xref: /linux/drivers/gpu/drm/xe/xe_bo.c (revision de848da12f752170c2ebe114804a985314fd5a6a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 
10 #include <drm/drm_drv.h>
11 #include <drm/drm_gem_ttm_helper.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_device.h>
14 #include <drm/ttm/ttm_placement.h>
15 #include <drm/ttm/ttm_tt.h>
16 #include <uapi/drm/xe_drm.h>
17 
18 #include "xe_device.h"
19 #include "xe_dma_buf.h"
20 #include "xe_drm_client.h"
21 #include "xe_ggtt.h"
22 #include "xe_gt.h"
23 #include "xe_map.h"
24 #include "xe_migrate.h"
25 #include "xe_pm.h"
26 #include "xe_preempt_fence.h"
27 #include "xe_res_cursor.h"
28 #include "xe_trace_bo.h"
29 #include "xe_ttm_stolen_mgr.h"
30 #include "xe_vm.h"
31 
32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
33 	[XE_PL_SYSTEM] = "system",
34 	[XE_PL_TT] = "gtt",
35 	[XE_PL_VRAM0] = "vram0",
36 	[XE_PL_VRAM1] = "vram1",
37 	[XE_PL_STOLEN] = "stolen"
38 };
39 
40 static const struct ttm_place sys_placement_flags = {
41 	.fpfn = 0,
42 	.lpfn = 0,
43 	.mem_type = XE_PL_SYSTEM,
44 	.flags = 0,
45 };
46 
47 static struct ttm_placement sys_placement = {
48 	.num_placement = 1,
49 	.placement = &sys_placement_flags,
50 };
51 
52 static const struct ttm_place tt_placement_flags[] = {
53 	{
54 		.fpfn = 0,
55 		.lpfn = 0,
56 		.mem_type = XE_PL_TT,
57 		.flags = TTM_PL_FLAG_DESIRED,
58 	},
59 	{
60 		.fpfn = 0,
61 		.lpfn = 0,
62 		.mem_type = XE_PL_SYSTEM,
63 		.flags = TTM_PL_FLAG_FALLBACK,
64 	}
65 };
66 
67 static struct ttm_placement tt_placement = {
68 	.num_placement = 2,
69 	.placement = tt_placement_flags,
70 };
71 
72 bool mem_type_is_vram(u32 mem_type)
73 {
74 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
75 }
76 
77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
78 {
79 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
80 }
81 
82 static bool resource_is_vram(struct ttm_resource *res)
83 {
84 	return mem_type_is_vram(res->mem_type);
85 }
86 
87 bool xe_bo_is_vram(struct xe_bo *bo)
88 {
89 	return resource_is_vram(bo->ttm.resource) ||
90 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
91 }
92 
93 bool xe_bo_is_stolen(struct xe_bo *bo)
94 {
95 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
96 }
97 
98 /**
99  * xe_bo_has_single_placement - check if BO is placed only in one memory location
100  * @bo: The BO
101  *
102  * This function checks whether a given BO is placed in only one memory location.
103  *
104  * Returns: true if the BO is placed in a single memory location, false otherwise.
105  *
106  */
107 bool xe_bo_has_single_placement(struct xe_bo *bo)
108 {
109 	return bo->placement.num_placement == 1;
110 }
111 
112 /**
113  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
114  * @bo: The BO
115  *
116  * The stolen memory is accessed through the PCI BAR for both DGFX and some
117  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
118  *
119  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
120  */
121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
122 {
123 	return xe_bo_is_stolen(bo) &&
124 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
125 }
126 
127 static bool xe_bo_is_user(struct xe_bo *bo)
128 {
129 	return bo->flags & XE_BO_FLAG_USER;
130 }
131 
132 static struct xe_migrate *
133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
134 {
135 	struct xe_tile *tile;
136 
137 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
138 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
139 	return tile->migrate;
140 }
141 
142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
143 {
144 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
145 	struct ttm_resource_manager *mgr;
146 
147 	xe_assert(xe, resource_is_vram(res));
148 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
149 	return to_xe_ttm_vram_mgr(mgr)->vram;
150 }
151 
152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
153 			   u32 bo_flags, u32 *c)
154 {
155 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
156 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
157 
158 		bo->placements[*c] = (struct ttm_place) {
159 			.mem_type = XE_PL_TT,
160 		};
161 		*c += 1;
162 	}
163 }
164 
165 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
166 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
167 {
168 	struct ttm_place place = { .mem_type = mem_type };
169 	struct xe_mem_region *vram;
170 	u64 io_size;
171 
172 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
173 
174 	vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
175 	xe_assert(xe, vram && vram->usable_size);
176 	io_size = vram->io_size;
177 
178 	/*
179 	 * For eviction / restore on suspend / resume objects
180 	 * pinned in VRAM must be contiguous
181 	 */
182 	if (bo_flags & (XE_BO_FLAG_PINNED |
183 			XE_BO_FLAG_GGTT))
184 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
185 
186 	if (io_size < vram->usable_size) {
187 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
188 			place.fpfn = 0;
189 			place.lpfn = io_size >> PAGE_SHIFT;
190 		} else {
191 			place.flags |= TTM_PL_FLAG_TOPDOWN;
192 		}
193 	}
194 	places[*c] = place;
195 	*c += 1;
196 }
197 
198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
199 			 u32 bo_flags, u32 *c)
200 {
201 	if (bo_flags & XE_BO_FLAG_VRAM0)
202 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
203 	if (bo_flags & XE_BO_FLAG_VRAM1)
204 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
205 }
206 
207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
208 			   u32 bo_flags, u32 *c)
209 {
210 	if (bo_flags & XE_BO_FLAG_STOLEN) {
211 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
212 
213 		bo->placements[*c] = (struct ttm_place) {
214 			.mem_type = XE_PL_STOLEN,
215 			.flags = bo_flags & (XE_BO_FLAG_PINNED |
216 					     XE_BO_FLAG_GGTT) ?
217 				TTM_PL_FLAG_CONTIGUOUS : 0,
218 		};
219 		*c += 1;
220 	}
221 }
222 
223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
224 				       u32 bo_flags)
225 {
226 	u32 c = 0;
227 
228 	try_add_vram(xe, bo, bo_flags, &c);
229 	try_add_system(xe, bo, bo_flags, &c);
230 	try_add_stolen(xe, bo, bo_flags, &c);
231 
232 	if (!c)
233 		return -EINVAL;
234 
235 	bo->placement = (struct ttm_placement) {
236 		.num_placement = c,
237 		.placement = bo->placements,
238 	};
239 
240 	return 0;
241 }
242 
243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
244 			      u32 bo_flags)
245 {
246 	xe_bo_assert_held(bo);
247 	return __xe_bo_placement_for_flags(xe, bo, bo_flags);
248 }
249 
250 static void xe_evict_flags(struct ttm_buffer_object *tbo,
251 			   struct ttm_placement *placement)
252 {
253 	if (!xe_bo_is_xe_bo(tbo)) {
254 		/* Don't handle scatter gather BOs */
255 		if (tbo->type == ttm_bo_type_sg) {
256 			placement->num_placement = 0;
257 			return;
258 		}
259 
260 		*placement = sys_placement;
261 		return;
262 	}
263 
264 	/*
265 	 * For xe, sg bos that are evicted to system just triggers a
266 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
267 	 */
268 	switch (tbo->resource->mem_type) {
269 	case XE_PL_VRAM0:
270 	case XE_PL_VRAM1:
271 	case XE_PL_STOLEN:
272 		*placement = tt_placement;
273 		break;
274 	case XE_PL_TT:
275 	default:
276 		*placement = sys_placement;
277 		break;
278 	}
279 }
280 
281 struct xe_ttm_tt {
282 	struct ttm_tt ttm;
283 	struct device *dev;
284 	struct sg_table sgt;
285 	struct sg_table *sg;
286 };
287 
288 static int xe_tt_map_sg(struct ttm_tt *tt)
289 {
290 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
291 	unsigned long num_pages = tt->num_pages;
292 	int ret;
293 
294 	XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
295 
296 	if (xe_tt->sg)
297 		return 0;
298 
299 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
300 						num_pages, 0,
301 						(u64)num_pages << PAGE_SHIFT,
302 						xe_sg_segment_size(xe_tt->dev),
303 						GFP_KERNEL);
304 	if (ret)
305 		return ret;
306 
307 	xe_tt->sg = &xe_tt->sgt;
308 	ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
309 			      DMA_ATTR_SKIP_CPU_SYNC);
310 	if (ret) {
311 		sg_free_table(xe_tt->sg);
312 		xe_tt->sg = NULL;
313 		return ret;
314 	}
315 
316 	return 0;
317 }
318 
319 static void xe_tt_unmap_sg(struct ttm_tt *tt)
320 {
321 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
322 
323 	if (xe_tt->sg) {
324 		dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
325 				  DMA_BIDIRECTIONAL, 0);
326 		sg_free_table(xe_tt->sg);
327 		xe_tt->sg = NULL;
328 	}
329 }
330 
331 struct sg_table *xe_bo_sg(struct xe_bo *bo)
332 {
333 	struct ttm_tt *tt = bo->ttm.ttm;
334 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
335 
336 	return xe_tt->sg;
337 }
338 
339 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
340 				       u32 page_flags)
341 {
342 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
343 	struct xe_device *xe = xe_bo_device(bo);
344 	struct xe_ttm_tt *tt;
345 	unsigned long extra_pages;
346 	enum ttm_caching caching = ttm_cached;
347 	int err;
348 
349 	tt = kzalloc(sizeof(*tt), GFP_KERNEL);
350 	if (!tt)
351 		return NULL;
352 
353 	tt->dev = xe->drm.dev;
354 
355 	extra_pages = 0;
356 	if (xe_bo_needs_ccs_pages(bo))
357 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
358 					   PAGE_SIZE);
359 
360 	/*
361 	 * DGFX system memory is always WB / ttm_cached, since
362 	 * other caching modes are only supported on x86. DGFX
363 	 * GPU system memory accesses are always coherent with the
364 	 * CPU.
365 	 */
366 	if (!IS_DGFX(xe)) {
367 		switch (bo->cpu_caching) {
368 		case DRM_XE_GEM_CPU_CACHING_WC:
369 			caching = ttm_write_combined;
370 			break;
371 		default:
372 			caching = ttm_cached;
373 			break;
374 		}
375 
376 		WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
377 
378 		/*
379 		 * Display scanout is always non-coherent with the CPU cache.
380 		 *
381 		 * For Xe_LPG and beyond, PPGTT PTE lookups are also
382 		 * non-coherent and require a CPU:WC mapping.
383 		 */
384 		if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
385 		    (xe->info.graphics_verx100 >= 1270 &&
386 		     bo->flags & XE_BO_FLAG_PAGETABLE))
387 			caching = ttm_write_combined;
388 	}
389 
390 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
391 		/*
392 		 * Valid only for internally-created buffers only, for
393 		 * which cpu_caching is never initialized.
394 		 */
395 		xe_assert(xe, bo->cpu_caching == 0);
396 		caching = ttm_uncached;
397 	}
398 
399 	err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
400 	if (err) {
401 		kfree(tt);
402 		return NULL;
403 	}
404 
405 	return &tt->ttm;
406 }
407 
408 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
409 			      struct ttm_operation_ctx *ctx)
410 {
411 	int err;
412 
413 	/*
414 	 * dma-bufs are not populated with pages, and the dma-
415 	 * addresses are set up when moved to XE_PL_TT.
416 	 */
417 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
418 		return 0;
419 
420 	err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
421 	if (err)
422 		return err;
423 
424 	return err;
425 }
426 
427 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
428 {
429 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
430 		return;
431 
432 	xe_tt_unmap_sg(tt);
433 
434 	return ttm_pool_free(&ttm_dev->pool, tt);
435 }
436 
437 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
438 {
439 	ttm_tt_fini(tt);
440 	kfree(tt);
441 }
442 
443 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
444 				 struct ttm_resource *mem)
445 {
446 	struct xe_device *xe = ttm_to_xe_device(bdev);
447 
448 	switch (mem->mem_type) {
449 	case XE_PL_SYSTEM:
450 	case XE_PL_TT:
451 		return 0;
452 	case XE_PL_VRAM0:
453 	case XE_PL_VRAM1: {
454 		struct xe_ttm_vram_mgr_resource *vres =
455 			to_xe_ttm_vram_mgr_resource(mem);
456 		struct xe_mem_region *vram = res_to_mem_region(mem);
457 
458 		if (vres->used_visible_size < mem->size)
459 			return -EINVAL;
460 
461 		mem->bus.offset = mem->start << PAGE_SHIFT;
462 
463 		if (vram->mapping &&
464 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
465 			mem->bus.addr = (u8 __force *)vram->mapping +
466 				mem->bus.offset;
467 
468 		mem->bus.offset += vram->io_start;
469 		mem->bus.is_iomem = true;
470 
471 #if  !defined(CONFIG_X86)
472 		mem->bus.caching = ttm_write_combined;
473 #endif
474 		return 0;
475 	} case XE_PL_STOLEN:
476 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
477 	default:
478 		return -EINVAL;
479 	}
480 }
481 
482 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
483 				const struct ttm_operation_ctx *ctx)
484 {
485 	struct dma_resv_iter cursor;
486 	struct dma_fence *fence;
487 	struct drm_gem_object *obj = &bo->ttm.base;
488 	struct drm_gpuvm_bo *vm_bo;
489 	bool idle = false;
490 	int ret = 0;
491 
492 	dma_resv_assert_held(bo->ttm.base.resv);
493 
494 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
495 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
496 				    DMA_RESV_USAGE_BOOKKEEP);
497 		dma_resv_for_each_fence_unlocked(&cursor, fence)
498 			dma_fence_enable_sw_signaling(fence);
499 		dma_resv_iter_end(&cursor);
500 	}
501 
502 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
503 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
504 		struct drm_gpuva *gpuva;
505 
506 		if (!xe_vm_in_fault_mode(vm)) {
507 			drm_gpuvm_bo_evict(vm_bo, true);
508 			continue;
509 		}
510 
511 		if (!idle) {
512 			long timeout;
513 
514 			if (ctx->no_wait_gpu &&
515 			    !dma_resv_test_signaled(bo->ttm.base.resv,
516 						    DMA_RESV_USAGE_BOOKKEEP))
517 				return -EBUSY;
518 
519 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
520 							DMA_RESV_USAGE_BOOKKEEP,
521 							ctx->interruptible,
522 							MAX_SCHEDULE_TIMEOUT);
523 			if (!timeout)
524 				return -ETIME;
525 			if (timeout < 0)
526 				return timeout;
527 
528 			idle = true;
529 		}
530 
531 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
532 			struct xe_vma *vma = gpuva_to_vma(gpuva);
533 
534 			trace_xe_vma_evict(vma);
535 			ret = xe_vm_invalidate_vma(vma);
536 			if (XE_WARN_ON(ret))
537 				return ret;
538 		}
539 	}
540 
541 	return ret;
542 }
543 
544 /*
545  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
546  * Note that unmapping the attachment is deferred to the next
547  * map_attachment time, or to bo destroy (after idling) whichever comes first.
548  * This is to avoid syncing before unmap_attachment(), assuming that the
549  * caller relies on idling the reservation object before moving the
550  * backing store out. Should that assumption not hold, then we will be able
551  * to unconditionally call unmap_attachment() when moving out to system.
552  */
553 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
554 			     struct ttm_resource *new_res)
555 {
556 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
557 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
558 					       ttm);
559 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
560 	struct sg_table *sg;
561 
562 	xe_assert(xe, attach);
563 	xe_assert(xe, ttm_bo->ttm);
564 
565 	if (new_res->mem_type == XE_PL_SYSTEM)
566 		goto out;
567 
568 	if (ttm_bo->sg) {
569 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
570 		ttm_bo->sg = NULL;
571 	}
572 
573 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
574 	if (IS_ERR(sg))
575 		return PTR_ERR(sg);
576 
577 	ttm_bo->sg = sg;
578 	xe_tt->sg = sg;
579 
580 out:
581 	ttm_bo_move_null(ttm_bo, new_res);
582 
583 	return 0;
584 }
585 
586 /**
587  * xe_bo_move_notify - Notify subsystems of a pending move
588  * @bo: The buffer object
589  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
590  *
591  * This function notifies subsystems of an upcoming buffer move.
592  * Upon receiving such a notification, subsystems should schedule
593  * halting access to the underlying pages and optionally add a fence
594  * to the buffer object's dma_resv object, that signals when access is
595  * stopped. The caller will wait on all dma_resv fences before
596  * starting the move.
597  *
598  * A subsystem may commence access to the object after obtaining
599  * bindings to the new backing memory under the object lock.
600  *
601  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
602  * negative error code on error.
603  */
604 static int xe_bo_move_notify(struct xe_bo *bo,
605 			     const struct ttm_operation_ctx *ctx)
606 {
607 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
608 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
609 	struct ttm_resource *old_mem = ttm_bo->resource;
610 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
611 	int ret;
612 
613 	/*
614 	 * If this starts to call into many components, consider
615 	 * using a notification chain here.
616 	 */
617 
618 	if (xe_bo_is_pinned(bo))
619 		return -EINVAL;
620 
621 	xe_bo_vunmap(bo);
622 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
623 	if (ret)
624 		return ret;
625 
626 	/* Don't call move_notify() for imported dma-bufs. */
627 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
628 		dma_buf_move_notify(ttm_bo->base.dma_buf);
629 
630 	/*
631 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
632 	 * so if we moved from VRAM make sure to unlink this from the userfault
633 	 * tracking.
634 	 */
635 	if (mem_type_is_vram(old_mem_type)) {
636 		mutex_lock(&xe->mem_access.vram_userfault.lock);
637 		if (!list_empty(&bo->vram_userfault_link))
638 			list_del_init(&bo->vram_userfault_link);
639 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
640 	}
641 
642 	return 0;
643 }
644 
645 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
646 		      struct ttm_operation_ctx *ctx,
647 		      struct ttm_resource *new_mem,
648 		      struct ttm_place *hop)
649 {
650 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
651 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
652 	struct ttm_resource *old_mem = ttm_bo->resource;
653 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
654 	struct ttm_tt *ttm = ttm_bo->ttm;
655 	struct xe_migrate *migrate = NULL;
656 	struct dma_fence *fence;
657 	bool move_lacks_source;
658 	bool tt_has_data;
659 	bool needs_clear;
660 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
661 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
662 	int ret = 0;
663 
664 	/* Bo creation path, moving to system or TT. */
665 	if ((!old_mem && ttm) && !handle_system_ccs) {
666 		if (new_mem->mem_type == XE_PL_TT)
667 			ret = xe_tt_map_sg(ttm);
668 		if (!ret)
669 			ttm_bo_move_null(ttm_bo, new_mem);
670 		goto out;
671 	}
672 
673 	if (ttm_bo->type == ttm_bo_type_sg) {
674 		ret = xe_bo_move_notify(bo, ctx);
675 		if (!ret)
676 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
677 		return ret;
678 	}
679 
680 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
681 			      (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
682 
683 	move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared)  :
684 						(!mem_type_is_vram(old_mem_type) && !tt_has_data);
685 
686 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
687 		(!ttm && ttm_bo->type == ttm_bo_type_device);
688 
689 	if (new_mem->mem_type == XE_PL_TT) {
690 		ret = xe_tt_map_sg(ttm);
691 		if (ret)
692 			goto out;
693 	}
694 
695 	if ((move_lacks_source && !needs_clear)) {
696 		ttm_bo_move_null(ttm_bo, new_mem);
697 		goto out;
698 	}
699 
700 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
701 		ttm_bo_move_null(ttm_bo, new_mem);
702 		goto out;
703 	}
704 
705 	/*
706 	 * Failed multi-hop where the old_mem is still marked as
707 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
708 	 */
709 	if (old_mem_type == XE_PL_TT &&
710 	    new_mem->mem_type == XE_PL_TT) {
711 		ttm_bo_move_null(ttm_bo, new_mem);
712 		goto out;
713 	}
714 
715 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
716 		ret = xe_bo_move_notify(bo, ctx);
717 		if (ret)
718 			goto out;
719 	}
720 
721 	if (old_mem_type == XE_PL_TT &&
722 	    new_mem->mem_type == XE_PL_SYSTEM) {
723 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
724 						     DMA_RESV_USAGE_BOOKKEEP,
725 						     true,
726 						     MAX_SCHEDULE_TIMEOUT);
727 		if (timeout < 0) {
728 			ret = timeout;
729 			goto out;
730 		}
731 
732 		if (!handle_system_ccs) {
733 			ttm_bo_move_null(ttm_bo, new_mem);
734 			goto out;
735 		}
736 	}
737 
738 	if (!move_lacks_source &&
739 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
740 	     (mem_type_is_vram(old_mem_type) &&
741 	      new_mem->mem_type == XE_PL_SYSTEM))) {
742 		hop->fpfn = 0;
743 		hop->lpfn = 0;
744 		hop->mem_type = XE_PL_TT;
745 		hop->flags = TTM_PL_FLAG_TEMPORARY;
746 		ret = -EMULTIHOP;
747 		goto out;
748 	}
749 
750 	if (bo->tile)
751 		migrate = bo->tile->migrate;
752 	else if (resource_is_vram(new_mem))
753 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
754 	else if (mem_type_is_vram(old_mem_type))
755 		migrate = mem_type_to_migrate(xe, old_mem_type);
756 	else
757 		migrate = xe->tiles[0].migrate;
758 
759 	xe_assert(xe, migrate);
760 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
761 	if (xe_rpm_reclaim_safe(xe)) {
762 		/*
763 		 * We might be called through swapout in the validation path of
764 		 * another TTM device, so unconditionally acquire rpm here.
765 		 */
766 		xe_pm_runtime_get(xe);
767 	} else {
768 		drm_WARN_ON(&xe->drm, handle_system_ccs);
769 		xe_pm_runtime_get_noresume(xe);
770 	}
771 
772 	if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
773 		/*
774 		 * Kernel memory that is pinned should only be moved on suspend
775 		 * / resume, some of the pinned memory is required for the
776 		 * device to resume / use the GPU to move other evicted memory
777 		 * (user memory) around. This likely could be optimized a bit
778 		 * futher where we find the minimum set of pinned memory
779 		 * required for resume but for simplity doing a memcpy for all
780 		 * pinned memory.
781 		 */
782 		ret = xe_bo_vmap(bo);
783 		if (!ret) {
784 			ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
785 
786 			/* Create a new VMAP once kernel BO back in VRAM */
787 			if (!ret && resource_is_vram(new_mem)) {
788 				struct xe_mem_region *vram = res_to_mem_region(new_mem);
789 				void __iomem *new_addr = vram->mapping +
790 					(new_mem->start << PAGE_SHIFT);
791 
792 				if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
793 					ret = -EINVAL;
794 					xe_pm_runtime_put(xe);
795 					goto out;
796 				}
797 
798 				xe_assert(xe, new_mem->start ==
799 					  bo->placements->fpfn);
800 
801 				iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
802 			}
803 		}
804 	} else {
805 		if (move_lacks_source) {
806 			u32 flags = 0;
807 
808 			if (mem_type_is_vram(new_mem->mem_type))
809 				flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
810 			else if (handle_system_ccs)
811 				flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
812 
813 			fence = xe_migrate_clear(migrate, bo, new_mem, flags);
814 		}
815 		else
816 			fence = xe_migrate_copy(migrate, bo, bo, old_mem,
817 						new_mem, handle_system_ccs);
818 		if (IS_ERR(fence)) {
819 			ret = PTR_ERR(fence);
820 			xe_pm_runtime_put(xe);
821 			goto out;
822 		}
823 		if (!move_lacks_source) {
824 			ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
825 							true, new_mem);
826 			if (ret) {
827 				dma_fence_wait(fence, false);
828 				ttm_bo_move_null(ttm_bo, new_mem);
829 				ret = 0;
830 			}
831 		} else {
832 			/*
833 			 * ttm_bo_move_accel_cleanup() may blow up if
834 			 * bo->resource == NULL, so just attach the
835 			 * fence and set the new resource.
836 			 */
837 			dma_resv_add_fence(ttm_bo->base.resv, fence,
838 					   DMA_RESV_USAGE_KERNEL);
839 			ttm_bo_move_null(ttm_bo, new_mem);
840 		}
841 
842 		dma_fence_put(fence);
843 	}
844 
845 	xe_pm_runtime_put(xe);
846 
847 out:
848 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
849 	    ttm_bo->ttm)
850 		xe_tt_unmap_sg(ttm_bo->ttm);
851 
852 	return ret;
853 }
854 
855 /**
856  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
857  * @bo: The buffer object to move.
858  *
859  * On successful completion, the object memory will be moved to sytem memory.
860  *
861  * This is needed to for special handling of pinned VRAM object during
862  * suspend-resume.
863  *
864  * Return: 0 on success. Negative error code on failure.
865  */
866 int xe_bo_evict_pinned(struct xe_bo *bo)
867 {
868 	struct ttm_place place = {
869 		.mem_type = XE_PL_TT,
870 	};
871 	struct ttm_placement placement = {
872 		.placement = &place,
873 		.num_placement = 1,
874 	};
875 	struct ttm_operation_ctx ctx = {
876 		.interruptible = false,
877 	};
878 	struct ttm_resource *new_mem;
879 	int ret;
880 
881 	xe_bo_assert_held(bo);
882 
883 	if (WARN_ON(!bo->ttm.resource))
884 		return -EINVAL;
885 
886 	if (WARN_ON(!xe_bo_is_pinned(bo)))
887 		return -EINVAL;
888 
889 	if (WARN_ON(!xe_bo_is_vram(bo)))
890 		return -EINVAL;
891 
892 	ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
893 	if (ret)
894 		return ret;
895 
896 	if (!bo->ttm.ttm) {
897 		bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
898 		if (!bo->ttm.ttm) {
899 			ret = -ENOMEM;
900 			goto err_res_free;
901 		}
902 	}
903 
904 	ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
905 	if (ret)
906 		goto err_res_free;
907 
908 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
909 	if (ret)
910 		goto err_res_free;
911 
912 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
913 	if (ret)
914 		goto err_res_free;
915 
916 	return 0;
917 
918 err_res_free:
919 	ttm_resource_free(&bo->ttm, &new_mem);
920 	return ret;
921 }
922 
923 /**
924  * xe_bo_restore_pinned() - Restore a pinned VRAM object
925  * @bo: The buffer object to move.
926  *
927  * On successful completion, the object memory will be moved back to VRAM.
928  *
929  * This is needed to for special handling of pinned VRAM object during
930  * suspend-resume.
931  *
932  * Return: 0 on success. Negative error code on failure.
933  */
934 int xe_bo_restore_pinned(struct xe_bo *bo)
935 {
936 	struct ttm_operation_ctx ctx = {
937 		.interruptible = false,
938 	};
939 	struct ttm_resource *new_mem;
940 	int ret;
941 
942 	xe_bo_assert_held(bo);
943 
944 	if (WARN_ON(!bo->ttm.resource))
945 		return -EINVAL;
946 
947 	if (WARN_ON(!xe_bo_is_pinned(bo)))
948 		return -EINVAL;
949 
950 	if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm))
951 		return -EINVAL;
952 
953 	ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
954 	if (ret)
955 		return ret;
956 
957 	ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
958 	if (ret)
959 		goto err_res_free;
960 
961 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
962 	if (ret)
963 		goto err_res_free;
964 
965 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
966 	if (ret)
967 		goto err_res_free;
968 
969 	return 0;
970 
971 err_res_free:
972 	ttm_resource_free(&bo->ttm, &new_mem);
973 	return ret;
974 }
975 
976 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
977 				       unsigned long page_offset)
978 {
979 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
980 	struct xe_res_cursor cursor;
981 	struct xe_mem_region *vram;
982 
983 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
984 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
985 
986 	vram = res_to_mem_region(ttm_bo->resource);
987 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
988 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
989 }
990 
991 static void __xe_bo_vunmap(struct xe_bo *bo);
992 
993 /*
994  * TODO: Move this function to TTM so we don't rely on how TTM does its
995  * locking, thereby abusing TTM internals.
996  */
997 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
998 {
999 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1000 	bool locked;
1001 
1002 	xe_assert(xe, !kref_read(&ttm_bo->kref));
1003 
1004 	/*
1005 	 * We can typically only race with TTM trylocking under the
1006 	 * lru_lock, which will immediately be unlocked again since
1007 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
1008 	 * always succeed here, as long as we hold the lru lock.
1009 	 */
1010 	spin_lock(&ttm_bo->bdev->lru_lock);
1011 	locked = dma_resv_trylock(ttm_bo->base.resv);
1012 	spin_unlock(&ttm_bo->bdev->lru_lock);
1013 	xe_assert(xe, locked);
1014 
1015 	return locked;
1016 }
1017 
1018 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1019 {
1020 	struct dma_resv_iter cursor;
1021 	struct dma_fence *fence;
1022 	struct dma_fence *replacement = NULL;
1023 	struct xe_bo *bo;
1024 
1025 	if (!xe_bo_is_xe_bo(ttm_bo))
1026 		return;
1027 
1028 	bo = ttm_to_xe_bo(ttm_bo);
1029 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1030 
1031 	/*
1032 	 * Corner case where TTM fails to allocate memory and this BOs resv
1033 	 * still points the VMs resv
1034 	 */
1035 	if (ttm_bo->base.resv != &ttm_bo->base._resv)
1036 		return;
1037 
1038 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1039 		return;
1040 
1041 	/*
1042 	 * Scrub the preempt fences if any. The unbind fence is already
1043 	 * attached to the resv.
1044 	 * TODO: Don't do this for external bos once we scrub them after
1045 	 * unbind.
1046 	 */
1047 	dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1048 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1049 		if (xe_fence_is_xe_preempt(fence) &&
1050 		    !dma_fence_is_signaled(fence)) {
1051 			if (!replacement)
1052 				replacement = dma_fence_get_stub();
1053 
1054 			dma_resv_replace_fences(ttm_bo->base.resv,
1055 						fence->context,
1056 						replacement,
1057 						DMA_RESV_USAGE_BOOKKEEP);
1058 		}
1059 	}
1060 	dma_fence_put(replacement);
1061 
1062 	dma_resv_unlock(ttm_bo->base.resv);
1063 }
1064 
1065 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1066 {
1067 	if (!xe_bo_is_xe_bo(ttm_bo))
1068 		return;
1069 
1070 	/*
1071 	 * Object is idle and about to be destroyed. Release the
1072 	 * dma-buf attachment.
1073 	 */
1074 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1075 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1076 						       struct xe_ttm_tt, ttm);
1077 
1078 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1079 					 DMA_BIDIRECTIONAL);
1080 		ttm_bo->sg = NULL;
1081 		xe_tt->sg = NULL;
1082 	}
1083 }
1084 
1085 const struct ttm_device_funcs xe_ttm_funcs = {
1086 	.ttm_tt_create = xe_ttm_tt_create,
1087 	.ttm_tt_populate = xe_ttm_tt_populate,
1088 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1089 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1090 	.evict_flags = xe_evict_flags,
1091 	.move = xe_bo_move,
1092 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1093 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1094 	.release_notify = xe_ttm_bo_release_notify,
1095 	.eviction_valuable = ttm_bo_eviction_valuable,
1096 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1097 };
1098 
1099 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1100 {
1101 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1102 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1103 
1104 	if (bo->ttm.base.import_attach)
1105 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1106 	drm_gem_object_release(&bo->ttm.base);
1107 
1108 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1109 
1110 	if (bo->ggtt_node && bo->ggtt_node->base.size)
1111 		xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo);
1112 
1113 #ifdef CONFIG_PROC_FS
1114 	if (bo->client)
1115 		xe_drm_client_remove_bo(bo);
1116 #endif
1117 
1118 	if (bo->vm && xe_bo_is_user(bo))
1119 		xe_vm_put(bo->vm);
1120 
1121 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1122 	if (!list_empty(&bo->vram_userfault_link))
1123 		list_del(&bo->vram_userfault_link);
1124 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1125 
1126 	kfree(bo);
1127 }
1128 
1129 static void xe_gem_object_free(struct drm_gem_object *obj)
1130 {
1131 	/* Our BO reference counting scheme works as follows:
1132 	 *
1133 	 * The gem object kref is typically used throughout the driver,
1134 	 * and the gem object holds a ttm_buffer_object refcount, so
1135 	 * that when the last gem object reference is put, which is when
1136 	 * we end up in this function, we put also that ttm_buffer_object
1137 	 * refcount. Anything using gem interfaces is then no longer
1138 	 * allowed to access the object in a way that requires a gem
1139 	 * refcount, including locking the object.
1140 	 *
1141 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1142 	 * refcount directly if needed.
1143 	 */
1144 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1145 	ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1146 }
1147 
1148 static void xe_gem_object_close(struct drm_gem_object *obj,
1149 				struct drm_file *file_priv)
1150 {
1151 	struct xe_bo *bo = gem_to_xe_bo(obj);
1152 
1153 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1154 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1155 
1156 		xe_bo_lock(bo, false);
1157 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1158 		xe_bo_unlock(bo);
1159 	}
1160 }
1161 
1162 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1163 {
1164 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1165 	struct drm_device *ddev = tbo->base.dev;
1166 	struct xe_device *xe = to_xe_device(ddev);
1167 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1168 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1169 	vm_fault_t ret;
1170 	int idx;
1171 
1172 	if (needs_rpm)
1173 		xe_pm_runtime_get(xe);
1174 
1175 	ret = ttm_bo_vm_reserve(tbo, vmf);
1176 	if (ret)
1177 		goto out;
1178 
1179 	if (drm_dev_enter(ddev, &idx)) {
1180 		trace_xe_bo_cpu_fault(bo);
1181 
1182 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1183 					       TTM_BO_VM_NUM_PREFAULT);
1184 		drm_dev_exit(idx);
1185 	} else {
1186 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1187 	}
1188 
1189 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1190 		goto out;
1191 	/*
1192 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1193 	 */
1194 	if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1195 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1196 		if (list_empty(&bo->vram_userfault_link))
1197 			list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1198 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1199 	}
1200 
1201 	dma_resv_unlock(tbo->base.resv);
1202 out:
1203 	if (needs_rpm)
1204 		xe_pm_runtime_put(xe);
1205 
1206 	return ret;
1207 }
1208 
1209 static const struct vm_operations_struct xe_gem_vm_ops = {
1210 	.fault = xe_gem_fault,
1211 	.open = ttm_bo_vm_open,
1212 	.close = ttm_bo_vm_close,
1213 	.access = ttm_bo_vm_access
1214 };
1215 
1216 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1217 	.free = xe_gem_object_free,
1218 	.close = xe_gem_object_close,
1219 	.mmap = drm_gem_ttm_mmap,
1220 	.export = xe_gem_prime_export,
1221 	.vm_ops = &xe_gem_vm_ops,
1222 };
1223 
1224 /**
1225  * xe_bo_alloc - Allocate storage for a struct xe_bo
1226  *
1227  * This funcition is intended to allocate storage to be used for input
1228  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1229  * created is needed before the call to __xe_bo_create_locked().
1230  * If __xe_bo_create_locked ends up never to be called, then the
1231  * storage allocated with this function needs to be freed using
1232  * xe_bo_free().
1233  *
1234  * Return: A pointer to an uninitialized struct xe_bo on success,
1235  * ERR_PTR(-ENOMEM) on error.
1236  */
1237 struct xe_bo *xe_bo_alloc(void)
1238 {
1239 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1240 
1241 	if (!bo)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	return bo;
1245 }
1246 
1247 /**
1248  * xe_bo_free - Free storage allocated using xe_bo_alloc()
1249  * @bo: The buffer object storage.
1250  *
1251  * Refer to xe_bo_alloc() documentation for valid use-cases.
1252  */
1253 void xe_bo_free(struct xe_bo *bo)
1254 {
1255 	kfree(bo);
1256 }
1257 
1258 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1259 				     struct xe_tile *tile, struct dma_resv *resv,
1260 				     struct ttm_lru_bulk_move *bulk, size_t size,
1261 				     u16 cpu_caching, enum ttm_bo_type type,
1262 				     u32 flags)
1263 {
1264 	struct ttm_operation_ctx ctx = {
1265 		.interruptible = true,
1266 		.no_wait_gpu = false,
1267 	};
1268 	struct ttm_placement *placement;
1269 	uint32_t alignment;
1270 	size_t aligned_size;
1271 	int err;
1272 
1273 	/* Only kernel objects should set GT */
1274 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1275 
1276 	if (XE_WARN_ON(!size)) {
1277 		xe_bo_free(bo);
1278 		return ERR_PTR(-EINVAL);
1279 	}
1280 
1281 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1282 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1283 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1284 	     (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1285 		size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1286 
1287 		aligned_size = ALIGN(size, align);
1288 		if (type != ttm_bo_type_device)
1289 			size = ALIGN(size, align);
1290 		flags |= XE_BO_FLAG_INTERNAL_64K;
1291 		alignment = align >> PAGE_SHIFT;
1292 	} else {
1293 		aligned_size = ALIGN(size, SZ_4K);
1294 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
1295 		alignment = SZ_4K >> PAGE_SHIFT;
1296 	}
1297 
1298 	if (type == ttm_bo_type_device && aligned_size != size)
1299 		return ERR_PTR(-EINVAL);
1300 
1301 	if (!bo) {
1302 		bo = xe_bo_alloc();
1303 		if (IS_ERR(bo))
1304 			return bo;
1305 	}
1306 
1307 	bo->ccs_cleared = false;
1308 	bo->tile = tile;
1309 	bo->size = size;
1310 	bo->flags = flags;
1311 	bo->cpu_caching = cpu_caching;
1312 	bo->ttm.base.funcs = &xe_gem_object_funcs;
1313 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1314 	INIT_LIST_HEAD(&bo->pinned_link);
1315 #ifdef CONFIG_PROC_FS
1316 	INIT_LIST_HEAD(&bo->client_link);
1317 #endif
1318 	INIT_LIST_HEAD(&bo->vram_userfault_link);
1319 
1320 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1321 
1322 	if (resv) {
1323 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1324 		ctx.resv = resv;
1325 	}
1326 
1327 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1328 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1329 		if (WARN_ON(err)) {
1330 			xe_ttm_bo_destroy(&bo->ttm);
1331 			return ERR_PTR(err);
1332 		}
1333 	}
1334 
1335 	/* Defer populating type_sg bos */
1336 	placement = (type == ttm_bo_type_sg ||
1337 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1338 		&bo->placement;
1339 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1340 				   placement, alignment,
1341 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
1342 	if (err)
1343 		return ERR_PTR(err);
1344 
1345 	/*
1346 	 * The VRAM pages underneath are potentially still being accessed by the
1347 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
1348 	 * sure to add any corresponding move/clear fences into the objects
1349 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1350 	 *
1351 	 * For KMD internal buffers we don't care about GPU clearing, however we
1352 	 * still need to handle async evictions, where the VRAM is still being
1353 	 * accessed by the GPU. Most internal callers are not expecting this,
1354 	 * since they are missing the required synchronisation before accessing
1355 	 * the memory. To keep things simple just sync wait any kernel fences
1356 	 * here, if the buffer is designated KMD internal.
1357 	 *
1358 	 * For normal userspace objects we should already have the required
1359 	 * pipelining or sync waiting elsewhere, since we already have to deal
1360 	 * with things like async GPU clearing.
1361 	 */
1362 	if (type == ttm_bo_type_kernel) {
1363 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1364 						     DMA_RESV_USAGE_KERNEL,
1365 						     ctx.interruptible,
1366 						     MAX_SCHEDULE_TIMEOUT);
1367 
1368 		if (timeout < 0) {
1369 			if (!resv)
1370 				dma_resv_unlock(bo->ttm.base.resv);
1371 			xe_bo_put(bo);
1372 			return ERR_PTR(timeout);
1373 		}
1374 	}
1375 
1376 	bo->created = true;
1377 	if (bulk)
1378 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
1379 	else
1380 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1381 
1382 	return bo;
1383 }
1384 
1385 static int __xe_bo_fixed_placement(struct xe_device *xe,
1386 				   struct xe_bo *bo,
1387 				   u32 flags,
1388 				   u64 start, u64 end, u64 size)
1389 {
1390 	struct ttm_place *place = bo->placements;
1391 
1392 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1393 		return -EINVAL;
1394 
1395 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
1396 	place->fpfn = start >> PAGE_SHIFT;
1397 	place->lpfn = end >> PAGE_SHIFT;
1398 
1399 	switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1400 	case XE_BO_FLAG_VRAM0:
1401 		place->mem_type = XE_PL_VRAM0;
1402 		break;
1403 	case XE_BO_FLAG_VRAM1:
1404 		place->mem_type = XE_PL_VRAM1;
1405 		break;
1406 	case XE_BO_FLAG_STOLEN:
1407 		place->mem_type = XE_PL_STOLEN;
1408 		break;
1409 
1410 	default:
1411 		/* 0 or multiple of the above set */
1412 		return -EINVAL;
1413 	}
1414 
1415 	bo->placement = (struct ttm_placement) {
1416 		.num_placement = 1,
1417 		.placement = place,
1418 	};
1419 
1420 	return 0;
1421 }
1422 
1423 static struct xe_bo *
1424 __xe_bo_create_locked(struct xe_device *xe,
1425 		      struct xe_tile *tile, struct xe_vm *vm,
1426 		      size_t size, u64 start, u64 end,
1427 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags)
1428 {
1429 	struct xe_bo *bo = NULL;
1430 	int err;
1431 
1432 	if (vm)
1433 		xe_vm_assert_held(vm);
1434 
1435 	if (start || end != ~0ULL) {
1436 		bo = xe_bo_alloc();
1437 		if (IS_ERR(bo))
1438 			return bo;
1439 
1440 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1441 		err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1442 		if (err) {
1443 			xe_bo_free(bo);
1444 			return ERR_PTR(err);
1445 		}
1446 	}
1447 
1448 	bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1449 				    vm && !xe_vm_in_fault_mode(vm) &&
1450 				    flags & XE_BO_FLAG_USER ?
1451 				    &vm->lru_bulk_move : NULL, size,
1452 				    cpu_caching, type, flags);
1453 	if (IS_ERR(bo))
1454 		return bo;
1455 
1456 	/*
1457 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
1458 	 * to ensure the shared resv doesn't disappear under the bo, the bo
1459 	 * will keep a reference to the vm, and avoid circular references
1460 	 * by having all the vm's bo refereferences released at vm close
1461 	 * time.
1462 	 */
1463 	if (vm && xe_bo_is_user(bo))
1464 		xe_vm_get(vm);
1465 	bo->vm = vm;
1466 
1467 	if (bo->flags & XE_BO_FLAG_GGTT) {
1468 		if (!tile && flags & XE_BO_FLAG_STOLEN)
1469 			tile = xe_device_get_root_tile(xe);
1470 
1471 		xe_assert(xe, tile);
1472 
1473 		if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
1474 			err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo,
1475 						   start + bo->size, U64_MAX);
1476 		} else {
1477 			err = xe_ggtt_insert_bo(tile->mem.ggtt, bo);
1478 		}
1479 		if (err)
1480 			goto err_unlock_put_bo;
1481 	}
1482 
1483 	return bo;
1484 
1485 err_unlock_put_bo:
1486 	__xe_bo_unset_bulk_move(bo);
1487 	xe_bo_unlock_vm_held(bo);
1488 	xe_bo_put(bo);
1489 	return ERR_PTR(err);
1490 }
1491 
1492 struct xe_bo *
1493 xe_bo_create_locked_range(struct xe_device *xe,
1494 			  struct xe_tile *tile, struct xe_vm *vm,
1495 			  size_t size, u64 start, u64 end,
1496 			  enum ttm_bo_type type, u32 flags)
1497 {
1498 	return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags);
1499 }
1500 
1501 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
1502 				  struct xe_vm *vm, size_t size,
1503 				  enum ttm_bo_type type, u32 flags)
1504 {
1505 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags);
1506 }
1507 
1508 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
1509 				struct xe_vm *vm, size_t size,
1510 				u16 cpu_caching,
1511 				u32 flags)
1512 {
1513 	struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
1514 						 cpu_caching, ttm_bo_type_device,
1515 						 flags | XE_BO_FLAG_USER);
1516 	if (!IS_ERR(bo))
1517 		xe_bo_unlock_vm_held(bo);
1518 
1519 	return bo;
1520 }
1521 
1522 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
1523 			   struct xe_vm *vm, size_t size,
1524 			   enum ttm_bo_type type, u32 flags)
1525 {
1526 	struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
1527 
1528 	if (!IS_ERR(bo))
1529 		xe_bo_unlock_vm_held(bo);
1530 
1531 	return bo;
1532 }
1533 
1534 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
1535 				      struct xe_vm *vm,
1536 				      size_t size, u64 offset,
1537 				      enum ttm_bo_type type, u32 flags)
1538 {
1539 	struct xe_bo *bo;
1540 	int err;
1541 	u64 start = offset == ~0ull ? 0 : offset;
1542 	u64 end = offset == ~0ull ? offset : start + size;
1543 
1544 	if (flags & XE_BO_FLAG_STOLEN &&
1545 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
1546 		flags |= XE_BO_FLAG_GGTT;
1547 
1548 	bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
1549 				       flags | XE_BO_FLAG_NEEDS_CPU_ACCESS);
1550 	if (IS_ERR(bo))
1551 		return bo;
1552 
1553 	err = xe_bo_pin(bo);
1554 	if (err)
1555 		goto err_put;
1556 
1557 	err = xe_bo_vmap(bo);
1558 	if (err)
1559 		goto err_unpin;
1560 
1561 	xe_bo_unlock_vm_held(bo);
1562 
1563 	return bo;
1564 
1565 err_unpin:
1566 	xe_bo_unpin(bo);
1567 err_put:
1568 	xe_bo_unlock_vm_held(bo);
1569 	xe_bo_put(bo);
1570 	return ERR_PTR(err);
1571 }
1572 
1573 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1574 				   struct xe_vm *vm, size_t size,
1575 				   enum ttm_bo_type type, u32 flags)
1576 {
1577 	return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
1578 }
1579 
1580 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1581 				     const void *data, size_t size,
1582 				     enum ttm_bo_type type, u32 flags)
1583 {
1584 	struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
1585 						ALIGN(size, PAGE_SIZE),
1586 						type, flags);
1587 	if (IS_ERR(bo))
1588 		return bo;
1589 
1590 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1591 
1592 	return bo;
1593 }
1594 
1595 static void __xe_bo_unpin_map_no_vm(void *arg)
1596 {
1597 	xe_bo_unpin_map_no_vm(arg);
1598 }
1599 
1600 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1601 					   size_t size, u32 flags)
1602 {
1603 	struct xe_bo *bo;
1604 	int ret;
1605 
1606 	bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
1607 	if (IS_ERR(bo))
1608 		return bo;
1609 
1610 	ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
1611 	if (ret)
1612 		return ERR_PTR(ret);
1613 
1614 	return bo;
1615 }
1616 
1617 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1618 					     const void *data, size_t size, u32 flags)
1619 {
1620 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
1621 
1622 	if (IS_ERR(bo))
1623 		return bo;
1624 
1625 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1626 
1627 	return bo;
1628 }
1629 
1630 /**
1631  * xe_managed_bo_reinit_in_vram
1632  * @xe: xe device
1633  * @tile: Tile where the new buffer will be created
1634  * @src: Managed buffer object allocated in system memory
1635  *
1636  * Replace a managed src buffer object allocated in system memory with a new
1637  * one allocated in vram, copying the data between them.
1638  * Buffer object in VRAM is not going to have the same GGTT address, the caller
1639  * is responsible for making sure that any old references to it are updated.
1640  *
1641  * Returns 0 for success, negative error code otherwise.
1642  */
1643 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
1644 {
1645 	struct xe_bo *bo;
1646 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
1647 
1648 	dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
1649 
1650 	xe_assert(xe, IS_DGFX(xe));
1651 	xe_assert(xe, !(*src)->vmap.is_iomem);
1652 
1653 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
1654 					    (*src)->size, dst_flags);
1655 	if (IS_ERR(bo))
1656 		return PTR_ERR(bo);
1657 
1658 	devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
1659 	*src = bo;
1660 
1661 	return 0;
1662 }
1663 
1664 /*
1665  * XXX: This is in the VM bind data path, likely should calculate this once and
1666  * store, with a recalculation if the BO is moved.
1667  */
1668 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
1669 {
1670 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
1671 
1672 	if (res->mem_type == XE_PL_STOLEN)
1673 		return xe_ttm_stolen_gpu_offset(xe);
1674 
1675 	return res_to_mem_region(res)->dpa_base;
1676 }
1677 
1678 /**
1679  * xe_bo_pin_external - pin an external BO
1680  * @bo: buffer object to be pinned
1681  *
1682  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1683  * BO. Unique call compared to xe_bo_pin as this function has it own set of
1684  * asserts and code to ensure evict / restore on suspend / resume.
1685  *
1686  * Returns 0 for success, negative error code otherwise.
1687  */
1688 int xe_bo_pin_external(struct xe_bo *bo)
1689 {
1690 	struct xe_device *xe = xe_bo_device(bo);
1691 	int err;
1692 
1693 	xe_assert(xe, !bo->vm);
1694 	xe_assert(xe, xe_bo_is_user(bo));
1695 
1696 	if (!xe_bo_is_pinned(bo)) {
1697 		err = xe_bo_validate(bo, NULL, false);
1698 		if (err)
1699 			return err;
1700 
1701 		if (xe_bo_is_vram(bo)) {
1702 			spin_lock(&xe->pinned.lock);
1703 			list_add_tail(&bo->pinned_link,
1704 				      &xe->pinned.external_vram);
1705 			spin_unlock(&xe->pinned.lock);
1706 		}
1707 	}
1708 
1709 	ttm_bo_pin(&bo->ttm);
1710 
1711 	/*
1712 	 * FIXME: If we always use the reserve / unreserve functions for locking
1713 	 * we do not need this.
1714 	 */
1715 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1716 
1717 	return 0;
1718 }
1719 
1720 int xe_bo_pin(struct xe_bo *bo)
1721 {
1722 	struct xe_device *xe = xe_bo_device(bo);
1723 	int err;
1724 
1725 	/* We currently don't expect user BO to be pinned */
1726 	xe_assert(xe, !xe_bo_is_user(bo));
1727 
1728 	/* Pinned object must be in GGTT or have pinned flag */
1729 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
1730 				   XE_BO_FLAG_GGTT));
1731 
1732 	/*
1733 	 * No reason we can't support pinning imported dma-bufs we just don't
1734 	 * expect to pin an imported dma-buf.
1735 	 */
1736 	xe_assert(xe, !bo->ttm.base.import_attach);
1737 
1738 	/* We only expect at most 1 pin */
1739 	xe_assert(xe, !xe_bo_is_pinned(bo));
1740 
1741 	err = xe_bo_validate(bo, NULL, false);
1742 	if (err)
1743 		return err;
1744 
1745 	/*
1746 	 * For pinned objects in on DGFX, which are also in vram, we expect
1747 	 * these to be in contiguous VRAM memory. Required eviction / restore
1748 	 * during suspend / resume (force restore to same physical address).
1749 	 */
1750 	if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1751 	    bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1752 		struct ttm_place *place = &(bo->placements[0]);
1753 
1754 		if (mem_type_is_vram(place->mem_type)) {
1755 			xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
1756 
1757 			place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
1758 				       vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
1759 			place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
1760 
1761 			spin_lock(&xe->pinned.lock);
1762 			list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
1763 			spin_unlock(&xe->pinned.lock);
1764 		}
1765 	}
1766 
1767 	ttm_bo_pin(&bo->ttm);
1768 
1769 	/*
1770 	 * FIXME: If we always use the reserve / unreserve functions for locking
1771 	 * we do not need this.
1772 	 */
1773 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1774 
1775 	return 0;
1776 }
1777 
1778 /**
1779  * xe_bo_unpin_external - unpin an external BO
1780  * @bo: buffer object to be unpinned
1781  *
1782  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1783  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
1784  * asserts and code to ensure evict / restore on suspend / resume.
1785  *
1786  * Returns 0 for success, negative error code otherwise.
1787  */
1788 void xe_bo_unpin_external(struct xe_bo *bo)
1789 {
1790 	struct xe_device *xe = xe_bo_device(bo);
1791 
1792 	xe_assert(xe, !bo->vm);
1793 	xe_assert(xe, xe_bo_is_pinned(bo));
1794 	xe_assert(xe, xe_bo_is_user(bo));
1795 
1796 	spin_lock(&xe->pinned.lock);
1797 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
1798 		list_del_init(&bo->pinned_link);
1799 	spin_unlock(&xe->pinned.lock);
1800 
1801 	ttm_bo_unpin(&bo->ttm);
1802 
1803 	/*
1804 	 * FIXME: If we always use the reserve / unreserve functions for locking
1805 	 * we do not need this.
1806 	 */
1807 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1808 }
1809 
1810 void xe_bo_unpin(struct xe_bo *bo)
1811 {
1812 	struct xe_device *xe = xe_bo_device(bo);
1813 
1814 	xe_assert(xe, !bo->ttm.base.import_attach);
1815 	xe_assert(xe, xe_bo_is_pinned(bo));
1816 
1817 	if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1818 	    bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1819 		struct ttm_place *place = &(bo->placements[0]);
1820 
1821 		if (mem_type_is_vram(place->mem_type)) {
1822 			spin_lock(&xe->pinned.lock);
1823 			xe_assert(xe, !list_empty(&bo->pinned_link));
1824 			list_del_init(&bo->pinned_link);
1825 			spin_unlock(&xe->pinned.lock);
1826 		}
1827 	}
1828 
1829 	ttm_bo_unpin(&bo->ttm);
1830 }
1831 
1832 /**
1833  * xe_bo_validate() - Make sure the bo is in an allowed placement
1834  * @bo: The bo,
1835  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
1836  *      NULL. Used together with @allow_res_evict.
1837  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
1838  *                   reservation object.
1839  *
1840  * Make sure the bo is in allowed placement, migrating it if necessary. If
1841  * needed, other bos will be evicted. If bos selected for eviction shares
1842  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
1843  * set to true, otherwise they will be bypassed.
1844  *
1845  * Return: 0 on success, negative error code on failure. May return
1846  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
1847  */
1848 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
1849 {
1850 	struct ttm_operation_ctx ctx = {
1851 		.interruptible = true,
1852 		.no_wait_gpu = false,
1853 	};
1854 
1855 	if (vm) {
1856 		lockdep_assert_held(&vm->lock);
1857 		xe_vm_assert_held(vm);
1858 
1859 		ctx.allow_res_evict = allow_res_evict;
1860 		ctx.resv = xe_vm_resv(vm);
1861 	}
1862 
1863 	return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
1864 }
1865 
1866 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
1867 {
1868 	if (bo->destroy == &xe_ttm_bo_destroy)
1869 		return true;
1870 
1871 	return false;
1872 }
1873 
1874 /*
1875  * Resolve a BO address. There is no assert to check if the proper lock is held
1876  * so it should only be used in cases where it is not fatal to get the wrong
1877  * address, such as printing debug information, but not in cases where memory is
1878  * written based on this result.
1879  */
1880 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1881 {
1882 	struct xe_device *xe = xe_bo_device(bo);
1883 	struct xe_res_cursor cur;
1884 	u64 page;
1885 
1886 	xe_assert(xe, page_size <= PAGE_SIZE);
1887 	page = offset >> PAGE_SHIFT;
1888 	offset &= (PAGE_SIZE - 1);
1889 
1890 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
1891 		xe_assert(xe, bo->ttm.ttm);
1892 
1893 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
1894 				page_size, &cur);
1895 		return xe_res_dma(&cur) + offset;
1896 	} else {
1897 		struct xe_res_cursor cur;
1898 
1899 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
1900 			     page_size, &cur);
1901 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
1902 	}
1903 }
1904 
1905 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1906 {
1907 	if (!READ_ONCE(bo->ttm.pin_count))
1908 		xe_bo_assert_held(bo);
1909 	return __xe_bo_addr(bo, offset, page_size);
1910 }
1911 
1912 int xe_bo_vmap(struct xe_bo *bo)
1913 {
1914 	void *virtual;
1915 	bool is_iomem;
1916 	int ret;
1917 
1918 	xe_bo_assert_held(bo);
1919 
1920 	if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS))
1921 		return -EINVAL;
1922 
1923 	if (!iosys_map_is_null(&bo->vmap))
1924 		return 0;
1925 
1926 	/*
1927 	 * We use this more or less deprecated interface for now since
1928 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
1929 	 * single page bos, which is done here.
1930 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
1931 	 * to use struct iosys_map.
1932 	 */
1933 	ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
1934 	if (ret)
1935 		return ret;
1936 
1937 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
1938 	if (is_iomem)
1939 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
1940 	else
1941 		iosys_map_set_vaddr(&bo->vmap, virtual);
1942 
1943 	return 0;
1944 }
1945 
1946 static void __xe_bo_vunmap(struct xe_bo *bo)
1947 {
1948 	if (!iosys_map_is_null(&bo->vmap)) {
1949 		iosys_map_clear(&bo->vmap);
1950 		ttm_bo_kunmap(&bo->kmap);
1951 	}
1952 }
1953 
1954 void xe_bo_vunmap(struct xe_bo *bo)
1955 {
1956 	xe_bo_assert_held(bo);
1957 	__xe_bo_vunmap(bo);
1958 }
1959 
1960 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
1961 			struct drm_file *file)
1962 {
1963 	struct xe_device *xe = to_xe_device(dev);
1964 	struct xe_file *xef = to_xe_file(file);
1965 	struct drm_xe_gem_create *args = data;
1966 	struct xe_vm *vm = NULL;
1967 	struct xe_bo *bo;
1968 	unsigned int bo_flags;
1969 	u32 handle;
1970 	int err;
1971 
1972 	if (XE_IOCTL_DBG(xe, args->extensions) ||
1973 	    XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
1974 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1975 		return -EINVAL;
1976 
1977 	/* at least one valid memory placement must be specified */
1978 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
1979 			 !args->placement))
1980 		return -EINVAL;
1981 
1982 	if (XE_IOCTL_DBG(xe, args->flags &
1983 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
1984 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
1985 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
1986 		return -EINVAL;
1987 
1988 	if (XE_IOCTL_DBG(xe, args->handle))
1989 		return -EINVAL;
1990 
1991 	if (XE_IOCTL_DBG(xe, !args->size))
1992 		return -EINVAL;
1993 
1994 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
1995 		return -EINVAL;
1996 
1997 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
1998 		return -EINVAL;
1999 
2000 	bo_flags = 0;
2001 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2002 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2003 
2004 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2005 		bo_flags |= XE_BO_FLAG_SCANOUT;
2006 
2007 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2008 
2009 	/* CCS formats need physical placement at a 64K alignment in VRAM. */
2010 	if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2011 	    (bo_flags & XE_BO_FLAG_SCANOUT) &&
2012 	    !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2013 	    IS_ALIGNED(args->size, SZ_64K))
2014 		bo_flags |= XE_BO_FLAG_NEEDS_64K;
2015 
2016 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2017 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2018 			return -EINVAL;
2019 
2020 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2021 	}
2022 
2023 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2024 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2025 		return -EINVAL;
2026 
2027 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2028 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2029 		return -EINVAL;
2030 
2031 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2032 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2033 		return -EINVAL;
2034 
2035 	if (args->vm_id) {
2036 		vm = xe_vm_lookup(xef, args->vm_id);
2037 		if (XE_IOCTL_DBG(xe, !vm))
2038 			return -ENOENT;
2039 		err = xe_vm_lock(vm, true);
2040 		if (err)
2041 			goto out_vm;
2042 	}
2043 
2044 	bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2045 			       bo_flags);
2046 
2047 	if (vm)
2048 		xe_vm_unlock(vm);
2049 
2050 	if (IS_ERR(bo)) {
2051 		err = PTR_ERR(bo);
2052 		goto out_vm;
2053 	}
2054 
2055 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2056 	if (err)
2057 		goto out_bulk;
2058 
2059 	args->handle = handle;
2060 	goto out_put;
2061 
2062 out_bulk:
2063 	if (vm && !xe_vm_in_fault_mode(vm)) {
2064 		xe_vm_lock(vm, false);
2065 		__xe_bo_unset_bulk_move(bo);
2066 		xe_vm_unlock(vm);
2067 	}
2068 out_put:
2069 	xe_bo_put(bo);
2070 out_vm:
2071 	if (vm)
2072 		xe_vm_put(vm);
2073 
2074 	return err;
2075 }
2076 
2077 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2078 			     struct drm_file *file)
2079 {
2080 	struct xe_device *xe = to_xe_device(dev);
2081 	struct drm_xe_gem_mmap_offset *args = data;
2082 	struct drm_gem_object *gem_obj;
2083 
2084 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2085 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2086 		return -EINVAL;
2087 
2088 	if (XE_IOCTL_DBG(xe, args->flags))
2089 		return -EINVAL;
2090 
2091 	gem_obj = drm_gem_object_lookup(file, args->handle);
2092 	if (XE_IOCTL_DBG(xe, !gem_obj))
2093 		return -ENOENT;
2094 
2095 	/* The mmap offset was set up at BO allocation time. */
2096 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2097 
2098 	xe_bo_put(gem_to_xe_bo(gem_obj));
2099 	return 0;
2100 }
2101 
2102 /**
2103  * xe_bo_lock() - Lock the buffer object's dma_resv object
2104  * @bo: The struct xe_bo whose lock is to be taken
2105  * @intr: Whether to perform any wait interruptible
2106  *
2107  * Locks the buffer object's dma_resv object. If the buffer object is
2108  * pointing to a shared dma_resv object, that shared lock is locked.
2109  *
2110  * Return: 0 on success, -EINTR if @intr is true and the wait for a
2111  * contended lock was interrupted. If @intr is set to false, the
2112  * function always returns 0.
2113  */
2114 int xe_bo_lock(struct xe_bo *bo, bool intr)
2115 {
2116 	if (intr)
2117 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2118 
2119 	dma_resv_lock(bo->ttm.base.resv, NULL);
2120 
2121 	return 0;
2122 }
2123 
2124 /**
2125  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2126  * @bo: The struct xe_bo whose lock is to be released.
2127  *
2128  * Unlock a buffer object lock that was locked by xe_bo_lock().
2129  */
2130 void xe_bo_unlock(struct xe_bo *bo)
2131 {
2132 	dma_resv_unlock(bo->ttm.base.resv);
2133 }
2134 
2135 /**
2136  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2137  * @bo: The buffer object to migrate
2138  * @mem_type: The TTM memory type intended to migrate to
2139  *
2140  * Check whether the buffer object supports migration to the
2141  * given memory type. Note that pinning may affect the ability to migrate as
2142  * returned by this function.
2143  *
2144  * This function is primarily intended as a helper for checking the
2145  * possibility to migrate buffer objects and can be called without
2146  * the object lock held.
2147  *
2148  * Return: true if migration is possible, false otherwise.
2149  */
2150 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2151 {
2152 	unsigned int cur_place;
2153 
2154 	if (bo->ttm.type == ttm_bo_type_kernel)
2155 		return true;
2156 
2157 	if (bo->ttm.type == ttm_bo_type_sg)
2158 		return false;
2159 
2160 	for (cur_place = 0; cur_place < bo->placement.num_placement;
2161 	     cur_place++) {
2162 		if (bo->placements[cur_place].mem_type == mem_type)
2163 			return true;
2164 	}
2165 
2166 	return false;
2167 }
2168 
2169 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2170 {
2171 	memset(place, 0, sizeof(*place));
2172 	place->mem_type = mem_type;
2173 }
2174 
2175 /**
2176  * xe_bo_migrate - Migrate an object to the desired region id
2177  * @bo: The buffer object to migrate.
2178  * @mem_type: The TTM region type to migrate to.
2179  *
2180  * Attempt to migrate the buffer object to the desired memory region. The
2181  * buffer object may not be pinned, and must be locked.
2182  * On successful completion, the object memory type will be updated,
2183  * but an async migration task may not have completed yet, and to
2184  * accomplish that, the object's kernel fences must be signaled with
2185  * the object lock held.
2186  *
2187  * Return: 0 on success. Negative error code on failure. In particular may
2188  * return -EINTR or -ERESTARTSYS if signal pending.
2189  */
2190 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2191 {
2192 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2193 	struct ttm_operation_ctx ctx = {
2194 		.interruptible = true,
2195 		.no_wait_gpu = false,
2196 	};
2197 	struct ttm_placement placement;
2198 	struct ttm_place requested;
2199 
2200 	xe_bo_assert_held(bo);
2201 
2202 	if (bo->ttm.resource->mem_type == mem_type)
2203 		return 0;
2204 
2205 	if (xe_bo_is_pinned(bo))
2206 		return -EBUSY;
2207 
2208 	if (!xe_bo_can_migrate(bo, mem_type))
2209 		return -EINVAL;
2210 
2211 	xe_place_from_ttm_type(mem_type, &requested);
2212 	placement.num_placement = 1;
2213 	placement.placement = &requested;
2214 
2215 	/*
2216 	 * Stolen needs to be handled like below VRAM handling if we ever need
2217 	 * to support it.
2218 	 */
2219 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2220 
2221 	if (mem_type_is_vram(mem_type)) {
2222 		u32 c = 0;
2223 
2224 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2225 	}
2226 
2227 	return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2228 }
2229 
2230 /**
2231  * xe_bo_evict - Evict an object to evict placement
2232  * @bo: The buffer object to migrate.
2233  * @force_alloc: Set force_alloc in ttm_operation_ctx
2234  *
2235  * On successful completion, the object memory will be moved to evict
2236  * placement. Ths function blocks until the object has been fully moved.
2237  *
2238  * Return: 0 on success. Negative error code on failure.
2239  */
2240 int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
2241 {
2242 	struct ttm_operation_ctx ctx = {
2243 		.interruptible = false,
2244 		.no_wait_gpu = false,
2245 		.force_alloc = force_alloc,
2246 	};
2247 	struct ttm_placement placement;
2248 	int ret;
2249 
2250 	xe_evict_flags(&bo->ttm, &placement);
2251 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2252 	if (ret)
2253 		return ret;
2254 
2255 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2256 			      false, MAX_SCHEDULE_TIMEOUT);
2257 
2258 	return 0;
2259 }
2260 
2261 /**
2262  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2263  * placed in system memory.
2264  * @bo: The xe_bo
2265  *
2266  * Return: true if extra pages need to be allocated, false otherwise.
2267  */
2268 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2269 {
2270 	struct xe_device *xe = xe_bo_device(bo);
2271 
2272 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2273 		return false;
2274 
2275 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2276 		return false;
2277 
2278 	/* On discrete GPUs, if the GPU can access this buffer from
2279 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2280 	 * can't be used since there's no CCS storage associated with
2281 	 * non-VRAM addresses.
2282 	 */
2283 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2284 		return false;
2285 
2286 	return true;
2287 }
2288 
2289 /**
2290  * __xe_bo_release_dummy() - Dummy kref release function
2291  * @kref: The embedded struct kref.
2292  *
2293  * Dummy release function for xe_bo_put_deferred(). Keep off.
2294  */
2295 void __xe_bo_release_dummy(struct kref *kref)
2296 {
2297 }
2298 
2299 /**
2300  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
2301  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
2302  *
2303  * Puts all bos whose put was deferred by xe_bo_put_deferred().
2304  * The @deferred list can be either an onstack local list or a global
2305  * shared list used by a workqueue.
2306  */
2307 void xe_bo_put_commit(struct llist_head *deferred)
2308 {
2309 	struct llist_node *freed;
2310 	struct xe_bo *bo, *next;
2311 
2312 	if (!deferred)
2313 		return;
2314 
2315 	freed = llist_del_all(deferred);
2316 	if (!freed)
2317 		return;
2318 
2319 	llist_for_each_entry_safe(bo, next, freed, freed)
2320 		drm_gem_object_free(&bo->ttm.base.refcount);
2321 }
2322 
2323 /**
2324  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
2325  * @file_priv: ...
2326  * @dev: ...
2327  * @args: ...
2328  *
2329  * See dumb_create() hook in include/drm/drm_drv.h
2330  *
2331  * Return: ...
2332  */
2333 int xe_bo_dumb_create(struct drm_file *file_priv,
2334 		      struct drm_device *dev,
2335 		      struct drm_mode_create_dumb *args)
2336 {
2337 	struct xe_device *xe = to_xe_device(dev);
2338 	struct xe_bo *bo;
2339 	uint32_t handle;
2340 	int cpp = DIV_ROUND_UP(args->bpp, 8);
2341 	int err;
2342 	u32 page_size = max_t(u32, PAGE_SIZE,
2343 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
2344 
2345 	args->pitch = ALIGN(args->width * cpp, 64);
2346 	args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
2347 			   page_size);
2348 
2349 	bo = xe_bo_create_user(xe, NULL, NULL, args->size,
2350 			       DRM_XE_GEM_CPU_CACHING_WC,
2351 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
2352 			       XE_BO_FLAG_SCANOUT |
2353 			       XE_BO_FLAG_NEEDS_CPU_ACCESS);
2354 	if (IS_ERR(bo))
2355 		return PTR_ERR(bo);
2356 
2357 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
2358 	/* drop reference from allocate - handle holds it now */
2359 	drm_gem_object_put(&bo->ttm.base);
2360 	if (!err)
2361 		args->handle = handle;
2362 	return err;
2363 }
2364 
2365 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
2366 {
2367 	struct ttm_buffer_object *tbo = &bo->ttm;
2368 	struct ttm_device *bdev = tbo->bdev;
2369 
2370 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
2371 
2372 	list_del_init(&bo->vram_userfault_link);
2373 }
2374 
2375 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2376 #include "tests/xe_bo.c"
2377 #endif
2378