xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 42b16d3ac371a2fac9b6f08fd75f23f34ba3955a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/delay.h>
9 #include <linux/units.h>
10 
11 #include <drm/drm_aperture.h>
12 #include <drm/drm_atomic_helper.h>
13 #include <drm/drm_client.h>
14 #include <drm/drm_gem_ttm_helper.h>
15 #include <drm/drm_ioctl.h>
16 #include <drm/drm_managed.h>
17 #include <drm/drm_print.h>
18 #include <uapi/drm/xe_drm.h>
19 
20 #include "display/xe_display.h"
21 #include "instructions/xe_gpu_commands.h"
22 #include "regs/xe_gt_regs.h"
23 #include "regs/xe_regs.h"
24 #include "xe_bo.h"
25 #include "xe_debugfs.h"
26 #include "xe_devcoredump.h"
27 #include "xe_dma_buf.h"
28 #include "xe_drm_client.h"
29 #include "xe_drv.h"
30 #include "xe_exec.h"
31 #include "xe_exec_queue.h"
32 #include "xe_force_wake.h"
33 #include "xe_ggtt.h"
34 #include "xe_gsc_proxy.h"
35 #include "xe_gt.h"
36 #include "xe_gt_mcr.h"
37 #include "xe_gt_printk.h"
38 #include "xe_gt_sriov_vf.h"
39 #include "xe_guc.h"
40 #include "xe_hw_engine_group.h"
41 #include "xe_hwmon.h"
42 #include "xe_irq.h"
43 #include "xe_memirq.h"
44 #include "xe_mmio.h"
45 #include "xe_module.h"
46 #include "xe_observation.h"
47 #include "xe_pat.h"
48 #include "xe_pcode.h"
49 #include "xe_pm.h"
50 #include "xe_query.h"
51 #include "xe_sriov.h"
52 #include "xe_tile.h"
53 #include "xe_ttm_stolen_mgr.h"
54 #include "xe_ttm_sys_mgr.h"
55 #include "xe_vm.h"
56 #include "xe_vram.h"
57 #include "xe_wait_user_fence.h"
58 #include "xe_wa.h"
59 
60 #include <generated/xe_wa_oob.h>
61 
xe_file_open(struct drm_device * dev,struct drm_file * file)62 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
63 {
64 	struct xe_device *xe = to_xe_device(dev);
65 	struct xe_drm_client *client;
66 	struct xe_file *xef;
67 	int ret = -ENOMEM;
68 	struct task_struct *task = NULL;
69 
70 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
71 	if (!xef)
72 		return ret;
73 
74 	client = xe_drm_client_alloc();
75 	if (!client) {
76 		kfree(xef);
77 		return ret;
78 	}
79 
80 	xef->drm = file;
81 	xef->client = client;
82 	xef->xe = xe;
83 
84 	mutex_init(&xef->vm.lock);
85 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
86 
87 	mutex_init(&xef->exec_queue.lock);
88 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
89 
90 	spin_lock(&xe->clients.lock);
91 	xe->clients.count++;
92 	spin_unlock(&xe->clients.lock);
93 
94 	file->driver_priv = xef;
95 	kref_init(&xef->refcount);
96 
97 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
98 	if (task) {
99 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
100 		xef->pid = task->pid;
101 		put_task_struct(task);
102 	}
103 
104 	return 0;
105 }
106 
xe_file_destroy(struct kref * ref)107 static void xe_file_destroy(struct kref *ref)
108 {
109 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
110 	struct xe_device *xe = xef->xe;
111 
112 	xa_destroy(&xef->exec_queue.xa);
113 	mutex_destroy(&xef->exec_queue.lock);
114 	xa_destroy(&xef->vm.xa);
115 	mutex_destroy(&xef->vm.lock);
116 
117 	spin_lock(&xe->clients.lock);
118 	xe->clients.count--;
119 	spin_unlock(&xe->clients.lock);
120 
121 	xe_drm_client_put(xef->client);
122 	kfree(xef->process_name);
123 	kfree(xef);
124 }
125 
126 /**
127  * xe_file_get() - Take a reference to the xe file object
128  * @xef: Pointer to the xe file
129  *
130  * Anyone with a pointer to xef must take a reference to the xe file
131  * object using this call.
132  *
133  * Return: xe file pointer
134  */
xe_file_get(struct xe_file * xef)135 struct xe_file *xe_file_get(struct xe_file *xef)
136 {
137 	kref_get(&xef->refcount);
138 	return xef;
139 }
140 
141 /**
142  * xe_file_put() - Drop a reference to the xe file object
143  * @xef: Pointer to the xe file
144  *
145  * Used to drop reference to the xef object
146  */
xe_file_put(struct xe_file * xef)147 void xe_file_put(struct xe_file *xef)
148 {
149 	kref_put(&xef->refcount, xe_file_destroy);
150 }
151 
xe_file_close(struct drm_device * dev,struct drm_file * file)152 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
153 {
154 	struct xe_device *xe = to_xe_device(dev);
155 	struct xe_file *xef = file->driver_priv;
156 	struct xe_vm *vm;
157 	struct xe_exec_queue *q;
158 	unsigned long idx;
159 
160 	xe_pm_runtime_get(xe);
161 
162 	/*
163 	 * No need for exec_queue.lock here as there is no contention for it
164 	 * when FD is closing as IOCTLs presumably can't be modifying the
165 	 * xarray. Taking exec_queue.lock here causes undue dependency on
166 	 * vm->lock taken during xe_exec_queue_kill().
167 	 */
168 	xa_for_each(&xef->exec_queue.xa, idx, q) {
169 		if (q->vm && q->hwe->hw_engine_group)
170 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
171 		xe_exec_queue_kill(q);
172 		xe_exec_queue_put(q);
173 	}
174 	mutex_lock(&xef->vm.lock);
175 	xa_for_each(&xef->vm.xa, idx, vm)
176 		xe_vm_close_and_put(vm);
177 	mutex_unlock(&xef->vm.lock);
178 
179 	xe_file_put(xef);
180 
181 	xe_pm_runtime_put(xe);
182 }
183 
184 static const struct drm_ioctl_desc xe_ioctls[] = {
185 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
186 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
188 			  DRM_RENDER_ALLOW),
189 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
194 			  DRM_RENDER_ALLOW),
195 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
196 			  DRM_RENDER_ALLOW),
197 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
198 			  DRM_RENDER_ALLOW),
199 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
200 			  DRM_RENDER_ALLOW),
201 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
202 };
203 
xe_drm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)204 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
205 {
206 	struct drm_file *file_priv = file->private_data;
207 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
208 	long ret;
209 
210 	if (xe_device_wedged(xe))
211 		return -ECANCELED;
212 
213 	ret = xe_pm_runtime_get_ioctl(xe);
214 	if (ret >= 0)
215 		ret = drm_ioctl(file, cmd, arg);
216 	xe_pm_runtime_put(xe);
217 
218 	return ret;
219 }
220 
221 #ifdef CONFIG_COMPAT
xe_drm_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)222 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
223 {
224 	struct drm_file *file_priv = file->private_data;
225 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
226 	long ret;
227 
228 	if (xe_device_wedged(xe))
229 		return -ECANCELED;
230 
231 	ret = xe_pm_runtime_get_ioctl(xe);
232 	if (ret >= 0)
233 		ret = drm_compat_ioctl(file, cmd, arg);
234 	xe_pm_runtime_put(xe);
235 
236 	return ret;
237 }
238 #else
239 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
240 #define xe_drm_compat_ioctl NULL
241 #endif
242 
243 static const struct file_operations xe_driver_fops = {
244 	.owner = THIS_MODULE,
245 	.open = drm_open,
246 	.release = drm_release_noglobal,
247 	.unlocked_ioctl = xe_drm_ioctl,
248 	.mmap = drm_gem_mmap,
249 	.poll = drm_poll,
250 	.read = drm_read,
251 	.compat_ioctl = xe_drm_compat_ioctl,
252 	.llseek = noop_llseek,
253 #ifdef CONFIG_PROC_FS
254 	.show_fdinfo = drm_show_fdinfo,
255 #endif
256 	.fop_flags = FOP_UNSIGNED_OFFSET,
257 };
258 
259 static struct drm_driver driver = {
260 	/* Don't use MTRRs here; the Xserver or userspace app should
261 	 * deal with them for Intel hardware.
262 	 */
263 	.driver_features =
264 	    DRIVER_GEM |
265 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
266 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
267 	.open = xe_file_open,
268 	.postclose = xe_file_close,
269 
270 	.gem_prime_import = xe_gem_prime_import,
271 
272 	.dumb_create = xe_bo_dumb_create,
273 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
274 #ifdef CONFIG_PROC_FS
275 	.show_fdinfo = xe_drm_client_fdinfo,
276 #endif
277 	.ioctls = xe_ioctls,
278 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
279 	.fops = &xe_driver_fops,
280 	.name = DRIVER_NAME,
281 	.desc = DRIVER_DESC,
282 	.date = DRIVER_DATE,
283 	.major = DRIVER_MAJOR,
284 	.minor = DRIVER_MINOR,
285 	.patchlevel = DRIVER_PATCHLEVEL,
286 };
287 
xe_device_destroy(struct drm_device * dev,void * dummy)288 static void xe_device_destroy(struct drm_device *dev, void *dummy)
289 {
290 	struct xe_device *xe = to_xe_device(dev);
291 
292 	if (xe->preempt_fence_wq)
293 		destroy_workqueue(xe->preempt_fence_wq);
294 
295 	if (xe->ordered_wq)
296 		destroy_workqueue(xe->ordered_wq);
297 
298 	if (xe->unordered_wq)
299 		destroy_workqueue(xe->unordered_wq);
300 
301 	ttm_device_fini(&xe->ttm);
302 }
303 
xe_device_create(struct pci_dev * pdev,const struct pci_device_id * ent)304 struct xe_device *xe_device_create(struct pci_dev *pdev,
305 				   const struct pci_device_id *ent)
306 {
307 	struct xe_device *xe;
308 	int err;
309 
310 	xe_display_driver_set_hooks(&driver);
311 
312 	err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
313 	if (err)
314 		return ERR_PTR(err);
315 
316 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
317 	if (IS_ERR(xe))
318 		return xe;
319 
320 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
321 			      xe->drm.anon_inode->i_mapping,
322 			      xe->drm.vma_offset_manager, false, false);
323 	if (WARN_ON(err))
324 		goto err;
325 
326 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
327 	if (err)
328 		goto err;
329 
330 	xe->info.devid = pdev->device;
331 	xe->info.revid = pdev->revision;
332 	xe->info.force_execlist = xe_modparam.force_execlist;
333 
334 	spin_lock_init(&xe->irq.lock);
335 	spin_lock_init(&xe->clients.lock);
336 
337 	init_waitqueue_head(&xe->ufence_wq);
338 
339 	err = drmm_mutex_init(&xe->drm, &xe->usm.lock);
340 	if (err)
341 		goto err;
342 
343 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
344 
345 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
346 		/* Trigger a large asid and an early asid wrap. */
347 		u32 asid;
348 
349 		BUILD_BUG_ON(XE_MAX_ASID < 2);
350 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
351 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
352 				      &xe->usm.next_asid, GFP_KERNEL);
353 		drm_WARN_ON(&xe->drm, err);
354 		if (err >= 0)
355 			xa_erase(&xe->usm.asid_to_vm, asid);
356 	}
357 
358 	spin_lock_init(&xe->pinned.lock);
359 	INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
360 	INIT_LIST_HEAD(&xe->pinned.external_vram);
361 	INIT_LIST_HEAD(&xe->pinned.evicted);
362 
363 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0);
364 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
365 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
366 	if (!xe->ordered_wq || !xe->unordered_wq ||
367 	    !xe->preempt_fence_wq) {
368 		/*
369 		 * Cleanup done in xe_device_destroy via
370 		 * drmm_add_action_or_reset register above
371 		 */
372 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
373 		err = -ENOMEM;
374 		goto err;
375 	}
376 
377 	err = xe_display_create(xe);
378 	if (WARN_ON(err))
379 		goto err;
380 
381 	return xe;
382 
383 err:
384 	return ERR_PTR(err);
385 }
386 
387 /*
388  * The driver-initiated FLR is the highest level of reset that we can trigger
389  * from within the driver. It is different from the PCI FLR in that it doesn't
390  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
391  * it doesn't require a re-enumeration of the PCI BARs. However, the
392  * driver-initiated FLR does still cause a reset of both GT and display and a
393  * memory wipe of local and stolen memory, so recovery would require a full HW
394  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
395  * perform the FLR as the very last action before releasing access to the HW
396  * during the driver release flow, we don't attempt recovery at all, because
397  * if/when a new instance of i915 is bound to the device it will do a full
398  * re-init anyway.
399  */
xe_driver_flr(struct xe_device * xe)400 static void xe_driver_flr(struct xe_device *xe)
401 {
402 	const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
403 	struct xe_gt *gt = xe_root_mmio_gt(xe);
404 	int ret;
405 
406 	if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
407 		drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
408 		return;
409 	}
410 
411 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
412 
413 	/*
414 	 * Make sure any pending FLR requests have cleared by waiting for the
415 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
416 	 * to make sure it's not still set from a prior attempt (it's a write to
417 	 * clear bit).
418 	 * Note that we should never be in a situation where a previous attempt
419 	 * is still pending (unless the HW is totally dead), but better to be
420 	 * safe in case something unexpected happens
421 	 */
422 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
423 	if (ret) {
424 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
425 		return;
426 	}
427 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
428 
429 	/* Trigger the actual Driver-FLR */
430 	xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
431 
432 	/* Wait for hardware teardown to complete */
433 	ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
434 	if (ret) {
435 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
436 		return;
437 	}
438 
439 	/* Wait for hardware/firmware re-init to complete */
440 	ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
441 			     flr_timeout, NULL, false);
442 	if (ret) {
443 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
444 		return;
445 	}
446 
447 	/* Clear sticky completion status */
448 	xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
449 }
450 
xe_driver_flr_fini(void * arg)451 static void xe_driver_flr_fini(void *arg)
452 {
453 	struct xe_device *xe = arg;
454 
455 	if (xe->needs_flr_on_fini)
456 		xe_driver_flr(xe);
457 }
458 
xe_device_sanitize(void * arg)459 static void xe_device_sanitize(void *arg)
460 {
461 	struct xe_device *xe = arg;
462 	struct xe_gt *gt;
463 	u8 id;
464 
465 	for_each_gt(gt, xe, id)
466 		xe_gt_sanitize(gt);
467 }
468 
xe_set_dma_info(struct xe_device * xe)469 static int xe_set_dma_info(struct xe_device *xe)
470 {
471 	unsigned int mask_size = xe->info.dma_mask_size;
472 	int err;
473 
474 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
475 
476 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
477 	if (err)
478 		goto mask_err;
479 
480 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
481 	if (err)
482 		goto mask_err;
483 
484 	return 0;
485 
486 mask_err:
487 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
488 	return err;
489 }
490 
verify_lmem_ready(struct xe_gt * gt)491 static bool verify_lmem_ready(struct xe_gt *gt)
492 {
493 	u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT;
494 
495 	return !!val;
496 }
497 
wait_for_lmem_ready(struct xe_device * xe)498 static int wait_for_lmem_ready(struct xe_device *xe)
499 {
500 	struct xe_gt *gt = xe_root_mmio_gt(xe);
501 	unsigned long timeout, start;
502 
503 	if (!IS_DGFX(xe))
504 		return 0;
505 
506 	if (IS_SRIOV_VF(xe))
507 		return 0;
508 
509 	if (verify_lmem_ready(gt))
510 		return 0;
511 
512 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
513 
514 	start = jiffies;
515 	timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
516 
517 	do {
518 		if (signal_pending(current))
519 			return -EINTR;
520 
521 		/*
522 		 * The boot firmware initializes local memory and
523 		 * assesses its health. If memory training fails,
524 		 * the punit will have been instructed to keep the GT powered
525 		 * down.we won't be able to communicate with it
526 		 *
527 		 * If the status check is done before punit updates the register,
528 		 * it can lead to the system being unusable.
529 		 * use a timeout and defer the probe to prevent this.
530 		 */
531 		if (time_after(jiffies, timeout)) {
532 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
533 			return -EPROBE_DEFER;
534 		}
535 
536 		msleep(20);
537 
538 	} while (!verify_lmem_ready(gt));
539 
540 	drm_dbg(&xe->drm, "lmem ready after %ums",
541 		jiffies_to_msecs(jiffies - start));
542 
543 	return 0;
544 }
545 
update_device_info(struct xe_device * xe)546 static void update_device_info(struct xe_device *xe)
547 {
548 	/* disable features that are not available/applicable to VFs */
549 	if (IS_SRIOV_VF(xe)) {
550 		xe->info.probe_display = 0;
551 		xe->info.has_heci_gscfi = 0;
552 		xe->info.skip_guc_pc = 1;
553 		xe->info.skip_pcode = 1;
554 	}
555 }
556 
557 /**
558  * xe_device_probe_early: Device early probe
559  * @xe: xe device instance
560  *
561  * Initialize MMIO resources that don't require any
562  * knowledge about tile count. Also initialize pcode and
563  * check vram initialization on root tile.
564  *
565  * Return: 0 on success, error code on failure
566  */
xe_device_probe_early(struct xe_device * xe)567 int xe_device_probe_early(struct xe_device *xe)
568 {
569 	int err;
570 
571 	err = xe_mmio_init(xe);
572 	if (err)
573 		return err;
574 
575 	xe_sriov_probe_early(xe);
576 
577 	update_device_info(xe);
578 
579 	err = xe_pcode_probe_early(xe);
580 	if (err)
581 		return err;
582 
583 	err = wait_for_lmem_ready(xe);
584 	if (err)
585 		return err;
586 
587 	xe->wedged.mode = xe_modparam.wedged_mode;
588 
589 	return 0;
590 }
591 
xe_device_set_has_flat_ccs(struct xe_device * xe)592 static int xe_device_set_has_flat_ccs(struct  xe_device *xe)
593 {
594 	u32 reg;
595 	int err;
596 
597 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
598 		return 0;
599 
600 	struct xe_gt *gt = xe_root_mmio_gt(xe);
601 
602 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
603 	if (err)
604 		return err;
605 
606 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
607 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
608 
609 	if (!xe->info.has_flat_ccs)
610 		drm_dbg(&xe->drm,
611 			"Flat CCS has been disabled in bios, May lead to performance impact");
612 
613 	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
614 }
615 
xe_device_probe(struct xe_device * xe)616 int xe_device_probe(struct xe_device *xe)
617 {
618 	struct xe_tile *tile;
619 	struct xe_gt *gt;
620 	int err;
621 	u8 last_gt;
622 	u8 id;
623 
624 	xe_pat_init_early(xe);
625 
626 	err = xe_sriov_init(xe);
627 	if (err)
628 		return err;
629 
630 	xe->info.mem_region_mask = 1;
631 	err = xe_display_init_nommio(xe);
632 	if (err)
633 		return err;
634 
635 	err = xe_set_dma_info(xe);
636 	if (err)
637 		return err;
638 
639 	err = xe_mmio_probe_tiles(xe);
640 	if (err)
641 		return err;
642 
643 	xe_ttm_sys_mgr_init(xe);
644 
645 	for_each_gt(gt, xe, id) {
646 		err = xe_gt_init_early(gt);
647 		if (err)
648 			return err;
649 	}
650 
651 	for_each_tile(tile, xe, id) {
652 		if (IS_SRIOV_VF(xe)) {
653 			xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
654 			err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
655 			if (err)
656 				return err;
657 			err = xe_gt_sriov_vf_query_config(tile->primary_gt);
658 			if (err)
659 				return err;
660 		}
661 		err = xe_ggtt_init_early(tile->mem.ggtt);
662 		if (err)
663 			return err;
664 		if (IS_SRIOV_VF(xe)) {
665 			err = xe_memirq_init(&tile->sriov.vf.memirq);
666 			if (err)
667 				return err;
668 		}
669 	}
670 
671 	for_each_gt(gt, xe, id) {
672 		err = xe_gt_init_hwconfig(gt);
673 		if (err)
674 			return err;
675 	}
676 
677 	err = xe_devcoredump_init(xe);
678 	if (err)
679 		return err;
680 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
681 	if (err)
682 		return err;
683 
684 	err = xe_display_init_noirq(xe);
685 	if (err)
686 		return err;
687 
688 	err = xe_irq_install(xe);
689 	if (err)
690 		goto err;
691 
692 	err = xe_device_set_has_flat_ccs(xe);
693 	if (err)
694 		goto err;
695 
696 	err = xe_vram_probe(xe);
697 	if (err)
698 		goto err;
699 
700 	for_each_tile(tile, xe, id) {
701 		err = xe_tile_init_noalloc(tile);
702 		if (err)
703 			goto err;
704 	}
705 
706 	/* Allocate and map stolen after potential VRAM resize */
707 	xe_ttm_stolen_mgr_init(xe);
708 
709 	/*
710 	 * Now that GT is initialized (TTM in particular),
711 	 * we can try to init display, and inherit the initial fb.
712 	 * This is the reason the first allocation needs to be done
713 	 * inside display.
714 	 */
715 	err = xe_display_init_noaccel(xe);
716 	if (err)
717 		goto err;
718 
719 	for_each_gt(gt, xe, id) {
720 		last_gt = id;
721 
722 		err = xe_gt_init(gt);
723 		if (err)
724 			goto err_fini_gt;
725 	}
726 
727 	xe_heci_gsc_init(xe);
728 
729 	err = xe_oa_init(xe);
730 	if (err)
731 		goto err_fini_gt;
732 
733 	err = xe_display_init(xe);
734 	if (err)
735 		goto err_fini_oa;
736 
737 	err = drm_dev_register(&xe->drm, 0);
738 	if (err)
739 		goto err_fini_display;
740 
741 	xe_display_register(xe);
742 
743 	xe_oa_register(xe);
744 
745 	xe_debugfs_register(xe);
746 
747 	xe_hwmon_register(xe);
748 
749 	for_each_gt(gt, xe, id)
750 		xe_gt_sanitize_freq(gt);
751 
752 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
753 
754 err_fini_display:
755 	xe_display_driver_remove(xe);
756 
757 err_fini_oa:
758 	xe_oa_fini(xe);
759 
760 err_fini_gt:
761 	for_each_gt(gt, xe, id) {
762 		if (id < last_gt)
763 			xe_gt_remove(gt);
764 		else
765 			break;
766 	}
767 
768 err:
769 	xe_display_fini(xe);
770 	return err;
771 }
772 
xe_device_remove_display(struct xe_device * xe)773 static void xe_device_remove_display(struct xe_device *xe)
774 {
775 	xe_display_unregister(xe);
776 
777 	drm_dev_unplug(&xe->drm);
778 	xe_display_driver_remove(xe);
779 }
780 
xe_device_remove(struct xe_device * xe)781 void xe_device_remove(struct xe_device *xe)
782 {
783 	struct xe_gt *gt;
784 	u8 id;
785 
786 	xe_oa_unregister(xe);
787 
788 	xe_device_remove_display(xe);
789 
790 	xe_display_fini(xe);
791 
792 	xe_oa_fini(xe);
793 
794 	xe_heci_gsc_fini(xe);
795 
796 	for_each_gt(gt, xe, id)
797 		xe_gt_remove(gt);
798 }
799 
xe_device_shutdown(struct xe_device * xe)800 void xe_device_shutdown(struct xe_device *xe)
801 {
802 }
803 
804 /**
805  * xe_device_wmb() - Device specific write memory barrier
806  * @xe: the &xe_device
807  *
808  * While wmb() is sufficient for a barrier if we use system memory, on discrete
809  * platforms with device memory we additionally need to issue a register write.
810  * Since it doesn't matter which register we write to, use the read-only VF_CAP
811  * register that is also marked as accessible by the VFs.
812  */
xe_device_wmb(struct xe_device * xe)813 void xe_device_wmb(struct xe_device *xe)
814 {
815 	struct xe_gt *gt = xe_root_mmio_gt(xe);
816 
817 	wmb();
818 	if (IS_DGFX(xe))
819 		xe_mmio_write32(gt, VF_CAP_REG, 0);
820 }
821 
822 /**
823  * xe_device_td_flush() - Flush transient L3 cache entries
824  * @xe: The device
825  *
826  * Display engine has direct access to memory and is never coherent with L3/L4
827  * caches (or CPU caches), however KMD is responsible for specifically flushing
828  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
829  * can happen from such a surface without seeing corruption.
830  *
831  * Display surfaces can be tagged as transient by mapping it using one of the
832  * various L3:XD PAT index modes on Xe2.
833  *
834  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
835  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
836  * Media is not coherent with L3 and we want to support render-vs-media
837  * usescases. For other engines like copy/blt the HW internally forces uncached
838  * behaviour, hence why we can skip the TDF on such platforms.
839  */
xe_device_td_flush(struct xe_device * xe)840 void xe_device_td_flush(struct xe_device *xe)
841 {
842 	struct xe_gt *gt;
843 	u8 id;
844 
845 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
846 		return;
847 
848 	if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
849 		xe_device_l2_flush(xe);
850 		return;
851 	}
852 
853 	for_each_gt(gt, xe, id) {
854 		if (xe_gt_is_media_type(gt))
855 			continue;
856 
857 		if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT))
858 			return;
859 
860 		xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
861 		/*
862 		 * FIXME: We can likely do better here with our choice of
863 		 * timeout. Currently we just assume the worst case, i.e. 150us,
864 		 * which is believed to be sufficient to cover the worst case
865 		 * scenario on current platforms if all cache entries are
866 		 * transient and need to be flushed..
867 		 */
868 		if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
869 				   150, NULL, false))
870 			xe_gt_err_once(gt, "TD flush timeout\n");
871 
872 		xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
873 	}
874 }
875 
xe_device_l2_flush(struct xe_device * xe)876 void xe_device_l2_flush(struct xe_device *xe)
877 {
878 	struct xe_gt *gt;
879 	int err;
880 
881 	gt = xe_root_mmio_gt(xe);
882 
883 	if (!XE_WA(gt, 16023588340))
884 		return;
885 
886 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
887 	if (err)
888 		return;
889 
890 	spin_lock(&gt->global_invl_lock);
891 	xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1);
892 
893 	if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 150, NULL, true))
894 		xe_gt_err_once(gt, "Global invalidation timeout\n");
895 	spin_unlock(&gt->global_invl_lock);
896 
897 	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
898 }
899 
xe_device_ccs_bytes(struct xe_device * xe,u64 size)900 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
901 {
902 	return xe_device_has_flat_ccs(xe) ?
903 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
904 }
905 
906 /**
907  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
908  * @xe: xe device instance
909  *
910  * To be used before any kind of memory access. It will splat a debug warning
911  * if the device is currently sleeping. But it doesn't guarantee in any way
912  * that the device is going to remain awake. Xe PM runtime get and put
913  * functions might be added to the outer bound of the memory access, while
914  * this check is intended for inner usage to splat some warning if the worst
915  * case has just happened.
916  */
xe_device_assert_mem_access(struct xe_device * xe)917 void xe_device_assert_mem_access(struct xe_device *xe)
918 {
919 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
920 }
921 
xe_device_snapshot_print(struct xe_device * xe,struct drm_printer * p)922 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
923 {
924 	struct xe_gt *gt;
925 	u8 id;
926 
927 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
928 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
929 
930 	for_each_gt(gt, xe, id) {
931 		drm_printf(p, "GT id: %u\n", id);
932 		drm_printf(p, "\tType: %s\n",
933 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
934 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
935 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
936 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
937 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
938 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
939 	}
940 }
941 
xe_device_canonicalize_addr(struct xe_device * xe,u64 address)942 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
943 {
944 	return sign_extend64(address, xe->info.va_bits - 1);
945 }
946 
xe_device_uncanonicalize_addr(struct xe_device * xe,u64 address)947 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
948 {
949 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
950 }
951 
xe_device_wedged_fini(struct drm_device * drm,void * arg)952 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
953 {
954 	struct xe_device *xe = arg;
955 
956 	xe_pm_runtime_put(xe);
957 }
958 
959 /**
960  * xe_device_declare_wedged - Declare device wedged
961  * @xe: xe device instance
962  *
963  * This is a final state that can only be cleared with a mudule
964  * re-probe (unbind + bind).
965  * In this state every IOCTL will be blocked so the GT cannot be used.
966  * In general it will be called upon any critical error such as gt reset
967  * failure or guc loading failure.
968  * If xe.wedged module parameter is set to 2, this function will be called
969  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
970  * snapshot capture. In this mode, GT reset won't be attempted so the state of
971  * the issue is preserved for further debugging.
972  */
xe_device_declare_wedged(struct xe_device * xe)973 void xe_device_declare_wedged(struct xe_device *xe)
974 {
975 	struct xe_gt *gt;
976 	u8 id;
977 
978 	if (xe->wedged.mode == 0) {
979 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
980 		return;
981 	}
982 
983 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
984 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
985 		return;
986 	}
987 
988 	xe_pm_runtime_get_noresume(xe);
989 
990 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
991 		xe->needs_flr_on_fini = true;
992 		drm_err(&xe->drm,
993 			"CRITICAL: Xe has declared device %s as wedged.\n"
994 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
995 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
996 			dev_name(xe->drm.dev));
997 	}
998 
999 	for_each_gt(gt, xe, id)
1000 		xe_gt_declare_wedged(gt);
1001 }
1002