1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_bo.h"
7
8 #include <linux/dma-buf.h>
9
10 #include <drm/drm_drv.h>
11 #include <drm/drm_gem_ttm_helper.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_device.h>
14 #include <drm/ttm/ttm_placement.h>
15 #include <drm/ttm/ttm_tt.h>
16 #include <uapi/drm/xe_drm.h>
17
18 #include "xe_device.h"
19 #include "xe_dma_buf.h"
20 #include "xe_drm_client.h"
21 #include "xe_ggtt.h"
22 #include "xe_gt.h"
23 #include "xe_map.h"
24 #include "xe_migrate.h"
25 #include "xe_pm.h"
26 #include "xe_preempt_fence.h"
27 #include "xe_res_cursor.h"
28 #include "xe_trace_bo.h"
29 #include "xe_ttm_stolen_mgr.h"
30 #include "xe_vm.h"
31
32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = {
33 [XE_PL_SYSTEM] = "system",
34 [XE_PL_TT] = "gtt",
35 [XE_PL_VRAM0] = "vram0",
36 [XE_PL_VRAM1] = "vram1",
37 [XE_PL_STOLEN] = "stolen"
38 };
39
40 static const struct ttm_place sys_placement_flags = {
41 .fpfn = 0,
42 .lpfn = 0,
43 .mem_type = XE_PL_SYSTEM,
44 .flags = 0,
45 };
46
47 static struct ttm_placement sys_placement = {
48 .num_placement = 1,
49 .placement = &sys_placement_flags,
50 };
51
52 static const struct ttm_place tt_placement_flags[] = {
53 {
54 .fpfn = 0,
55 .lpfn = 0,
56 .mem_type = XE_PL_TT,
57 .flags = TTM_PL_FLAG_DESIRED,
58 },
59 {
60 .fpfn = 0,
61 .lpfn = 0,
62 .mem_type = XE_PL_SYSTEM,
63 .flags = TTM_PL_FLAG_FALLBACK,
64 }
65 };
66
67 static struct ttm_placement tt_placement = {
68 .num_placement = 2,
69 .placement = tt_placement_flags,
70 };
71
mem_type_is_vram(u32 mem_type)72 bool mem_type_is_vram(u32 mem_type)
73 {
74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
75 }
76
resource_is_stolen_vram(struct xe_device * xe,struct ttm_resource * res)77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
78 {
79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
80 }
81
resource_is_vram(struct ttm_resource * res)82 static bool resource_is_vram(struct ttm_resource *res)
83 {
84 return mem_type_is_vram(res->mem_type);
85 }
86
xe_bo_is_vram(struct xe_bo * bo)87 bool xe_bo_is_vram(struct xe_bo *bo)
88 {
89 return resource_is_vram(bo->ttm.resource) ||
90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
91 }
92
xe_bo_is_stolen(struct xe_bo * bo)93 bool xe_bo_is_stolen(struct xe_bo *bo)
94 {
95 return bo->ttm.resource->mem_type == XE_PL_STOLEN;
96 }
97
98 /**
99 * xe_bo_has_single_placement - check if BO is placed only in one memory location
100 * @bo: The BO
101 *
102 * This function checks whether a given BO is placed in only one memory location.
103 *
104 * Returns: true if the BO is placed in a single memory location, false otherwise.
105 *
106 */
xe_bo_has_single_placement(struct xe_bo * bo)107 bool xe_bo_has_single_placement(struct xe_bo *bo)
108 {
109 return bo->placement.num_placement == 1;
110 }
111
112 /**
113 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
114 * @bo: The BO
115 *
116 * The stolen memory is accessed through the PCI BAR for both DGFX and some
117 * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
118 *
119 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
120 */
xe_bo_is_stolen_devmem(struct xe_bo * bo)121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
122 {
123 return xe_bo_is_stolen(bo) &&
124 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
125 }
126
xe_bo_is_user(struct xe_bo * bo)127 static bool xe_bo_is_user(struct xe_bo *bo)
128 {
129 return bo->flags & XE_BO_FLAG_USER;
130 }
131
132 static struct xe_migrate *
mem_type_to_migrate(struct xe_device * xe,u32 mem_type)133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
134 {
135 struct xe_tile *tile;
136
137 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
138 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
139 return tile->migrate;
140 }
141
res_to_mem_region(struct ttm_resource * res)142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
143 {
144 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
145 struct ttm_resource_manager *mgr;
146
147 xe_assert(xe, resource_is_vram(res));
148 mgr = ttm_manager_type(&xe->ttm, res->mem_type);
149 return to_xe_ttm_vram_mgr(mgr)->vram;
150 }
151
try_add_system(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
153 u32 bo_flags, u32 *c)
154 {
155 if (bo_flags & XE_BO_FLAG_SYSTEM) {
156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
157
158 bo->placements[*c] = (struct ttm_place) {
159 .mem_type = XE_PL_TT,
160 };
161 *c += 1;
162 }
163 }
164
add_vram(struct xe_device * xe,struct xe_bo * bo,struct ttm_place * places,u32 bo_flags,u32 mem_type,u32 * c)165 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
166 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
167 {
168 struct ttm_place place = { .mem_type = mem_type };
169 struct xe_mem_region *vram;
170 u64 io_size;
171
172 xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
173
174 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
175 xe_assert(xe, vram && vram->usable_size);
176 io_size = vram->io_size;
177
178 /*
179 * For eviction / restore on suspend / resume objects
180 * pinned in VRAM must be contiguous
181 */
182 if (bo_flags & (XE_BO_FLAG_PINNED |
183 XE_BO_FLAG_GGTT))
184 place.flags |= TTM_PL_FLAG_CONTIGUOUS;
185
186 if (io_size < vram->usable_size) {
187 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
188 place.fpfn = 0;
189 place.lpfn = io_size >> PAGE_SHIFT;
190 } else {
191 place.flags |= TTM_PL_FLAG_TOPDOWN;
192 }
193 }
194 places[*c] = place;
195 *c += 1;
196 }
197
try_add_vram(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
199 u32 bo_flags, u32 *c)
200 {
201 if (bo_flags & XE_BO_FLAG_VRAM0)
202 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
203 if (bo_flags & XE_BO_FLAG_VRAM1)
204 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
205 }
206
try_add_stolen(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
208 u32 bo_flags, u32 *c)
209 {
210 if (bo_flags & XE_BO_FLAG_STOLEN) {
211 xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
212
213 bo->placements[*c] = (struct ttm_place) {
214 .mem_type = XE_PL_STOLEN,
215 .flags = bo_flags & (XE_BO_FLAG_PINNED |
216 XE_BO_FLAG_GGTT) ?
217 TTM_PL_FLAG_CONTIGUOUS : 0,
218 };
219 *c += 1;
220 }
221 }
222
__xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
224 u32 bo_flags)
225 {
226 u32 c = 0;
227
228 try_add_vram(xe, bo, bo_flags, &c);
229 try_add_system(xe, bo, bo_flags, &c);
230 try_add_stolen(xe, bo, bo_flags, &c);
231
232 if (!c)
233 return -EINVAL;
234
235 bo->placement = (struct ttm_placement) {
236 .num_placement = c,
237 .placement = bo->placements,
238 };
239
240 return 0;
241 }
242
xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
244 u32 bo_flags)
245 {
246 xe_bo_assert_held(bo);
247 return __xe_bo_placement_for_flags(xe, bo, bo_flags);
248 }
249
xe_evict_flags(struct ttm_buffer_object * tbo,struct ttm_placement * placement)250 static void xe_evict_flags(struct ttm_buffer_object *tbo,
251 struct ttm_placement *placement)
252 {
253 if (!xe_bo_is_xe_bo(tbo)) {
254 /* Don't handle scatter gather BOs */
255 if (tbo->type == ttm_bo_type_sg) {
256 placement->num_placement = 0;
257 return;
258 }
259
260 *placement = sys_placement;
261 return;
262 }
263
264 /*
265 * For xe, sg bos that are evicted to system just triggers a
266 * rebind of the sg list upon subsequent validation to XE_PL_TT.
267 */
268 switch (tbo->resource->mem_type) {
269 case XE_PL_VRAM0:
270 case XE_PL_VRAM1:
271 case XE_PL_STOLEN:
272 *placement = tt_placement;
273 break;
274 case XE_PL_TT:
275 default:
276 *placement = sys_placement;
277 break;
278 }
279 }
280
281 struct xe_ttm_tt {
282 struct ttm_tt ttm;
283 struct device *dev;
284 struct sg_table sgt;
285 struct sg_table *sg;
286 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */
287 bool purgeable;
288 };
289
xe_tt_map_sg(struct ttm_tt * tt)290 static int xe_tt_map_sg(struct ttm_tt *tt)
291 {
292 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
293 unsigned long num_pages = tt->num_pages;
294 int ret;
295
296 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
297
298 if (xe_tt->sg)
299 return 0;
300
301 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
302 num_pages, 0,
303 (u64)num_pages << PAGE_SHIFT,
304 xe_sg_segment_size(xe_tt->dev),
305 GFP_KERNEL);
306 if (ret)
307 return ret;
308
309 xe_tt->sg = &xe_tt->sgt;
310 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
311 DMA_ATTR_SKIP_CPU_SYNC);
312 if (ret) {
313 sg_free_table(xe_tt->sg);
314 xe_tt->sg = NULL;
315 return ret;
316 }
317
318 return 0;
319 }
320
xe_tt_unmap_sg(struct ttm_tt * tt)321 static void xe_tt_unmap_sg(struct ttm_tt *tt)
322 {
323 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
324
325 if (xe_tt->sg) {
326 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
327 DMA_BIDIRECTIONAL, 0);
328 sg_free_table(xe_tt->sg);
329 xe_tt->sg = NULL;
330 }
331 }
332
xe_bo_sg(struct xe_bo * bo)333 struct sg_table *xe_bo_sg(struct xe_bo *bo)
334 {
335 struct ttm_tt *tt = bo->ttm.ttm;
336 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
337
338 return xe_tt->sg;
339 }
340
xe_ttm_tt_create(struct ttm_buffer_object * ttm_bo,u32 page_flags)341 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
342 u32 page_flags)
343 {
344 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
345 struct xe_device *xe = xe_bo_device(bo);
346 struct xe_ttm_tt *tt;
347 unsigned long extra_pages;
348 enum ttm_caching caching = ttm_cached;
349 int err;
350
351 tt = kzalloc(sizeof(*tt), GFP_KERNEL);
352 if (!tt)
353 return NULL;
354
355 tt->dev = xe->drm.dev;
356
357 extra_pages = 0;
358 if (xe_bo_needs_ccs_pages(bo))
359 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
360 PAGE_SIZE);
361
362 /*
363 * DGFX system memory is always WB / ttm_cached, since
364 * other caching modes are only supported on x86. DGFX
365 * GPU system memory accesses are always coherent with the
366 * CPU.
367 */
368 if (!IS_DGFX(xe)) {
369 switch (bo->cpu_caching) {
370 case DRM_XE_GEM_CPU_CACHING_WC:
371 caching = ttm_write_combined;
372 break;
373 default:
374 caching = ttm_cached;
375 break;
376 }
377
378 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
379
380 /*
381 * Display scanout is always non-coherent with the CPU cache.
382 *
383 * For Xe_LPG and beyond, PPGTT PTE lookups are also
384 * non-coherent and require a CPU:WC mapping.
385 */
386 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
387 (xe->info.graphics_verx100 >= 1270 &&
388 bo->flags & XE_BO_FLAG_PAGETABLE))
389 caching = ttm_write_combined;
390 }
391
392 if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
393 /*
394 * Valid only for internally-created buffers only, for
395 * which cpu_caching is never initialized.
396 */
397 xe_assert(xe, bo->cpu_caching == 0);
398 caching = ttm_uncached;
399 }
400
401 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
402 if (err) {
403 kfree(tt);
404 return NULL;
405 }
406
407 return &tt->ttm;
408 }
409
xe_ttm_tt_populate(struct ttm_device * ttm_dev,struct ttm_tt * tt,struct ttm_operation_ctx * ctx)410 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
411 struct ttm_operation_ctx *ctx)
412 {
413 int err;
414
415 /*
416 * dma-bufs are not populated with pages, and the dma-
417 * addresses are set up when moved to XE_PL_TT.
418 */
419 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
420 return 0;
421
422 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
423 if (err)
424 return err;
425
426 return err;
427 }
428
xe_ttm_tt_unpopulate(struct ttm_device * ttm_dev,struct ttm_tt * tt)429 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
430 {
431 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
432 return;
433
434 xe_tt_unmap_sg(tt);
435
436 return ttm_pool_free(&ttm_dev->pool, tt);
437 }
438
xe_ttm_tt_destroy(struct ttm_device * ttm_dev,struct ttm_tt * tt)439 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
440 {
441 ttm_tt_fini(tt);
442 kfree(tt);
443 }
444
xe_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)445 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
446 struct ttm_resource *mem)
447 {
448 struct xe_device *xe = ttm_to_xe_device(bdev);
449
450 switch (mem->mem_type) {
451 case XE_PL_SYSTEM:
452 case XE_PL_TT:
453 return 0;
454 case XE_PL_VRAM0:
455 case XE_PL_VRAM1: {
456 struct xe_ttm_vram_mgr_resource *vres =
457 to_xe_ttm_vram_mgr_resource(mem);
458 struct xe_mem_region *vram = res_to_mem_region(mem);
459
460 if (vres->used_visible_size < mem->size)
461 return -EINVAL;
462
463 mem->bus.offset = mem->start << PAGE_SHIFT;
464
465 if (vram->mapping &&
466 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
467 mem->bus.addr = (u8 __force *)vram->mapping +
468 mem->bus.offset;
469
470 mem->bus.offset += vram->io_start;
471 mem->bus.is_iomem = true;
472
473 #if !IS_ENABLED(CONFIG_X86)
474 mem->bus.caching = ttm_write_combined;
475 #endif
476 return 0;
477 } case XE_PL_STOLEN:
478 return xe_ttm_stolen_io_mem_reserve(xe, mem);
479 default:
480 return -EINVAL;
481 }
482 }
483
xe_bo_trigger_rebind(struct xe_device * xe,struct xe_bo * bo,const struct ttm_operation_ctx * ctx)484 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
485 const struct ttm_operation_ctx *ctx)
486 {
487 struct dma_resv_iter cursor;
488 struct dma_fence *fence;
489 struct drm_gem_object *obj = &bo->ttm.base;
490 struct drm_gpuvm_bo *vm_bo;
491 bool idle = false;
492 int ret = 0;
493
494 dma_resv_assert_held(bo->ttm.base.resv);
495
496 if (!list_empty(&bo->ttm.base.gpuva.list)) {
497 dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
498 DMA_RESV_USAGE_BOOKKEEP);
499 dma_resv_for_each_fence_unlocked(&cursor, fence)
500 dma_fence_enable_sw_signaling(fence);
501 dma_resv_iter_end(&cursor);
502 }
503
504 drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
505 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
506 struct drm_gpuva *gpuva;
507
508 if (!xe_vm_in_fault_mode(vm)) {
509 drm_gpuvm_bo_evict(vm_bo, true);
510 continue;
511 }
512
513 if (!idle) {
514 long timeout;
515
516 if (ctx->no_wait_gpu &&
517 !dma_resv_test_signaled(bo->ttm.base.resv,
518 DMA_RESV_USAGE_BOOKKEEP))
519 return -EBUSY;
520
521 timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
522 DMA_RESV_USAGE_BOOKKEEP,
523 ctx->interruptible,
524 MAX_SCHEDULE_TIMEOUT);
525 if (!timeout)
526 return -ETIME;
527 if (timeout < 0)
528 return timeout;
529
530 idle = true;
531 }
532
533 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
534 struct xe_vma *vma = gpuva_to_vma(gpuva);
535
536 trace_xe_vma_evict(vma);
537 ret = xe_vm_invalidate_vma(vma);
538 if (XE_WARN_ON(ret))
539 return ret;
540 }
541 }
542
543 return ret;
544 }
545
546 /*
547 * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
548 * Note that unmapping the attachment is deferred to the next
549 * map_attachment time, or to bo destroy (after idling) whichever comes first.
550 * This is to avoid syncing before unmap_attachment(), assuming that the
551 * caller relies on idling the reservation object before moving the
552 * backing store out. Should that assumption not hold, then we will be able
553 * to unconditionally call unmap_attachment() when moving out to system.
554 */
xe_bo_move_dmabuf(struct ttm_buffer_object * ttm_bo,struct ttm_resource * new_res)555 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
556 struct ttm_resource *new_res)
557 {
558 struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
559 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
560 ttm);
561 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
562 struct sg_table *sg;
563
564 xe_assert(xe, attach);
565 xe_assert(xe, ttm_bo->ttm);
566
567 if (new_res->mem_type == XE_PL_SYSTEM)
568 goto out;
569
570 if (ttm_bo->sg) {
571 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
572 ttm_bo->sg = NULL;
573 }
574
575 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
576 if (IS_ERR(sg))
577 return PTR_ERR(sg);
578
579 ttm_bo->sg = sg;
580 xe_tt->sg = sg;
581
582 out:
583 ttm_bo_move_null(ttm_bo, new_res);
584
585 return 0;
586 }
587
588 /**
589 * xe_bo_move_notify - Notify subsystems of a pending move
590 * @bo: The buffer object
591 * @ctx: The struct ttm_operation_ctx controlling locking and waits.
592 *
593 * This function notifies subsystems of an upcoming buffer move.
594 * Upon receiving such a notification, subsystems should schedule
595 * halting access to the underlying pages and optionally add a fence
596 * to the buffer object's dma_resv object, that signals when access is
597 * stopped. The caller will wait on all dma_resv fences before
598 * starting the move.
599 *
600 * A subsystem may commence access to the object after obtaining
601 * bindings to the new backing memory under the object lock.
602 *
603 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
604 * negative error code on error.
605 */
xe_bo_move_notify(struct xe_bo * bo,const struct ttm_operation_ctx * ctx)606 static int xe_bo_move_notify(struct xe_bo *bo,
607 const struct ttm_operation_ctx *ctx)
608 {
609 struct ttm_buffer_object *ttm_bo = &bo->ttm;
610 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
611 struct ttm_resource *old_mem = ttm_bo->resource;
612 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
613 int ret;
614
615 /*
616 * If this starts to call into many components, consider
617 * using a notification chain here.
618 */
619
620 if (xe_bo_is_pinned(bo))
621 return -EINVAL;
622
623 xe_bo_vunmap(bo);
624 ret = xe_bo_trigger_rebind(xe, bo, ctx);
625 if (ret)
626 return ret;
627
628 /* Don't call move_notify() for imported dma-bufs. */
629 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
630 dma_buf_move_notify(ttm_bo->base.dma_buf);
631
632 /*
633 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
634 * so if we moved from VRAM make sure to unlink this from the userfault
635 * tracking.
636 */
637 if (mem_type_is_vram(old_mem_type)) {
638 mutex_lock(&xe->mem_access.vram_userfault.lock);
639 if (!list_empty(&bo->vram_userfault_link))
640 list_del_init(&bo->vram_userfault_link);
641 mutex_unlock(&xe->mem_access.vram_userfault.lock);
642 }
643
644 return 0;
645 }
646
xe_bo_move(struct ttm_buffer_object * ttm_bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)647 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
648 struct ttm_operation_ctx *ctx,
649 struct ttm_resource *new_mem,
650 struct ttm_place *hop)
651 {
652 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
653 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
654 struct ttm_resource *old_mem = ttm_bo->resource;
655 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
656 struct ttm_tt *ttm = ttm_bo->ttm;
657 struct xe_migrate *migrate = NULL;
658 struct dma_fence *fence;
659 bool move_lacks_source;
660 bool tt_has_data;
661 bool needs_clear;
662 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
663 ttm && ttm_tt_is_populated(ttm)) ? true : false;
664 int ret = 0;
665
666 /* Bo creation path, moving to system or TT. */
667 if ((!old_mem && ttm) && !handle_system_ccs) {
668 if (new_mem->mem_type == XE_PL_TT)
669 ret = xe_tt_map_sg(ttm);
670 if (!ret)
671 ttm_bo_move_null(ttm_bo, new_mem);
672 goto out;
673 }
674
675 if (ttm_bo->type == ttm_bo_type_sg) {
676 ret = xe_bo_move_notify(bo, ctx);
677 if (!ret)
678 ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
679 return ret;
680 }
681
682 tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
683 (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
684
685 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
686 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
687
688 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
689 (!ttm && ttm_bo->type == ttm_bo_type_device);
690
691 if (new_mem->mem_type == XE_PL_TT) {
692 ret = xe_tt_map_sg(ttm);
693 if (ret)
694 goto out;
695 }
696
697 if ((move_lacks_source && !needs_clear)) {
698 ttm_bo_move_null(ttm_bo, new_mem);
699 goto out;
700 }
701
702 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
703 ttm_bo_move_null(ttm_bo, new_mem);
704 goto out;
705 }
706
707 /*
708 * Failed multi-hop where the old_mem is still marked as
709 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
710 */
711 if (old_mem_type == XE_PL_TT &&
712 new_mem->mem_type == XE_PL_TT) {
713 ttm_bo_move_null(ttm_bo, new_mem);
714 goto out;
715 }
716
717 if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
718 ret = xe_bo_move_notify(bo, ctx);
719 if (ret)
720 goto out;
721 }
722
723 if (old_mem_type == XE_PL_TT &&
724 new_mem->mem_type == XE_PL_SYSTEM) {
725 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
726 DMA_RESV_USAGE_BOOKKEEP,
727 true,
728 MAX_SCHEDULE_TIMEOUT);
729 if (timeout < 0) {
730 ret = timeout;
731 goto out;
732 }
733
734 if (!handle_system_ccs) {
735 ttm_bo_move_null(ttm_bo, new_mem);
736 goto out;
737 }
738 }
739
740 if (!move_lacks_source &&
741 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
742 (mem_type_is_vram(old_mem_type) &&
743 new_mem->mem_type == XE_PL_SYSTEM))) {
744 hop->fpfn = 0;
745 hop->lpfn = 0;
746 hop->mem_type = XE_PL_TT;
747 hop->flags = TTM_PL_FLAG_TEMPORARY;
748 ret = -EMULTIHOP;
749 goto out;
750 }
751
752 if (bo->tile)
753 migrate = bo->tile->migrate;
754 else if (resource_is_vram(new_mem))
755 migrate = mem_type_to_migrate(xe, new_mem->mem_type);
756 else if (mem_type_is_vram(old_mem_type))
757 migrate = mem_type_to_migrate(xe, old_mem_type);
758 else
759 migrate = xe->tiles[0].migrate;
760
761 xe_assert(xe, migrate);
762 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
763 if (xe_rpm_reclaim_safe(xe)) {
764 /*
765 * We might be called through swapout in the validation path of
766 * another TTM device, so acquire rpm here.
767 */
768 xe_pm_runtime_get(xe);
769 } else {
770 drm_WARN_ON(&xe->drm, handle_system_ccs);
771 xe_pm_runtime_get_noresume(xe);
772 }
773
774 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
775 /*
776 * Kernel memory that is pinned should only be moved on suspend
777 * / resume, some of the pinned memory is required for the
778 * device to resume / use the GPU to move other evicted memory
779 * (user memory) around. This likely could be optimized a bit
780 * futher where we find the minimum set of pinned memory
781 * required for resume but for simplity doing a memcpy for all
782 * pinned memory.
783 */
784 ret = xe_bo_vmap(bo);
785 if (!ret) {
786 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
787
788 /* Create a new VMAP once kernel BO back in VRAM */
789 if (!ret && resource_is_vram(new_mem)) {
790 struct xe_mem_region *vram = res_to_mem_region(new_mem);
791 void __iomem *new_addr = vram->mapping +
792 (new_mem->start << PAGE_SHIFT);
793
794 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
795 ret = -EINVAL;
796 xe_pm_runtime_put(xe);
797 goto out;
798 }
799
800 xe_assert(xe, new_mem->start ==
801 bo->placements->fpfn);
802
803 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
804 }
805 }
806 } else {
807 if (move_lacks_source) {
808 u32 flags = 0;
809
810 if (mem_type_is_vram(new_mem->mem_type))
811 flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
812 else if (handle_system_ccs)
813 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
814
815 fence = xe_migrate_clear(migrate, bo, new_mem, flags);
816 }
817 else
818 fence = xe_migrate_copy(migrate, bo, bo, old_mem,
819 new_mem, handle_system_ccs);
820 if (IS_ERR(fence)) {
821 ret = PTR_ERR(fence);
822 xe_pm_runtime_put(xe);
823 goto out;
824 }
825 if (!move_lacks_source) {
826 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
827 true, new_mem);
828 if (ret) {
829 dma_fence_wait(fence, false);
830 ttm_bo_move_null(ttm_bo, new_mem);
831 ret = 0;
832 }
833 } else {
834 /*
835 * ttm_bo_move_accel_cleanup() may blow up if
836 * bo->resource == NULL, so just attach the
837 * fence and set the new resource.
838 */
839 dma_resv_add_fence(ttm_bo->base.resv, fence,
840 DMA_RESV_USAGE_KERNEL);
841 ttm_bo_move_null(ttm_bo, new_mem);
842 }
843
844 dma_fence_put(fence);
845 }
846
847 xe_pm_runtime_put(xe);
848
849 out:
850 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
851 ttm_bo->ttm)
852 xe_tt_unmap_sg(ttm_bo->ttm);
853
854 return ret;
855 }
856
857 /**
858 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
859 * @bo: The buffer object to move.
860 *
861 * On successful completion, the object memory will be moved to sytem memory.
862 *
863 * This is needed to for special handling of pinned VRAM object during
864 * suspend-resume.
865 *
866 * Return: 0 on success. Negative error code on failure.
867 */
xe_bo_evict_pinned(struct xe_bo * bo)868 int xe_bo_evict_pinned(struct xe_bo *bo)
869 {
870 struct ttm_place place = {
871 .mem_type = XE_PL_TT,
872 };
873 struct ttm_placement placement = {
874 .placement = &place,
875 .num_placement = 1,
876 };
877 struct ttm_operation_ctx ctx = {
878 .interruptible = false,
879 };
880 struct ttm_resource *new_mem;
881 int ret;
882
883 xe_bo_assert_held(bo);
884
885 if (WARN_ON(!bo->ttm.resource))
886 return -EINVAL;
887
888 if (WARN_ON(!xe_bo_is_pinned(bo)))
889 return -EINVAL;
890
891 if (!xe_bo_is_vram(bo))
892 return 0;
893
894 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
895 if (ret)
896 return ret;
897
898 if (!bo->ttm.ttm) {
899 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
900 if (!bo->ttm.ttm) {
901 ret = -ENOMEM;
902 goto err_res_free;
903 }
904 }
905
906 ret = ttm_bo_populate(&bo->ttm, &ctx);
907 if (ret)
908 goto err_res_free;
909
910 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
911 if (ret)
912 goto err_res_free;
913
914 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
915 if (ret)
916 goto err_res_free;
917
918 return 0;
919
920 err_res_free:
921 ttm_resource_free(&bo->ttm, &new_mem);
922 return ret;
923 }
924
925 /**
926 * xe_bo_restore_pinned() - Restore a pinned VRAM object
927 * @bo: The buffer object to move.
928 *
929 * On successful completion, the object memory will be moved back to VRAM.
930 *
931 * This is needed to for special handling of pinned VRAM object during
932 * suspend-resume.
933 *
934 * Return: 0 on success. Negative error code on failure.
935 */
xe_bo_restore_pinned(struct xe_bo * bo)936 int xe_bo_restore_pinned(struct xe_bo *bo)
937 {
938 struct ttm_operation_ctx ctx = {
939 .interruptible = false,
940 };
941 struct ttm_resource *new_mem;
942 struct ttm_place *place = &bo->placements[0];
943 int ret;
944
945 xe_bo_assert_held(bo);
946
947 if (WARN_ON(!bo->ttm.resource))
948 return -EINVAL;
949
950 if (WARN_ON(!xe_bo_is_pinned(bo)))
951 return -EINVAL;
952
953 if (WARN_ON(xe_bo_is_vram(bo)))
954 return -EINVAL;
955
956 if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo)))
957 return -EINVAL;
958
959 if (!mem_type_is_vram(place->mem_type))
960 return 0;
961
962 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
963 if (ret)
964 return ret;
965
966 ret = ttm_bo_populate(&bo->ttm, &ctx);
967 if (ret)
968 goto err_res_free;
969
970 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
971 if (ret)
972 goto err_res_free;
973
974 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
975 if (ret)
976 goto err_res_free;
977
978 return 0;
979
980 err_res_free:
981 ttm_resource_free(&bo->ttm, &new_mem);
982 return ret;
983 }
984
xe_ttm_io_mem_pfn(struct ttm_buffer_object * ttm_bo,unsigned long page_offset)985 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
986 unsigned long page_offset)
987 {
988 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
989 struct xe_res_cursor cursor;
990 struct xe_mem_region *vram;
991
992 if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
993 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
994
995 vram = res_to_mem_region(ttm_bo->resource);
996 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
997 return (vram->io_start + cursor.start) >> PAGE_SHIFT;
998 }
999
1000 static void __xe_bo_vunmap(struct xe_bo *bo);
1001
1002 /*
1003 * TODO: Move this function to TTM so we don't rely on how TTM does its
1004 * locking, thereby abusing TTM internals.
1005 */
xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object * ttm_bo)1006 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1007 {
1008 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1009 bool locked;
1010
1011 xe_assert(xe, !kref_read(&ttm_bo->kref));
1012
1013 /*
1014 * We can typically only race with TTM trylocking under the
1015 * lru_lock, which will immediately be unlocked again since
1016 * the ttm_bo refcount is zero at this point. So trylocking *should*
1017 * always succeed here, as long as we hold the lru lock.
1018 */
1019 spin_lock(&ttm_bo->bdev->lru_lock);
1020 locked = dma_resv_trylock(ttm_bo->base.resv);
1021 spin_unlock(&ttm_bo->bdev->lru_lock);
1022 xe_assert(xe, locked);
1023
1024 return locked;
1025 }
1026
xe_ttm_bo_release_notify(struct ttm_buffer_object * ttm_bo)1027 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1028 {
1029 struct dma_resv_iter cursor;
1030 struct dma_fence *fence;
1031 struct dma_fence *replacement = NULL;
1032 struct xe_bo *bo;
1033
1034 if (!xe_bo_is_xe_bo(ttm_bo))
1035 return;
1036
1037 bo = ttm_to_xe_bo(ttm_bo);
1038 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1039
1040 /*
1041 * Corner case where TTM fails to allocate memory and this BOs resv
1042 * still points the VMs resv
1043 */
1044 if (ttm_bo->base.resv != &ttm_bo->base._resv)
1045 return;
1046
1047 if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1048 return;
1049
1050 /*
1051 * Scrub the preempt fences if any. The unbind fence is already
1052 * attached to the resv.
1053 * TODO: Don't do this for external bos once we scrub them after
1054 * unbind.
1055 */
1056 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1057 DMA_RESV_USAGE_BOOKKEEP, fence) {
1058 if (xe_fence_is_xe_preempt(fence) &&
1059 !dma_fence_is_signaled(fence)) {
1060 if (!replacement)
1061 replacement = dma_fence_get_stub();
1062
1063 dma_resv_replace_fences(ttm_bo->base.resv,
1064 fence->context,
1065 replacement,
1066 DMA_RESV_USAGE_BOOKKEEP);
1067 }
1068 }
1069 dma_fence_put(replacement);
1070
1071 dma_resv_unlock(ttm_bo->base.resv);
1072 }
1073
xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object * ttm_bo)1074 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1075 {
1076 if (!xe_bo_is_xe_bo(ttm_bo))
1077 return;
1078
1079 /*
1080 * Object is idle and about to be destroyed. Release the
1081 * dma-buf attachment.
1082 */
1083 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1084 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1085 struct xe_ttm_tt, ttm);
1086
1087 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1088 DMA_BIDIRECTIONAL);
1089 ttm_bo->sg = NULL;
1090 xe_tt->sg = NULL;
1091 }
1092 }
1093
xe_ttm_bo_purge(struct ttm_buffer_object * ttm_bo,struct ttm_operation_ctx * ctx)1094 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
1095 {
1096 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1097
1098 if (ttm_bo->ttm) {
1099 struct ttm_placement place = {};
1100 int ret = ttm_bo_validate(ttm_bo, &place, ctx);
1101
1102 drm_WARN_ON(&xe->drm, ret);
1103 }
1104 }
1105
xe_ttm_bo_swap_notify(struct ttm_buffer_object * ttm_bo)1106 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
1107 {
1108 struct ttm_operation_ctx ctx = {
1109 .interruptible = false
1110 };
1111
1112 if (ttm_bo->ttm) {
1113 struct xe_ttm_tt *xe_tt =
1114 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
1115
1116 if (xe_tt->purgeable)
1117 xe_ttm_bo_purge(ttm_bo, &ctx);
1118 }
1119 }
1120
1121 const struct ttm_device_funcs xe_ttm_funcs = {
1122 .ttm_tt_create = xe_ttm_tt_create,
1123 .ttm_tt_populate = xe_ttm_tt_populate,
1124 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1125 .ttm_tt_destroy = xe_ttm_tt_destroy,
1126 .evict_flags = xe_evict_flags,
1127 .move = xe_bo_move,
1128 .io_mem_reserve = xe_ttm_io_mem_reserve,
1129 .io_mem_pfn = xe_ttm_io_mem_pfn,
1130 .release_notify = xe_ttm_bo_release_notify,
1131 .eviction_valuable = ttm_bo_eviction_valuable,
1132 .delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1133 .swap_notify = xe_ttm_bo_swap_notify,
1134 };
1135
xe_ttm_bo_destroy(struct ttm_buffer_object * ttm_bo)1136 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1137 {
1138 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1139 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1140
1141 if (bo->ttm.base.import_attach)
1142 drm_prime_gem_destroy(&bo->ttm.base, NULL);
1143 drm_gem_object_release(&bo->ttm.base);
1144
1145 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1146
1147 if (bo->ggtt_node && bo->ggtt_node->base.size)
1148 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo);
1149
1150 #ifdef CONFIG_PROC_FS
1151 if (bo->client)
1152 xe_drm_client_remove_bo(bo);
1153 #endif
1154
1155 if (bo->vm && xe_bo_is_user(bo))
1156 xe_vm_put(bo->vm);
1157
1158 mutex_lock(&xe->mem_access.vram_userfault.lock);
1159 if (!list_empty(&bo->vram_userfault_link))
1160 list_del(&bo->vram_userfault_link);
1161 mutex_unlock(&xe->mem_access.vram_userfault.lock);
1162
1163 kfree(bo);
1164 }
1165
xe_gem_object_free(struct drm_gem_object * obj)1166 static void xe_gem_object_free(struct drm_gem_object *obj)
1167 {
1168 /* Our BO reference counting scheme works as follows:
1169 *
1170 * The gem object kref is typically used throughout the driver,
1171 * and the gem object holds a ttm_buffer_object refcount, so
1172 * that when the last gem object reference is put, which is when
1173 * we end up in this function, we put also that ttm_buffer_object
1174 * refcount. Anything using gem interfaces is then no longer
1175 * allowed to access the object in a way that requires a gem
1176 * refcount, including locking the object.
1177 *
1178 * driver ttm callbacks is allowed to use the ttm_buffer_object
1179 * refcount directly if needed.
1180 */
1181 __xe_bo_vunmap(gem_to_xe_bo(obj));
1182 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1183 }
1184
xe_gem_object_close(struct drm_gem_object * obj,struct drm_file * file_priv)1185 static void xe_gem_object_close(struct drm_gem_object *obj,
1186 struct drm_file *file_priv)
1187 {
1188 struct xe_bo *bo = gem_to_xe_bo(obj);
1189
1190 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1191 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1192
1193 xe_bo_lock(bo, false);
1194 ttm_bo_set_bulk_move(&bo->ttm, NULL);
1195 xe_bo_unlock(bo);
1196 }
1197 }
1198
xe_gem_fault(struct vm_fault * vmf)1199 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1200 {
1201 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1202 struct drm_device *ddev = tbo->base.dev;
1203 struct xe_device *xe = to_xe_device(ddev);
1204 struct xe_bo *bo = ttm_to_xe_bo(tbo);
1205 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1206 vm_fault_t ret;
1207 int idx;
1208
1209 if (needs_rpm)
1210 xe_pm_runtime_get(xe);
1211
1212 ret = ttm_bo_vm_reserve(tbo, vmf);
1213 if (ret)
1214 goto out;
1215
1216 if (drm_dev_enter(ddev, &idx)) {
1217 trace_xe_bo_cpu_fault(bo);
1218
1219 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1220 TTM_BO_VM_NUM_PREFAULT);
1221 drm_dev_exit(idx);
1222 } else {
1223 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1224 }
1225
1226 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1227 goto out;
1228 /*
1229 * ttm_bo_vm_reserve() already has dma_resv_lock.
1230 */
1231 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1232 mutex_lock(&xe->mem_access.vram_userfault.lock);
1233 if (list_empty(&bo->vram_userfault_link))
1234 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1235 mutex_unlock(&xe->mem_access.vram_userfault.lock);
1236 }
1237
1238 dma_resv_unlock(tbo->base.resv);
1239 out:
1240 if (needs_rpm)
1241 xe_pm_runtime_put(xe);
1242
1243 return ret;
1244 }
1245
1246 static const struct vm_operations_struct xe_gem_vm_ops = {
1247 .fault = xe_gem_fault,
1248 .open = ttm_bo_vm_open,
1249 .close = ttm_bo_vm_close,
1250 .access = ttm_bo_vm_access
1251 };
1252
1253 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1254 .free = xe_gem_object_free,
1255 .close = xe_gem_object_close,
1256 .mmap = drm_gem_ttm_mmap,
1257 .export = xe_gem_prime_export,
1258 .vm_ops = &xe_gem_vm_ops,
1259 };
1260
1261 /**
1262 * xe_bo_alloc - Allocate storage for a struct xe_bo
1263 *
1264 * This funcition is intended to allocate storage to be used for input
1265 * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1266 * created is needed before the call to __xe_bo_create_locked().
1267 * If __xe_bo_create_locked ends up never to be called, then the
1268 * storage allocated with this function needs to be freed using
1269 * xe_bo_free().
1270 *
1271 * Return: A pointer to an uninitialized struct xe_bo on success,
1272 * ERR_PTR(-ENOMEM) on error.
1273 */
xe_bo_alloc(void)1274 struct xe_bo *xe_bo_alloc(void)
1275 {
1276 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1277
1278 if (!bo)
1279 return ERR_PTR(-ENOMEM);
1280
1281 return bo;
1282 }
1283
1284 /**
1285 * xe_bo_free - Free storage allocated using xe_bo_alloc()
1286 * @bo: The buffer object storage.
1287 *
1288 * Refer to xe_bo_alloc() documentation for valid use-cases.
1289 */
xe_bo_free(struct xe_bo * bo)1290 void xe_bo_free(struct xe_bo *bo)
1291 {
1292 kfree(bo);
1293 }
1294
___xe_bo_create_locked(struct xe_device * xe,struct xe_bo * bo,struct xe_tile * tile,struct dma_resv * resv,struct ttm_lru_bulk_move * bulk,size_t size,u16 cpu_caching,enum ttm_bo_type type,u32 flags)1295 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1296 struct xe_tile *tile, struct dma_resv *resv,
1297 struct ttm_lru_bulk_move *bulk, size_t size,
1298 u16 cpu_caching, enum ttm_bo_type type,
1299 u32 flags)
1300 {
1301 struct ttm_operation_ctx ctx = {
1302 .interruptible = true,
1303 .no_wait_gpu = false,
1304 };
1305 struct ttm_placement *placement;
1306 uint32_t alignment;
1307 size_t aligned_size;
1308 int err;
1309
1310 /* Only kernel objects should set GT */
1311 xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1312
1313 if (XE_WARN_ON(!size)) {
1314 xe_bo_free(bo);
1315 return ERR_PTR(-EINVAL);
1316 }
1317
1318 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1319 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1320 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1321 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1322 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1323
1324 aligned_size = ALIGN(size, align);
1325 if (type != ttm_bo_type_device)
1326 size = ALIGN(size, align);
1327 flags |= XE_BO_FLAG_INTERNAL_64K;
1328 alignment = align >> PAGE_SHIFT;
1329 } else {
1330 aligned_size = ALIGN(size, SZ_4K);
1331 flags &= ~XE_BO_FLAG_INTERNAL_64K;
1332 alignment = SZ_4K >> PAGE_SHIFT;
1333 }
1334
1335 if (type == ttm_bo_type_device && aligned_size != size)
1336 return ERR_PTR(-EINVAL);
1337
1338 if (!bo) {
1339 bo = xe_bo_alloc();
1340 if (IS_ERR(bo))
1341 return bo;
1342 }
1343
1344 bo->ccs_cleared = false;
1345 bo->tile = tile;
1346 bo->size = size;
1347 bo->flags = flags;
1348 bo->cpu_caching = cpu_caching;
1349 bo->ttm.base.funcs = &xe_gem_object_funcs;
1350 bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1351 INIT_LIST_HEAD(&bo->pinned_link);
1352 #ifdef CONFIG_PROC_FS
1353 INIT_LIST_HEAD(&bo->client_link);
1354 #endif
1355 INIT_LIST_HEAD(&bo->vram_userfault_link);
1356
1357 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1358
1359 if (resv) {
1360 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1361 ctx.resv = resv;
1362 }
1363
1364 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1365 err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1366 if (WARN_ON(err)) {
1367 xe_ttm_bo_destroy(&bo->ttm);
1368 return ERR_PTR(err);
1369 }
1370 }
1371
1372 /* Defer populating type_sg bos */
1373 placement = (type == ttm_bo_type_sg ||
1374 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1375 &bo->placement;
1376 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1377 placement, alignment,
1378 &ctx, NULL, resv, xe_ttm_bo_destroy);
1379 if (err)
1380 return ERR_PTR(err);
1381
1382 /*
1383 * The VRAM pages underneath are potentially still being accessed by the
1384 * GPU, as per async GPU clearing and async evictions. However TTM makes
1385 * sure to add any corresponding move/clear fences into the objects
1386 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1387 *
1388 * For KMD internal buffers we don't care about GPU clearing, however we
1389 * still need to handle async evictions, where the VRAM is still being
1390 * accessed by the GPU. Most internal callers are not expecting this,
1391 * since they are missing the required synchronisation before accessing
1392 * the memory. To keep things simple just sync wait any kernel fences
1393 * here, if the buffer is designated KMD internal.
1394 *
1395 * For normal userspace objects we should already have the required
1396 * pipelining or sync waiting elsewhere, since we already have to deal
1397 * with things like async GPU clearing.
1398 */
1399 if (type == ttm_bo_type_kernel) {
1400 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1401 DMA_RESV_USAGE_KERNEL,
1402 ctx.interruptible,
1403 MAX_SCHEDULE_TIMEOUT);
1404
1405 if (timeout < 0) {
1406 if (!resv)
1407 dma_resv_unlock(bo->ttm.base.resv);
1408 xe_bo_put(bo);
1409 return ERR_PTR(timeout);
1410 }
1411 }
1412
1413 bo->created = true;
1414 if (bulk)
1415 ttm_bo_set_bulk_move(&bo->ttm, bulk);
1416 else
1417 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1418
1419 return bo;
1420 }
1421
__xe_bo_fixed_placement(struct xe_device * xe,struct xe_bo * bo,u32 flags,u64 start,u64 end,u64 size)1422 static int __xe_bo_fixed_placement(struct xe_device *xe,
1423 struct xe_bo *bo,
1424 u32 flags,
1425 u64 start, u64 end, u64 size)
1426 {
1427 struct ttm_place *place = bo->placements;
1428
1429 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1430 return -EINVAL;
1431
1432 place->flags = TTM_PL_FLAG_CONTIGUOUS;
1433 place->fpfn = start >> PAGE_SHIFT;
1434 place->lpfn = end >> PAGE_SHIFT;
1435
1436 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1437 case XE_BO_FLAG_VRAM0:
1438 place->mem_type = XE_PL_VRAM0;
1439 break;
1440 case XE_BO_FLAG_VRAM1:
1441 place->mem_type = XE_PL_VRAM1;
1442 break;
1443 case XE_BO_FLAG_STOLEN:
1444 place->mem_type = XE_PL_STOLEN;
1445 break;
1446
1447 default:
1448 /* 0 or multiple of the above set */
1449 return -EINVAL;
1450 }
1451
1452 bo->placement = (struct ttm_placement) {
1453 .num_placement = 1,
1454 .placement = place,
1455 };
1456
1457 return 0;
1458 }
1459
1460 static struct xe_bo *
__xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,u16 cpu_caching,enum ttm_bo_type type,u32 flags,u64 alignment)1461 __xe_bo_create_locked(struct xe_device *xe,
1462 struct xe_tile *tile, struct xe_vm *vm,
1463 size_t size, u64 start, u64 end,
1464 u16 cpu_caching, enum ttm_bo_type type, u32 flags,
1465 u64 alignment)
1466 {
1467 struct xe_bo *bo = NULL;
1468 int err;
1469
1470 if (vm)
1471 xe_vm_assert_held(vm);
1472
1473 if (start || end != ~0ULL) {
1474 bo = xe_bo_alloc();
1475 if (IS_ERR(bo))
1476 return bo;
1477
1478 flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1479 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1480 if (err) {
1481 xe_bo_free(bo);
1482 return ERR_PTR(err);
1483 }
1484 }
1485
1486 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1487 vm && !xe_vm_in_fault_mode(vm) &&
1488 flags & XE_BO_FLAG_USER ?
1489 &vm->lru_bulk_move : NULL, size,
1490 cpu_caching, type, flags);
1491 if (IS_ERR(bo))
1492 return bo;
1493
1494 bo->min_align = alignment;
1495
1496 /*
1497 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
1498 * to ensure the shared resv doesn't disappear under the bo, the bo
1499 * will keep a reference to the vm, and avoid circular references
1500 * by having all the vm's bo refereferences released at vm close
1501 * time.
1502 */
1503 if (vm && xe_bo_is_user(bo))
1504 xe_vm_get(vm);
1505 bo->vm = vm;
1506
1507 if (bo->flags & XE_BO_FLAG_GGTT) {
1508 if (!tile && flags & XE_BO_FLAG_STOLEN)
1509 tile = xe_device_get_root_tile(xe);
1510
1511 xe_assert(xe, tile);
1512
1513 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
1514 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo,
1515 start + bo->size, U64_MAX);
1516 } else {
1517 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo);
1518 }
1519 if (err)
1520 goto err_unlock_put_bo;
1521 }
1522
1523 return bo;
1524
1525 err_unlock_put_bo:
1526 __xe_bo_unset_bulk_move(bo);
1527 xe_bo_unlock_vm_held(bo);
1528 xe_bo_put(bo);
1529 return ERR_PTR(err);
1530 }
1531
1532 struct xe_bo *
xe_bo_create_locked_range(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,enum ttm_bo_type type,u32 flags,u64 alignment)1533 xe_bo_create_locked_range(struct xe_device *xe,
1534 struct xe_tile *tile, struct xe_vm *vm,
1535 size_t size, u64 start, u64 end,
1536 enum ttm_bo_type type, u32 flags, u64 alignment)
1537 {
1538 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
1539 flags, alignment);
1540 }
1541
xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1542 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
1543 struct xe_vm *vm, size_t size,
1544 enum ttm_bo_type type, u32 flags)
1545 {
1546 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
1547 flags, 0);
1548 }
1549
xe_bo_create_user(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u16 cpu_caching,u32 flags)1550 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
1551 struct xe_vm *vm, size_t size,
1552 u16 cpu_caching,
1553 u32 flags)
1554 {
1555 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
1556 cpu_caching, ttm_bo_type_device,
1557 flags | XE_BO_FLAG_USER, 0);
1558 if (!IS_ERR(bo))
1559 xe_bo_unlock_vm_held(bo);
1560
1561 return bo;
1562 }
1563
xe_bo_create(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1564 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
1565 struct xe_vm *vm, size_t size,
1566 enum ttm_bo_type type, u32 flags)
1567 {
1568 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
1569
1570 if (!IS_ERR(bo))
1571 xe_bo_unlock_vm_held(bo);
1572
1573 return bo;
1574 }
1575
xe_bo_create_pin_map_at(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags)1576 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
1577 struct xe_vm *vm,
1578 size_t size, u64 offset,
1579 enum ttm_bo_type type, u32 flags)
1580 {
1581 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset,
1582 type, flags, 0);
1583 }
1584
xe_bo_create_pin_map_at_aligned(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags,u64 alignment)1585 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
1586 struct xe_tile *tile,
1587 struct xe_vm *vm,
1588 size_t size, u64 offset,
1589 enum ttm_bo_type type, u32 flags,
1590 u64 alignment)
1591 {
1592 struct xe_bo *bo;
1593 int err;
1594 u64 start = offset == ~0ull ? 0 : offset;
1595 u64 end = offset == ~0ull ? offset : start + size;
1596
1597 if (flags & XE_BO_FLAG_STOLEN &&
1598 xe_ttm_stolen_cpu_access_needs_ggtt(xe))
1599 flags |= XE_BO_FLAG_GGTT;
1600
1601 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
1602 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS,
1603 alignment);
1604 if (IS_ERR(bo))
1605 return bo;
1606
1607 err = xe_bo_pin(bo);
1608 if (err)
1609 goto err_put;
1610
1611 err = xe_bo_vmap(bo);
1612 if (err)
1613 goto err_unpin;
1614
1615 xe_bo_unlock_vm_held(bo);
1616
1617 return bo;
1618
1619 err_unpin:
1620 xe_bo_unpin(bo);
1621 err_put:
1622 xe_bo_unlock_vm_held(bo);
1623 xe_bo_put(bo);
1624 return ERR_PTR(err);
1625 }
1626
xe_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1627 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1628 struct xe_vm *vm, size_t size,
1629 enum ttm_bo_type type, u32 flags)
1630 {
1631 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
1632 }
1633
xe_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,enum ttm_bo_type type,u32 flags)1634 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1635 const void *data, size_t size,
1636 enum ttm_bo_type type, u32 flags)
1637 {
1638 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
1639 ALIGN(size, PAGE_SIZE),
1640 type, flags);
1641 if (IS_ERR(bo))
1642 return bo;
1643
1644 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1645
1646 return bo;
1647 }
1648
__xe_bo_unpin_map_no_vm(void * arg)1649 static void __xe_bo_unpin_map_no_vm(void *arg)
1650 {
1651 xe_bo_unpin_map_no_vm(arg);
1652 }
1653
xe_managed_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,size_t size,u32 flags)1654 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1655 size_t size, u32 flags)
1656 {
1657 struct xe_bo *bo;
1658 int ret;
1659
1660 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
1661 if (IS_ERR(bo))
1662 return bo;
1663
1664 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
1665 if (ret)
1666 return ERR_PTR(ret);
1667
1668 return bo;
1669 }
1670
xe_managed_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,u32 flags)1671 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1672 const void *data, size_t size, u32 flags)
1673 {
1674 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
1675
1676 if (IS_ERR(bo))
1677 return bo;
1678
1679 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1680
1681 return bo;
1682 }
1683
1684 /**
1685 * xe_managed_bo_reinit_in_vram
1686 * @xe: xe device
1687 * @tile: Tile where the new buffer will be created
1688 * @src: Managed buffer object allocated in system memory
1689 *
1690 * Replace a managed src buffer object allocated in system memory with a new
1691 * one allocated in vram, copying the data between them.
1692 * Buffer object in VRAM is not going to have the same GGTT address, the caller
1693 * is responsible for making sure that any old references to it are updated.
1694 *
1695 * Returns 0 for success, negative error code otherwise.
1696 */
xe_managed_bo_reinit_in_vram(struct xe_device * xe,struct xe_tile * tile,struct xe_bo ** src)1697 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
1698 {
1699 struct xe_bo *bo;
1700 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
1701
1702 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
1703
1704 xe_assert(xe, IS_DGFX(xe));
1705 xe_assert(xe, !(*src)->vmap.is_iomem);
1706
1707 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
1708 (*src)->size, dst_flags);
1709 if (IS_ERR(bo))
1710 return PTR_ERR(bo);
1711
1712 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
1713 *src = bo;
1714
1715 return 0;
1716 }
1717
1718 /*
1719 * XXX: This is in the VM bind data path, likely should calculate this once and
1720 * store, with a recalculation if the BO is moved.
1721 */
vram_region_gpu_offset(struct ttm_resource * res)1722 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
1723 {
1724 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
1725
1726 if (res->mem_type == XE_PL_STOLEN)
1727 return xe_ttm_stolen_gpu_offset(xe);
1728
1729 return res_to_mem_region(res)->dpa_base;
1730 }
1731
1732 /**
1733 * xe_bo_pin_external - pin an external BO
1734 * @bo: buffer object to be pinned
1735 *
1736 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1737 * BO. Unique call compared to xe_bo_pin as this function has it own set of
1738 * asserts and code to ensure evict / restore on suspend / resume.
1739 *
1740 * Returns 0 for success, negative error code otherwise.
1741 */
xe_bo_pin_external(struct xe_bo * bo)1742 int xe_bo_pin_external(struct xe_bo *bo)
1743 {
1744 struct xe_device *xe = xe_bo_device(bo);
1745 int err;
1746
1747 xe_assert(xe, !bo->vm);
1748 xe_assert(xe, xe_bo_is_user(bo));
1749
1750 if (!xe_bo_is_pinned(bo)) {
1751 err = xe_bo_validate(bo, NULL, false);
1752 if (err)
1753 return err;
1754
1755 if (xe_bo_is_vram(bo)) {
1756 spin_lock(&xe->pinned.lock);
1757 list_add_tail(&bo->pinned_link,
1758 &xe->pinned.external_vram);
1759 spin_unlock(&xe->pinned.lock);
1760 }
1761 }
1762
1763 ttm_bo_pin(&bo->ttm);
1764
1765 /*
1766 * FIXME: If we always use the reserve / unreserve functions for locking
1767 * we do not need this.
1768 */
1769 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1770
1771 return 0;
1772 }
1773
xe_bo_pin(struct xe_bo * bo)1774 int xe_bo_pin(struct xe_bo *bo)
1775 {
1776 struct ttm_place *place = &bo->placements[0];
1777 struct xe_device *xe = xe_bo_device(bo);
1778 int err;
1779
1780 /* We currently don't expect user BO to be pinned */
1781 xe_assert(xe, !xe_bo_is_user(bo));
1782
1783 /* Pinned object must be in GGTT or have pinned flag */
1784 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
1785 XE_BO_FLAG_GGTT));
1786
1787 /*
1788 * No reason we can't support pinning imported dma-bufs we just don't
1789 * expect to pin an imported dma-buf.
1790 */
1791 xe_assert(xe, !bo->ttm.base.import_attach);
1792
1793 /* We only expect at most 1 pin */
1794 xe_assert(xe, !xe_bo_is_pinned(bo));
1795
1796 err = xe_bo_validate(bo, NULL, false);
1797 if (err)
1798 return err;
1799
1800 /*
1801 * For pinned objects in on DGFX, which are also in vram, we expect
1802 * these to be in contiguous VRAM memory. Required eviction / restore
1803 * during suspend / resume (force restore to same physical address).
1804 */
1805 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1806 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1807 if (mem_type_is_vram(place->mem_type)) {
1808 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
1809
1810 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
1811 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
1812 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
1813 }
1814 }
1815
1816 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
1817 spin_lock(&xe->pinned.lock);
1818 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
1819 spin_unlock(&xe->pinned.lock);
1820 }
1821
1822 ttm_bo_pin(&bo->ttm);
1823
1824 /*
1825 * FIXME: If we always use the reserve / unreserve functions for locking
1826 * we do not need this.
1827 */
1828 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1829
1830 return 0;
1831 }
1832
1833 /**
1834 * xe_bo_unpin_external - unpin an external BO
1835 * @bo: buffer object to be unpinned
1836 *
1837 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1838 * BO. Unique call compared to xe_bo_unpin as this function has it own set of
1839 * asserts and code to ensure evict / restore on suspend / resume.
1840 *
1841 * Returns 0 for success, negative error code otherwise.
1842 */
xe_bo_unpin_external(struct xe_bo * bo)1843 void xe_bo_unpin_external(struct xe_bo *bo)
1844 {
1845 struct xe_device *xe = xe_bo_device(bo);
1846
1847 xe_assert(xe, !bo->vm);
1848 xe_assert(xe, xe_bo_is_pinned(bo));
1849 xe_assert(xe, xe_bo_is_user(bo));
1850
1851 spin_lock(&xe->pinned.lock);
1852 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
1853 list_del_init(&bo->pinned_link);
1854 spin_unlock(&xe->pinned.lock);
1855
1856 ttm_bo_unpin(&bo->ttm);
1857
1858 /*
1859 * FIXME: If we always use the reserve / unreserve functions for locking
1860 * we do not need this.
1861 */
1862 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1863 }
1864
xe_bo_unpin(struct xe_bo * bo)1865 void xe_bo_unpin(struct xe_bo *bo)
1866 {
1867 struct ttm_place *place = &bo->placements[0];
1868 struct xe_device *xe = xe_bo_device(bo);
1869
1870 xe_assert(xe, !bo->ttm.base.import_attach);
1871 xe_assert(xe, xe_bo_is_pinned(bo));
1872
1873 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
1874 spin_lock(&xe->pinned.lock);
1875 xe_assert(xe, !list_empty(&bo->pinned_link));
1876 list_del_init(&bo->pinned_link);
1877 spin_unlock(&xe->pinned.lock);
1878 }
1879 ttm_bo_unpin(&bo->ttm);
1880 }
1881
1882 /**
1883 * xe_bo_validate() - Make sure the bo is in an allowed placement
1884 * @bo: The bo,
1885 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
1886 * NULL. Used together with @allow_res_evict.
1887 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
1888 * reservation object.
1889 *
1890 * Make sure the bo is in allowed placement, migrating it if necessary. If
1891 * needed, other bos will be evicted. If bos selected for eviction shares
1892 * the @vm's reservation object, they can be evicted iff @allow_res_evict is
1893 * set to true, otherwise they will be bypassed.
1894 *
1895 * Return: 0 on success, negative error code on failure. May return
1896 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
1897 */
xe_bo_validate(struct xe_bo * bo,struct xe_vm * vm,bool allow_res_evict)1898 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
1899 {
1900 struct ttm_operation_ctx ctx = {
1901 .interruptible = true,
1902 .no_wait_gpu = false,
1903 };
1904
1905 if (vm) {
1906 lockdep_assert_held(&vm->lock);
1907 xe_vm_assert_held(vm);
1908
1909 ctx.allow_res_evict = allow_res_evict;
1910 ctx.resv = xe_vm_resv(vm);
1911 }
1912
1913 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
1914 }
1915
xe_bo_is_xe_bo(struct ttm_buffer_object * bo)1916 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
1917 {
1918 if (bo->destroy == &xe_ttm_bo_destroy)
1919 return true;
1920
1921 return false;
1922 }
1923
1924 /*
1925 * Resolve a BO address. There is no assert to check if the proper lock is held
1926 * so it should only be used in cases where it is not fatal to get the wrong
1927 * address, such as printing debug information, but not in cases where memory is
1928 * written based on this result.
1929 */
__xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)1930 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1931 {
1932 struct xe_device *xe = xe_bo_device(bo);
1933 struct xe_res_cursor cur;
1934 u64 page;
1935
1936 xe_assert(xe, page_size <= PAGE_SIZE);
1937 page = offset >> PAGE_SHIFT;
1938 offset &= (PAGE_SIZE - 1);
1939
1940 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
1941 xe_assert(xe, bo->ttm.ttm);
1942
1943 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
1944 page_size, &cur);
1945 return xe_res_dma(&cur) + offset;
1946 } else {
1947 struct xe_res_cursor cur;
1948
1949 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
1950 page_size, &cur);
1951 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
1952 }
1953 }
1954
xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)1955 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1956 {
1957 if (!READ_ONCE(bo->ttm.pin_count))
1958 xe_bo_assert_held(bo);
1959 return __xe_bo_addr(bo, offset, page_size);
1960 }
1961
xe_bo_vmap(struct xe_bo * bo)1962 int xe_bo_vmap(struct xe_bo *bo)
1963 {
1964 void *virtual;
1965 bool is_iomem;
1966 int ret;
1967
1968 xe_bo_assert_held(bo);
1969
1970 if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS))
1971 return -EINVAL;
1972
1973 if (!iosys_map_is_null(&bo->vmap))
1974 return 0;
1975
1976 /*
1977 * We use this more or less deprecated interface for now since
1978 * ttm_bo_vmap() doesn't offer the optimization of kmapping
1979 * single page bos, which is done here.
1980 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
1981 * to use struct iosys_map.
1982 */
1983 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
1984 if (ret)
1985 return ret;
1986
1987 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
1988 if (is_iomem)
1989 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
1990 else
1991 iosys_map_set_vaddr(&bo->vmap, virtual);
1992
1993 return 0;
1994 }
1995
__xe_bo_vunmap(struct xe_bo * bo)1996 static void __xe_bo_vunmap(struct xe_bo *bo)
1997 {
1998 if (!iosys_map_is_null(&bo->vmap)) {
1999 iosys_map_clear(&bo->vmap);
2000 ttm_bo_kunmap(&bo->kmap);
2001 }
2002 }
2003
xe_bo_vunmap(struct xe_bo * bo)2004 void xe_bo_vunmap(struct xe_bo *bo)
2005 {
2006 xe_bo_assert_held(bo);
2007 __xe_bo_vunmap(bo);
2008 }
2009
xe_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2010 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
2011 struct drm_file *file)
2012 {
2013 struct xe_device *xe = to_xe_device(dev);
2014 struct xe_file *xef = to_xe_file(file);
2015 struct drm_xe_gem_create *args = data;
2016 struct xe_vm *vm = NULL;
2017 struct xe_bo *bo;
2018 unsigned int bo_flags;
2019 u32 handle;
2020 int err;
2021
2022 if (XE_IOCTL_DBG(xe, args->extensions) ||
2023 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
2024 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2025 return -EINVAL;
2026
2027 /* at least one valid memory placement must be specified */
2028 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
2029 !args->placement))
2030 return -EINVAL;
2031
2032 if (XE_IOCTL_DBG(xe, args->flags &
2033 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
2034 DRM_XE_GEM_CREATE_FLAG_SCANOUT |
2035 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
2036 return -EINVAL;
2037
2038 if (XE_IOCTL_DBG(xe, args->handle))
2039 return -EINVAL;
2040
2041 if (XE_IOCTL_DBG(xe, !args->size))
2042 return -EINVAL;
2043
2044 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
2045 return -EINVAL;
2046
2047 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
2048 return -EINVAL;
2049
2050 bo_flags = 0;
2051 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2052 bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2053
2054 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2055 bo_flags |= XE_BO_FLAG_SCANOUT;
2056
2057 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2058
2059 /* CCS formats need physical placement at a 64K alignment in VRAM. */
2060 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2061 (bo_flags & XE_BO_FLAG_SCANOUT) &&
2062 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2063 IS_ALIGNED(args->size, SZ_64K))
2064 bo_flags |= XE_BO_FLAG_NEEDS_64K;
2065
2066 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2067 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2068 return -EINVAL;
2069
2070 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2071 }
2072
2073 if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2074 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2075 return -EINVAL;
2076
2077 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2078 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2079 return -EINVAL;
2080
2081 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2082 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2083 return -EINVAL;
2084
2085 if (args->vm_id) {
2086 vm = xe_vm_lookup(xef, args->vm_id);
2087 if (XE_IOCTL_DBG(xe, !vm))
2088 return -ENOENT;
2089 err = xe_vm_lock(vm, true);
2090 if (err)
2091 goto out_vm;
2092 }
2093
2094 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2095 bo_flags);
2096
2097 if (vm)
2098 xe_vm_unlock(vm);
2099
2100 if (IS_ERR(bo)) {
2101 err = PTR_ERR(bo);
2102 goto out_vm;
2103 }
2104
2105 err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2106 if (err)
2107 goto out_bulk;
2108
2109 args->handle = handle;
2110 goto out_put;
2111
2112 out_bulk:
2113 if (vm && !xe_vm_in_fault_mode(vm)) {
2114 xe_vm_lock(vm, false);
2115 __xe_bo_unset_bulk_move(bo);
2116 xe_vm_unlock(vm);
2117 }
2118 out_put:
2119 xe_bo_put(bo);
2120 out_vm:
2121 if (vm)
2122 xe_vm_put(vm);
2123
2124 return err;
2125 }
2126
xe_gem_mmap_offset_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2127 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2128 struct drm_file *file)
2129 {
2130 struct xe_device *xe = to_xe_device(dev);
2131 struct drm_xe_gem_mmap_offset *args = data;
2132 struct drm_gem_object *gem_obj;
2133
2134 if (XE_IOCTL_DBG(xe, args->extensions) ||
2135 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2136 return -EINVAL;
2137
2138 if (XE_IOCTL_DBG(xe, args->flags))
2139 return -EINVAL;
2140
2141 gem_obj = drm_gem_object_lookup(file, args->handle);
2142 if (XE_IOCTL_DBG(xe, !gem_obj))
2143 return -ENOENT;
2144
2145 /* The mmap offset was set up at BO allocation time. */
2146 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2147
2148 xe_bo_put(gem_to_xe_bo(gem_obj));
2149 return 0;
2150 }
2151
2152 /**
2153 * xe_bo_lock() - Lock the buffer object's dma_resv object
2154 * @bo: The struct xe_bo whose lock is to be taken
2155 * @intr: Whether to perform any wait interruptible
2156 *
2157 * Locks the buffer object's dma_resv object. If the buffer object is
2158 * pointing to a shared dma_resv object, that shared lock is locked.
2159 *
2160 * Return: 0 on success, -EINTR if @intr is true and the wait for a
2161 * contended lock was interrupted. If @intr is set to false, the
2162 * function always returns 0.
2163 */
xe_bo_lock(struct xe_bo * bo,bool intr)2164 int xe_bo_lock(struct xe_bo *bo, bool intr)
2165 {
2166 if (intr)
2167 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2168
2169 dma_resv_lock(bo->ttm.base.resv, NULL);
2170
2171 return 0;
2172 }
2173
2174 /**
2175 * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2176 * @bo: The struct xe_bo whose lock is to be released.
2177 *
2178 * Unlock a buffer object lock that was locked by xe_bo_lock().
2179 */
xe_bo_unlock(struct xe_bo * bo)2180 void xe_bo_unlock(struct xe_bo *bo)
2181 {
2182 dma_resv_unlock(bo->ttm.base.resv);
2183 }
2184
2185 /**
2186 * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2187 * @bo: The buffer object to migrate
2188 * @mem_type: The TTM memory type intended to migrate to
2189 *
2190 * Check whether the buffer object supports migration to the
2191 * given memory type. Note that pinning may affect the ability to migrate as
2192 * returned by this function.
2193 *
2194 * This function is primarily intended as a helper for checking the
2195 * possibility to migrate buffer objects and can be called without
2196 * the object lock held.
2197 *
2198 * Return: true if migration is possible, false otherwise.
2199 */
xe_bo_can_migrate(struct xe_bo * bo,u32 mem_type)2200 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2201 {
2202 unsigned int cur_place;
2203
2204 if (bo->ttm.type == ttm_bo_type_kernel)
2205 return true;
2206
2207 if (bo->ttm.type == ttm_bo_type_sg)
2208 return false;
2209
2210 for (cur_place = 0; cur_place < bo->placement.num_placement;
2211 cur_place++) {
2212 if (bo->placements[cur_place].mem_type == mem_type)
2213 return true;
2214 }
2215
2216 return false;
2217 }
2218
xe_place_from_ttm_type(u32 mem_type,struct ttm_place * place)2219 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2220 {
2221 memset(place, 0, sizeof(*place));
2222 place->mem_type = mem_type;
2223 }
2224
2225 /**
2226 * xe_bo_migrate - Migrate an object to the desired region id
2227 * @bo: The buffer object to migrate.
2228 * @mem_type: The TTM region type to migrate to.
2229 *
2230 * Attempt to migrate the buffer object to the desired memory region. The
2231 * buffer object may not be pinned, and must be locked.
2232 * On successful completion, the object memory type will be updated,
2233 * but an async migration task may not have completed yet, and to
2234 * accomplish that, the object's kernel fences must be signaled with
2235 * the object lock held.
2236 *
2237 * Return: 0 on success. Negative error code on failure. In particular may
2238 * return -EINTR or -ERESTARTSYS if signal pending.
2239 */
xe_bo_migrate(struct xe_bo * bo,u32 mem_type)2240 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2241 {
2242 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2243 struct ttm_operation_ctx ctx = {
2244 .interruptible = true,
2245 .no_wait_gpu = false,
2246 };
2247 struct ttm_placement placement;
2248 struct ttm_place requested;
2249
2250 xe_bo_assert_held(bo);
2251
2252 if (bo->ttm.resource->mem_type == mem_type)
2253 return 0;
2254
2255 if (xe_bo_is_pinned(bo))
2256 return -EBUSY;
2257
2258 if (!xe_bo_can_migrate(bo, mem_type))
2259 return -EINVAL;
2260
2261 xe_place_from_ttm_type(mem_type, &requested);
2262 placement.num_placement = 1;
2263 placement.placement = &requested;
2264
2265 /*
2266 * Stolen needs to be handled like below VRAM handling if we ever need
2267 * to support it.
2268 */
2269 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2270
2271 if (mem_type_is_vram(mem_type)) {
2272 u32 c = 0;
2273
2274 add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2275 }
2276
2277 return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2278 }
2279
2280 /**
2281 * xe_bo_evict - Evict an object to evict placement
2282 * @bo: The buffer object to migrate.
2283 * @force_alloc: Set force_alloc in ttm_operation_ctx
2284 *
2285 * On successful completion, the object memory will be moved to evict
2286 * placement. Ths function blocks until the object has been fully moved.
2287 *
2288 * Return: 0 on success. Negative error code on failure.
2289 */
xe_bo_evict(struct xe_bo * bo,bool force_alloc)2290 int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
2291 {
2292 struct ttm_operation_ctx ctx = {
2293 .interruptible = false,
2294 .no_wait_gpu = false,
2295 .force_alloc = force_alloc,
2296 };
2297 struct ttm_placement placement;
2298 int ret;
2299
2300 xe_evict_flags(&bo->ttm, &placement);
2301 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2302 if (ret)
2303 return ret;
2304
2305 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2306 false, MAX_SCHEDULE_TIMEOUT);
2307
2308 return 0;
2309 }
2310
2311 /**
2312 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2313 * placed in system memory.
2314 * @bo: The xe_bo
2315 *
2316 * Return: true if extra pages need to be allocated, false otherwise.
2317 */
xe_bo_needs_ccs_pages(struct xe_bo * bo)2318 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2319 {
2320 struct xe_device *xe = xe_bo_device(bo);
2321
2322 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2323 return false;
2324
2325 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2326 return false;
2327
2328 /* On discrete GPUs, if the GPU can access this buffer from
2329 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2330 * can't be used since there's no CCS storage associated with
2331 * non-VRAM addresses.
2332 */
2333 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2334 return false;
2335
2336 return true;
2337 }
2338
2339 /**
2340 * __xe_bo_release_dummy() - Dummy kref release function
2341 * @kref: The embedded struct kref.
2342 *
2343 * Dummy release function for xe_bo_put_deferred(). Keep off.
2344 */
__xe_bo_release_dummy(struct kref * kref)2345 void __xe_bo_release_dummy(struct kref *kref)
2346 {
2347 }
2348
2349 /**
2350 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
2351 * @deferred: The lockless list used for the call to xe_bo_put_deferred().
2352 *
2353 * Puts all bos whose put was deferred by xe_bo_put_deferred().
2354 * The @deferred list can be either an onstack local list or a global
2355 * shared list used by a workqueue.
2356 */
xe_bo_put_commit(struct llist_head * deferred)2357 void xe_bo_put_commit(struct llist_head *deferred)
2358 {
2359 struct llist_node *freed;
2360 struct xe_bo *bo, *next;
2361
2362 if (!deferred)
2363 return;
2364
2365 freed = llist_del_all(deferred);
2366 if (!freed)
2367 return;
2368
2369 llist_for_each_entry_safe(bo, next, freed, freed)
2370 drm_gem_object_free(&bo->ttm.base.refcount);
2371 }
2372
xe_bo_put(struct xe_bo * bo)2373 void xe_bo_put(struct xe_bo *bo)
2374 {
2375 might_sleep();
2376 if (bo) {
2377 #ifdef CONFIG_PROC_FS
2378 if (bo->client)
2379 might_lock(&bo->client->bos_lock);
2380 #endif
2381 if (bo->ggtt_node && bo->ggtt_node->ggtt)
2382 might_lock(&bo->ggtt_node->ggtt->lock);
2383 drm_gem_object_put(&bo->ttm.base);
2384 }
2385 }
2386
2387 /**
2388 * xe_bo_dumb_create - Create a dumb bo as backing for a fb
2389 * @file_priv: ...
2390 * @dev: ...
2391 * @args: ...
2392 *
2393 * See dumb_create() hook in include/drm/drm_drv.h
2394 *
2395 * Return: ...
2396 */
xe_bo_dumb_create(struct drm_file * file_priv,struct drm_device * dev,struct drm_mode_create_dumb * args)2397 int xe_bo_dumb_create(struct drm_file *file_priv,
2398 struct drm_device *dev,
2399 struct drm_mode_create_dumb *args)
2400 {
2401 struct xe_device *xe = to_xe_device(dev);
2402 struct xe_bo *bo;
2403 uint32_t handle;
2404 int cpp = DIV_ROUND_UP(args->bpp, 8);
2405 int err;
2406 u32 page_size = max_t(u32, PAGE_SIZE,
2407 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
2408
2409 args->pitch = ALIGN(args->width * cpp, 64);
2410 args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
2411 page_size);
2412
2413 bo = xe_bo_create_user(xe, NULL, NULL, args->size,
2414 DRM_XE_GEM_CPU_CACHING_WC,
2415 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
2416 XE_BO_FLAG_SCANOUT |
2417 XE_BO_FLAG_NEEDS_CPU_ACCESS);
2418 if (IS_ERR(bo))
2419 return PTR_ERR(bo);
2420
2421 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
2422 /* drop reference from allocate - handle holds it now */
2423 drm_gem_object_put(&bo->ttm.base);
2424 if (!err)
2425 args->handle = handle;
2426 return err;
2427 }
2428
xe_bo_runtime_pm_release_mmap_offset(struct xe_bo * bo)2429 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
2430 {
2431 struct ttm_buffer_object *tbo = &bo->ttm;
2432 struct ttm_device *bdev = tbo->bdev;
2433
2434 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
2435
2436 list_del_init(&bo->vram_userfault_link);
2437 }
2438
2439 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2440 #include "tests/xe_bo.c"
2441 #endif
2442