xref: /linux/drivers/gpu/drm/xe/xe_bo.c (revision e332935a540eb76dd656663ca908eb0544d96757)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 #include <linux/nospec.h>
10 
11 #include <drm/drm_drv.h>
12 #include <drm/drm_gem_ttm_helper.h>
13 #include <drm/drm_managed.h>
14 #include <drm/ttm/ttm_backup.h>
15 #include <drm/ttm/ttm_device.h>
16 #include <drm/ttm/ttm_placement.h>
17 #include <drm/ttm/ttm_tt.h>
18 #include <uapi/drm/xe_drm.h>
19 
20 #include <kunit/static_stub.h>
21 
22 #include "xe_device.h"
23 #include "xe_dma_buf.h"
24 #include "xe_drm_client.h"
25 #include "xe_ggtt.h"
26 #include "xe_gt.h"
27 #include "xe_map.h"
28 #include "xe_migrate.h"
29 #include "xe_pm.h"
30 #include "xe_preempt_fence.h"
31 #include "xe_pxp.h"
32 #include "xe_res_cursor.h"
33 #include "xe_shrinker.h"
34 #include "xe_trace_bo.h"
35 #include "xe_ttm_stolen_mgr.h"
36 #include "xe_vm.h"
37 
38 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
39 	[XE_PL_SYSTEM] = "system",
40 	[XE_PL_TT] = "gtt",
41 	[XE_PL_VRAM0] = "vram0",
42 	[XE_PL_VRAM1] = "vram1",
43 	[XE_PL_STOLEN] = "stolen"
44 };
45 
46 static const struct ttm_place sys_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = XE_PL_SYSTEM,
50 	.flags = 0,
51 };
52 
53 static struct ttm_placement sys_placement = {
54 	.num_placement = 1,
55 	.placement = &sys_placement_flags,
56 };
57 
58 static struct ttm_placement purge_placement;
59 
60 static const struct ttm_place tt_placement_flags[] = {
61 	{
62 		.fpfn = 0,
63 		.lpfn = 0,
64 		.mem_type = XE_PL_TT,
65 		.flags = TTM_PL_FLAG_DESIRED,
66 	},
67 	{
68 		.fpfn = 0,
69 		.lpfn = 0,
70 		.mem_type = XE_PL_SYSTEM,
71 		.flags = TTM_PL_FLAG_FALLBACK,
72 	}
73 };
74 
75 static struct ttm_placement tt_placement = {
76 	.num_placement = 2,
77 	.placement = tt_placement_flags,
78 };
79 
mem_type_is_vram(u32 mem_type)80 bool mem_type_is_vram(u32 mem_type)
81 {
82 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
83 }
84 
resource_is_stolen_vram(struct xe_device * xe,struct ttm_resource * res)85 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
86 {
87 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
88 }
89 
resource_is_vram(struct ttm_resource * res)90 static bool resource_is_vram(struct ttm_resource *res)
91 {
92 	return mem_type_is_vram(res->mem_type);
93 }
94 
xe_bo_is_vram(struct xe_bo * bo)95 bool xe_bo_is_vram(struct xe_bo *bo)
96 {
97 	return resource_is_vram(bo->ttm.resource) ||
98 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
99 }
100 
xe_bo_is_stolen(struct xe_bo * bo)101 bool xe_bo_is_stolen(struct xe_bo *bo)
102 {
103 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
104 }
105 
106 /**
107  * xe_bo_has_single_placement - check if BO is placed only in one memory location
108  * @bo: The BO
109  *
110  * This function checks whether a given BO is placed in only one memory location.
111  *
112  * Returns: true if the BO is placed in a single memory location, false otherwise.
113  *
114  */
xe_bo_has_single_placement(struct xe_bo * bo)115 bool xe_bo_has_single_placement(struct xe_bo *bo)
116 {
117 	return bo->placement.num_placement == 1;
118 }
119 
120 /**
121  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
122  * @bo: The BO
123  *
124  * The stolen memory is accessed through the PCI BAR for both DGFX and some
125  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
126  *
127  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
128  */
xe_bo_is_stolen_devmem(struct xe_bo * bo)129 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
130 {
131 	return xe_bo_is_stolen(bo) &&
132 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
133 }
134 
135 /**
136  * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND
137  * @bo: The BO
138  *
139  * Check if a given bo is bound through VM_BIND. This requires the
140  * reservation lock for the BO to be held.
141  *
142  * Returns: boolean
143  */
xe_bo_is_vm_bound(struct xe_bo * bo)144 bool xe_bo_is_vm_bound(struct xe_bo *bo)
145 {
146 	xe_bo_assert_held(bo);
147 
148 	return !list_empty(&bo->ttm.base.gpuva.list);
149 }
150 
xe_bo_is_user(struct xe_bo * bo)151 static bool xe_bo_is_user(struct xe_bo *bo)
152 {
153 	return bo->flags & XE_BO_FLAG_USER;
154 }
155 
156 static struct xe_migrate *
mem_type_to_migrate(struct xe_device * xe,u32 mem_type)157 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
158 {
159 	struct xe_tile *tile;
160 
161 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
162 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
163 	return tile->migrate;
164 }
165 
res_to_mem_region(struct ttm_resource * res)166 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res)
167 {
168 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
169 	struct ttm_resource_manager *mgr;
170 	struct xe_ttm_vram_mgr *vram_mgr;
171 
172 	xe_assert(xe, resource_is_vram(res));
173 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
174 	vram_mgr = to_xe_ttm_vram_mgr(mgr);
175 
176 	return container_of(vram_mgr, struct xe_vram_region, ttm);
177 }
178 
try_add_system(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)179 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
180 			   u32 bo_flags, u32 *c)
181 {
182 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
183 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
184 
185 		bo->placements[*c] = (struct ttm_place) {
186 			.mem_type = XE_PL_TT,
187 		};
188 		*c += 1;
189 	}
190 }
191 
force_contiguous(u32 bo_flags)192 static bool force_contiguous(u32 bo_flags)
193 {
194 	if (bo_flags & XE_BO_FLAG_STOLEN)
195 		return true; /* users expect this */
196 	else if (bo_flags & XE_BO_FLAG_PINNED &&
197 		 !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE))
198 		return true; /* needs vmap */
199 
200 	/*
201 	 * For eviction / restore on suspend / resume objects pinned in VRAM
202 	 * must be contiguous, also only contiguous BOs support xe_bo_vmap.
203 	 */
204 	return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS &&
205 	       bo_flags & XE_BO_FLAG_PINNED;
206 }
207 
add_vram(struct xe_device * xe,struct xe_bo * bo,struct ttm_place * places,u32 bo_flags,u32 mem_type,u32 * c)208 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
209 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
210 {
211 	struct ttm_place place = { .mem_type = mem_type };
212 	struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type);
213 	struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr);
214 
215 	struct xe_vram_region *vram;
216 	u64 io_size;
217 
218 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
219 
220 	vram = container_of(vram_mgr, struct xe_vram_region, ttm);
221 	xe_assert(xe, vram && vram->usable_size);
222 	io_size = vram->io_size;
223 
224 	if (force_contiguous(bo_flags))
225 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
226 
227 	if (io_size < vram->usable_size) {
228 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
229 			place.fpfn = 0;
230 			place.lpfn = io_size >> PAGE_SHIFT;
231 		} else {
232 			place.flags |= TTM_PL_FLAG_TOPDOWN;
233 		}
234 	}
235 	places[*c] = place;
236 	*c += 1;
237 }
238 
try_add_vram(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)239 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
240 			 u32 bo_flags, u32 *c)
241 {
242 	if (bo_flags & XE_BO_FLAG_VRAM0)
243 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
244 	if (bo_flags & XE_BO_FLAG_VRAM1)
245 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
246 }
247 
try_add_stolen(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)248 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
249 			   u32 bo_flags, u32 *c)
250 {
251 	if (bo_flags & XE_BO_FLAG_STOLEN) {
252 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
253 
254 		bo->placements[*c] = (struct ttm_place) {
255 			.mem_type = XE_PL_STOLEN,
256 			.flags = force_contiguous(bo_flags) ?
257 				TTM_PL_FLAG_CONTIGUOUS : 0,
258 		};
259 		*c += 1;
260 	}
261 }
262 
__xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)263 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
264 				       u32 bo_flags)
265 {
266 	u32 c = 0;
267 
268 	try_add_vram(xe, bo, bo_flags, &c);
269 	try_add_system(xe, bo, bo_flags, &c);
270 	try_add_stolen(xe, bo, bo_flags, &c);
271 
272 	if (!c)
273 		return -EINVAL;
274 
275 	bo->placement = (struct ttm_placement) {
276 		.num_placement = c,
277 		.placement = bo->placements,
278 	};
279 
280 	return 0;
281 }
282 
xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)283 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
284 			      u32 bo_flags)
285 {
286 	xe_bo_assert_held(bo);
287 	return __xe_bo_placement_for_flags(xe, bo, bo_flags);
288 }
289 
xe_evict_flags(struct ttm_buffer_object * tbo,struct ttm_placement * placement)290 static void xe_evict_flags(struct ttm_buffer_object *tbo,
291 			   struct ttm_placement *placement)
292 {
293 	struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm);
294 	bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
295 	struct xe_bo *bo;
296 
297 	if (!xe_bo_is_xe_bo(tbo)) {
298 		/* Don't handle scatter gather BOs */
299 		if (tbo->type == ttm_bo_type_sg) {
300 			placement->num_placement = 0;
301 			return;
302 		}
303 
304 		*placement = device_unplugged ? purge_placement : sys_placement;
305 		return;
306 	}
307 
308 	bo = ttm_to_xe_bo(tbo);
309 	if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) {
310 		*placement = sys_placement;
311 		return;
312 	}
313 
314 	if (device_unplugged && !tbo->base.dma_buf) {
315 		*placement = purge_placement;
316 		return;
317 	}
318 
319 	/*
320 	 * For xe, sg bos that are evicted to system just triggers a
321 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
322 	 */
323 	switch (tbo->resource->mem_type) {
324 	case XE_PL_VRAM0:
325 	case XE_PL_VRAM1:
326 	case XE_PL_STOLEN:
327 		*placement = tt_placement;
328 		break;
329 	case XE_PL_TT:
330 	default:
331 		*placement = sys_placement;
332 		break;
333 	}
334 }
335 
336 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */
337 struct xe_ttm_tt {
338 	struct ttm_tt ttm;
339 	/** @xe - The xe device */
340 	struct xe_device *xe;
341 	struct sg_table sgt;
342 	struct sg_table *sg;
343 	/** @purgeable: Whether the content of the pages of @ttm is purgeable. */
344 	bool purgeable;
345 };
346 
xe_tt_map_sg(struct ttm_tt * tt)347 static int xe_tt_map_sg(struct ttm_tt *tt)
348 {
349 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
350 	unsigned long num_pages = tt->num_pages;
351 	int ret;
352 
353 	XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
354 		   !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE));
355 
356 	if (xe_tt->sg)
357 		return 0;
358 
359 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
360 						num_pages, 0,
361 						(u64)num_pages << PAGE_SHIFT,
362 						xe_sg_segment_size(xe_tt->xe->drm.dev),
363 						GFP_KERNEL);
364 	if (ret)
365 		return ret;
366 
367 	xe_tt->sg = &xe_tt->sgt;
368 	ret = dma_map_sgtable(xe_tt->xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL,
369 			      DMA_ATTR_SKIP_CPU_SYNC);
370 	if (ret) {
371 		sg_free_table(xe_tt->sg);
372 		xe_tt->sg = NULL;
373 		return ret;
374 	}
375 
376 	return 0;
377 }
378 
xe_tt_unmap_sg(struct ttm_tt * tt)379 static void xe_tt_unmap_sg(struct ttm_tt *tt)
380 {
381 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
382 
383 	if (xe_tt->sg) {
384 		dma_unmap_sgtable(xe_tt->xe->drm.dev, xe_tt->sg,
385 				  DMA_BIDIRECTIONAL, 0);
386 		sg_free_table(xe_tt->sg);
387 		xe_tt->sg = NULL;
388 	}
389 }
390 
xe_bo_sg(struct xe_bo * bo)391 struct sg_table *xe_bo_sg(struct xe_bo *bo)
392 {
393 	struct ttm_tt *tt = bo->ttm.ttm;
394 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
395 
396 	return xe_tt->sg;
397 }
398 
399 /*
400  * Account ttm pages against the device shrinker's shrinkable and
401  * purgeable counts.
402  */
xe_ttm_tt_account_add(struct ttm_tt * tt)403 static void xe_ttm_tt_account_add(struct ttm_tt *tt)
404 {
405 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
406 
407 	if (xe_tt->purgeable)
408 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, tt->num_pages);
409 	else
410 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, tt->num_pages, 0);
411 }
412 
xe_ttm_tt_account_subtract(struct ttm_tt * tt)413 static void xe_ttm_tt_account_subtract(struct ttm_tt *tt)
414 {
415 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
416 
417 	if (xe_tt->purgeable)
418 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, -(long)tt->num_pages);
419 	else
420 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, -(long)tt->num_pages, 0);
421 }
422 
xe_ttm_tt_create(struct ttm_buffer_object * ttm_bo,u32 page_flags)423 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
424 				       u32 page_flags)
425 {
426 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
427 	struct xe_device *xe = xe_bo_device(bo);
428 	struct xe_ttm_tt *xe_tt;
429 	struct ttm_tt *tt;
430 	unsigned long extra_pages;
431 	enum ttm_caching caching = ttm_cached;
432 	int err;
433 
434 	xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL);
435 	if (!xe_tt)
436 		return NULL;
437 
438 	tt = &xe_tt->ttm;
439 	xe_tt->xe = xe;
440 
441 	extra_pages = 0;
442 	if (xe_bo_needs_ccs_pages(bo))
443 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
444 					   PAGE_SIZE);
445 
446 	/*
447 	 * DGFX system memory is always WB / ttm_cached, since
448 	 * other caching modes are only supported on x86. DGFX
449 	 * GPU system memory accesses are always coherent with the
450 	 * CPU.
451 	 */
452 	if (!IS_DGFX(xe)) {
453 		switch (bo->cpu_caching) {
454 		case DRM_XE_GEM_CPU_CACHING_WC:
455 			caching = ttm_write_combined;
456 			break;
457 		default:
458 			caching = ttm_cached;
459 			break;
460 		}
461 
462 		WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
463 
464 		/*
465 		 * Display scanout is always non-coherent with the CPU cache.
466 		 *
467 		 * For Xe_LPG and beyond, PPGTT PTE lookups are also
468 		 * non-coherent and require a CPU:WC mapping.
469 		 */
470 		if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
471 		    (xe->info.graphics_verx100 >= 1270 &&
472 		     bo->flags & XE_BO_FLAG_PAGETABLE))
473 			caching = ttm_write_combined;
474 	}
475 
476 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
477 		/*
478 		 * Valid only for internally-created buffers only, for
479 		 * which cpu_caching is never initialized.
480 		 */
481 		xe_assert(xe, bo->cpu_caching == 0);
482 		caching = ttm_uncached;
483 	}
484 
485 	if (ttm_bo->type != ttm_bo_type_sg)
486 		page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE;
487 
488 	err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages);
489 	if (err) {
490 		kfree(xe_tt);
491 		return NULL;
492 	}
493 
494 	if (ttm_bo->type != ttm_bo_type_sg) {
495 		err = ttm_tt_setup_backup(tt);
496 		if (err) {
497 			ttm_tt_fini(tt);
498 			kfree(xe_tt);
499 			return NULL;
500 		}
501 	}
502 
503 	return tt;
504 }
505 
xe_ttm_tt_populate(struct ttm_device * ttm_dev,struct ttm_tt * tt,struct ttm_operation_ctx * ctx)506 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
507 			      struct ttm_operation_ctx *ctx)
508 {
509 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
510 	int err;
511 
512 	/*
513 	 * dma-bufs are not populated with pages, and the dma-
514 	 * addresses are set up when moved to XE_PL_TT.
515 	 */
516 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
517 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
518 		return 0;
519 
520 	if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) {
521 		err = ttm_tt_restore(ttm_dev, tt, ctx);
522 	} else {
523 		ttm_tt_clear_backed_up(tt);
524 		err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
525 	}
526 	if (err)
527 		return err;
528 
529 	xe_tt->purgeable = false;
530 	xe_ttm_tt_account_add(tt);
531 
532 	return 0;
533 }
534 
xe_ttm_tt_unpopulate(struct ttm_device * ttm_dev,struct ttm_tt * tt)535 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
536 {
537 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
538 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
539 		return;
540 
541 	xe_tt_unmap_sg(tt);
542 
543 	ttm_pool_free(&ttm_dev->pool, tt);
544 	xe_ttm_tt_account_subtract(tt);
545 }
546 
xe_ttm_tt_destroy(struct ttm_device * ttm_dev,struct ttm_tt * tt)547 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
548 {
549 	ttm_tt_fini(tt);
550 	kfree(tt);
551 }
552 
xe_ttm_resource_visible(struct ttm_resource * mem)553 static bool xe_ttm_resource_visible(struct ttm_resource *mem)
554 {
555 	struct xe_ttm_vram_mgr_resource *vres =
556 		to_xe_ttm_vram_mgr_resource(mem);
557 
558 	return vres->used_visible_size == mem->size;
559 }
560 
xe_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)561 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
562 				 struct ttm_resource *mem)
563 {
564 	struct xe_device *xe = ttm_to_xe_device(bdev);
565 
566 	switch (mem->mem_type) {
567 	case XE_PL_SYSTEM:
568 	case XE_PL_TT:
569 		return 0;
570 	case XE_PL_VRAM0:
571 	case XE_PL_VRAM1: {
572 		struct xe_vram_region *vram = res_to_mem_region(mem);
573 
574 		if (!xe_ttm_resource_visible(mem))
575 			return -EINVAL;
576 
577 		mem->bus.offset = mem->start << PAGE_SHIFT;
578 
579 		if (vram->mapping &&
580 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
581 			mem->bus.addr = (u8 __force *)vram->mapping +
582 				mem->bus.offset;
583 
584 		mem->bus.offset += vram->io_start;
585 		mem->bus.is_iomem = true;
586 
587 #if  !IS_ENABLED(CONFIG_X86)
588 		mem->bus.caching = ttm_write_combined;
589 #endif
590 		return 0;
591 	} case XE_PL_STOLEN:
592 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
593 	default:
594 		return -EINVAL;
595 	}
596 }
597 
xe_bo_trigger_rebind(struct xe_device * xe,struct xe_bo * bo,const struct ttm_operation_ctx * ctx)598 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
599 				const struct ttm_operation_ctx *ctx)
600 {
601 	struct dma_resv_iter cursor;
602 	struct dma_fence *fence;
603 	struct drm_gem_object *obj = &bo->ttm.base;
604 	struct drm_gpuvm_bo *vm_bo;
605 	bool idle = false;
606 	int ret = 0;
607 
608 	dma_resv_assert_held(bo->ttm.base.resv);
609 
610 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
611 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
612 				    DMA_RESV_USAGE_BOOKKEEP);
613 		dma_resv_for_each_fence_unlocked(&cursor, fence)
614 			dma_fence_enable_sw_signaling(fence);
615 		dma_resv_iter_end(&cursor);
616 	}
617 
618 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
619 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
620 		struct drm_gpuva *gpuva;
621 
622 		if (!xe_vm_in_fault_mode(vm)) {
623 			drm_gpuvm_bo_evict(vm_bo, true);
624 			continue;
625 		}
626 
627 		if (!idle) {
628 			long timeout;
629 
630 			if (ctx->no_wait_gpu &&
631 			    !dma_resv_test_signaled(bo->ttm.base.resv,
632 						    DMA_RESV_USAGE_BOOKKEEP))
633 				return -EBUSY;
634 
635 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
636 							DMA_RESV_USAGE_BOOKKEEP,
637 							ctx->interruptible,
638 							MAX_SCHEDULE_TIMEOUT);
639 			if (!timeout)
640 				return -ETIME;
641 			if (timeout < 0)
642 				return timeout;
643 
644 			idle = true;
645 		}
646 
647 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
648 			struct xe_vma *vma = gpuva_to_vma(gpuva);
649 
650 			trace_xe_vma_evict(vma);
651 			ret = xe_vm_invalidate_vma(vma);
652 			if (XE_WARN_ON(ret))
653 				return ret;
654 		}
655 	}
656 
657 	return ret;
658 }
659 
660 /*
661  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
662  * Note that unmapping the attachment is deferred to the next
663  * map_attachment time, or to bo destroy (after idling) whichever comes first.
664  * This is to avoid syncing before unmap_attachment(), assuming that the
665  * caller relies on idling the reservation object before moving the
666  * backing store out. Should that assumption not hold, then we will be able
667  * to unconditionally call unmap_attachment() when moving out to system.
668  */
xe_bo_move_dmabuf(struct ttm_buffer_object * ttm_bo,struct ttm_resource * new_res)669 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
670 			     struct ttm_resource *new_res)
671 {
672 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
673 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
674 					       ttm);
675 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
676 	bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
677 	struct sg_table *sg;
678 
679 	xe_assert(xe, attach);
680 	xe_assert(xe, ttm_bo->ttm);
681 
682 	if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM &&
683 	    ttm_bo->sg) {
684 		dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
685 				      false, MAX_SCHEDULE_TIMEOUT);
686 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
687 		ttm_bo->sg = NULL;
688 	}
689 
690 	if (new_res->mem_type == XE_PL_SYSTEM)
691 		goto out;
692 
693 	if (ttm_bo->sg) {
694 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
695 		ttm_bo->sg = NULL;
696 	}
697 
698 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
699 	if (IS_ERR(sg))
700 		return PTR_ERR(sg);
701 
702 	ttm_bo->sg = sg;
703 	xe_tt->sg = sg;
704 
705 out:
706 	ttm_bo_move_null(ttm_bo, new_res);
707 
708 	return 0;
709 }
710 
711 /**
712  * xe_bo_move_notify - Notify subsystems of a pending move
713  * @bo: The buffer object
714  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
715  *
716  * This function notifies subsystems of an upcoming buffer move.
717  * Upon receiving such a notification, subsystems should schedule
718  * halting access to the underlying pages and optionally add a fence
719  * to the buffer object's dma_resv object, that signals when access is
720  * stopped. The caller will wait on all dma_resv fences before
721  * starting the move.
722  *
723  * A subsystem may commence access to the object after obtaining
724  * bindings to the new backing memory under the object lock.
725  *
726  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
727  * negative error code on error.
728  */
xe_bo_move_notify(struct xe_bo * bo,const struct ttm_operation_ctx * ctx)729 static int xe_bo_move_notify(struct xe_bo *bo,
730 			     const struct ttm_operation_ctx *ctx)
731 {
732 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
733 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
734 	struct ttm_resource *old_mem = ttm_bo->resource;
735 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
736 	int ret;
737 
738 	/*
739 	 * If this starts to call into many components, consider
740 	 * using a notification chain here.
741 	 */
742 
743 	if (xe_bo_is_pinned(bo))
744 		return -EINVAL;
745 
746 	xe_bo_vunmap(bo);
747 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
748 	if (ret)
749 		return ret;
750 
751 	/* Don't call move_notify() for imported dma-bufs. */
752 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
753 		dma_buf_move_notify(ttm_bo->base.dma_buf);
754 
755 	/*
756 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
757 	 * so if we moved from VRAM make sure to unlink this from the userfault
758 	 * tracking.
759 	 */
760 	if (mem_type_is_vram(old_mem_type)) {
761 		mutex_lock(&xe->mem_access.vram_userfault.lock);
762 		if (!list_empty(&bo->vram_userfault_link))
763 			list_del_init(&bo->vram_userfault_link);
764 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
765 	}
766 
767 	return 0;
768 }
769 
xe_bo_move(struct ttm_buffer_object * ttm_bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)770 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
771 		      struct ttm_operation_ctx *ctx,
772 		      struct ttm_resource *new_mem,
773 		      struct ttm_place *hop)
774 {
775 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
776 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
777 	struct ttm_resource *old_mem = ttm_bo->resource;
778 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
779 	struct ttm_tt *ttm = ttm_bo->ttm;
780 	struct xe_migrate *migrate = NULL;
781 	struct dma_fence *fence;
782 	bool move_lacks_source;
783 	bool tt_has_data;
784 	bool needs_clear;
785 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
786 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
787 	int ret = 0;
788 
789 	/* Bo creation path, moving to system or TT. */
790 	if ((!old_mem && ttm) && !handle_system_ccs) {
791 		if (new_mem->mem_type == XE_PL_TT)
792 			ret = xe_tt_map_sg(ttm);
793 		if (!ret)
794 			ttm_bo_move_null(ttm_bo, new_mem);
795 		goto out;
796 	}
797 
798 	if (ttm_bo->type == ttm_bo_type_sg) {
799 		ret = xe_bo_move_notify(bo, ctx);
800 		if (!ret)
801 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
802 		return ret;
803 	}
804 
805 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
806 			      (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
807 
808 	move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
809 					 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
810 
811 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
812 		(!ttm && ttm_bo->type == ttm_bo_type_device);
813 
814 	if (new_mem->mem_type == XE_PL_TT) {
815 		ret = xe_tt_map_sg(ttm);
816 		if (ret)
817 			goto out;
818 	}
819 
820 	if ((move_lacks_source && !needs_clear)) {
821 		ttm_bo_move_null(ttm_bo, new_mem);
822 		goto out;
823 	}
824 
825 	if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) &&
826 	    new_mem->mem_type == XE_PL_SYSTEM) {
827 		ret = xe_svm_bo_evict(bo);
828 		if (!ret) {
829 			drm_dbg(&xe->drm, "Evict system allocator BO success\n");
830 			ttm_bo_move_null(ttm_bo, new_mem);
831 		} else {
832 			drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n",
833 				ERR_PTR(ret));
834 		}
835 
836 		goto out;
837 	}
838 
839 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
840 		ttm_bo_move_null(ttm_bo, new_mem);
841 		goto out;
842 	}
843 
844 	/*
845 	 * Failed multi-hop where the old_mem is still marked as
846 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
847 	 */
848 	if (old_mem_type == XE_PL_TT &&
849 	    new_mem->mem_type == XE_PL_TT) {
850 		ttm_bo_move_null(ttm_bo, new_mem);
851 		goto out;
852 	}
853 
854 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
855 		ret = xe_bo_move_notify(bo, ctx);
856 		if (ret)
857 			goto out;
858 	}
859 
860 	if (old_mem_type == XE_PL_TT &&
861 	    new_mem->mem_type == XE_PL_SYSTEM) {
862 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
863 						     DMA_RESV_USAGE_BOOKKEEP,
864 						     false,
865 						     MAX_SCHEDULE_TIMEOUT);
866 		if (timeout < 0) {
867 			ret = timeout;
868 			goto out;
869 		}
870 
871 		if (!handle_system_ccs) {
872 			ttm_bo_move_null(ttm_bo, new_mem);
873 			goto out;
874 		}
875 	}
876 
877 	if (!move_lacks_source &&
878 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
879 	     (mem_type_is_vram(old_mem_type) &&
880 	      new_mem->mem_type == XE_PL_SYSTEM))) {
881 		hop->fpfn = 0;
882 		hop->lpfn = 0;
883 		hop->mem_type = XE_PL_TT;
884 		hop->flags = TTM_PL_FLAG_TEMPORARY;
885 		ret = -EMULTIHOP;
886 		goto out;
887 	}
888 
889 	if (bo->tile)
890 		migrate = bo->tile->migrate;
891 	else if (resource_is_vram(new_mem))
892 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
893 	else if (mem_type_is_vram(old_mem_type))
894 		migrate = mem_type_to_migrate(xe, old_mem_type);
895 	else
896 		migrate = xe->tiles[0].migrate;
897 
898 	xe_assert(xe, migrate);
899 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
900 	if (xe_rpm_reclaim_safe(xe)) {
901 		/*
902 		 * We might be called through swapout in the validation path of
903 		 * another TTM device, so acquire rpm here.
904 		 */
905 		xe_pm_runtime_get(xe);
906 	} else {
907 		drm_WARN_ON(&xe->drm, handle_system_ccs);
908 		xe_pm_runtime_get_noresume(xe);
909 	}
910 
911 	if (move_lacks_source) {
912 		u32 flags = 0;
913 
914 		if (mem_type_is_vram(new_mem->mem_type))
915 			flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
916 		else if (handle_system_ccs)
917 			flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
918 
919 		fence = xe_migrate_clear(migrate, bo, new_mem, flags);
920 	} else {
921 		fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem,
922 					handle_system_ccs);
923 	}
924 	if (IS_ERR(fence)) {
925 		ret = PTR_ERR(fence);
926 		xe_pm_runtime_put(xe);
927 		goto out;
928 	}
929 	if (!move_lacks_source) {
930 		ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true,
931 						new_mem);
932 		if (ret) {
933 			dma_fence_wait(fence, false);
934 			ttm_bo_move_null(ttm_bo, new_mem);
935 			ret = 0;
936 		}
937 	} else {
938 		/*
939 		 * ttm_bo_move_accel_cleanup() may blow up if
940 		 * bo->resource == NULL, so just attach the
941 		 * fence and set the new resource.
942 		 */
943 		dma_resv_add_fence(ttm_bo->base.resv, fence,
944 				   DMA_RESV_USAGE_KERNEL);
945 		ttm_bo_move_null(ttm_bo, new_mem);
946 	}
947 
948 	dma_fence_put(fence);
949 	xe_pm_runtime_put(xe);
950 
951 out:
952 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
953 	    ttm_bo->ttm) {
954 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
955 						     DMA_RESV_USAGE_KERNEL,
956 						     false,
957 						     MAX_SCHEDULE_TIMEOUT);
958 		if (timeout < 0)
959 			ret = timeout;
960 
961 		xe_tt_unmap_sg(ttm_bo->ttm);
962 	}
963 
964 	return ret;
965 }
966 
xe_bo_shrink_purge(struct ttm_operation_ctx * ctx,struct ttm_buffer_object * bo,unsigned long * scanned)967 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx,
968 			       struct ttm_buffer_object *bo,
969 			       unsigned long *scanned)
970 {
971 	long lret;
972 
973 	/* Fake move to system, without copying data. */
974 	if (bo->resource->mem_type != XE_PL_SYSTEM) {
975 		struct ttm_resource *new_resource;
976 
977 		lret = ttm_bo_wait_ctx(bo, ctx);
978 		if (lret)
979 			return lret;
980 
981 		lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx);
982 		if (lret)
983 			return lret;
984 
985 		xe_tt_unmap_sg(bo->ttm);
986 		ttm_bo_move_null(bo, new_resource);
987 	}
988 
989 	*scanned += bo->ttm->num_pages;
990 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
991 			     {.purge = true,
992 			      .writeback = false,
993 			      .allow_move = false});
994 
995 	if (lret > 0)
996 		xe_ttm_tt_account_subtract(bo->ttm);
997 
998 	return lret;
999 }
1000 
1001 static bool
xe_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1002 xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place)
1003 {
1004 	struct drm_gpuvm_bo *vm_bo;
1005 
1006 	if (!ttm_bo_eviction_valuable(bo, place))
1007 		return false;
1008 
1009 	if (!xe_bo_is_xe_bo(bo))
1010 		return true;
1011 
1012 	drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) {
1013 		if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm)))
1014 			return false;
1015 	}
1016 
1017 	return true;
1018 }
1019 
1020 /**
1021  * xe_bo_shrink() - Try to shrink an xe bo.
1022  * @ctx: The struct ttm_operation_ctx used for shrinking.
1023  * @bo: The TTM buffer object whose pages to shrink.
1024  * @flags: Flags governing the shrink behaviour.
1025  * @scanned: Pointer to a counter of the number of pages
1026  * attempted to shrink.
1027  *
1028  * Try to shrink- or purge a bo, and if it succeeds, unmap dma.
1029  * Note that we need to be able to handle also non xe bos
1030  * (ghost bos), but only if the struct ttm_tt is embedded in
1031  * a struct xe_ttm_tt. When the function attempts to shrink
1032  * the pages of a buffer object, The value pointed to by @scanned
1033  * is updated.
1034  *
1035  * Return: The number of pages shrunken or purged, or negative error
1036  * code on failure.
1037  */
xe_bo_shrink(struct ttm_operation_ctx * ctx,struct ttm_buffer_object * bo,const struct xe_bo_shrink_flags flags,unsigned long * scanned)1038 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
1039 		  const struct xe_bo_shrink_flags flags,
1040 		  unsigned long *scanned)
1041 {
1042 	struct ttm_tt *tt = bo->ttm;
1043 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
1044 	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1045 	struct xe_bo *xe_bo = ttm_to_xe_bo(bo);
1046 	struct xe_device *xe = xe_tt->xe;
1047 	bool needs_rpm;
1048 	long lret = 0L;
1049 
1050 	if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) ||
1051 	    (flags.purge && !xe_tt->purgeable))
1052 		return -EBUSY;
1053 
1054 	if (!xe_bo_eviction_valuable(bo, &place))
1055 		return -EBUSY;
1056 
1057 	if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo))
1058 		return xe_bo_shrink_purge(ctx, bo, scanned);
1059 
1060 	if (xe_tt->purgeable) {
1061 		if (bo->resource->mem_type != XE_PL_SYSTEM)
1062 			lret = xe_bo_move_notify(xe_bo, ctx);
1063 		if (!lret)
1064 			lret = xe_bo_shrink_purge(ctx, bo, scanned);
1065 		goto out_unref;
1066 	}
1067 
1068 	/* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */
1069 	needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM &&
1070 		     xe_bo_needs_ccs_pages(xe_bo));
1071 	if (needs_rpm && !xe_pm_runtime_get_if_active(xe))
1072 		goto out_unref;
1073 
1074 	*scanned += tt->num_pages;
1075 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
1076 			     {.purge = false,
1077 			      .writeback = flags.writeback,
1078 			      .allow_move = true});
1079 	if (needs_rpm)
1080 		xe_pm_runtime_put(xe);
1081 
1082 	if (lret > 0)
1083 		xe_ttm_tt_account_subtract(tt);
1084 
1085 out_unref:
1086 	xe_bo_put(xe_bo);
1087 
1088 	return lret;
1089 }
1090 
1091 /**
1092  * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed
1093  * up in system memory.
1094  * @bo: The buffer object to prepare.
1095  *
1096  * On successful completion, the object backup pages are allocated. Expectation
1097  * is that this is called from the PM notifier, prior to suspend/hibernation.
1098  *
1099  * Return: 0 on success. Negative error code on failure.
1100  */
xe_bo_notifier_prepare_pinned(struct xe_bo * bo)1101 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo)
1102 {
1103 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1104 	struct xe_bo *backup;
1105 	int ret = 0;
1106 
1107 	xe_bo_lock(bo, false);
1108 
1109 	xe_assert(xe, !bo->backup_obj);
1110 
1111 	/*
1112 	 * Since this is called from the PM notifier we might have raced with
1113 	 * someone unpinning this after we dropped the pinned list lock and
1114 	 * grabbing the above bo lock.
1115 	 */
1116 	if (!xe_bo_is_pinned(bo))
1117 		goto out_unlock_bo;
1118 
1119 	if (!xe_bo_is_vram(bo))
1120 		goto out_unlock_bo;
1121 
1122 	if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
1123 		goto out_unlock_bo;
1124 
1125 	backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, bo->size,
1126 					DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
1127 					XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
1128 					XE_BO_FLAG_PINNED);
1129 	if (IS_ERR(backup)) {
1130 		ret = PTR_ERR(backup);
1131 		goto out_unlock_bo;
1132 	}
1133 
1134 	backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
1135 	ttm_bo_pin(&backup->ttm);
1136 	bo->backup_obj = backup;
1137 
1138 out_unlock_bo:
1139 	xe_bo_unlock(bo);
1140 	return ret;
1141 }
1142 
1143 /**
1144  * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation.
1145  * @bo: The buffer object to undo the prepare for.
1146  *
1147  * Always returns 0. The backup object is removed, if still present. Expectation
1148  * it that this called from the PM notifier when undoing the prepare step.
1149  *
1150  * Return: Always returns 0.
1151  */
xe_bo_notifier_unprepare_pinned(struct xe_bo * bo)1152 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo)
1153 {
1154 	xe_bo_lock(bo, false);
1155 	if (bo->backup_obj) {
1156 		ttm_bo_unpin(&bo->backup_obj->ttm);
1157 		xe_bo_put(bo->backup_obj);
1158 		bo->backup_obj = NULL;
1159 	}
1160 	xe_bo_unlock(bo);
1161 
1162 	return 0;
1163 }
1164 
1165 /**
1166  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
1167  * @bo: The buffer object to move.
1168  *
1169  * On successful completion, the object memory will be moved to system memory.
1170  *
1171  * This is needed to for special handling of pinned VRAM object during
1172  * suspend-resume.
1173  *
1174  * Return: 0 on success. Negative error code on failure.
1175  */
xe_bo_evict_pinned(struct xe_bo * bo)1176 int xe_bo_evict_pinned(struct xe_bo *bo)
1177 {
1178 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1179 	struct xe_bo *backup = bo->backup_obj;
1180 	bool backup_created = false;
1181 	bool unmap = false;
1182 	int ret = 0;
1183 
1184 	xe_bo_lock(bo, false);
1185 
1186 	if (WARN_ON(!bo->ttm.resource)) {
1187 		ret = -EINVAL;
1188 		goto out_unlock_bo;
1189 	}
1190 
1191 	if (WARN_ON(!xe_bo_is_pinned(bo))) {
1192 		ret = -EINVAL;
1193 		goto out_unlock_bo;
1194 	}
1195 
1196 	if (!xe_bo_is_vram(bo))
1197 		goto out_unlock_bo;
1198 
1199 	if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
1200 		goto out_unlock_bo;
1201 
1202 	if (!backup) {
1203 		backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, bo->size,
1204 						DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
1205 						XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
1206 						XE_BO_FLAG_PINNED);
1207 		if (IS_ERR(backup)) {
1208 			ret = PTR_ERR(backup);
1209 			goto out_unlock_bo;
1210 		}
1211 		backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
1212 		backup_created = true;
1213 	}
1214 
1215 	if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
1216 		struct xe_migrate *migrate;
1217 		struct dma_fence *fence;
1218 
1219 		if (bo->tile)
1220 			migrate = bo->tile->migrate;
1221 		else
1222 			migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
1223 
1224 		ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1225 		if (ret)
1226 			goto out_backup;
1227 
1228 		ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1);
1229 		if (ret)
1230 			goto out_backup;
1231 
1232 		fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource,
1233 					backup->ttm.resource, false);
1234 		if (IS_ERR(fence)) {
1235 			ret = PTR_ERR(fence);
1236 			goto out_backup;
1237 		}
1238 
1239 		dma_resv_add_fence(bo->ttm.base.resv, fence,
1240 				   DMA_RESV_USAGE_KERNEL);
1241 		dma_resv_add_fence(backup->ttm.base.resv, fence,
1242 				   DMA_RESV_USAGE_KERNEL);
1243 		dma_fence_put(fence);
1244 	} else {
1245 		ret = xe_bo_vmap(backup);
1246 		if (ret)
1247 			goto out_backup;
1248 
1249 		if (iosys_map_is_null(&bo->vmap)) {
1250 			ret = xe_bo_vmap(bo);
1251 			if (ret)
1252 				goto out_backup;
1253 			unmap = true;
1254 		}
1255 
1256 		xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0,
1257 				   bo->size);
1258 	}
1259 
1260 	if (!bo->backup_obj)
1261 		bo->backup_obj = backup;
1262 
1263 out_backup:
1264 	xe_bo_vunmap(backup);
1265 	if (ret && backup_created)
1266 		xe_bo_put(backup);
1267 out_unlock_bo:
1268 	if (unmap)
1269 		xe_bo_vunmap(bo);
1270 	xe_bo_unlock(bo);
1271 	return ret;
1272 }
1273 
1274 /**
1275  * xe_bo_restore_pinned() - Restore a pinned VRAM object
1276  * @bo: The buffer object to move.
1277  *
1278  * On successful completion, the object memory will be moved back to VRAM.
1279  *
1280  * This is needed to for special handling of pinned VRAM object during
1281  * suspend-resume.
1282  *
1283  * Return: 0 on success. Negative error code on failure.
1284  */
xe_bo_restore_pinned(struct xe_bo * bo)1285 int xe_bo_restore_pinned(struct xe_bo *bo)
1286 {
1287 	struct ttm_operation_ctx ctx = {
1288 		.interruptible = false,
1289 		.gfp_retry_mayfail = false,
1290 	};
1291 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
1292 	struct xe_bo *backup = bo->backup_obj;
1293 	bool unmap = false;
1294 	int ret;
1295 
1296 	if (!backup)
1297 		return 0;
1298 
1299 	xe_bo_lock(bo, false);
1300 
1301 	if (!xe_bo_is_pinned(backup)) {
1302 		ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx);
1303 		if (ret)
1304 			goto out_unlock_bo;
1305 	}
1306 
1307 	if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
1308 		struct xe_migrate *migrate;
1309 		struct dma_fence *fence;
1310 
1311 		if (bo->tile)
1312 			migrate = bo->tile->migrate;
1313 		else
1314 			migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
1315 
1316 		ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1317 		if (ret)
1318 			goto out_unlock_bo;
1319 
1320 		ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1);
1321 		if (ret)
1322 			goto out_unlock_bo;
1323 
1324 		fence = xe_migrate_copy(migrate, backup, bo,
1325 					backup->ttm.resource, bo->ttm.resource,
1326 					false);
1327 		if (IS_ERR(fence)) {
1328 			ret = PTR_ERR(fence);
1329 			goto out_unlock_bo;
1330 		}
1331 
1332 		dma_resv_add_fence(bo->ttm.base.resv, fence,
1333 				   DMA_RESV_USAGE_KERNEL);
1334 		dma_resv_add_fence(backup->ttm.base.resv, fence,
1335 				   DMA_RESV_USAGE_KERNEL);
1336 		dma_fence_put(fence);
1337 	} else {
1338 		ret = xe_bo_vmap(backup);
1339 		if (ret)
1340 			goto out_unlock_bo;
1341 
1342 		if (iosys_map_is_null(&bo->vmap)) {
1343 			ret = xe_bo_vmap(bo);
1344 			if (ret)
1345 				goto out_backup;
1346 			unmap = true;
1347 		}
1348 
1349 		xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr,
1350 				 bo->size);
1351 	}
1352 
1353 	bo->backup_obj = NULL;
1354 
1355 out_backup:
1356 	xe_bo_vunmap(backup);
1357 	if (!bo->backup_obj) {
1358 		if (xe_bo_is_pinned(backup))
1359 			ttm_bo_unpin(&backup->ttm);
1360 		xe_bo_put(backup);
1361 	}
1362 out_unlock_bo:
1363 	if (unmap)
1364 		xe_bo_vunmap(bo);
1365 	xe_bo_unlock(bo);
1366 	return ret;
1367 }
1368 
xe_bo_dma_unmap_pinned(struct xe_bo * bo)1369 int xe_bo_dma_unmap_pinned(struct xe_bo *bo)
1370 {
1371 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
1372 	struct ttm_tt *tt = ttm_bo->ttm;
1373 
1374 	if (tt) {
1375 		struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm);
1376 
1377 		if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1378 			dma_buf_unmap_attachment(ttm_bo->base.import_attach,
1379 						 ttm_bo->sg,
1380 						 DMA_BIDIRECTIONAL);
1381 			ttm_bo->sg = NULL;
1382 			xe_tt->sg = NULL;
1383 		} else if (xe_tt->sg) {
1384 			dma_unmap_sgtable(xe_tt->xe->drm.dev, xe_tt->sg,
1385 					  DMA_BIDIRECTIONAL, 0);
1386 			sg_free_table(xe_tt->sg);
1387 			xe_tt->sg = NULL;
1388 		}
1389 	}
1390 
1391 	return 0;
1392 }
1393 
xe_ttm_io_mem_pfn(struct ttm_buffer_object * ttm_bo,unsigned long page_offset)1394 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
1395 				       unsigned long page_offset)
1396 {
1397 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1398 	struct xe_res_cursor cursor;
1399 	struct xe_vram_region *vram;
1400 
1401 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
1402 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
1403 
1404 	vram = res_to_mem_region(ttm_bo->resource);
1405 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
1406 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
1407 }
1408 
1409 static void __xe_bo_vunmap(struct xe_bo *bo);
1410 
1411 /*
1412  * TODO: Move this function to TTM so we don't rely on how TTM does its
1413  * locking, thereby abusing TTM internals.
1414  */
xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object * ttm_bo)1415 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1416 {
1417 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1418 	bool locked;
1419 
1420 	xe_assert(xe, !kref_read(&ttm_bo->kref));
1421 
1422 	/*
1423 	 * We can typically only race with TTM trylocking under the
1424 	 * lru_lock, which will immediately be unlocked again since
1425 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
1426 	 * always succeed here, as long as we hold the lru lock.
1427 	 */
1428 	spin_lock(&ttm_bo->bdev->lru_lock);
1429 	locked = dma_resv_trylock(ttm_bo->base.resv);
1430 	spin_unlock(&ttm_bo->bdev->lru_lock);
1431 	xe_assert(xe, locked);
1432 
1433 	return locked;
1434 }
1435 
xe_ttm_bo_release_notify(struct ttm_buffer_object * ttm_bo)1436 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1437 {
1438 	struct dma_resv_iter cursor;
1439 	struct dma_fence *fence;
1440 	struct dma_fence *replacement = NULL;
1441 	struct xe_bo *bo;
1442 
1443 	if (!xe_bo_is_xe_bo(ttm_bo))
1444 		return;
1445 
1446 	bo = ttm_to_xe_bo(ttm_bo);
1447 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1448 
1449 	/*
1450 	 * Corner case where TTM fails to allocate memory and this BOs resv
1451 	 * still points the VMs resv
1452 	 */
1453 	if (ttm_bo->base.resv != &ttm_bo->base._resv)
1454 		return;
1455 
1456 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1457 		return;
1458 
1459 	/*
1460 	 * Scrub the preempt fences if any. The unbind fence is already
1461 	 * attached to the resv.
1462 	 * TODO: Don't do this for external bos once we scrub them after
1463 	 * unbind.
1464 	 */
1465 	dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1466 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1467 		if (xe_fence_is_xe_preempt(fence) &&
1468 		    !dma_fence_is_signaled(fence)) {
1469 			if (!replacement)
1470 				replacement = dma_fence_get_stub();
1471 
1472 			dma_resv_replace_fences(ttm_bo->base.resv,
1473 						fence->context,
1474 						replacement,
1475 						DMA_RESV_USAGE_BOOKKEEP);
1476 		}
1477 	}
1478 	dma_fence_put(replacement);
1479 
1480 	dma_resv_unlock(ttm_bo->base.resv);
1481 }
1482 
xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object * ttm_bo)1483 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1484 {
1485 	if (!xe_bo_is_xe_bo(ttm_bo))
1486 		return;
1487 
1488 	/*
1489 	 * Object is idle and about to be destroyed. Release the
1490 	 * dma-buf attachment.
1491 	 */
1492 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1493 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1494 						       struct xe_ttm_tt, ttm);
1495 
1496 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1497 					 DMA_BIDIRECTIONAL);
1498 		ttm_bo->sg = NULL;
1499 		xe_tt->sg = NULL;
1500 	}
1501 }
1502 
xe_ttm_bo_purge(struct ttm_buffer_object * ttm_bo,struct ttm_operation_ctx * ctx)1503 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
1504 {
1505 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1506 
1507 	if (ttm_bo->ttm) {
1508 		struct ttm_placement place = {};
1509 		int ret = ttm_bo_validate(ttm_bo, &place, ctx);
1510 
1511 		drm_WARN_ON(&xe->drm, ret);
1512 	}
1513 }
1514 
xe_ttm_bo_swap_notify(struct ttm_buffer_object * ttm_bo)1515 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
1516 {
1517 	struct ttm_operation_ctx ctx = {
1518 		.interruptible = false,
1519 		.gfp_retry_mayfail = false,
1520 	};
1521 
1522 	if (ttm_bo->ttm) {
1523 		struct xe_ttm_tt *xe_tt =
1524 			container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
1525 
1526 		if (xe_tt->purgeable)
1527 			xe_ttm_bo_purge(ttm_bo, &ctx);
1528 	}
1529 }
1530 
xe_ttm_access_memory(struct ttm_buffer_object * ttm_bo,unsigned long offset,void * buf,int len,int write)1531 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo,
1532 				unsigned long offset, void *buf, int len,
1533 				int write)
1534 {
1535 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1536 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1537 	struct iosys_map vmap;
1538 	struct xe_res_cursor cursor;
1539 	struct xe_vram_region *vram;
1540 	int bytes_left = len;
1541 	int err = 0;
1542 
1543 	xe_bo_assert_held(bo);
1544 	xe_device_assert_mem_access(xe);
1545 
1546 	if (!mem_type_is_vram(ttm_bo->resource->mem_type))
1547 		return -EIO;
1548 
1549 	if (!xe_ttm_resource_visible(ttm_bo->resource) || len >= SZ_16K) {
1550 		struct xe_migrate *migrate =
1551 			mem_type_to_migrate(xe, ttm_bo->resource->mem_type);
1552 
1553 		err = xe_migrate_access_memory(migrate, bo, offset, buf, len,
1554 					       write);
1555 		goto out;
1556 	}
1557 
1558 	vram = res_to_mem_region(ttm_bo->resource);
1559 	xe_res_first(ttm_bo->resource, offset & PAGE_MASK,
1560 		     bo->size - (offset & PAGE_MASK), &cursor);
1561 
1562 	do {
1563 		unsigned long page_offset = (offset & ~PAGE_MASK);
1564 		int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left);
1565 
1566 		iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping +
1567 					  cursor.start);
1568 		if (write)
1569 			xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count);
1570 		else
1571 			xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count);
1572 
1573 		buf += byte_count;
1574 		offset += byte_count;
1575 		bytes_left -= byte_count;
1576 		if (bytes_left)
1577 			xe_res_next(&cursor, PAGE_SIZE);
1578 	} while (bytes_left);
1579 
1580 out:
1581 	return err ?: len;
1582 }
1583 
1584 const struct ttm_device_funcs xe_ttm_funcs = {
1585 	.ttm_tt_create = xe_ttm_tt_create,
1586 	.ttm_tt_populate = xe_ttm_tt_populate,
1587 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1588 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1589 	.evict_flags = xe_evict_flags,
1590 	.move = xe_bo_move,
1591 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1592 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1593 	.access_memory = xe_ttm_access_memory,
1594 	.release_notify = xe_ttm_bo_release_notify,
1595 	.eviction_valuable = xe_bo_eviction_valuable,
1596 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1597 	.swap_notify = xe_ttm_bo_swap_notify,
1598 };
1599 
xe_ttm_bo_destroy(struct ttm_buffer_object * ttm_bo)1600 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1601 {
1602 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1603 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1604 	struct xe_tile *tile;
1605 	u8 id;
1606 
1607 	if (bo->ttm.base.import_attach)
1608 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1609 	drm_gem_object_release(&bo->ttm.base);
1610 
1611 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1612 
1613 	for_each_tile(tile, xe, id)
1614 		if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size)
1615 			xe_ggtt_remove_bo(tile->mem.ggtt, bo);
1616 
1617 #ifdef CONFIG_PROC_FS
1618 	if (bo->client)
1619 		xe_drm_client_remove_bo(bo);
1620 #endif
1621 
1622 	if (bo->vm && xe_bo_is_user(bo))
1623 		xe_vm_put(bo->vm);
1624 
1625 	if (bo->parent_obj)
1626 		xe_bo_put(bo->parent_obj);
1627 
1628 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1629 	if (!list_empty(&bo->vram_userfault_link))
1630 		list_del(&bo->vram_userfault_link);
1631 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1632 
1633 	kfree(bo);
1634 }
1635 
xe_gem_object_free(struct drm_gem_object * obj)1636 static void xe_gem_object_free(struct drm_gem_object *obj)
1637 {
1638 	/* Our BO reference counting scheme works as follows:
1639 	 *
1640 	 * The gem object kref is typically used throughout the driver,
1641 	 * and the gem object holds a ttm_buffer_object refcount, so
1642 	 * that when the last gem object reference is put, which is when
1643 	 * we end up in this function, we put also that ttm_buffer_object
1644 	 * refcount. Anything using gem interfaces is then no longer
1645 	 * allowed to access the object in a way that requires a gem
1646 	 * refcount, including locking the object.
1647 	 *
1648 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1649 	 * refcount directly if needed.
1650 	 */
1651 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1652 	ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1653 }
1654 
xe_gem_object_close(struct drm_gem_object * obj,struct drm_file * file_priv)1655 static void xe_gem_object_close(struct drm_gem_object *obj,
1656 				struct drm_file *file_priv)
1657 {
1658 	struct xe_bo *bo = gem_to_xe_bo(obj);
1659 
1660 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1661 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1662 
1663 		xe_bo_lock(bo, false);
1664 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1665 		xe_bo_unlock(bo);
1666 	}
1667 }
1668 
xe_gem_fault(struct vm_fault * vmf)1669 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1670 {
1671 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1672 	struct drm_device *ddev = tbo->base.dev;
1673 	struct xe_device *xe = to_xe_device(ddev);
1674 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1675 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1676 	vm_fault_t ret;
1677 	int idx;
1678 
1679 	if (needs_rpm)
1680 		xe_pm_runtime_get(xe);
1681 
1682 	ret = ttm_bo_vm_reserve(tbo, vmf);
1683 	if (ret)
1684 		goto out;
1685 
1686 	if (drm_dev_enter(ddev, &idx)) {
1687 		trace_xe_bo_cpu_fault(bo);
1688 
1689 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1690 					       TTM_BO_VM_NUM_PREFAULT);
1691 		drm_dev_exit(idx);
1692 	} else {
1693 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1694 	}
1695 
1696 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1697 		goto out;
1698 	/*
1699 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1700 	 */
1701 	if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1702 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1703 		if (list_empty(&bo->vram_userfault_link))
1704 			list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1705 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1706 	}
1707 
1708 	dma_resv_unlock(tbo->base.resv);
1709 out:
1710 	if (needs_rpm)
1711 		xe_pm_runtime_put(xe);
1712 
1713 	return ret;
1714 }
1715 
xe_bo_vm_access(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)1716 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr,
1717 			   void *buf, int len, int write)
1718 {
1719 	struct ttm_buffer_object *ttm_bo = vma->vm_private_data;
1720 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1721 	struct xe_device *xe = xe_bo_device(bo);
1722 	int ret;
1723 
1724 	xe_pm_runtime_get(xe);
1725 	ret = ttm_bo_vm_access(vma, addr, buf, len, write);
1726 	xe_pm_runtime_put(xe);
1727 
1728 	return ret;
1729 }
1730 
1731 /**
1732  * xe_bo_read() - Read from an xe_bo
1733  * @bo: The buffer object to read from.
1734  * @offset: The byte offset to start reading from.
1735  * @dst: Location to store the read.
1736  * @size: Size in bytes for the read.
1737  *
1738  * Read @size bytes from the @bo, starting from @offset, storing into @dst.
1739  *
1740  * Return: Zero on success, or negative error.
1741  */
xe_bo_read(struct xe_bo * bo,u64 offset,void * dst,int size)1742 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size)
1743 {
1744 	int ret;
1745 
1746 	ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0);
1747 	if (ret >= 0 && ret != size)
1748 		ret = -EIO;
1749 	else if (ret == size)
1750 		ret = 0;
1751 
1752 	return ret;
1753 }
1754 
1755 static const struct vm_operations_struct xe_gem_vm_ops = {
1756 	.fault = xe_gem_fault,
1757 	.open = ttm_bo_vm_open,
1758 	.close = ttm_bo_vm_close,
1759 	.access = xe_bo_vm_access,
1760 };
1761 
1762 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1763 	.free = xe_gem_object_free,
1764 	.close = xe_gem_object_close,
1765 	.mmap = drm_gem_ttm_mmap,
1766 	.export = xe_gem_prime_export,
1767 	.vm_ops = &xe_gem_vm_ops,
1768 };
1769 
1770 /**
1771  * xe_bo_alloc - Allocate storage for a struct xe_bo
1772  *
1773  * This function is intended to allocate storage to be used for input
1774  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1775  * created is needed before the call to __xe_bo_create_locked().
1776  * If __xe_bo_create_locked ends up never to be called, then the
1777  * storage allocated with this function needs to be freed using
1778  * xe_bo_free().
1779  *
1780  * Return: A pointer to an uninitialized struct xe_bo on success,
1781  * ERR_PTR(-ENOMEM) on error.
1782  */
xe_bo_alloc(void)1783 struct xe_bo *xe_bo_alloc(void)
1784 {
1785 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1786 
1787 	if (!bo)
1788 		return ERR_PTR(-ENOMEM);
1789 
1790 	return bo;
1791 }
1792 
1793 /**
1794  * xe_bo_free - Free storage allocated using xe_bo_alloc()
1795  * @bo: The buffer object storage.
1796  *
1797  * Refer to xe_bo_alloc() documentation for valid use-cases.
1798  */
xe_bo_free(struct xe_bo * bo)1799 void xe_bo_free(struct xe_bo *bo)
1800 {
1801 	kfree(bo);
1802 }
1803 
___xe_bo_create_locked(struct xe_device * xe,struct xe_bo * bo,struct xe_tile * tile,struct dma_resv * resv,struct ttm_lru_bulk_move * bulk,size_t size,u16 cpu_caching,enum ttm_bo_type type,u32 flags)1804 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1805 				     struct xe_tile *tile, struct dma_resv *resv,
1806 				     struct ttm_lru_bulk_move *bulk, size_t size,
1807 				     u16 cpu_caching, enum ttm_bo_type type,
1808 				     u32 flags)
1809 {
1810 	struct ttm_operation_ctx ctx = {
1811 		.interruptible = true,
1812 		.no_wait_gpu = false,
1813 		.gfp_retry_mayfail = true,
1814 	};
1815 	struct ttm_placement *placement;
1816 	uint32_t alignment;
1817 	size_t aligned_size;
1818 	int err;
1819 
1820 	/* Only kernel objects should set GT */
1821 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1822 
1823 	if (XE_WARN_ON(!size)) {
1824 		xe_bo_free(bo);
1825 		return ERR_PTR(-EINVAL);
1826 	}
1827 
1828 	/* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */
1829 	if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT))
1830 		return ERR_PTR(-EINVAL);
1831 
1832 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1833 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1834 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1835 	     (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1836 		size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1837 
1838 		aligned_size = ALIGN(size, align);
1839 		if (type != ttm_bo_type_device)
1840 			size = ALIGN(size, align);
1841 		flags |= XE_BO_FLAG_INTERNAL_64K;
1842 		alignment = align >> PAGE_SHIFT;
1843 	} else {
1844 		aligned_size = ALIGN(size, SZ_4K);
1845 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
1846 		alignment = SZ_4K >> PAGE_SHIFT;
1847 	}
1848 
1849 	if (type == ttm_bo_type_device && aligned_size != size)
1850 		return ERR_PTR(-EINVAL);
1851 
1852 	if (!bo) {
1853 		bo = xe_bo_alloc();
1854 		if (IS_ERR(bo))
1855 			return bo;
1856 	}
1857 
1858 	bo->ccs_cleared = false;
1859 	bo->tile = tile;
1860 	bo->size = size;
1861 	bo->flags = flags;
1862 	bo->cpu_caching = cpu_caching;
1863 	bo->ttm.base.funcs = &xe_gem_object_funcs;
1864 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1865 	INIT_LIST_HEAD(&bo->pinned_link);
1866 #ifdef CONFIG_PROC_FS
1867 	INIT_LIST_HEAD(&bo->client_link);
1868 #endif
1869 	INIT_LIST_HEAD(&bo->vram_userfault_link);
1870 
1871 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1872 
1873 	if (resv) {
1874 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1875 		ctx.resv = resv;
1876 	}
1877 
1878 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1879 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1880 		if (WARN_ON(err)) {
1881 			xe_ttm_bo_destroy(&bo->ttm);
1882 			return ERR_PTR(err);
1883 		}
1884 	}
1885 
1886 	/* Defer populating type_sg bos */
1887 	placement = (type == ttm_bo_type_sg ||
1888 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1889 		&bo->placement;
1890 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1891 				   placement, alignment,
1892 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
1893 	if (err)
1894 		return ERR_PTR(err);
1895 
1896 	/*
1897 	 * The VRAM pages underneath are potentially still being accessed by the
1898 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
1899 	 * sure to add any corresponding move/clear fences into the objects
1900 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1901 	 *
1902 	 * For KMD internal buffers we don't care about GPU clearing, however we
1903 	 * still need to handle async evictions, where the VRAM is still being
1904 	 * accessed by the GPU. Most internal callers are not expecting this,
1905 	 * since they are missing the required synchronisation before accessing
1906 	 * the memory. To keep things simple just sync wait any kernel fences
1907 	 * here, if the buffer is designated KMD internal.
1908 	 *
1909 	 * For normal userspace objects we should already have the required
1910 	 * pipelining or sync waiting elsewhere, since we already have to deal
1911 	 * with things like async GPU clearing.
1912 	 */
1913 	if (type == ttm_bo_type_kernel) {
1914 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1915 						     DMA_RESV_USAGE_KERNEL,
1916 						     ctx.interruptible,
1917 						     MAX_SCHEDULE_TIMEOUT);
1918 
1919 		if (timeout < 0) {
1920 			if (!resv)
1921 				dma_resv_unlock(bo->ttm.base.resv);
1922 			xe_bo_put(bo);
1923 			return ERR_PTR(timeout);
1924 		}
1925 	}
1926 
1927 	bo->created = true;
1928 	if (bulk)
1929 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
1930 	else
1931 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1932 
1933 	return bo;
1934 }
1935 
__xe_bo_fixed_placement(struct xe_device * xe,struct xe_bo * bo,u32 flags,u64 start,u64 end,u64 size)1936 static int __xe_bo_fixed_placement(struct xe_device *xe,
1937 				   struct xe_bo *bo,
1938 				   u32 flags,
1939 				   u64 start, u64 end, u64 size)
1940 {
1941 	struct ttm_place *place = bo->placements;
1942 
1943 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1944 		return -EINVAL;
1945 
1946 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
1947 	place->fpfn = start >> PAGE_SHIFT;
1948 	place->lpfn = end >> PAGE_SHIFT;
1949 
1950 	switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1951 	case XE_BO_FLAG_VRAM0:
1952 		place->mem_type = XE_PL_VRAM0;
1953 		break;
1954 	case XE_BO_FLAG_VRAM1:
1955 		place->mem_type = XE_PL_VRAM1;
1956 		break;
1957 	case XE_BO_FLAG_STOLEN:
1958 		place->mem_type = XE_PL_STOLEN;
1959 		break;
1960 
1961 	default:
1962 		/* 0 or multiple of the above set */
1963 		return -EINVAL;
1964 	}
1965 
1966 	bo->placement = (struct ttm_placement) {
1967 		.num_placement = 1,
1968 		.placement = place,
1969 	};
1970 
1971 	return 0;
1972 }
1973 
1974 static struct xe_bo *
__xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,u16 cpu_caching,enum ttm_bo_type type,u32 flags,u64 alignment)1975 __xe_bo_create_locked(struct xe_device *xe,
1976 		      struct xe_tile *tile, struct xe_vm *vm,
1977 		      size_t size, u64 start, u64 end,
1978 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags,
1979 		      u64 alignment)
1980 {
1981 	struct xe_bo *bo = NULL;
1982 	int err;
1983 
1984 	if (vm)
1985 		xe_vm_assert_held(vm);
1986 
1987 	if (start || end != ~0ULL) {
1988 		bo = xe_bo_alloc();
1989 		if (IS_ERR(bo))
1990 			return bo;
1991 
1992 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1993 		err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1994 		if (err) {
1995 			xe_bo_free(bo);
1996 			return ERR_PTR(err);
1997 		}
1998 	}
1999 
2000 	bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
2001 				    vm && !xe_vm_in_fault_mode(vm) &&
2002 				    flags & XE_BO_FLAG_USER ?
2003 				    &vm->lru_bulk_move : NULL, size,
2004 				    cpu_caching, type, flags);
2005 	if (IS_ERR(bo))
2006 		return bo;
2007 
2008 	bo->min_align = alignment;
2009 
2010 	/*
2011 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
2012 	 * to ensure the shared resv doesn't disappear under the bo, the bo
2013 	 * will keep a reference to the vm, and avoid circular references
2014 	 * by having all the vm's bo refereferences released at vm close
2015 	 * time.
2016 	 */
2017 	if (vm && xe_bo_is_user(bo))
2018 		xe_vm_get(vm);
2019 	bo->vm = vm;
2020 
2021 	if (bo->flags & XE_BO_FLAG_GGTT) {
2022 		struct xe_tile *t;
2023 		u8 id;
2024 
2025 		if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) {
2026 			if (!tile && flags & XE_BO_FLAG_STOLEN)
2027 				tile = xe_device_get_root_tile(xe);
2028 
2029 			xe_assert(xe, tile);
2030 		}
2031 
2032 		for_each_tile(t, xe, id) {
2033 			if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t)))
2034 				continue;
2035 
2036 			if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
2037 				err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo,
2038 							   start + bo->size, U64_MAX);
2039 			} else {
2040 				err = xe_ggtt_insert_bo(t->mem.ggtt, bo);
2041 			}
2042 			if (err)
2043 				goto err_unlock_put_bo;
2044 		}
2045 	}
2046 
2047 	trace_xe_bo_create(bo);
2048 	return bo;
2049 
2050 err_unlock_put_bo:
2051 	__xe_bo_unset_bulk_move(bo);
2052 	xe_bo_unlock_vm_held(bo);
2053 	xe_bo_put(bo);
2054 	return ERR_PTR(err);
2055 }
2056 
2057 struct xe_bo *
xe_bo_create_locked_range(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,enum ttm_bo_type type,u32 flags,u64 alignment)2058 xe_bo_create_locked_range(struct xe_device *xe,
2059 			  struct xe_tile *tile, struct xe_vm *vm,
2060 			  size_t size, u64 start, u64 end,
2061 			  enum ttm_bo_type type, u32 flags, u64 alignment)
2062 {
2063 	return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
2064 				     flags, alignment);
2065 }
2066 
xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)2067 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
2068 				  struct xe_vm *vm, size_t size,
2069 				  enum ttm_bo_type type, u32 flags)
2070 {
2071 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
2072 				     flags, 0);
2073 }
2074 
xe_bo_create_user(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u16 cpu_caching,u32 flags)2075 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
2076 				struct xe_vm *vm, size_t size,
2077 				u16 cpu_caching,
2078 				u32 flags)
2079 {
2080 	struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
2081 						 cpu_caching, ttm_bo_type_device,
2082 						 flags | XE_BO_FLAG_USER, 0);
2083 	if (!IS_ERR(bo))
2084 		xe_bo_unlock_vm_held(bo);
2085 
2086 	return bo;
2087 }
2088 
xe_bo_create(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)2089 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
2090 			   struct xe_vm *vm, size_t size,
2091 			   enum ttm_bo_type type, u32 flags)
2092 {
2093 	struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
2094 
2095 	if (!IS_ERR(bo))
2096 		xe_bo_unlock_vm_held(bo);
2097 
2098 	return bo;
2099 }
2100 
xe_bo_create_pin_map_at(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags)2101 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
2102 				      struct xe_vm *vm,
2103 				      size_t size, u64 offset,
2104 				      enum ttm_bo_type type, u32 flags)
2105 {
2106 	return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset,
2107 					       type, flags, 0);
2108 }
2109 
xe_bo_create_pin_map_at_aligned(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags,u64 alignment)2110 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
2111 					      struct xe_tile *tile,
2112 					      struct xe_vm *vm,
2113 					      size_t size, u64 offset,
2114 					      enum ttm_bo_type type, u32 flags,
2115 					      u64 alignment)
2116 {
2117 	struct xe_bo *bo;
2118 	int err;
2119 	u64 start = offset == ~0ull ? 0 : offset;
2120 	u64 end = offset == ~0ull ? offset : start + size;
2121 
2122 	if (flags & XE_BO_FLAG_STOLEN &&
2123 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
2124 		flags |= XE_BO_FLAG_GGTT;
2125 
2126 	bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
2127 				       flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED,
2128 				       alignment);
2129 	if (IS_ERR(bo))
2130 		return bo;
2131 
2132 	err = xe_bo_pin(bo);
2133 	if (err)
2134 		goto err_put;
2135 
2136 	err = xe_bo_vmap(bo);
2137 	if (err)
2138 		goto err_unpin;
2139 
2140 	xe_bo_unlock_vm_held(bo);
2141 
2142 	return bo;
2143 
2144 err_unpin:
2145 	xe_bo_unpin(bo);
2146 err_put:
2147 	xe_bo_unlock_vm_held(bo);
2148 	xe_bo_put(bo);
2149 	return ERR_PTR(err);
2150 }
2151 
xe_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)2152 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
2153 				   struct xe_vm *vm, size_t size,
2154 				   enum ttm_bo_type type, u32 flags)
2155 {
2156 	return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
2157 }
2158 
xe_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,enum ttm_bo_type type,u32 flags)2159 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
2160 				     const void *data, size_t size,
2161 				     enum ttm_bo_type type, u32 flags)
2162 {
2163 	struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
2164 						ALIGN(size, PAGE_SIZE),
2165 						type, flags);
2166 	if (IS_ERR(bo))
2167 		return bo;
2168 
2169 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
2170 
2171 	return bo;
2172 }
2173 
__xe_bo_unpin_map_no_vm(void * arg)2174 static void __xe_bo_unpin_map_no_vm(void *arg)
2175 {
2176 	xe_bo_unpin_map_no_vm(arg);
2177 }
2178 
xe_managed_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,size_t size,u32 flags)2179 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
2180 					   size_t size, u32 flags)
2181 {
2182 	struct xe_bo *bo;
2183 	int ret;
2184 
2185 	KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags);
2186 
2187 	bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
2188 	if (IS_ERR(bo))
2189 		return bo;
2190 
2191 	ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
2192 	if (ret)
2193 		return ERR_PTR(ret);
2194 
2195 	return bo;
2196 }
2197 
xe_managed_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,u32 flags)2198 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
2199 					     const void *data, size_t size, u32 flags)
2200 {
2201 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
2202 
2203 	if (IS_ERR(bo))
2204 		return bo;
2205 
2206 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
2207 
2208 	return bo;
2209 }
2210 
2211 /**
2212  * xe_managed_bo_reinit_in_vram
2213  * @xe: xe device
2214  * @tile: Tile where the new buffer will be created
2215  * @src: Managed buffer object allocated in system memory
2216  *
2217  * Replace a managed src buffer object allocated in system memory with a new
2218  * one allocated in vram, copying the data between them.
2219  * Buffer object in VRAM is not going to have the same GGTT address, the caller
2220  * is responsible for making sure that any old references to it are updated.
2221  *
2222  * Returns 0 for success, negative error code otherwise.
2223  */
xe_managed_bo_reinit_in_vram(struct xe_device * xe,struct xe_tile * tile,struct xe_bo ** src)2224 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
2225 {
2226 	struct xe_bo *bo;
2227 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
2228 
2229 	dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE |
2230 				      XE_BO_FLAG_PINNED_NORESTORE);
2231 
2232 	xe_assert(xe, IS_DGFX(xe));
2233 	xe_assert(xe, !(*src)->vmap.is_iomem);
2234 
2235 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
2236 					    (*src)->size, dst_flags);
2237 	if (IS_ERR(bo))
2238 		return PTR_ERR(bo);
2239 
2240 	devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
2241 	*src = bo;
2242 
2243 	return 0;
2244 }
2245 
2246 /*
2247  * XXX: This is in the VM bind data path, likely should calculate this once and
2248  * store, with a recalculation if the BO is moved.
2249  */
vram_region_gpu_offset(struct ttm_resource * res)2250 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
2251 {
2252 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
2253 
2254 	switch (res->mem_type) {
2255 	case XE_PL_STOLEN:
2256 		return xe_ttm_stolen_gpu_offset(xe);
2257 	case XE_PL_TT:
2258 	case XE_PL_SYSTEM:
2259 		return 0;
2260 	default:
2261 		return res_to_mem_region(res)->dpa_base;
2262 	}
2263 	return 0;
2264 }
2265 
2266 /**
2267  * xe_bo_pin_external - pin an external BO
2268  * @bo: buffer object to be pinned
2269  *
2270  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2271  * BO. Unique call compared to xe_bo_pin as this function has it own set of
2272  * asserts and code to ensure evict / restore on suspend / resume.
2273  *
2274  * Returns 0 for success, negative error code otherwise.
2275  */
xe_bo_pin_external(struct xe_bo * bo)2276 int xe_bo_pin_external(struct xe_bo *bo)
2277 {
2278 	struct xe_device *xe = xe_bo_device(bo);
2279 	int err;
2280 
2281 	xe_assert(xe, !bo->vm);
2282 	xe_assert(xe, xe_bo_is_user(bo));
2283 
2284 	if (!xe_bo_is_pinned(bo)) {
2285 		err = xe_bo_validate(bo, NULL, false);
2286 		if (err)
2287 			return err;
2288 
2289 		spin_lock(&xe->pinned.lock);
2290 		list_add_tail(&bo->pinned_link, &xe->pinned.late.external);
2291 		spin_unlock(&xe->pinned.lock);
2292 	}
2293 
2294 	ttm_bo_pin(&bo->ttm);
2295 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2296 		xe_ttm_tt_account_subtract(bo->ttm.ttm);
2297 
2298 	/*
2299 	 * FIXME: If we always use the reserve / unreserve functions for locking
2300 	 * we do not need this.
2301 	 */
2302 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2303 
2304 	return 0;
2305 }
2306 
xe_bo_pin(struct xe_bo * bo)2307 int xe_bo_pin(struct xe_bo *bo)
2308 {
2309 	struct ttm_place *place = &bo->placements[0];
2310 	struct xe_device *xe = xe_bo_device(bo);
2311 	int err;
2312 
2313 	/* We currently don't expect user BO to be pinned */
2314 	xe_assert(xe, !xe_bo_is_user(bo));
2315 
2316 	/* Pinned object must be in GGTT or have pinned flag */
2317 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
2318 				   XE_BO_FLAG_GGTT));
2319 
2320 	/*
2321 	 * No reason we can't support pinning imported dma-bufs we just don't
2322 	 * expect to pin an imported dma-buf.
2323 	 */
2324 	xe_assert(xe, !bo->ttm.base.import_attach);
2325 
2326 	/* We only expect at most 1 pin */
2327 	xe_assert(xe, !xe_bo_is_pinned(bo));
2328 
2329 	err = xe_bo_validate(bo, NULL, false);
2330 	if (err)
2331 		return err;
2332 
2333 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2334 		spin_lock(&xe->pinned.lock);
2335 		if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)
2336 			list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present);
2337 		else
2338 			list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present);
2339 		spin_unlock(&xe->pinned.lock);
2340 	}
2341 
2342 	ttm_bo_pin(&bo->ttm);
2343 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2344 		xe_ttm_tt_account_subtract(bo->ttm.ttm);
2345 
2346 	/*
2347 	 * FIXME: If we always use the reserve / unreserve functions for locking
2348 	 * we do not need this.
2349 	 */
2350 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2351 
2352 	return 0;
2353 }
2354 
2355 /**
2356  * xe_bo_unpin_external - unpin an external BO
2357  * @bo: buffer object to be unpinned
2358  *
2359  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2360  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
2361  * asserts and code to ensure evict / restore on suspend / resume.
2362  *
2363  * Returns 0 for success, negative error code otherwise.
2364  */
xe_bo_unpin_external(struct xe_bo * bo)2365 void xe_bo_unpin_external(struct xe_bo *bo)
2366 {
2367 	struct xe_device *xe = xe_bo_device(bo);
2368 
2369 	xe_assert(xe, !bo->vm);
2370 	xe_assert(xe, xe_bo_is_pinned(bo));
2371 	xe_assert(xe, xe_bo_is_user(bo));
2372 
2373 	spin_lock(&xe->pinned.lock);
2374 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
2375 		list_del_init(&bo->pinned_link);
2376 	spin_unlock(&xe->pinned.lock);
2377 
2378 	ttm_bo_unpin(&bo->ttm);
2379 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2380 		xe_ttm_tt_account_add(bo->ttm.ttm);
2381 
2382 	/*
2383 	 * FIXME: If we always use the reserve / unreserve functions for locking
2384 	 * we do not need this.
2385 	 */
2386 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2387 }
2388 
xe_bo_unpin(struct xe_bo * bo)2389 void xe_bo_unpin(struct xe_bo *bo)
2390 {
2391 	struct ttm_place *place = &bo->placements[0];
2392 	struct xe_device *xe = xe_bo_device(bo);
2393 
2394 	xe_assert(xe, !bo->ttm.base.import_attach);
2395 	xe_assert(xe, xe_bo_is_pinned(bo));
2396 
2397 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2398 		spin_lock(&xe->pinned.lock);
2399 		xe_assert(xe, !list_empty(&bo->pinned_link));
2400 		list_del_init(&bo->pinned_link);
2401 		spin_unlock(&xe->pinned.lock);
2402 
2403 		if (bo->backup_obj) {
2404 			if (xe_bo_is_pinned(bo->backup_obj))
2405 				ttm_bo_unpin(&bo->backup_obj->ttm);
2406 			xe_bo_put(bo->backup_obj);
2407 			bo->backup_obj = NULL;
2408 		}
2409 	}
2410 	ttm_bo_unpin(&bo->ttm);
2411 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2412 		xe_ttm_tt_account_add(bo->ttm.ttm);
2413 }
2414 
2415 /**
2416  * xe_bo_validate() - Make sure the bo is in an allowed placement
2417  * @bo: The bo,
2418  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
2419  *      NULL. Used together with @allow_res_evict.
2420  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
2421  *                   reservation object.
2422  *
2423  * Make sure the bo is in allowed placement, migrating it if necessary. If
2424  * needed, other bos will be evicted. If bos selected for eviction shares
2425  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
2426  * set to true, otherwise they will be bypassed.
2427  *
2428  * Return: 0 on success, negative error code on failure. May return
2429  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
2430  */
xe_bo_validate(struct xe_bo * bo,struct xe_vm * vm,bool allow_res_evict)2431 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
2432 {
2433 	struct ttm_operation_ctx ctx = {
2434 		.interruptible = true,
2435 		.no_wait_gpu = false,
2436 		.gfp_retry_mayfail = true,
2437 	};
2438 	struct pin_cookie cookie;
2439 	int ret;
2440 
2441 	if (vm) {
2442 		lockdep_assert_held(&vm->lock);
2443 		xe_vm_assert_held(vm);
2444 
2445 		ctx.allow_res_evict = allow_res_evict;
2446 		ctx.resv = xe_vm_resv(vm);
2447 	}
2448 
2449 	cookie = xe_vm_set_validating(vm, allow_res_evict);
2450 	trace_xe_bo_validate(bo);
2451 	ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
2452 	xe_vm_clear_validating(vm, allow_res_evict, cookie);
2453 
2454 	return ret;
2455 }
2456 
xe_bo_is_xe_bo(struct ttm_buffer_object * bo)2457 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
2458 {
2459 	if (bo->destroy == &xe_ttm_bo_destroy)
2460 		return true;
2461 
2462 	return false;
2463 }
2464 
2465 /*
2466  * Resolve a BO address. There is no assert to check if the proper lock is held
2467  * so it should only be used in cases where it is not fatal to get the wrong
2468  * address, such as printing debug information, but not in cases where memory is
2469  * written based on this result.
2470  */
__xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)2471 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2472 {
2473 	struct xe_device *xe = xe_bo_device(bo);
2474 	struct xe_res_cursor cur;
2475 	u64 page;
2476 
2477 	xe_assert(xe, page_size <= PAGE_SIZE);
2478 	page = offset >> PAGE_SHIFT;
2479 	offset &= (PAGE_SIZE - 1);
2480 
2481 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
2482 		xe_assert(xe, bo->ttm.ttm);
2483 
2484 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
2485 				page_size, &cur);
2486 		return xe_res_dma(&cur) + offset;
2487 	} else {
2488 		struct xe_res_cursor cur;
2489 
2490 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
2491 			     page_size, &cur);
2492 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
2493 	}
2494 }
2495 
xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)2496 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2497 {
2498 	if (!READ_ONCE(bo->ttm.pin_count))
2499 		xe_bo_assert_held(bo);
2500 	return __xe_bo_addr(bo, offset, page_size);
2501 }
2502 
xe_bo_vmap(struct xe_bo * bo)2503 int xe_bo_vmap(struct xe_bo *bo)
2504 {
2505 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2506 	void *virtual;
2507 	bool is_iomem;
2508 	int ret;
2509 
2510 	xe_bo_assert_held(bo);
2511 
2512 	if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) ||
2513 			!force_contiguous(bo->flags)))
2514 		return -EINVAL;
2515 
2516 	if (!iosys_map_is_null(&bo->vmap))
2517 		return 0;
2518 
2519 	/*
2520 	 * We use this more or less deprecated interface for now since
2521 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
2522 	 * single page bos, which is done here.
2523 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
2524 	 * to use struct iosys_map.
2525 	 */
2526 	ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
2527 	if (ret)
2528 		return ret;
2529 
2530 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
2531 	if (is_iomem)
2532 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
2533 	else
2534 		iosys_map_set_vaddr(&bo->vmap, virtual);
2535 
2536 	return 0;
2537 }
2538 
__xe_bo_vunmap(struct xe_bo * bo)2539 static void __xe_bo_vunmap(struct xe_bo *bo)
2540 {
2541 	if (!iosys_map_is_null(&bo->vmap)) {
2542 		iosys_map_clear(&bo->vmap);
2543 		ttm_bo_kunmap(&bo->kmap);
2544 	}
2545 }
2546 
xe_bo_vunmap(struct xe_bo * bo)2547 void xe_bo_vunmap(struct xe_bo *bo)
2548 {
2549 	xe_bo_assert_held(bo);
2550 	__xe_bo_vunmap(bo);
2551 }
2552 
gem_create_set_pxp_type(struct xe_device * xe,struct xe_bo * bo,u64 value)2553 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value)
2554 {
2555 	if (value == DRM_XE_PXP_TYPE_NONE)
2556 		return 0;
2557 
2558 	/* we only support DRM_XE_PXP_TYPE_HWDRM for now */
2559 	if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
2560 		return -EINVAL;
2561 
2562 	return xe_pxp_key_assign(xe->pxp, bo);
2563 }
2564 
2565 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe,
2566 					     struct xe_bo *bo,
2567 					     u64 value);
2568 
2569 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = {
2570 	[DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type,
2571 };
2572 
gem_create_user_ext_set_property(struct xe_device * xe,struct xe_bo * bo,u64 extension)2573 static int gem_create_user_ext_set_property(struct xe_device *xe,
2574 					    struct xe_bo *bo,
2575 					    u64 extension)
2576 {
2577 	u64 __user *address = u64_to_user_ptr(extension);
2578 	struct drm_xe_ext_set_property ext;
2579 	int err;
2580 	u32 idx;
2581 
2582 	err = copy_from_user(&ext, address, sizeof(ext));
2583 	if (XE_IOCTL_DBG(xe, err))
2584 		return -EFAULT;
2585 
2586 	if (XE_IOCTL_DBG(xe, ext.property >=
2587 			 ARRAY_SIZE(gem_create_set_property_funcs)) ||
2588 	    XE_IOCTL_DBG(xe, ext.pad) ||
2589 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY))
2590 		return -EINVAL;
2591 
2592 	idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs));
2593 	if (!gem_create_set_property_funcs[idx])
2594 		return -EINVAL;
2595 
2596 	return gem_create_set_property_funcs[idx](xe, bo, ext.value);
2597 }
2598 
2599 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe,
2600 					       struct xe_bo *bo,
2601 					       u64 extension);
2602 
2603 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = {
2604 	[DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property,
2605 };
2606 
2607 #define MAX_USER_EXTENSIONS	16
gem_create_user_extensions(struct xe_device * xe,struct xe_bo * bo,u64 extensions,int ext_number)2608 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo,
2609 				      u64 extensions, int ext_number)
2610 {
2611 	u64 __user *address = u64_to_user_ptr(extensions);
2612 	struct drm_xe_user_extension ext;
2613 	int err;
2614 	u32 idx;
2615 
2616 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
2617 		return -E2BIG;
2618 
2619 	err = copy_from_user(&ext, address, sizeof(ext));
2620 	if (XE_IOCTL_DBG(xe, err))
2621 		return -EFAULT;
2622 
2623 	if (XE_IOCTL_DBG(xe, ext.pad) ||
2624 	    XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs)))
2625 		return -EINVAL;
2626 
2627 	idx = array_index_nospec(ext.name,
2628 				 ARRAY_SIZE(gem_create_user_extension_funcs));
2629 	err = gem_create_user_extension_funcs[idx](xe, bo, extensions);
2630 	if (XE_IOCTL_DBG(xe, err))
2631 		return err;
2632 
2633 	if (ext.next_extension)
2634 		return gem_create_user_extensions(xe, bo, ext.next_extension,
2635 						  ++ext_number);
2636 
2637 	return 0;
2638 }
2639 
xe_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2640 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
2641 			struct drm_file *file)
2642 {
2643 	struct xe_device *xe = to_xe_device(dev);
2644 	struct xe_file *xef = to_xe_file(file);
2645 	struct drm_xe_gem_create *args = data;
2646 	struct xe_vm *vm = NULL;
2647 	ktime_t end = 0;
2648 	struct xe_bo *bo;
2649 	unsigned int bo_flags;
2650 	u32 handle;
2651 	int err;
2652 
2653 	if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
2654 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2655 		return -EINVAL;
2656 
2657 	/* at least one valid memory placement must be specified */
2658 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
2659 			 !args->placement))
2660 		return -EINVAL;
2661 
2662 	if (XE_IOCTL_DBG(xe, args->flags &
2663 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
2664 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
2665 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
2666 		return -EINVAL;
2667 
2668 	if (XE_IOCTL_DBG(xe, args->handle))
2669 		return -EINVAL;
2670 
2671 	if (XE_IOCTL_DBG(xe, !args->size))
2672 		return -EINVAL;
2673 
2674 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
2675 		return -EINVAL;
2676 
2677 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
2678 		return -EINVAL;
2679 
2680 	bo_flags = 0;
2681 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2682 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2683 
2684 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2685 		bo_flags |= XE_BO_FLAG_SCANOUT;
2686 
2687 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2688 
2689 	/* CCS formats need physical placement at a 64K alignment in VRAM. */
2690 	if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2691 	    (bo_flags & XE_BO_FLAG_SCANOUT) &&
2692 	    !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2693 	    IS_ALIGNED(args->size, SZ_64K))
2694 		bo_flags |= XE_BO_FLAG_NEEDS_64K;
2695 
2696 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2697 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2698 			return -EINVAL;
2699 
2700 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2701 	}
2702 
2703 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2704 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2705 		return -EINVAL;
2706 
2707 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2708 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2709 		return -EINVAL;
2710 
2711 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2712 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2713 		return -EINVAL;
2714 
2715 	if (args->vm_id) {
2716 		vm = xe_vm_lookup(xef, args->vm_id);
2717 		if (XE_IOCTL_DBG(xe, !vm))
2718 			return -ENOENT;
2719 	}
2720 
2721 retry:
2722 	if (vm) {
2723 		err = xe_vm_lock(vm, true);
2724 		if (err)
2725 			goto out_vm;
2726 	}
2727 
2728 	bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2729 			       bo_flags);
2730 
2731 	if (vm)
2732 		xe_vm_unlock(vm);
2733 
2734 	if (IS_ERR(bo)) {
2735 		err = PTR_ERR(bo);
2736 		if (xe_vm_validate_should_retry(NULL, err, &end))
2737 			goto retry;
2738 		goto out_vm;
2739 	}
2740 
2741 	if (args->extensions) {
2742 		err = gem_create_user_extensions(xe, bo, args->extensions, 0);
2743 		if (err)
2744 			goto out_bulk;
2745 	}
2746 
2747 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2748 	if (err)
2749 		goto out_bulk;
2750 
2751 	args->handle = handle;
2752 	goto out_put;
2753 
2754 out_bulk:
2755 	if (vm && !xe_vm_in_fault_mode(vm)) {
2756 		xe_vm_lock(vm, false);
2757 		__xe_bo_unset_bulk_move(bo);
2758 		xe_vm_unlock(vm);
2759 	}
2760 out_put:
2761 	xe_bo_put(bo);
2762 out_vm:
2763 	if (vm)
2764 		xe_vm_put(vm);
2765 
2766 	return err;
2767 }
2768 
xe_gem_mmap_offset_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2769 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2770 			     struct drm_file *file)
2771 {
2772 	struct xe_device *xe = to_xe_device(dev);
2773 	struct drm_xe_gem_mmap_offset *args = data;
2774 	struct drm_gem_object *gem_obj;
2775 
2776 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2777 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2778 		return -EINVAL;
2779 
2780 	if (XE_IOCTL_DBG(xe, args->flags &
2781 			 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER))
2782 		return -EINVAL;
2783 
2784 	if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) {
2785 		if (XE_IOCTL_DBG(xe, !IS_DGFX(xe)))
2786 			return -EINVAL;
2787 
2788 		if (XE_IOCTL_DBG(xe, args->handle))
2789 			return -EINVAL;
2790 
2791 		if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K))
2792 			return -EINVAL;
2793 
2794 		BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) +
2795 			      SZ_4K) >= DRM_FILE_PAGE_OFFSET_START);
2796 		args->offset = XE_PCI_BARRIER_MMAP_OFFSET;
2797 		return 0;
2798 	}
2799 
2800 	gem_obj = drm_gem_object_lookup(file, args->handle);
2801 	if (XE_IOCTL_DBG(xe, !gem_obj))
2802 		return -ENOENT;
2803 
2804 	/* The mmap offset was set up at BO allocation time. */
2805 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2806 
2807 	xe_bo_put(gem_to_xe_bo(gem_obj));
2808 	return 0;
2809 }
2810 
2811 /**
2812  * xe_bo_lock() - Lock the buffer object's dma_resv object
2813  * @bo: The struct xe_bo whose lock is to be taken
2814  * @intr: Whether to perform any wait interruptible
2815  *
2816  * Locks the buffer object's dma_resv object. If the buffer object is
2817  * pointing to a shared dma_resv object, that shared lock is locked.
2818  *
2819  * Return: 0 on success, -EINTR if @intr is true and the wait for a
2820  * contended lock was interrupted. If @intr is set to false, the
2821  * function always returns 0.
2822  */
xe_bo_lock(struct xe_bo * bo,bool intr)2823 int xe_bo_lock(struct xe_bo *bo, bool intr)
2824 {
2825 	if (intr)
2826 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2827 
2828 	dma_resv_lock(bo->ttm.base.resv, NULL);
2829 
2830 	return 0;
2831 }
2832 
2833 /**
2834  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2835  * @bo: The struct xe_bo whose lock is to be released.
2836  *
2837  * Unlock a buffer object lock that was locked by xe_bo_lock().
2838  */
xe_bo_unlock(struct xe_bo * bo)2839 void xe_bo_unlock(struct xe_bo *bo)
2840 {
2841 	dma_resv_unlock(bo->ttm.base.resv);
2842 }
2843 
2844 /**
2845  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2846  * @bo: The buffer object to migrate
2847  * @mem_type: The TTM memory type intended to migrate to
2848  *
2849  * Check whether the buffer object supports migration to the
2850  * given memory type. Note that pinning may affect the ability to migrate as
2851  * returned by this function.
2852  *
2853  * This function is primarily intended as a helper for checking the
2854  * possibility to migrate buffer objects and can be called without
2855  * the object lock held.
2856  *
2857  * Return: true if migration is possible, false otherwise.
2858  */
xe_bo_can_migrate(struct xe_bo * bo,u32 mem_type)2859 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2860 {
2861 	unsigned int cur_place;
2862 
2863 	if (bo->ttm.type == ttm_bo_type_kernel)
2864 		return true;
2865 
2866 	if (bo->ttm.type == ttm_bo_type_sg)
2867 		return false;
2868 
2869 	for (cur_place = 0; cur_place < bo->placement.num_placement;
2870 	     cur_place++) {
2871 		if (bo->placements[cur_place].mem_type == mem_type)
2872 			return true;
2873 	}
2874 
2875 	return false;
2876 }
2877 
xe_place_from_ttm_type(u32 mem_type,struct ttm_place * place)2878 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2879 {
2880 	memset(place, 0, sizeof(*place));
2881 	place->mem_type = mem_type;
2882 }
2883 
2884 /**
2885  * xe_bo_migrate - Migrate an object to the desired region id
2886  * @bo: The buffer object to migrate.
2887  * @mem_type: The TTM region type to migrate to.
2888  *
2889  * Attempt to migrate the buffer object to the desired memory region. The
2890  * buffer object may not be pinned, and must be locked.
2891  * On successful completion, the object memory type will be updated,
2892  * but an async migration task may not have completed yet, and to
2893  * accomplish that, the object's kernel fences must be signaled with
2894  * the object lock held.
2895  *
2896  * Return: 0 on success. Negative error code on failure. In particular may
2897  * return -EINTR or -ERESTARTSYS if signal pending.
2898  */
xe_bo_migrate(struct xe_bo * bo,u32 mem_type)2899 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2900 {
2901 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2902 	struct ttm_operation_ctx ctx = {
2903 		.interruptible = true,
2904 		.no_wait_gpu = false,
2905 		.gfp_retry_mayfail = true,
2906 	};
2907 	struct ttm_placement placement;
2908 	struct ttm_place requested;
2909 
2910 	xe_bo_assert_held(bo);
2911 
2912 	if (bo->ttm.resource->mem_type == mem_type)
2913 		return 0;
2914 
2915 	if (xe_bo_is_pinned(bo))
2916 		return -EBUSY;
2917 
2918 	if (!xe_bo_can_migrate(bo, mem_type))
2919 		return -EINVAL;
2920 
2921 	xe_place_from_ttm_type(mem_type, &requested);
2922 	placement.num_placement = 1;
2923 	placement.placement = &requested;
2924 
2925 	/*
2926 	 * Stolen needs to be handled like below VRAM handling if we ever need
2927 	 * to support it.
2928 	 */
2929 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2930 
2931 	if (mem_type_is_vram(mem_type)) {
2932 		u32 c = 0;
2933 
2934 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2935 	}
2936 
2937 	return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2938 }
2939 
2940 /**
2941  * xe_bo_evict - Evict an object to evict placement
2942  * @bo: The buffer object to migrate.
2943  *
2944  * On successful completion, the object memory will be moved to evict
2945  * placement. This function blocks until the object has been fully moved.
2946  *
2947  * Return: 0 on success. Negative error code on failure.
2948  */
xe_bo_evict(struct xe_bo * bo)2949 int xe_bo_evict(struct xe_bo *bo)
2950 {
2951 	struct ttm_operation_ctx ctx = {
2952 		.interruptible = false,
2953 		.no_wait_gpu = false,
2954 		.gfp_retry_mayfail = true,
2955 	};
2956 	struct ttm_placement placement;
2957 	int ret;
2958 
2959 	xe_evict_flags(&bo->ttm, &placement);
2960 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2961 	if (ret)
2962 		return ret;
2963 
2964 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2965 			      false, MAX_SCHEDULE_TIMEOUT);
2966 
2967 	return 0;
2968 }
2969 
2970 /**
2971  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2972  * placed in system memory.
2973  * @bo: The xe_bo
2974  *
2975  * Return: true if extra pages need to be allocated, false otherwise.
2976  */
xe_bo_needs_ccs_pages(struct xe_bo * bo)2977 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2978 {
2979 	struct xe_device *xe = xe_bo_device(bo);
2980 
2981 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2982 		return false;
2983 
2984 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2985 		return false;
2986 
2987 	/* On discrete GPUs, if the GPU can access this buffer from
2988 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2989 	 * can't be used since there's no CCS storage associated with
2990 	 * non-VRAM addresses.
2991 	 */
2992 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2993 		return false;
2994 
2995 	return true;
2996 }
2997 
2998 /**
2999  * __xe_bo_release_dummy() - Dummy kref release function
3000  * @kref: The embedded struct kref.
3001  *
3002  * Dummy release function for xe_bo_put_deferred(). Keep off.
3003  */
__xe_bo_release_dummy(struct kref * kref)3004 void __xe_bo_release_dummy(struct kref *kref)
3005 {
3006 }
3007 
3008 /**
3009  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
3010  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
3011  *
3012  * Puts all bos whose put was deferred by xe_bo_put_deferred().
3013  * The @deferred list can be either an onstack local list or a global
3014  * shared list used by a workqueue.
3015  */
xe_bo_put_commit(struct llist_head * deferred)3016 void xe_bo_put_commit(struct llist_head *deferred)
3017 {
3018 	struct llist_node *freed;
3019 	struct xe_bo *bo, *next;
3020 
3021 	if (!deferred)
3022 		return;
3023 
3024 	freed = llist_del_all(deferred);
3025 	if (!freed)
3026 		return;
3027 
3028 	llist_for_each_entry_safe(bo, next, freed, freed)
3029 		drm_gem_object_free(&bo->ttm.base.refcount);
3030 }
3031 
xe_bo_dev_work_func(struct work_struct * work)3032 static void xe_bo_dev_work_func(struct work_struct *work)
3033 {
3034 	struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free);
3035 
3036 	xe_bo_put_commit(&bo_dev->async_list);
3037 }
3038 
3039 /**
3040  * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing
3041  * @bo_dev: The BO dev structure
3042  */
xe_bo_dev_init(struct xe_bo_dev * bo_dev)3043 void xe_bo_dev_init(struct xe_bo_dev *bo_dev)
3044 {
3045 	INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func);
3046 }
3047 
3048 /**
3049  * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing
3050  * @bo_dev: The BO dev structure
3051  */
xe_bo_dev_fini(struct xe_bo_dev * bo_dev)3052 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev)
3053 {
3054 	flush_work(&bo_dev->async_free);
3055 }
3056 
xe_bo_put(struct xe_bo * bo)3057 void xe_bo_put(struct xe_bo *bo)
3058 {
3059 	struct xe_tile *tile;
3060 	u8 id;
3061 
3062 	might_sleep();
3063 	if (bo) {
3064 #ifdef CONFIG_PROC_FS
3065 		if (bo->client)
3066 			might_lock(&bo->client->bos_lock);
3067 #endif
3068 		for_each_tile(tile, xe_bo_device(bo), id)
3069 			if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt)
3070 				might_lock(&bo->ggtt_node[id]->ggtt->lock);
3071 		drm_gem_object_put(&bo->ttm.base);
3072 	}
3073 }
3074 
3075 /**
3076  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
3077  * @file_priv: ...
3078  * @dev: ...
3079  * @args: ...
3080  *
3081  * See dumb_create() hook in include/drm/drm_drv.h
3082  *
3083  * Return: ...
3084  */
xe_bo_dumb_create(struct drm_file * file_priv,struct drm_device * dev,struct drm_mode_create_dumb * args)3085 int xe_bo_dumb_create(struct drm_file *file_priv,
3086 		      struct drm_device *dev,
3087 		      struct drm_mode_create_dumb *args)
3088 {
3089 	struct xe_device *xe = to_xe_device(dev);
3090 	struct xe_bo *bo;
3091 	uint32_t handle;
3092 	int cpp = DIV_ROUND_UP(args->bpp, 8);
3093 	int err;
3094 	u32 page_size = max_t(u32, PAGE_SIZE,
3095 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
3096 
3097 	args->pitch = ALIGN(args->width * cpp, 64);
3098 	args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
3099 			   page_size);
3100 
3101 	bo = xe_bo_create_user(xe, NULL, NULL, args->size,
3102 			       DRM_XE_GEM_CPU_CACHING_WC,
3103 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
3104 			       XE_BO_FLAG_SCANOUT |
3105 			       XE_BO_FLAG_NEEDS_CPU_ACCESS);
3106 	if (IS_ERR(bo))
3107 		return PTR_ERR(bo);
3108 
3109 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
3110 	/* drop reference from allocate - handle holds it now */
3111 	drm_gem_object_put(&bo->ttm.base);
3112 	if (!err)
3113 		args->handle = handle;
3114 	return err;
3115 }
3116 
xe_bo_runtime_pm_release_mmap_offset(struct xe_bo * bo)3117 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
3118 {
3119 	struct ttm_buffer_object *tbo = &bo->ttm;
3120 	struct ttm_device *bdev = tbo->bdev;
3121 
3122 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
3123 
3124 	list_del_init(&bo->vram_userfault_link);
3125 }
3126 
3127 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
3128 #include "tests/xe_bo.c"
3129 #endif
3130