xref: /linux/drivers/gpu/drm/xe/xe_exec_queue.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_exec_queue.h"
7 
8 #include <linux/nospec.h>
9 
10 #include <drm/drm_device.h>
11 #include <drm/drm_drv.h>
12 #include <drm/drm_file.h>
13 #include <drm/drm_syncobj.h>
14 #include <uapi/drm/xe_drm.h>
15 
16 #include "xe_dep_scheduler.h"
17 #include "xe_device.h"
18 #include "xe_gt.h"
19 #include "xe_gt_sriov_vf.h"
20 #include "xe_hw_engine_class_sysfs.h"
21 #include "xe_hw_engine_group.h"
22 #include "xe_hw_fence.h"
23 #include "xe_irq.h"
24 #include "xe_lrc.h"
25 #include "xe_macros.h"
26 #include "xe_migrate.h"
27 #include "xe_pm.h"
28 #include "xe_ring_ops_types.h"
29 #include "xe_trace.h"
30 #include "xe_vm.h"
31 #include "xe_pxp.h"
32 
33 /**
34  * DOC: Execution Queue
35  *
36  * An Execution queue is an interface for the HW context of execution.
37  * The user creates an execution queue, submits the GPU jobs through those
38  * queues and in the end destroys them.
39  *
40  * Execution queues can also be created by XeKMD itself for driver internal
41  * operations like object migration etc.
42  *
43  * An execution queue is associated with a specified HW engine or a group of
44  * engines (belonging to the same tile and engine class) and any GPU job
45  * submitted on the queue will be run on one of these engines.
46  *
47  * An execution queue is tied to an address space (VM). It holds a reference
48  * of the associated VM and the underlying Logical Ring Context/s (LRC/s)
49  * until the queue is destroyed.
50  *
51  * The execution queue sits on top of the submission backend. It opaquely
52  * handles the GuC and Execlist backends whichever the platform uses, and
53  * the ring operations the different engine classes support.
54  */
55 
56 enum xe_exec_queue_sched_prop {
57 	XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
58 	XE_EXEC_QUEUE_TIMESLICE = 1,
59 	XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
60 	XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
61 };
62 
63 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
64 				      u64 extensions, int ext_number);
65 
__xe_exec_queue_free(struct xe_exec_queue * q)66 static void __xe_exec_queue_free(struct xe_exec_queue *q)
67 {
68 	int i;
69 
70 	for (i = 0; i < XE_EXEC_QUEUE_TLB_INVAL_COUNT; ++i)
71 		if (q->tlb_inval[i].dep_scheduler)
72 			xe_dep_scheduler_fini(q->tlb_inval[i].dep_scheduler);
73 
74 	if (xe_exec_queue_uses_pxp(q))
75 		xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
76 	if (q->vm)
77 		xe_vm_put(q->vm);
78 
79 	if (q->xef)
80 		xe_file_put(q->xef);
81 
82 	kfree(q);
83 }
84 
alloc_dep_schedulers(struct xe_device * xe,struct xe_exec_queue * q)85 static int alloc_dep_schedulers(struct xe_device *xe, struct xe_exec_queue *q)
86 {
87 	struct xe_tile *tile = gt_to_tile(q->gt);
88 	int i;
89 
90 	for (i = 0; i < XE_EXEC_QUEUE_TLB_INVAL_COUNT; ++i) {
91 		struct xe_dep_scheduler *dep_scheduler;
92 		struct xe_gt *gt;
93 		struct workqueue_struct *wq;
94 
95 		if (i == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT)
96 			gt = tile->primary_gt;
97 		else
98 			gt = tile->media_gt;
99 
100 		if (!gt)
101 			continue;
102 
103 		wq = gt->tlb_inval.job_wq;
104 
105 #define MAX_TLB_INVAL_JOBS	16	/* Picking a reasonable value */
106 		dep_scheduler = xe_dep_scheduler_create(xe, wq, q->name,
107 							MAX_TLB_INVAL_JOBS);
108 		if (IS_ERR(dep_scheduler))
109 			return PTR_ERR(dep_scheduler);
110 
111 		q->tlb_inval[i].dep_scheduler = dep_scheduler;
112 	}
113 #undef MAX_TLB_INVAL_JOBS
114 
115 	return 0;
116 }
117 
__xe_exec_queue_alloc(struct xe_device * xe,struct xe_vm * vm,u32 logical_mask,u16 width,struct xe_hw_engine * hwe,u32 flags,u64 extensions)118 static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
119 						   struct xe_vm *vm,
120 						   u32 logical_mask,
121 						   u16 width, struct xe_hw_engine *hwe,
122 						   u32 flags, u64 extensions)
123 {
124 	struct xe_exec_queue *q;
125 	struct xe_gt *gt = hwe->gt;
126 	int err;
127 
128 	/* only kernel queues can be permanent */
129 	XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
130 
131 	q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
132 	if (!q)
133 		return ERR_PTR(-ENOMEM);
134 
135 	kref_init(&q->refcount);
136 	q->flags = flags;
137 	q->hwe = hwe;
138 	q->gt = gt;
139 	q->class = hwe->class;
140 	q->width = width;
141 	q->msix_vec = XE_IRQ_DEFAULT_MSIX;
142 	q->logical_mask = logical_mask;
143 	q->fence_irq = &gt->fence_irq[hwe->class];
144 	q->ring_ops = gt->ring_ops[hwe->class];
145 	q->ops = gt->exec_queue_ops;
146 	INIT_LIST_HEAD(&q->lr.link);
147 	INIT_LIST_HEAD(&q->multi_gt_link);
148 	INIT_LIST_HEAD(&q->hw_engine_group_link);
149 	INIT_LIST_HEAD(&q->pxp.link);
150 
151 	q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
152 	q->sched_props.preempt_timeout_us =
153 				hwe->eclass->sched_props.preempt_timeout_us;
154 	q->sched_props.job_timeout_ms =
155 				hwe->eclass->sched_props.job_timeout_ms;
156 	if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
157 	    q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
158 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
159 	else
160 		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
161 
162 	if (q->flags & (EXEC_QUEUE_FLAG_MIGRATE | EXEC_QUEUE_FLAG_VM)) {
163 		err = alloc_dep_schedulers(xe, q);
164 		if (err) {
165 			__xe_exec_queue_free(q);
166 			return ERR_PTR(err);
167 		}
168 	}
169 
170 	if (vm)
171 		q->vm = xe_vm_get(vm);
172 
173 	if (extensions) {
174 		/*
175 		 * may set q->usm, must come before xe_lrc_create(),
176 		 * may overwrite q->sched_props, must come before q->ops->init()
177 		 */
178 		err = exec_queue_user_extensions(xe, q, extensions, 0);
179 		if (err) {
180 			__xe_exec_queue_free(q);
181 			return ERR_PTR(err);
182 		}
183 	}
184 
185 	return q;
186 }
187 
__xe_exec_queue_init(struct xe_exec_queue * q,u32 exec_queue_flags)188 static int __xe_exec_queue_init(struct xe_exec_queue *q, u32 exec_queue_flags)
189 {
190 	int i, err;
191 	u32 flags = 0;
192 
193 	/*
194 	 * PXP workloads executing on RCS or CCS must run in isolation (i.e. no
195 	 * other workload can use the EUs at the same time). On MTL this is done
196 	 * by setting the RUNALONE bit in the LRC, while starting on Xe2 there
197 	 * is a dedicated bit for it.
198 	 */
199 	if (xe_exec_queue_uses_pxp(q) &&
200 	    (q->class == XE_ENGINE_CLASS_RENDER || q->class == XE_ENGINE_CLASS_COMPUTE)) {
201 		if (GRAPHICS_VER(gt_to_xe(q->gt)) >= 20)
202 			flags |= XE_LRC_CREATE_PXP;
203 		else
204 			flags |= XE_LRC_CREATE_RUNALONE;
205 	}
206 
207 	if (!(exec_queue_flags & EXEC_QUEUE_FLAG_KERNEL))
208 		flags |= XE_LRC_CREATE_USER_CTX;
209 
210 	err = q->ops->init(q);
211 	if (err)
212 		return err;
213 
214 	/*
215 	 * This must occur after q->ops->init to avoid race conditions during VF
216 	 * post-migration recovery, as the fixups for the LRC GGTT addresses
217 	 * depend on the queue being present in the backend tracking structure.
218 	 *
219 	 * In addition to above, we must wait on inflight GGTT changes to avoid
220 	 * writing out stale values here. Such wait provides a solid solution
221 	 * (without a race) only if the function can detect migration instantly
222 	 * from the moment vCPU resumes execution.
223 	 */
224 	for (i = 0; i < q->width; ++i) {
225 		struct xe_lrc *lrc;
226 
227 		xe_gt_sriov_vf_wait_valid_ggtt(q->gt);
228 		lrc = xe_lrc_create(q->hwe, q->vm, xe_lrc_ring_size(),
229 				    q->msix_vec, flags);
230 		if (IS_ERR(lrc)) {
231 			err = PTR_ERR(lrc);
232 			goto err_lrc;
233 		}
234 
235 		/* Pairs with READ_ONCE to xe_exec_queue_contexts_hwsp_rebase */
236 		WRITE_ONCE(q->lrc[i], lrc);
237 	}
238 
239 	return 0;
240 
241 err_lrc:
242 	for (i = i - 1; i >= 0; --i)
243 		xe_lrc_put(q->lrc[i]);
244 	return err;
245 }
246 
__xe_exec_queue_fini(struct xe_exec_queue * q)247 static void __xe_exec_queue_fini(struct xe_exec_queue *q)
248 {
249 	int i;
250 
251 	q->ops->fini(q);
252 
253 	for (i = 0; i < q->width; ++i)
254 		xe_lrc_put(q->lrc[i]);
255 }
256 
xe_exec_queue_create(struct xe_device * xe,struct xe_vm * vm,u32 logical_mask,u16 width,struct xe_hw_engine * hwe,u32 flags,u64 extensions)257 struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
258 					   u32 logical_mask, u16 width,
259 					   struct xe_hw_engine *hwe, u32 flags,
260 					   u64 extensions)
261 {
262 	struct xe_exec_queue *q;
263 	int err;
264 
265 	/* VMs for GSCCS queues (and only those) must have the XE_VM_FLAG_GSC flag */
266 	xe_assert(xe, !vm || (!!(vm->flags & XE_VM_FLAG_GSC) == !!(hwe->engine_id == XE_HW_ENGINE_GSCCS0)));
267 
268 	q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
269 				  extensions);
270 	if (IS_ERR(q))
271 		return q;
272 
273 	err = __xe_exec_queue_init(q, flags);
274 	if (err)
275 		goto err_post_alloc;
276 
277 	/*
278 	 * We can only add the queue to the PXP list after the init is complete,
279 	 * because the PXP termination can call exec_queue_kill and that will
280 	 * go bad if the queue is only half-initialized. This means that we
281 	 * can't do it when we handle the PXP extension in __xe_exec_queue_alloc
282 	 * and we need to do it here instead.
283 	 */
284 	if (xe_exec_queue_uses_pxp(q)) {
285 		err = xe_pxp_exec_queue_add(xe->pxp, q);
286 		if (err)
287 			goto err_post_init;
288 	}
289 
290 	return q;
291 
292 err_post_init:
293 	__xe_exec_queue_fini(q);
294 err_post_alloc:
295 	__xe_exec_queue_free(q);
296 	return ERR_PTR(err);
297 }
298 ALLOW_ERROR_INJECTION(xe_exec_queue_create, ERRNO);
299 
xe_exec_queue_create_class(struct xe_device * xe,struct xe_gt * gt,struct xe_vm * vm,enum xe_engine_class class,u32 flags,u64 extensions)300 struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
301 						 struct xe_vm *vm,
302 						 enum xe_engine_class class,
303 						 u32 flags, u64 extensions)
304 {
305 	struct xe_hw_engine *hwe, *hwe0 = NULL;
306 	enum xe_hw_engine_id id;
307 	u32 logical_mask = 0;
308 
309 	for_each_hw_engine(hwe, gt, id) {
310 		if (xe_hw_engine_is_reserved(hwe))
311 			continue;
312 
313 		if (hwe->class == class) {
314 			logical_mask |= BIT(hwe->logical_instance);
315 			if (!hwe0)
316 				hwe0 = hwe;
317 		}
318 	}
319 
320 	if (!logical_mask)
321 		return ERR_PTR(-ENODEV);
322 
323 	return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions);
324 }
325 
326 /**
327  * xe_exec_queue_create_bind() - Create bind exec queue.
328  * @xe: Xe device.
329  * @tile: tile which bind exec queue belongs to.
330  * @flags: exec queue creation flags
331  * @extensions: exec queue creation extensions
332  *
333  * Normalize bind exec queue creation. Bind exec queue is tied to migration VM
334  * for access to physical memory required for page table programming. On a
335  * faulting devices the reserved copy engine instance must be used to avoid
336  * deadlocking (user binds cannot get stuck behind faults as kernel binds which
337  * resolve faults depend on user binds). On non-faulting devices any copy engine
338  * can be used.
339  *
340  * Returns exec queue on success, ERR_PTR on failure
341  */
xe_exec_queue_create_bind(struct xe_device * xe,struct xe_tile * tile,u32 flags,u64 extensions)342 struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe,
343 						struct xe_tile *tile,
344 						u32 flags, u64 extensions)
345 {
346 	struct xe_gt *gt = tile->primary_gt;
347 	struct xe_exec_queue *q;
348 	struct xe_vm *migrate_vm;
349 
350 	migrate_vm = xe_migrate_get_vm(tile->migrate);
351 	if (xe->info.has_usm) {
352 		struct xe_hw_engine *hwe = xe_gt_hw_engine(gt,
353 							   XE_ENGINE_CLASS_COPY,
354 							   gt->usm.reserved_bcs_instance,
355 							   false);
356 
357 		if (!hwe) {
358 			xe_vm_put(migrate_vm);
359 			return ERR_PTR(-EINVAL);
360 		}
361 
362 		q = xe_exec_queue_create(xe, migrate_vm,
363 					 BIT(hwe->logical_instance), 1, hwe,
364 					 flags, extensions);
365 	} else {
366 		q = xe_exec_queue_create_class(xe, gt, migrate_vm,
367 					       XE_ENGINE_CLASS_COPY, flags,
368 					       extensions);
369 	}
370 	xe_vm_put(migrate_vm);
371 
372 	if (!IS_ERR(q)) {
373 		int err = drm_syncobj_create(&q->ufence_syncobj,
374 					     DRM_SYNCOBJ_CREATE_SIGNALED,
375 					     NULL);
376 		if (err) {
377 			xe_exec_queue_put(q);
378 			return ERR_PTR(err);
379 		}
380 	}
381 
382 	return q;
383 }
384 ALLOW_ERROR_INJECTION(xe_exec_queue_create_bind, ERRNO);
385 
xe_exec_queue_destroy(struct kref * ref)386 void xe_exec_queue_destroy(struct kref *ref)
387 {
388 	struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
389 	struct xe_exec_queue *eq, *next;
390 	int i;
391 
392 	xe_assert(gt_to_xe(q->gt), atomic_read(&q->job_cnt) == 0);
393 
394 	if (q->ufence_syncobj)
395 		drm_syncobj_put(q->ufence_syncobj);
396 
397 	if (xe_exec_queue_uses_pxp(q))
398 		xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
399 
400 	xe_exec_queue_last_fence_put_unlocked(q);
401 	for_each_tlb_inval(i)
402 		xe_exec_queue_tlb_inval_last_fence_put_unlocked(q, i);
403 
404 	if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
405 		list_for_each_entry_safe(eq, next, &q->multi_gt_list,
406 					 multi_gt_link)
407 			xe_exec_queue_put(eq);
408 	}
409 
410 	q->ops->destroy(q);
411 }
412 
xe_exec_queue_fini(struct xe_exec_queue * q)413 void xe_exec_queue_fini(struct xe_exec_queue *q)
414 {
415 	/*
416 	 * Before releasing our ref to lrc and xef, accumulate our run ticks
417 	 * and wakeup any waiters.
418 	 */
419 	xe_exec_queue_update_run_ticks(q);
420 	if (q->xef && atomic_dec_and_test(&q->xef->exec_queue.pending_removal))
421 		wake_up_var(&q->xef->exec_queue.pending_removal);
422 
423 	__xe_exec_queue_fini(q);
424 	__xe_exec_queue_free(q);
425 }
426 
xe_exec_queue_assign_name(struct xe_exec_queue * q,u32 instance)427 void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
428 {
429 	switch (q->class) {
430 	case XE_ENGINE_CLASS_RENDER:
431 		snprintf(q->name, sizeof(q->name), "rcs%d", instance);
432 		break;
433 	case XE_ENGINE_CLASS_VIDEO_DECODE:
434 		snprintf(q->name, sizeof(q->name), "vcs%d", instance);
435 		break;
436 	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
437 		snprintf(q->name, sizeof(q->name), "vecs%d", instance);
438 		break;
439 	case XE_ENGINE_CLASS_COPY:
440 		snprintf(q->name, sizeof(q->name), "bcs%d", instance);
441 		break;
442 	case XE_ENGINE_CLASS_COMPUTE:
443 		snprintf(q->name, sizeof(q->name), "ccs%d", instance);
444 		break;
445 	case XE_ENGINE_CLASS_OTHER:
446 		snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
447 		break;
448 	default:
449 		XE_WARN_ON(q->class);
450 	}
451 }
452 
xe_exec_queue_lookup(struct xe_file * xef,u32 id)453 struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
454 {
455 	struct xe_exec_queue *q;
456 
457 	mutex_lock(&xef->exec_queue.lock);
458 	q = xa_load(&xef->exec_queue.xa, id);
459 	if (q)
460 		xe_exec_queue_get(q);
461 	mutex_unlock(&xef->exec_queue.lock);
462 
463 	return q;
464 }
465 
466 enum xe_exec_queue_priority
xe_exec_queue_device_get_max_priority(struct xe_device * xe)467 xe_exec_queue_device_get_max_priority(struct xe_device *xe)
468 {
469 	return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
470 				       XE_EXEC_QUEUE_PRIORITY_NORMAL;
471 }
472 
exec_queue_set_priority(struct xe_device * xe,struct xe_exec_queue * q,u64 value)473 static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
474 				   u64 value)
475 {
476 	if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
477 		return -EINVAL;
478 
479 	if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
480 		return -EPERM;
481 
482 	q->sched_props.priority = value;
483 	return 0;
484 }
485 
xe_exec_queue_enforce_schedule_limit(void)486 static bool xe_exec_queue_enforce_schedule_limit(void)
487 {
488 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
489 	return true;
490 #else
491 	return !capable(CAP_SYS_NICE);
492 #endif
493 }
494 
495 static void
xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf * eclass,enum xe_exec_queue_sched_prop prop,u32 * min,u32 * max)496 xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
497 			      enum xe_exec_queue_sched_prop prop,
498 			      u32 *min, u32 *max)
499 {
500 	switch (prop) {
501 	case XE_EXEC_QUEUE_JOB_TIMEOUT:
502 		*min = eclass->sched_props.job_timeout_min;
503 		*max = eclass->sched_props.job_timeout_max;
504 		break;
505 	case XE_EXEC_QUEUE_TIMESLICE:
506 		*min = eclass->sched_props.timeslice_min;
507 		*max = eclass->sched_props.timeslice_max;
508 		break;
509 	case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
510 		*min = eclass->sched_props.preempt_timeout_min;
511 		*max = eclass->sched_props.preempt_timeout_max;
512 		break;
513 	default:
514 		break;
515 	}
516 #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
517 	if (capable(CAP_SYS_NICE)) {
518 		switch (prop) {
519 		case XE_EXEC_QUEUE_JOB_TIMEOUT:
520 			*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
521 			*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
522 			break;
523 		case XE_EXEC_QUEUE_TIMESLICE:
524 			*min = XE_HW_ENGINE_TIMESLICE_MIN;
525 			*max = XE_HW_ENGINE_TIMESLICE_MAX;
526 			break;
527 		case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
528 			*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
529 			*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
530 			break;
531 		default:
532 			break;
533 		}
534 	}
535 #endif
536 }
537 
exec_queue_set_timeslice(struct xe_device * xe,struct xe_exec_queue * q,u64 value)538 static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
539 				    u64 value)
540 {
541 	u32 min = 0, max = 0;
542 
543 	xe_exec_queue_get_prop_minmax(q->hwe->eclass,
544 				      XE_EXEC_QUEUE_TIMESLICE, &min, &max);
545 
546 	if (xe_exec_queue_enforce_schedule_limit() &&
547 	    !xe_hw_engine_timeout_in_range(value, min, max))
548 		return -EINVAL;
549 
550 	q->sched_props.timeslice_us = value;
551 	return 0;
552 }
553 
554 static int
exec_queue_set_pxp_type(struct xe_device * xe,struct xe_exec_queue * q,u64 value)555 exec_queue_set_pxp_type(struct xe_device *xe, struct xe_exec_queue *q, u64 value)
556 {
557 	if (value == DRM_XE_PXP_TYPE_NONE)
558 		return 0;
559 
560 	/* we only support HWDRM sessions right now */
561 	if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
562 		return -EINVAL;
563 
564 	if (!xe_pxp_is_enabled(xe->pxp))
565 		return -ENODEV;
566 
567 	return xe_pxp_exec_queue_set_type(xe->pxp, q, DRM_XE_PXP_TYPE_HWDRM);
568 }
569 
570 typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
571 					     struct xe_exec_queue *q,
572 					     u64 value);
573 
574 static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
575 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
576 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
577 	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE] = exec_queue_set_pxp_type,
578 };
579 
exec_queue_user_ext_set_property(struct xe_device * xe,struct xe_exec_queue * q,u64 extension)580 static int exec_queue_user_ext_set_property(struct xe_device *xe,
581 					    struct xe_exec_queue *q,
582 					    u64 extension)
583 {
584 	u64 __user *address = u64_to_user_ptr(extension);
585 	struct drm_xe_ext_set_property ext;
586 	int err;
587 	u32 idx;
588 
589 	err = copy_from_user(&ext, address, sizeof(ext));
590 	if (XE_IOCTL_DBG(xe, err))
591 		return -EFAULT;
592 
593 	if (XE_IOCTL_DBG(xe, ext.property >=
594 			 ARRAY_SIZE(exec_queue_set_property_funcs)) ||
595 	    XE_IOCTL_DBG(xe, ext.pad) ||
596 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
597 			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE &&
598 			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE))
599 		return -EINVAL;
600 
601 	idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
602 	if (!exec_queue_set_property_funcs[idx])
603 		return -EINVAL;
604 
605 	return exec_queue_set_property_funcs[idx](xe, q, ext.value);
606 }
607 
608 typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
609 					       struct xe_exec_queue *q,
610 					       u64 extension);
611 
612 static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
613 	[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
614 };
615 
616 #define MAX_USER_EXTENSIONS	16
exec_queue_user_extensions(struct xe_device * xe,struct xe_exec_queue * q,u64 extensions,int ext_number)617 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
618 				      u64 extensions, int ext_number)
619 {
620 	u64 __user *address = u64_to_user_ptr(extensions);
621 	struct drm_xe_user_extension ext;
622 	int err;
623 	u32 idx;
624 
625 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
626 		return -E2BIG;
627 
628 	err = copy_from_user(&ext, address, sizeof(ext));
629 	if (XE_IOCTL_DBG(xe, err))
630 		return -EFAULT;
631 
632 	if (XE_IOCTL_DBG(xe, ext.pad) ||
633 	    XE_IOCTL_DBG(xe, ext.name >=
634 			 ARRAY_SIZE(exec_queue_user_extension_funcs)))
635 		return -EINVAL;
636 
637 	idx = array_index_nospec(ext.name,
638 				 ARRAY_SIZE(exec_queue_user_extension_funcs));
639 	err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
640 	if (XE_IOCTL_DBG(xe, err))
641 		return err;
642 
643 	if (ext.next_extension)
644 		return exec_queue_user_extensions(xe, q, ext.next_extension,
645 						  ++ext_number);
646 
647 	return 0;
648 }
649 
calc_validate_logical_mask(struct xe_device * xe,struct drm_xe_engine_class_instance * eci,u16 width,u16 num_placements)650 static u32 calc_validate_logical_mask(struct xe_device *xe,
651 				      struct drm_xe_engine_class_instance *eci,
652 				      u16 width, u16 num_placements)
653 {
654 	int len = width * num_placements;
655 	int i, j, n;
656 	u16 class;
657 	u16 gt_id;
658 	u32 return_mask = 0, prev_mask;
659 
660 	if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
661 			 len > 1))
662 		return 0;
663 
664 	for (i = 0; i < width; ++i) {
665 		u32 current_mask = 0;
666 
667 		for (j = 0; j < num_placements; ++j) {
668 			struct xe_hw_engine *hwe;
669 
670 			n = j * width + i;
671 
672 			hwe = xe_hw_engine_lookup(xe, eci[n]);
673 			if (XE_IOCTL_DBG(xe, !hwe))
674 				return 0;
675 
676 			if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
677 				return 0;
678 
679 			if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
680 			    XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
681 				return 0;
682 
683 			class = eci[n].engine_class;
684 			gt_id = eci[n].gt_id;
685 
686 			if (width == 1 || !i)
687 				return_mask |= BIT(eci[n].engine_instance);
688 			current_mask |= BIT(eci[n].engine_instance);
689 		}
690 
691 		/* Parallel submissions must be logically contiguous */
692 		if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
693 			return 0;
694 
695 		prev_mask = current_mask;
696 	}
697 
698 	return return_mask;
699 }
700 
xe_exec_queue_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)701 int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
702 			       struct drm_file *file)
703 {
704 	struct xe_device *xe = to_xe_device(dev);
705 	struct xe_file *xef = to_xe_file(file);
706 	struct drm_xe_exec_queue_create *args = data;
707 	struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
708 	struct drm_xe_engine_class_instance __user *user_eci =
709 		u64_to_user_ptr(args->instances);
710 	struct xe_hw_engine *hwe;
711 	struct xe_vm *vm;
712 	struct xe_tile *tile;
713 	struct xe_exec_queue *q = NULL;
714 	u32 logical_mask;
715 	u32 flags = 0;
716 	u32 id;
717 	u32 len;
718 	int err;
719 
720 	if (XE_IOCTL_DBG(xe, args->flags & ~DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT) ||
721 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
722 		return -EINVAL;
723 
724 	len = args->width * args->num_placements;
725 	if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
726 		return -EINVAL;
727 
728 	err = copy_from_user(eci, user_eci,
729 			     sizeof(struct drm_xe_engine_class_instance) * len);
730 	if (XE_IOCTL_DBG(xe, err))
731 		return -EFAULT;
732 
733 	if (XE_IOCTL_DBG(xe, !xe_device_get_gt(xe, eci[0].gt_id)))
734 		return -EINVAL;
735 
736 	if (args->flags & DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT)
737 		flags |= EXEC_QUEUE_FLAG_LOW_LATENCY;
738 
739 	if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
740 		if (XE_IOCTL_DBG(xe, args->width != 1) ||
741 		    XE_IOCTL_DBG(xe, args->num_placements != 1) ||
742 		    XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
743 			return -EINVAL;
744 
745 		for_each_tile(tile, xe, id) {
746 			struct xe_exec_queue *new;
747 
748 			flags |= EXEC_QUEUE_FLAG_VM;
749 			if (id)
750 				flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD;
751 
752 			new = xe_exec_queue_create_bind(xe, tile, flags,
753 							args->extensions);
754 			if (IS_ERR(new)) {
755 				err = PTR_ERR(new);
756 				if (q)
757 					goto put_exec_queue;
758 				return err;
759 			}
760 			if (id == 0)
761 				q = new;
762 			else
763 				list_add_tail(&new->multi_gt_list,
764 					      &q->multi_gt_link);
765 		}
766 	} else {
767 		logical_mask = calc_validate_logical_mask(xe, eci,
768 							  args->width,
769 							  args->num_placements);
770 		if (XE_IOCTL_DBG(xe, !logical_mask))
771 			return -EINVAL;
772 
773 		hwe = xe_hw_engine_lookup(xe, eci[0]);
774 		if (XE_IOCTL_DBG(xe, !hwe))
775 			return -EINVAL;
776 
777 		vm = xe_vm_lookup(xef, args->vm_id);
778 		if (XE_IOCTL_DBG(xe, !vm))
779 			return -ENOENT;
780 
781 		err = down_read_interruptible(&vm->lock);
782 		if (err) {
783 			xe_vm_put(vm);
784 			return err;
785 		}
786 
787 		if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
788 			up_read(&vm->lock);
789 			xe_vm_put(vm);
790 			return -ENOENT;
791 		}
792 
793 		q = xe_exec_queue_create(xe, vm, logical_mask,
794 					 args->width, hwe, flags,
795 					 args->extensions);
796 		up_read(&vm->lock);
797 		xe_vm_put(vm);
798 		if (IS_ERR(q))
799 			return PTR_ERR(q);
800 
801 		if (xe_vm_in_preempt_fence_mode(vm)) {
802 			q->lr.context = dma_fence_context_alloc(1);
803 
804 			err = xe_vm_add_compute_exec_queue(vm, q);
805 			if (XE_IOCTL_DBG(xe, err))
806 				goto put_exec_queue;
807 		}
808 
809 		if (q->vm && q->hwe->hw_engine_group) {
810 			err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q);
811 			if (err)
812 				goto put_exec_queue;
813 		}
814 	}
815 
816 	q->xef = xe_file_get(xef);
817 
818 	/* user id alloc must always be last in ioctl to prevent UAF */
819 	err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
820 	if (err)
821 		goto kill_exec_queue;
822 
823 	args->exec_queue_id = id;
824 
825 	return 0;
826 
827 kill_exec_queue:
828 	xe_exec_queue_kill(q);
829 put_exec_queue:
830 	xe_exec_queue_put(q);
831 	return err;
832 }
833 
xe_exec_queue_get_property_ioctl(struct drm_device * dev,void * data,struct drm_file * file)834 int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
835 				     struct drm_file *file)
836 {
837 	struct xe_device *xe = to_xe_device(dev);
838 	struct xe_file *xef = to_xe_file(file);
839 	struct drm_xe_exec_queue_get_property *args = data;
840 	struct xe_exec_queue *q;
841 	int ret;
842 
843 	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
844 		return -EINVAL;
845 
846 	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
847 	if (XE_IOCTL_DBG(xe, !q))
848 		return -ENOENT;
849 
850 	switch (args->property) {
851 	case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
852 		args->value = q->ops->reset_status(q);
853 		ret = 0;
854 		break;
855 	default:
856 		ret = -EINVAL;
857 	}
858 
859 	xe_exec_queue_put(q);
860 
861 	return ret;
862 }
863 
864 /**
865  * xe_exec_queue_lrc() - Get the LRC from exec queue.
866  * @q: The exec_queue.
867  *
868  * Retrieves the primary LRC for the exec queue. Note that this function
869  * returns only the first LRC instance, even when multiple parallel LRCs
870  * are configured.
871  *
872  * Return: Pointer to LRC on success, error on failure
873  */
xe_exec_queue_lrc(struct xe_exec_queue * q)874 struct xe_lrc *xe_exec_queue_lrc(struct xe_exec_queue *q)
875 {
876 	return q->lrc[0];
877 }
878 
879 /**
880  * xe_exec_queue_is_lr() - Whether an exec_queue is long-running
881  * @q: The exec_queue
882  *
883  * Return: True if the exec_queue is long-running, false otherwise.
884  */
xe_exec_queue_is_lr(struct xe_exec_queue * q)885 bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
886 {
887 	return q->vm && xe_vm_in_lr_mode(q->vm) &&
888 		!(q->flags & EXEC_QUEUE_FLAG_VM);
889 }
890 
891 /**
892  * xe_exec_queue_is_idle() - Whether an exec_queue is idle.
893  * @q: The exec_queue
894  *
895  * FIXME: Need to determine what to use as the short-lived
896  * timeline lock for the exec_queues, so that the return value
897  * of this function becomes more than just an advisory
898  * snapshot in time. The timeline lock must protect the
899  * seqno from racing submissions on the same exec_queue.
900  * Typically vm->resv, but user-created timeline locks use the migrate vm
901  * and never grabs the migrate vm->resv so we have a race there.
902  *
903  * Return: True if the exec_queue is idle, false otherwise.
904  */
xe_exec_queue_is_idle(struct xe_exec_queue * q)905 bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
906 {
907 	if (xe_exec_queue_is_parallel(q)) {
908 		int i;
909 
910 		for (i = 0; i < q->width; ++i) {
911 			if (xe_lrc_seqno(q->lrc[i]) !=
912 			    q->lrc[i]->fence_ctx.next_seqno - 1)
913 				return false;
914 		}
915 
916 		return true;
917 	}
918 
919 	return xe_lrc_seqno(q->lrc[0]) ==
920 		q->lrc[0]->fence_ctx.next_seqno - 1;
921 }
922 
923 /**
924  * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
925  * from hw
926  * @q: The exec queue
927  *
928  * Update the timestamp saved by HW for this exec queue and save run ticks
929  * calculated by using the delta from last update.
930  */
xe_exec_queue_update_run_ticks(struct xe_exec_queue * q)931 void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
932 {
933 	struct xe_device *xe = gt_to_xe(q->gt);
934 	struct xe_lrc *lrc;
935 	u64 old_ts, new_ts;
936 	int idx;
937 
938 	/*
939 	 * Jobs that are executed by kernel doesn't have a corresponding xe_file
940 	 * and thus are not accounted.
941 	 */
942 	if (!q->xef)
943 		return;
944 
945 	/* Synchronize with unbind while holding the xe file open */
946 	if (!drm_dev_enter(&xe->drm, &idx))
947 		return;
948 	/*
949 	 * Only sample the first LRC. For parallel submission, all of them are
950 	 * scheduled together and we compensate that below by multiplying by
951 	 * width - this may introduce errors if that premise is not true and
952 	 * they don't exit 100% aligned. On the other hand, looping through
953 	 * the LRCs and reading them in different time could also introduce
954 	 * errors.
955 	 */
956 	lrc = q->lrc[0];
957 	new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
958 	q->xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
959 
960 	drm_dev_exit(idx);
961 }
962 
963 /**
964  * xe_exec_queue_kill - permanently stop all execution from an exec queue
965  * @q: The exec queue
966  *
967  * This function permanently stops all activity on an exec queue. If the queue
968  * is actively executing on the HW, it will be kicked off the engine; any
969  * pending jobs are discarded and all future submissions are rejected.
970  * This function is safe to call multiple times.
971  */
xe_exec_queue_kill(struct xe_exec_queue * q)972 void xe_exec_queue_kill(struct xe_exec_queue *q)
973 {
974 	struct xe_exec_queue *eq = q, *next;
975 
976 	list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
977 				 multi_gt_link) {
978 		q->ops->kill(eq);
979 		xe_vm_remove_compute_exec_queue(q->vm, eq);
980 	}
981 
982 	q->ops->kill(q);
983 	xe_vm_remove_compute_exec_queue(q->vm, q);
984 }
985 
xe_exec_queue_destroy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)986 int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
987 				struct drm_file *file)
988 {
989 	struct xe_device *xe = to_xe_device(dev);
990 	struct xe_file *xef = to_xe_file(file);
991 	struct drm_xe_exec_queue_destroy *args = data;
992 	struct xe_exec_queue *q;
993 
994 	if (XE_IOCTL_DBG(xe, args->pad) ||
995 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
996 		return -EINVAL;
997 
998 	mutex_lock(&xef->exec_queue.lock);
999 	q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
1000 	if (q)
1001 		atomic_inc(&xef->exec_queue.pending_removal);
1002 	mutex_unlock(&xef->exec_queue.lock);
1003 
1004 	if (XE_IOCTL_DBG(xe, !q))
1005 		return -ENOENT;
1006 
1007 	if (q->vm && q->hwe->hw_engine_group)
1008 		xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
1009 
1010 	xe_exec_queue_kill(q);
1011 
1012 	trace_xe_exec_queue_close(q);
1013 	xe_exec_queue_put(q);
1014 
1015 	return 0;
1016 }
1017 
xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue * q,struct xe_vm * vm)1018 static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
1019 						    struct xe_vm *vm)
1020 {
1021 	if (q->flags & EXEC_QUEUE_FLAG_MIGRATE) {
1022 		xe_migrate_job_lock_assert(q);
1023 	} else if (q->flags & EXEC_QUEUE_FLAG_VM) {
1024 		lockdep_assert_held(&vm->lock);
1025 	} else {
1026 		xe_vm_assert_held(vm);
1027 		lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem);
1028 	}
1029 }
1030 
1031 /**
1032  * xe_exec_queue_last_fence_put() - Drop ref to last fence
1033  * @q: The exec queue
1034  * @vm: The VM the engine does a bind or exec for
1035  */
xe_exec_queue_last_fence_put(struct xe_exec_queue * q,struct xe_vm * vm)1036 void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
1037 {
1038 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1039 
1040 	xe_exec_queue_last_fence_put_unlocked(q);
1041 }
1042 
1043 /**
1044  * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
1045  * @q: The exec queue
1046  *
1047  * Only safe to be called from xe_exec_queue_destroy().
1048  */
xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue * q)1049 void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
1050 {
1051 	if (q->last_fence) {
1052 		dma_fence_put(q->last_fence);
1053 		q->last_fence = NULL;
1054 	}
1055 }
1056 
1057 /**
1058  * xe_exec_queue_last_fence_get() - Get last fence
1059  * @q: The exec queue
1060  * @vm: The VM the engine does a bind or exec for
1061  *
1062  * Get last fence, takes a ref
1063  *
1064  * Returns: last fence if not signaled, dma fence stub if signaled
1065  */
xe_exec_queue_last_fence_get(struct xe_exec_queue * q,struct xe_vm * vm)1066 struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
1067 					       struct xe_vm *vm)
1068 {
1069 	struct dma_fence *fence;
1070 
1071 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1072 
1073 	if (q->last_fence &&
1074 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
1075 		xe_exec_queue_last_fence_put(q, vm);
1076 
1077 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
1078 	dma_fence_get(fence);
1079 	return fence;
1080 }
1081 
1082 /**
1083  * xe_exec_queue_last_fence_get_for_resume() - Get last fence
1084  * @q: The exec queue
1085  * @vm: The VM the engine does a bind or exec for
1086  *
1087  * Get last fence, takes a ref. Only safe to be called in the context of
1088  * resuming the hw engine group's long-running exec queue, when the group
1089  * semaphore is held.
1090  *
1091  * Returns: last fence if not signaled, dma fence stub if signaled
1092  */
xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue * q,struct xe_vm * vm)1093 struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q,
1094 							  struct xe_vm *vm)
1095 {
1096 	struct dma_fence *fence;
1097 
1098 	lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem);
1099 
1100 	if (q->last_fence &&
1101 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
1102 		xe_exec_queue_last_fence_put_unlocked(q);
1103 
1104 	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
1105 	dma_fence_get(fence);
1106 	return fence;
1107 }
1108 
1109 /**
1110  * xe_exec_queue_last_fence_set() - Set last fence
1111  * @q: The exec queue
1112  * @vm: The VM the engine does a bind or exec for
1113  * @fence: The fence
1114  *
1115  * Set the last fence for the engine. Increases reference count for fence, when
1116  * closing engine xe_exec_queue_last_fence_put should be called.
1117  */
xe_exec_queue_last_fence_set(struct xe_exec_queue * q,struct xe_vm * vm,struct dma_fence * fence)1118 void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
1119 				  struct dma_fence *fence)
1120 {
1121 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1122 	xe_assert(vm->xe, !dma_fence_is_container(fence));
1123 
1124 	xe_exec_queue_last_fence_put(q, vm);
1125 	q->last_fence = dma_fence_get(fence);
1126 }
1127 
1128 /**
1129  * xe_exec_queue_tlb_inval_last_fence_put() - Drop ref to last TLB invalidation fence
1130  * @q: The exec queue
1131  * @vm: The VM the engine does a bind for
1132  * @type: Either primary or media GT
1133  */
xe_exec_queue_tlb_inval_last_fence_put(struct xe_exec_queue * q,struct xe_vm * vm,unsigned int type)1134 void xe_exec_queue_tlb_inval_last_fence_put(struct xe_exec_queue *q,
1135 					    struct xe_vm *vm,
1136 					    unsigned int type)
1137 {
1138 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1139 	xe_assert(vm->xe, type == XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT ||
1140 		  type == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT);
1141 
1142 	xe_exec_queue_tlb_inval_last_fence_put_unlocked(q, type);
1143 }
1144 
1145 /**
1146  * xe_exec_queue_tlb_inval_last_fence_put_unlocked() - Drop ref to last TLB
1147  * invalidation fence unlocked
1148  * @q: The exec queue
1149  * @type: Either primary or media GT
1150  *
1151  * Only safe to be called from xe_exec_queue_destroy().
1152  */
xe_exec_queue_tlb_inval_last_fence_put_unlocked(struct xe_exec_queue * q,unsigned int type)1153 void xe_exec_queue_tlb_inval_last_fence_put_unlocked(struct xe_exec_queue *q,
1154 						     unsigned int type)
1155 {
1156 	xe_assert(q->vm->xe, type == XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT ||
1157 		  type == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT);
1158 
1159 	dma_fence_put(q->tlb_inval[type].last_fence);
1160 	q->tlb_inval[type].last_fence = NULL;
1161 }
1162 
1163 /**
1164  * xe_exec_queue_tlb_inval_last_fence_get() - Get last fence for TLB invalidation
1165  * @q: The exec queue
1166  * @vm: The VM the engine does a bind for
1167  * @type: Either primary or media GT
1168  *
1169  * Get last fence, takes a ref
1170  *
1171  * Returns: last fence if not signaled, dma fence stub if signaled
1172  */
xe_exec_queue_tlb_inval_last_fence_get(struct xe_exec_queue * q,struct xe_vm * vm,unsigned int type)1173 struct dma_fence *xe_exec_queue_tlb_inval_last_fence_get(struct xe_exec_queue *q,
1174 							 struct xe_vm *vm,
1175 							 unsigned int type)
1176 {
1177 	struct dma_fence *fence;
1178 
1179 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1180 	xe_assert(vm->xe, type == XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT ||
1181 		  type == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT);
1182 	xe_assert(vm->xe, q->flags & (EXEC_QUEUE_FLAG_VM |
1183 				      EXEC_QUEUE_FLAG_MIGRATE));
1184 
1185 	if (q->tlb_inval[type].last_fence &&
1186 	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187 		     &q->tlb_inval[type].last_fence->flags))
1188 		xe_exec_queue_tlb_inval_last_fence_put(q, vm, type);
1189 
1190 	fence = q->tlb_inval[type].last_fence ?: dma_fence_get_stub();
1191 	dma_fence_get(fence);
1192 	return fence;
1193 }
1194 
1195 /**
1196  * xe_exec_queue_tlb_inval_last_fence_set() - Set last fence for TLB invalidation
1197  * @q: The exec queue
1198  * @vm: The VM the engine does a bind for
1199  * @fence: The fence
1200  * @type: Either primary or media GT
1201  *
1202  * Set the last fence for the tlb invalidation type on the queue. Increases
1203  * reference count for fence, when closing queue
1204  * xe_exec_queue_tlb_inval_last_fence_put should be called.
1205  */
xe_exec_queue_tlb_inval_last_fence_set(struct xe_exec_queue * q,struct xe_vm * vm,struct dma_fence * fence,unsigned int type)1206 void xe_exec_queue_tlb_inval_last_fence_set(struct xe_exec_queue *q,
1207 					    struct xe_vm *vm,
1208 					    struct dma_fence *fence,
1209 					    unsigned int type)
1210 {
1211 	xe_exec_queue_last_fence_lockdep_assert(q, vm);
1212 	xe_assert(vm->xe, type == XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT ||
1213 		  type == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT);
1214 	xe_assert(vm->xe, q->flags & (EXEC_QUEUE_FLAG_VM |
1215 				      EXEC_QUEUE_FLAG_MIGRATE));
1216 	xe_assert(vm->xe, !dma_fence_is_container(fence));
1217 
1218 	xe_exec_queue_tlb_inval_last_fence_put(q, vm, type);
1219 	q->tlb_inval[type].last_fence = dma_fence_get(fence);
1220 }
1221 
1222 /**
1223  * xe_exec_queue_contexts_hwsp_rebase - Re-compute GGTT references
1224  * within all LRCs of a queue.
1225  * @q: the &xe_exec_queue struct instance containing target LRCs
1226  * @scratch: scratch buffer to be used as temporary storage
1227  *
1228  * Returns: zero on success, negative error code on failure
1229  */
xe_exec_queue_contexts_hwsp_rebase(struct xe_exec_queue * q,void * scratch)1230 int xe_exec_queue_contexts_hwsp_rebase(struct xe_exec_queue *q, void *scratch)
1231 {
1232 	int i;
1233 	int err = 0;
1234 
1235 	for (i = 0; i < q->width; ++i) {
1236 		struct xe_lrc *lrc;
1237 
1238 		/* Pairs with WRITE_ONCE in __xe_exec_queue_init  */
1239 		lrc = READ_ONCE(q->lrc[i]);
1240 		if (!lrc)
1241 			continue;
1242 
1243 		xe_lrc_update_memirq_regs_with_address(lrc, q->hwe, scratch);
1244 		xe_lrc_update_hwctx_regs_with_address(lrc);
1245 		err = xe_lrc_setup_wa_bb_with_scratch(lrc, q->hwe, scratch);
1246 		if (err)
1247 			break;
1248 	}
1249 
1250 	return err;
1251 }
1252