1156 
1157 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1158 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1159 
1160 	for_each_gt(gt, xe, id) {
1161 		drm_printf(p, "GT id: %u\n", id);
1162 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1163 		drm_printf(p, "\tType: %s\n",
1164 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1165 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1166 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1167 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1168 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1169 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1170 	}
1171 }
1172 
xe_device_canonicalize_addr(struct xe_device * xe,u64 address)1173 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1174 {
1175 	return sign_extend64(address, xe->info.va_bits - 1);
1176 }
1177 
xe_device_uncanonicalize_addr(struct xe_device * xe,u64 address)1178 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1179 {
1180 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1181 }
1182 
xe_device_wedged_fini(struct drm_device * drm,void * arg)1183 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1184 {
1185 	struct xe_device *xe = arg;
1186 
1187 	xe_pm_runtime_put(xe);
1188 }
1189 
1190 /**
1191  * DOC: Xe Device Wedging
1192  *
1193  * Xe driver uses drm device wedged uevent as documented in Documentation/gpu/drm-uapi.rst.
1194  * When device is in wedged state, every IOCTL will be blocked and GT cannot be
1195  * used. Certain critical errors like gt reset failure, firmware failures can cause
1196  * the device to be wedged. The default recovery method for a wedged state
1197  * is rebind/bus-reset.
1198  *
1199  * Another recovery method is vendor-specific. Below are the cases that send
1200  * ``WEDGED=vendor-specific`` recovery method in drm device wedged uevent.
1201  *
1202  * Case: Firmware Flash
1203  * --------------------
1204  *
1205  * Identification Hint
1206  * +++++++++++++++++++
1207  *
1208  * ``WEDGED=vendor-specific`` drm device wedged uevent with
1209  * :ref:`Runtime Survivability mode <xe-survivability-mode>` is used to notify
1210  * admin/userspace consumer about the need for a firmware flash.
1211  *
1212  * Recovery Procedure
1213  * ++++++++++++++++++
1214  *
1215  * Once ``WEDGED=vendor-specific`` drm device wedged uevent is received, follow
1216  * the below steps
1217  *
1218  * - Check Runtime Survivability mode sysfs.
1219  *   If enabled, firmware flash is required to recover the device.
1220  *
1221  *   /sys/bus/pci/devices/<device>/survivability_mode
1222  *
1223  * - Admin/userspace consumer can use firmware flashing tools like fwupd to flash
1224  *   firmware and restore device to normal operation.
1225  */
1226 
1227 /**
1228  * xe_device_set_wedged_method - Set wedged recovery method
1229  * @xe: xe device instance
1230  * @method: recovery method to set
1231  *
1232  * Set wedged recovery method to be sent in drm wedged uevent.
1233  */
xe_device_set_wedged_method(struct xe_device * xe,unsigned long method)1234 void xe_device_set_wedged_method(struct xe_device *xe, unsigned long method)
1235 {
1236 	xe->wedged.method = method;
1237 }
1238 
1239 /**
1240  * xe_device_declare_wedged - Declare device wedged
1241  * @xe: xe device instance
1242  *
1243  * This is a final state that can only be cleared with the recovery method
1244  * specified in the drm wedged uevent. The method can be set using
1245  * xe_device_set_wedged_method before declaring the device as wedged. If no method
1246  * is set, reprobe (unbind/re-bind) will be sent by default.
1247  *
1248  * In this state every IOCTL will be blocked so the GT cannot be used.
1249  * In general it will be called upon any critical error such as gt reset
1250  * failure or guc loading failure. Userspace will be notified of this state
1251  * through device wedged uevent.
1252  * If xe.wedged module parameter is set to 2, this function will be called
1253  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1254  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1255  * the issue is preserved for further debugging.
1256  */
xe_device_declare_wedged(struct xe_device * xe)1257 void xe_device_declare_wedged(struct xe_device *xe)
1258 {
1259 	struct xe_gt *gt;
1260 	u8 id;
1261 
1262 	if (xe->wedged.mode == 0) {
1263 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1264 		return;
1265 	}
1266 
1267 	xe_pm_runtime_get_noresume(xe);
1268 
1269 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1270 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1271 		return;
1272 	}
1273 
1274 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1275 		xe->needs_flr_on_fini = true;
1276 		drm_err(&xe->drm,
1277 			"CRITICAL: Xe has declared device %s as wedged.\n"
1278 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1279 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1280 			dev_name(xe->drm.dev));
1281 	}
1282 
1283 	for_each_gt(gt, xe, id)
1284 		xe_gt_declare_wedged(gt);
1285 
1286 	if (xe_device_wedged(xe)) {
1287 		/* If no wedge recovery method is set, use default */
1288 		if (!xe->wedged.method)
1289 			xe_device_set_wedged_method(xe, DRM_WEDGE_RECOVERY_REBIND |
1290 						    DRM_WEDGE_RECOVERY_BUS_RESET);
1291 
1292 		/* Notify userspace of wedged device */
1293 		drm_dev_wedged_event(&xe->drm, xe->wedged.method, NULL);
1294 	}
1295 }
1296