1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_device.h"
7
8 #include <linux/delay.h>
9 #include <linux/units.h>
10
11 #include <drm/drm_aperture.h>
12 #include <drm/drm_atomic_helper.h>
13 #include <drm/drm_client.h>
14 #include <drm/drm_gem_ttm_helper.h>
15 #include <drm/drm_ioctl.h>
16 #include <drm/drm_managed.h>
17 #include <drm/drm_print.h>
18 #include <uapi/drm/xe_drm.h>
19
20 #include "display/xe_display.h"
21 #include "instructions/xe_gpu_commands.h"
22 #include "regs/xe_gt_regs.h"
23 #include "regs/xe_regs.h"
24 #include "xe_bo.h"
25 #include "xe_debugfs.h"
26 #include "xe_devcoredump.h"
27 #include "xe_dma_buf.h"
28 #include "xe_drm_client.h"
29 #include "xe_drv.h"
30 #include "xe_exec.h"
31 #include "xe_exec_queue.h"
32 #include "xe_force_wake.h"
33 #include "xe_ggtt.h"
34 #include "xe_gsc_proxy.h"
35 #include "xe_gt.h"
36 #include "xe_gt_mcr.h"
37 #include "xe_gt_printk.h"
38 #include "xe_gt_sriov_vf.h"
39 #include "xe_guc.h"
40 #include "xe_hw_engine_group.h"
41 #include "xe_hwmon.h"
42 #include "xe_irq.h"
43 #include "xe_memirq.h"
44 #include "xe_mmio.h"
45 #include "xe_module.h"
46 #include "xe_observation.h"
47 #include "xe_pat.h"
48 #include "xe_pcode.h"
49 #include "xe_pm.h"
50 #include "xe_query.h"
51 #include "xe_sriov.h"
52 #include "xe_tile.h"
53 #include "xe_ttm_stolen_mgr.h"
54 #include "xe_ttm_sys_mgr.h"
55 #include "xe_vm.h"
56 #include "xe_vram.h"
57 #include "xe_wait_user_fence.h"
58 #include "xe_wa.h"
59
60 #include <generated/xe_wa_oob.h>
61
xe_file_open(struct drm_device * dev,struct drm_file * file)62 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
63 {
64 struct xe_device *xe = to_xe_device(dev);
65 struct xe_drm_client *client;
66 struct xe_file *xef;
67 int ret = -ENOMEM;
68 struct task_struct *task = NULL;
69
70 xef = kzalloc(sizeof(*xef), GFP_KERNEL);
71 if (!xef)
72 return ret;
73
74 client = xe_drm_client_alloc();
75 if (!client) {
76 kfree(xef);
77 return ret;
78 }
79
80 xef->drm = file;
81 xef->client = client;
82 xef->xe = xe;
83
84 mutex_init(&xef->vm.lock);
85 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
86
87 mutex_init(&xef->exec_queue.lock);
88 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
89
90 spin_lock(&xe->clients.lock);
91 xe->clients.count++;
92 spin_unlock(&xe->clients.lock);
93
94 file->driver_priv = xef;
95 kref_init(&xef->refcount);
96
97 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
98 if (task) {
99 xef->process_name = kstrdup(task->comm, GFP_KERNEL);
100 xef->pid = task->pid;
101 put_task_struct(task);
102 }
103
104 return 0;
105 }
106
xe_file_destroy(struct kref * ref)107 static void xe_file_destroy(struct kref *ref)
108 {
109 struct xe_file *xef = container_of(ref, struct xe_file, refcount);
110 struct xe_device *xe = xef->xe;
111
112 xa_destroy(&xef->exec_queue.xa);
113 mutex_destroy(&xef->exec_queue.lock);
114 xa_destroy(&xef->vm.xa);
115 mutex_destroy(&xef->vm.lock);
116
117 spin_lock(&xe->clients.lock);
118 xe->clients.count--;
119 spin_unlock(&xe->clients.lock);
120
121 xe_drm_client_put(xef->client);
122 kfree(xef->process_name);
123 kfree(xef);
124 }
125
126 /**
127 * xe_file_get() - Take a reference to the xe file object
128 * @xef: Pointer to the xe file
129 *
130 * Anyone with a pointer to xef must take a reference to the xe file
131 * object using this call.
132 *
133 * Return: xe file pointer
134 */
xe_file_get(struct xe_file * xef)135 struct xe_file *xe_file_get(struct xe_file *xef)
136 {
137 kref_get(&xef->refcount);
138 return xef;
139 }
140
141 /**
142 * xe_file_put() - Drop a reference to the xe file object
143 * @xef: Pointer to the xe file
144 *
145 * Used to drop reference to the xef object
146 */
xe_file_put(struct xe_file * xef)147 void xe_file_put(struct xe_file *xef)
148 {
149 kref_put(&xef->refcount, xe_file_destroy);
150 }
151
xe_file_close(struct drm_device * dev,struct drm_file * file)152 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
153 {
154 struct xe_device *xe = to_xe_device(dev);
155 struct xe_file *xef = file->driver_priv;
156 struct xe_vm *vm;
157 struct xe_exec_queue *q;
158 unsigned long idx;
159
160 xe_pm_runtime_get(xe);
161
162 /*
163 * No need for exec_queue.lock here as there is no contention for it
164 * when FD is closing as IOCTLs presumably can't be modifying the
165 * xarray. Taking exec_queue.lock here causes undue dependency on
166 * vm->lock taken during xe_exec_queue_kill().
167 */
168 xa_for_each(&xef->exec_queue.xa, idx, q) {
169 if (q->vm && q->hwe->hw_engine_group)
170 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
171 xe_exec_queue_kill(q);
172 xe_exec_queue_put(q);
173 }
174 xa_for_each(&xef->vm.xa, idx, vm)
175 xe_vm_close_and_put(vm);
176
177 xe_file_put(xef);
178
179 xe_pm_runtime_put(xe);
180 }
181
182 static const struct drm_ioctl_desc xe_ioctls[] = {
183 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
184 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
185 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
186 DRM_RENDER_ALLOW),
187 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
188 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
189 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
190 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
191 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
192 DRM_RENDER_ALLOW),
193 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
194 DRM_RENDER_ALLOW),
195 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
196 DRM_RENDER_ALLOW),
197 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
198 DRM_RENDER_ALLOW),
199 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
200 };
201
xe_drm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)202 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
203 {
204 struct drm_file *file_priv = file->private_data;
205 struct xe_device *xe = to_xe_device(file_priv->minor->dev);
206 long ret;
207
208 if (xe_device_wedged(xe))
209 return -ECANCELED;
210
211 ret = xe_pm_runtime_get_ioctl(xe);
212 if (ret >= 0)
213 ret = drm_ioctl(file, cmd, arg);
214 xe_pm_runtime_put(xe);
215
216 return ret;
217 }
218
219 #ifdef CONFIG_COMPAT
xe_drm_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)220 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
221 {
222 struct drm_file *file_priv = file->private_data;
223 struct xe_device *xe = to_xe_device(file_priv->minor->dev);
224 long ret;
225
226 if (xe_device_wedged(xe))
227 return -ECANCELED;
228
229 ret = xe_pm_runtime_get_ioctl(xe);
230 if (ret >= 0)
231 ret = drm_compat_ioctl(file, cmd, arg);
232 xe_pm_runtime_put(xe);
233
234 return ret;
235 }
236 #else
237 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
238 #define xe_drm_compat_ioctl NULL
239 #endif
240
241 static const struct file_operations xe_driver_fops = {
242 .owner = THIS_MODULE,
243 .open = drm_open,
244 .release = drm_release_noglobal,
245 .unlocked_ioctl = xe_drm_ioctl,
246 .mmap = drm_gem_mmap,
247 .poll = drm_poll,
248 .read = drm_read,
249 .compat_ioctl = xe_drm_compat_ioctl,
250 .llseek = noop_llseek,
251 #ifdef CONFIG_PROC_FS
252 .show_fdinfo = drm_show_fdinfo,
253 #endif
254 .fop_flags = FOP_UNSIGNED_OFFSET,
255 };
256
257 static struct drm_driver driver = {
258 /* Don't use MTRRs here; the Xserver or userspace app should
259 * deal with them for Intel hardware.
260 */
261 .driver_features =
262 DRIVER_GEM |
263 DRIVER_RENDER | DRIVER_SYNCOBJ |
264 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
265 .open = xe_file_open,
266 .postclose = xe_file_close,
267
268 .gem_prime_import = xe_gem_prime_import,
269
270 .dumb_create = xe_bo_dumb_create,
271 .dumb_map_offset = drm_gem_ttm_dumb_map_offset,
272 #ifdef CONFIG_PROC_FS
273 .show_fdinfo = xe_drm_client_fdinfo,
274 #endif
275 .ioctls = xe_ioctls,
276 .num_ioctls = ARRAY_SIZE(xe_ioctls),
277 .fops = &xe_driver_fops,
278 .name = DRIVER_NAME,
279 .desc = DRIVER_DESC,
280 .date = DRIVER_DATE,
281 .major = DRIVER_MAJOR,
282 .minor = DRIVER_MINOR,
283 .patchlevel = DRIVER_PATCHLEVEL,
284 };
285
xe_device_destroy(struct drm_device * dev,void * dummy)286 static void xe_device_destroy(struct drm_device *dev, void *dummy)
287 {
288 struct xe_device *xe = to_xe_device(dev);
289
290 if (xe->preempt_fence_wq)
291 destroy_workqueue(xe->preempt_fence_wq);
292
293 if (xe->ordered_wq)
294 destroy_workqueue(xe->ordered_wq);
295
296 if (xe->unordered_wq)
297 destroy_workqueue(xe->unordered_wq);
298
299 if (xe->destroy_wq)
300 destroy_workqueue(xe->destroy_wq);
301
302 ttm_device_fini(&xe->ttm);
303 }
304
xe_device_create(struct pci_dev * pdev,const struct pci_device_id * ent)305 struct xe_device *xe_device_create(struct pci_dev *pdev,
306 const struct pci_device_id *ent)
307 {
308 struct xe_device *xe;
309 int err;
310
311 xe_display_driver_set_hooks(&driver);
312
313 err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
314 if (err)
315 return ERR_PTR(err);
316
317 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
318 if (IS_ERR(xe))
319 return xe;
320
321 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
322 xe->drm.anon_inode->i_mapping,
323 xe->drm.vma_offset_manager, false, false);
324 if (WARN_ON(err))
325 goto err;
326
327 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
328 if (err)
329 goto err;
330
331 xe->info.devid = pdev->device;
332 xe->info.revid = pdev->revision;
333 xe->info.force_execlist = xe_modparam.force_execlist;
334
335 spin_lock_init(&xe->irq.lock);
336 spin_lock_init(&xe->clients.lock);
337
338 init_waitqueue_head(&xe->ufence_wq);
339
340 init_rwsem(&xe->usm.lock);
341
342 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
343
344 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
345 /* Trigger a large asid and an early asid wrap. */
346 u32 asid;
347
348 BUILD_BUG_ON(XE_MAX_ASID < 2);
349 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
350 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
351 &xe->usm.next_asid, GFP_KERNEL);
352 drm_WARN_ON(&xe->drm, err);
353 if (err >= 0)
354 xa_erase(&xe->usm.asid_to_vm, asid);
355 }
356
357 spin_lock_init(&xe->pinned.lock);
358 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
359 INIT_LIST_HEAD(&xe->pinned.external_vram);
360 INIT_LIST_HEAD(&xe->pinned.evicted);
361
362 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0);
363 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
364 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
365 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
366 if (!xe->ordered_wq || !xe->unordered_wq ||
367 !xe->preempt_fence_wq || !xe->destroy_wq) {
368 /*
369 * Cleanup done in xe_device_destroy via
370 * drmm_add_action_or_reset register above
371 */
372 drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
373 err = -ENOMEM;
374 goto err;
375 }
376
377 err = xe_display_create(xe);
378 if (WARN_ON(err))
379 goto err;
380
381 return xe;
382
383 err:
384 return ERR_PTR(err);
385 }
386
387 /*
388 * The driver-initiated FLR is the highest level of reset that we can trigger
389 * from within the driver. It is different from the PCI FLR in that it doesn't
390 * fully reset the SGUnit and doesn't modify the PCI config space and therefore
391 * it doesn't require a re-enumeration of the PCI BARs. However, the
392 * driver-initiated FLR does still cause a reset of both GT and display and a
393 * memory wipe of local and stolen memory, so recovery would require a full HW
394 * re-init and saving/restoring (or re-populating) the wiped memory. Since we
395 * perform the FLR as the very last action before releasing access to the HW
396 * during the driver release flow, we don't attempt recovery at all, because
397 * if/when a new instance of i915 is bound to the device it will do a full
398 * re-init anyway.
399 */
xe_driver_flr(struct xe_device * xe)400 static void xe_driver_flr(struct xe_device *xe)
401 {
402 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
403 struct xe_gt *gt = xe_root_mmio_gt(xe);
404 int ret;
405
406 if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
407 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
408 return;
409 }
410
411 drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
412
413 /*
414 * Make sure any pending FLR requests have cleared by waiting for the
415 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
416 * to make sure it's not still set from a prior attempt (it's a write to
417 * clear bit).
418 * Note that we should never be in a situation where a previous attempt
419 * is still pending (unless the HW is totally dead), but better to be
420 * safe in case something unexpected happens
421 */
422 ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
423 if (ret) {
424 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
425 return;
426 }
427 xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
428
429 /* Trigger the actual Driver-FLR */
430 xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
431
432 /* Wait for hardware teardown to complete */
433 ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
434 if (ret) {
435 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
436 return;
437 }
438
439 /* Wait for hardware/firmware re-init to complete */
440 ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
441 flr_timeout, NULL, false);
442 if (ret) {
443 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
444 return;
445 }
446
447 /* Clear sticky completion status */
448 xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
449 }
450
xe_driver_flr_fini(void * arg)451 static void xe_driver_flr_fini(void *arg)
452 {
453 struct xe_device *xe = arg;
454
455 if (xe->needs_flr_on_fini)
456 xe_driver_flr(xe);
457 }
458
xe_device_sanitize(void * arg)459 static void xe_device_sanitize(void *arg)
460 {
461 struct xe_device *xe = arg;
462 struct xe_gt *gt;
463 u8 id;
464
465 for_each_gt(gt, xe, id)
466 xe_gt_sanitize(gt);
467 }
468
xe_set_dma_info(struct xe_device * xe)469 static int xe_set_dma_info(struct xe_device *xe)
470 {
471 unsigned int mask_size = xe->info.dma_mask_size;
472 int err;
473
474 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
475
476 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
477 if (err)
478 goto mask_err;
479
480 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
481 if (err)
482 goto mask_err;
483
484 return 0;
485
486 mask_err:
487 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
488 return err;
489 }
490
verify_lmem_ready(struct xe_gt * gt)491 static bool verify_lmem_ready(struct xe_gt *gt)
492 {
493 u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT;
494
495 return !!val;
496 }
497
wait_for_lmem_ready(struct xe_device * xe)498 static int wait_for_lmem_ready(struct xe_device *xe)
499 {
500 struct xe_gt *gt = xe_root_mmio_gt(xe);
501 unsigned long timeout, start;
502
503 if (!IS_DGFX(xe))
504 return 0;
505
506 if (IS_SRIOV_VF(xe))
507 return 0;
508
509 if (verify_lmem_ready(gt))
510 return 0;
511
512 drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
513
514 start = jiffies;
515 timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
516
517 do {
518 if (signal_pending(current))
519 return -EINTR;
520
521 /*
522 * The boot firmware initializes local memory and
523 * assesses its health. If memory training fails,
524 * the punit will have been instructed to keep the GT powered
525 * down.we won't be able to communicate with it
526 *
527 * If the status check is done before punit updates the register,
528 * it can lead to the system being unusable.
529 * use a timeout and defer the probe to prevent this.
530 */
531 if (time_after(jiffies, timeout)) {
532 drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
533 return -EPROBE_DEFER;
534 }
535
536 msleep(20);
537
538 } while (!verify_lmem_ready(gt));
539
540 drm_dbg(&xe->drm, "lmem ready after %ums",
541 jiffies_to_msecs(jiffies - start));
542
543 return 0;
544 }
545
update_device_info(struct xe_device * xe)546 static void update_device_info(struct xe_device *xe)
547 {
548 /* disable features that are not available/applicable to VFs */
549 if (IS_SRIOV_VF(xe)) {
550 xe->info.probe_display = 0;
551 xe->info.has_heci_gscfi = 0;
552 xe->info.skip_guc_pc = 1;
553 xe->info.skip_pcode = 1;
554 }
555 }
556
557 /**
558 * xe_device_probe_early: Device early probe
559 * @xe: xe device instance
560 *
561 * Initialize MMIO resources that don't require any
562 * knowledge about tile count. Also initialize pcode and
563 * check vram initialization on root tile.
564 *
565 * Return: 0 on success, error code on failure
566 */
xe_device_probe_early(struct xe_device * xe)567 int xe_device_probe_early(struct xe_device *xe)
568 {
569 int err;
570
571 err = xe_mmio_init(xe);
572 if (err)
573 return err;
574
575 xe_sriov_probe_early(xe);
576
577 update_device_info(xe);
578
579 err = xe_pcode_probe_early(xe);
580 if (err)
581 return err;
582
583 err = wait_for_lmem_ready(xe);
584 if (err)
585 return err;
586
587 xe->wedged.mode = xe_modparam.wedged_mode;
588
589 return 0;
590 }
591
xe_device_set_has_flat_ccs(struct xe_device * xe)592 static int xe_device_set_has_flat_ccs(struct xe_device *xe)
593 {
594 u32 reg;
595 int err;
596
597 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
598 return 0;
599
600 struct xe_gt *gt = xe_root_mmio_gt(xe);
601
602 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
603 if (err)
604 return err;
605
606 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
607 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
608
609 if (!xe->info.has_flat_ccs)
610 drm_dbg(&xe->drm,
611 "Flat CCS has been disabled in bios, May lead to performance impact");
612
613 return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
614 }
615
xe_device_probe(struct xe_device * xe)616 int xe_device_probe(struct xe_device *xe)
617 {
618 struct xe_tile *tile;
619 struct xe_gt *gt;
620 int err;
621 u8 last_gt;
622 u8 id;
623
624 xe_pat_init_early(xe);
625
626 err = xe_sriov_init(xe);
627 if (err)
628 return err;
629
630 xe->info.mem_region_mask = 1;
631 err = xe_display_init_nommio(xe);
632 if (err)
633 return err;
634
635 err = xe_set_dma_info(xe);
636 if (err)
637 return err;
638
639 err = xe_mmio_probe_tiles(xe);
640 if (err)
641 return err;
642
643 xe_ttm_sys_mgr_init(xe);
644
645 for_each_gt(gt, xe, id) {
646 err = xe_gt_init_early(gt);
647 if (err)
648 return err;
649 }
650
651 for_each_tile(tile, xe, id) {
652 if (IS_SRIOV_VF(xe)) {
653 xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
654 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
655 if (err)
656 return err;
657 err = xe_gt_sriov_vf_query_config(tile->primary_gt);
658 if (err)
659 return err;
660 }
661 err = xe_ggtt_init_early(tile->mem.ggtt);
662 if (err)
663 return err;
664 if (IS_SRIOV_VF(xe)) {
665 err = xe_memirq_init(&tile->sriov.vf.memirq);
666 if (err)
667 return err;
668 }
669 }
670
671 for_each_gt(gt, xe, id) {
672 err = xe_gt_init_hwconfig(gt);
673 if (err)
674 return err;
675 }
676
677 err = xe_devcoredump_init(xe);
678 if (err)
679 return err;
680 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
681 if (err)
682 return err;
683
684 err = xe_display_init_noirq(xe);
685 if (err)
686 return err;
687
688 err = xe_irq_install(xe);
689 if (err)
690 goto err;
691
692 err = xe_device_set_has_flat_ccs(xe);
693 if (err)
694 goto err;
695
696 err = xe_vram_probe(xe);
697 if (err)
698 goto err;
699
700 for_each_tile(tile, xe, id) {
701 err = xe_tile_init_noalloc(tile);
702 if (err)
703 goto err;
704 }
705
706 /* Allocate and map stolen after potential VRAM resize */
707 xe_ttm_stolen_mgr_init(xe);
708
709 /*
710 * Now that GT is initialized (TTM in particular),
711 * we can try to init display, and inherit the initial fb.
712 * This is the reason the first allocation needs to be done
713 * inside display.
714 */
715 err = xe_display_init_noaccel(xe);
716 if (err)
717 goto err;
718
719 for_each_gt(gt, xe, id) {
720 last_gt = id;
721
722 err = xe_gt_init(gt);
723 if (err)
724 goto err_fini_gt;
725 }
726
727 xe_heci_gsc_init(xe);
728
729 err = xe_oa_init(xe);
730 if (err)
731 goto err_fini_gt;
732
733 err = xe_display_init(xe);
734 if (err)
735 goto err_fini_oa;
736
737 err = drm_dev_register(&xe->drm, 0);
738 if (err)
739 goto err_fini_display;
740
741 xe_display_register(xe);
742
743 xe_oa_register(xe);
744
745 xe_debugfs_register(xe);
746
747 xe_hwmon_register(xe);
748
749 for_each_gt(gt, xe, id)
750 xe_gt_sanitize_freq(gt);
751
752 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
753
754 err_fini_display:
755 xe_display_driver_remove(xe);
756
757 err_fini_oa:
758 xe_oa_fini(xe);
759
760 err_fini_gt:
761 for_each_gt(gt, xe, id) {
762 if (id < last_gt)
763 xe_gt_remove(gt);
764 else
765 break;
766 }
767
768 err:
769 xe_display_fini(xe);
770 return err;
771 }
772
xe_device_remove_display(struct xe_device * xe)773 static void xe_device_remove_display(struct xe_device *xe)
774 {
775 xe_display_unregister(xe);
776
777 drm_dev_unplug(&xe->drm);
778 xe_display_driver_remove(xe);
779 }
780
xe_device_remove(struct xe_device * xe)781 void xe_device_remove(struct xe_device *xe)
782 {
783 struct xe_gt *gt;
784 u8 id;
785
786 xe_oa_unregister(xe);
787
788 xe_device_remove_display(xe);
789
790 xe_display_fini(xe);
791
792 xe_oa_fini(xe);
793
794 xe_heci_gsc_fini(xe);
795
796 for_each_gt(gt, xe, id)
797 xe_gt_remove(gt);
798 }
799
xe_device_shutdown(struct xe_device * xe)800 void xe_device_shutdown(struct xe_device *xe)
801 {
802 }
803
804 /**
805 * xe_device_wmb() - Device specific write memory barrier
806 * @xe: the &xe_device
807 *
808 * While wmb() is sufficient for a barrier if we use system memory, on discrete
809 * platforms with device memory we additionally need to issue a register write.
810 * Since it doesn't matter which register we write to, use the read-only VF_CAP
811 * register that is also marked as accessible by the VFs.
812 */
xe_device_wmb(struct xe_device * xe)813 void xe_device_wmb(struct xe_device *xe)
814 {
815 struct xe_gt *gt = xe_root_mmio_gt(xe);
816
817 wmb();
818 if (IS_DGFX(xe))
819 xe_mmio_write32(gt, VF_CAP_REG, 0);
820 }
821
822 /**
823 * xe_device_td_flush() - Flush transient L3 cache entries
824 * @xe: The device
825 *
826 * Display engine has direct access to memory and is never coherent with L3/L4
827 * caches (or CPU caches), however KMD is responsible for specifically flushing
828 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
829 * can happen from such a surface without seeing corruption.
830 *
831 * Display surfaces can be tagged as transient by mapping it using one of the
832 * various L3:XD PAT index modes on Xe2.
833 *
834 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
835 * at the end of each submission via PIPE_CONTROL for compute/render, since SA
836 * Media is not coherent with L3 and we want to support render-vs-media
837 * usescases. For other engines like copy/blt the HW internally forces uncached
838 * behaviour, hence why we can skip the TDF on such platforms.
839 */
xe_device_td_flush(struct xe_device * xe)840 void xe_device_td_flush(struct xe_device *xe)
841 {
842 struct xe_gt *gt;
843 u8 id;
844
845 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
846 return;
847
848 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
849 xe_device_l2_flush(xe);
850 return;
851 }
852
853 for_each_gt(gt, xe, id) {
854 if (xe_gt_is_media_type(gt))
855 continue;
856
857 if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT))
858 return;
859
860 xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
861 /*
862 * FIXME: We can likely do better here with our choice of
863 * timeout. Currently we just assume the worst case, i.e. 150us,
864 * which is believed to be sufficient to cover the worst case
865 * scenario on current platforms if all cache entries are
866 * transient and need to be flushed..
867 */
868 if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
869 150, NULL, false))
870 xe_gt_err_once(gt, "TD flush timeout\n");
871
872 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
873 }
874 }
875
xe_device_l2_flush(struct xe_device * xe)876 void xe_device_l2_flush(struct xe_device *xe)
877 {
878 struct xe_gt *gt;
879 int err;
880
881 gt = xe_root_mmio_gt(xe);
882
883 if (!XE_WA(gt, 16023588340))
884 return;
885
886 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
887 if (err)
888 return;
889
890 spin_lock(>->global_invl_lock);
891 xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1);
892
893 if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
894 xe_gt_err_once(gt, "Global invalidation timeout\n");
895 spin_unlock(>->global_invl_lock);
896
897 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
898 }
899
xe_device_ccs_bytes(struct xe_device * xe,u64 size)900 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
901 {
902 return xe_device_has_flat_ccs(xe) ?
903 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
904 }
905
906 /**
907 * xe_device_assert_mem_access - Inspect the current runtime_pm state.
908 * @xe: xe device instance
909 *
910 * To be used before any kind of memory access. It will splat a debug warning
911 * if the device is currently sleeping. But it doesn't guarantee in any way
912 * that the device is going to remain awake. Xe PM runtime get and put
913 * functions might be added to the outer bound of the memory access, while
914 * this check is intended for inner usage to splat some warning if the worst
915 * case has just happened.
916 */
xe_device_assert_mem_access(struct xe_device * xe)917 void xe_device_assert_mem_access(struct xe_device *xe)
918 {
919 xe_assert(xe, !xe_pm_runtime_suspended(xe));
920 }
921
xe_device_snapshot_print(struct xe_device * xe,struct drm_printer * p)922 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
923 {
924 struct xe_gt *gt;
925 u8 id;
926
927 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
928 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
929
930 for_each_gt(gt, xe, id) {
931 drm_printf(p, "GT id: %u\n", id);
932 drm_printf(p, "\tType: %s\n",
933 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
934 drm_printf(p, "\tIP ver: %u.%u.%u\n",
935 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
936 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
937 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
938 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
939 }
940 }
941
xe_device_canonicalize_addr(struct xe_device * xe,u64 address)942 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
943 {
944 return sign_extend64(address, xe->info.va_bits - 1);
945 }
946
xe_device_uncanonicalize_addr(struct xe_device * xe,u64 address)947 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
948 {
949 return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
950 }
951
xe_device_wedged_fini(struct drm_device * drm,void * arg)952 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
953 {
954 struct xe_device *xe = arg;
955
956 xe_pm_runtime_put(xe);
957 }
958
959 /**
960 * xe_device_declare_wedged - Declare device wedged
961 * @xe: xe device instance
962 *
963 * This is a final state that can only be cleared with a mudule
964 * re-probe (unbind + bind).
965 * In this state every IOCTL will be blocked so the GT cannot be used.
966 * In general it will be called upon any critical error such as gt reset
967 * failure or guc loading failure.
968 * If xe.wedged module parameter is set to 2, this function will be called
969 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
970 * snapshot capture. In this mode, GT reset won't be attempted so the state of
971 * the issue is preserved for further debugging.
972 */
xe_device_declare_wedged(struct xe_device * xe)973 void xe_device_declare_wedged(struct xe_device *xe)
974 {
975 struct xe_gt *gt;
976 u8 id;
977
978 if (xe->wedged.mode == 0) {
979 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
980 return;
981 }
982
983 xe_pm_runtime_get_noresume(xe);
984
985 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
986 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
987 return;
988 }
989
990 if (!atomic_xchg(&xe->wedged.flag, 1)) {
991 xe->needs_flr_on_fini = true;
992 drm_err(&xe->drm,
993 "CRITICAL: Xe has declared device %s as wedged.\n"
994 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
995 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
996 dev_name(xe->drm.dev));
997 }
998
999 for_each_gt(gt, xe, id)
1000 xe_gt_declare_wedged(gt);
1001 }
1002