1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_bo.h"
7
8 #include <linux/dma-buf.h>
9
10 #include <drm/drm_drv.h>
11 #include <drm/drm_gem_ttm_helper.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_device.h>
14 #include <drm/ttm/ttm_placement.h>
15 #include <drm/ttm/ttm_tt.h>
16 #include <uapi/drm/xe_drm.h>
17
18 #include "xe_device.h"
19 #include "xe_dma_buf.h"
20 #include "xe_drm_client.h"
21 #include "xe_ggtt.h"
22 #include "xe_gt.h"
23 #include "xe_map.h"
24 #include "xe_migrate.h"
25 #include "xe_pm.h"
26 #include "xe_preempt_fence.h"
27 #include "xe_res_cursor.h"
28 #include "xe_trace_bo.h"
29 #include "xe_ttm_stolen_mgr.h"
30 #include "xe_vm.h"
31
32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = {
33 [XE_PL_SYSTEM] = "system",
34 [XE_PL_TT] = "gtt",
35 [XE_PL_VRAM0] = "vram0",
36 [XE_PL_VRAM1] = "vram1",
37 [XE_PL_STOLEN] = "stolen"
38 };
39
40 static const struct ttm_place sys_placement_flags = {
41 .fpfn = 0,
42 .lpfn = 0,
43 .mem_type = XE_PL_SYSTEM,
44 .flags = 0,
45 };
46
47 static struct ttm_placement sys_placement = {
48 .num_placement = 1,
49 .placement = &sys_placement_flags,
50 };
51
52 static const struct ttm_place tt_placement_flags[] = {
53 {
54 .fpfn = 0,
55 .lpfn = 0,
56 .mem_type = XE_PL_TT,
57 .flags = TTM_PL_FLAG_DESIRED,
58 },
59 {
60 .fpfn = 0,
61 .lpfn = 0,
62 .mem_type = XE_PL_SYSTEM,
63 .flags = TTM_PL_FLAG_FALLBACK,
64 }
65 };
66
67 static struct ttm_placement tt_placement = {
68 .num_placement = 2,
69 .placement = tt_placement_flags,
70 };
71
mem_type_is_vram(u32 mem_type)72 bool mem_type_is_vram(u32 mem_type)
73 {
74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
75 }
76
resource_is_stolen_vram(struct xe_device * xe,struct ttm_resource * res)77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
78 {
79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
80 }
81
resource_is_vram(struct ttm_resource * res)82 static bool resource_is_vram(struct ttm_resource *res)
83 {
84 return mem_type_is_vram(res->mem_type);
85 }
86
xe_bo_is_vram(struct xe_bo * bo)87 bool xe_bo_is_vram(struct xe_bo *bo)
88 {
89 return resource_is_vram(bo->ttm.resource) ||
90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
91 }
92
xe_bo_is_stolen(struct xe_bo * bo)93 bool xe_bo_is_stolen(struct xe_bo *bo)
94 {
95 return bo->ttm.resource->mem_type == XE_PL_STOLEN;
96 }
97
98 /**
99 * xe_bo_has_single_placement - check if BO is placed only in one memory location
100 * @bo: The BO
101 *
102 * This function checks whether a given BO is placed in only one memory location.
103 *
104 * Returns: true if the BO is placed in a single memory location, false otherwise.
105 *
106 */
xe_bo_has_single_placement(struct xe_bo * bo)107 bool xe_bo_has_single_placement(struct xe_bo *bo)
108 {
109 return bo->placement.num_placement == 1;
110 }
111
112 /**
113 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
114 * @bo: The BO
115 *
116 * The stolen memory is accessed through the PCI BAR for both DGFX and some
117 * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
118 *
119 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
120 */
xe_bo_is_stolen_devmem(struct xe_bo * bo)121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
122 {
123 return xe_bo_is_stolen(bo) &&
124 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
125 }
126
xe_bo_is_user(struct xe_bo * bo)127 static bool xe_bo_is_user(struct xe_bo *bo)
128 {
129 return bo->flags & XE_BO_FLAG_USER;
130 }
131
132 static struct xe_migrate *
mem_type_to_migrate(struct xe_device * xe,u32 mem_type)133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
134 {
135 struct xe_tile *tile;
136
137 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
138 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
139 return tile->migrate;
140 }
141
res_to_mem_region(struct ttm_resource * res)142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
143 {
144 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
145 struct ttm_resource_manager *mgr;
146
147 xe_assert(xe, resource_is_vram(res));
148 mgr = ttm_manager_type(&xe->ttm, res->mem_type);
149 return to_xe_ttm_vram_mgr(mgr)->vram;
150 }
151
try_add_system(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
153 u32 bo_flags, u32 *c)
154 {
155 if (bo_flags & XE_BO_FLAG_SYSTEM) {
156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
157
158 bo->placements[*c] = (struct ttm_place) {
159 .mem_type = XE_PL_TT,
160 };
161 *c += 1;
162 }
163 }
164
add_vram(struct xe_device * xe,struct xe_bo * bo,struct ttm_place * places,u32 bo_flags,u32 mem_type,u32 * c)165 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
166 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
167 {
168 struct ttm_place place = { .mem_type = mem_type };
169 struct xe_mem_region *vram;
170 u64 io_size;
171
172 xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
173
174 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
175 xe_assert(xe, vram && vram->usable_size);
176 io_size = vram->io_size;
177
178 /*
179 * For eviction / restore on suspend / resume objects
180 * pinned in VRAM must be contiguous
181 */
182 if (bo_flags & (XE_BO_FLAG_PINNED |
183 XE_BO_FLAG_GGTT))
184 place.flags |= TTM_PL_FLAG_CONTIGUOUS;
185
186 if (io_size < vram->usable_size) {
187 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
188 place.fpfn = 0;
189 place.lpfn = io_size >> PAGE_SHIFT;
190 } else {
191 place.flags |= TTM_PL_FLAG_TOPDOWN;
192 }
193 }
194 places[*c] = place;
195 *c += 1;
196 }
197
try_add_vram(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
199 u32 bo_flags, u32 *c)
200 {
201 if (bo_flags & XE_BO_FLAG_VRAM0)
202 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
203 if (bo_flags & XE_BO_FLAG_VRAM1)
204 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
205 }
206
try_add_stolen(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
208 u32 bo_flags, u32 *c)
209 {
210 if (bo_flags & XE_BO_FLAG_STOLEN) {
211 xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
212
213 bo->placements[*c] = (struct ttm_place) {
214 .mem_type = XE_PL_STOLEN,
215 .flags = bo_flags & (XE_BO_FLAG_PINNED |
216 XE_BO_FLAG_GGTT) ?
217 TTM_PL_FLAG_CONTIGUOUS : 0,
218 };
219 *c += 1;
220 }
221 }
222
__xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
224 u32 bo_flags)
225 {
226 u32 c = 0;
227
228 try_add_vram(xe, bo, bo_flags, &c);
229 try_add_system(xe, bo, bo_flags, &c);
230 try_add_stolen(xe, bo, bo_flags, &c);
231
232 if (!c)
233 return -EINVAL;
234
235 bo->placement = (struct ttm_placement) {
236 .num_placement = c,
237 .placement = bo->placements,
238 };
239
240 return 0;
241 }
242
xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
244 u32 bo_flags)
245 {
246 xe_bo_assert_held(bo);
247 return __xe_bo_placement_for_flags(xe, bo, bo_flags);
248 }
249
xe_evict_flags(struct ttm_buffer_object * tbo,struct ttm_placement * placement)250 static void xe_evict_flags(struct ttm_buffer_object *tbo,
251 struct ttm_placement *placement)
252 {
253 if (!xe_bo_is_xe_bo(tbo)) {
254 /* Don't handle scatter gather BOs */
255 if (tbo->type == ttm_bo_type_sg) {
256 placement->num_placement = 0;
257 return;
258 }
259
260 *placement = sys_placement;
261 return;
262 }
263
264 /*
265 * For xe, sg bos that are evicted to system just triggers a
266 * rebind of the sg list upon subsequent validation to XE_PL_TT.
267 */
268 switch (tbo->resource->mem_type) {
269 case XE_PL_VRAM0:
270 case XE_PL_VRAM1:
271 case XE_PL_STOLEN:
272 *placement = tt_placement;
273 break;
274 case XE_PL_TT:
275 default:
276 *placement = sys_placement;
277 break;
278 }
279 }
280
281 struct xe_ttm_tt {
282 struct ttm_tt ttm;
283 struct device *dev;
284 struct sg_table sgt;
285 struct sg_table *sg;
286 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */
287 bool purgeable;
288 };
289
xe_tt_map_sg(struct ttm_tt * tt)290 static int xe_tt_map_sg(struct ttm_tt *tt)
291 {
292 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
293 unsigned long num_pages = tt->num_pages;
294 int ret;
295
296 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
297
298 if (xe_tt->sg)
299 return 0;
300
301 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
302 num_pages, 0,
303 (u64)num_pages << PAGE_SHIFT,
304 xe_sg_segment_size(xe_tt->dev),
305 GFP_KERNEL);
306 if (ret)
307 return ret;
308
309 xe_tt->sg = &xe_tt->sgt;
310 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
311 DMA_ATTR_SKIP_CPU_SYNC);
312 if (ret) {
313 sg_free_table(xe_tt->sg);
314 xe_tt->sg = NULL;
315 return ret;
316 }
317
318 return 0;
319 }
320
xe_tt_unmap_sg(struct ttm_tt * tt)321 static void xe_tt_unmap_sg(struct ttm_tt *tt)
322 {
323 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
324
325 if (xe_tt->sg) {
326 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
327 DMA_BIDIRECTIONAL, 0);
328 sg_free_table(xe_tt->sg);
329 xe_tt->sg = NULL;
330 }
331 }
332
xe_bo_sg(struct xe_bo * bo)333 struct sg_table *xe_bo_sg(struct xe_bo *bo)
334 {
335 struct ttm_tt *tt = bo->ttm.ttm;
336 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
337
338 return xe_tt->sg;
339 }
340
xe_ttm_tt_create(struct ttm_buffer_object * ttm_bo,u32 page_flags)341 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
342 u32 page_flags)
343 {
344 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
345 struct xe_device *xe = xe_bo_device(bo);
346 struct xe_ttm_tt *tt;
347 unsigned long extra_pages;
348 enum ttm_caching caching = ttm_cached;
349 int err;
350
351 tt = kzalloc(sizeof(*tt), GFP_KERNEL);
352 if (!tt)
353 return NULL;
354
355 tt->dev = xe->drm.dev;
356
357 extra_pages = 0;
358 if (xe_bo_needs_ccs_pages(bo))
359 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
360 PAGE_SIZE);
361
362 /*
363 * DGFX system memory is always WB / ttm_cached, since
364 * other caching modes are only supported on x86. DGFX
365 * GPU system memory accesses are always coherent with the
366 * CPU.
367 */
368 if (!IS_DGFX(xe)) {
369 switch (bo->cpu_caching) {
370 case DRM_XE_GEM_CPU_CACHING_WC:
371 caching = ttm_write_combined;
372 break;
373 default:
374 caching = ttm_cached;
375 break;
376 }
377
378 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
379
380 /*
381 * Display scanout is always non-coherent with the CPU cache.
382 *
383 * For Xe_LPG and beyond, PPGTT PTE lookups are also
384 * non-coherent and require a CPU:WC mapping.
385 */
386 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
387 (xe->info.graphics_verx100 >= 1270 &&
388 bo->flags & XE_BO_FLAG_PAGETABLE))
389 caching = ttm_write_combined;
390 }
391
392 if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
393 /*
394 * Valid only for internally-created buffers only, for
395 * which cpu_caching is never initialized.
396 */
397 xe_assert(xe, bo->cpu_caching == 0);
398 caching = ttm_uncached;
399 }
400
401 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
402 if (err) {
403 kfree(tt);
404 return NULL;
405 }
406
407 return &tt->ttm;
408 }
409
xe_ttm_tt_populate(struct ttm_device * ttm_dev,struct ttm_tt * tt,struct ttm_operation_ctx * ctx)410 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
411 struct ttm_operation_ctx *ctx)
412 {
413 int err;
414
415 /*
416 * dma-bufs are not populated with pages, and the dma-
417 * addresses are set up when moved to XE_PL_TT.
418 */
419 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
420 return 0;
421
422 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
423 if (err)
424 return err;
425
426 return err;
427 }
428
xe_ttm_tt_unpopulate(struct ttm_device * ttm_dev,struct ttm_tt * tt)429 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
430 {
431 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
432 return;
433
434 xe_tt_unmap_sg(tt);
435
436 return ttm_pool_free(&ttm_dev->pool, tt);
437 }
438
xe_ttm_tt_destroy(struct ttm_device * ttm_dev,struct ttm_tt * tt)439 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
440 {
441 ttm_tt_fini(tt);
442 kfree(tt);
443 }
444
xe_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)445 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
446 struct ttm_resource *mem)
447 {
448 struct xe_device *xe = ttm_to_xe_device(bdev);
449
450 switch (mem->mem_type) {
451 case XE_PL_SYSTEM:
452 case XE_PL_TT:
453 return 0;
454 case XE_PL_VRAM0:
455 case XE_PL_VRAM1: {
456 struct xe_ttm_vram_mgr_resource *vres =
457 to_xe_ttm_vram_mgr_resource(mem);
458 struct xe_mem_region *vram = res_to_mem_region(mem);
459
460 if (vres->used_visible_size < mem->size)
461 return -EINVAL;
462
463 mem->bus.offset = mem->start << PAGE_SHIFT;
464
465 if (vram->mapping &&
466 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
467 mem->bus.addr = (u8 __force *)vram->mapping +
468 mem->bus.offset;
469
470 mem->bus.offset += vram->io_start;
471 mem->bus.is_iomem = true;
472
473 #if !IS_ENABLED(CONFIG_X86)
474 mem->bus.caching = ttm_write_combined;
475 #endif
476 return 0;
477 } case XE_PL_STOLEN:
478 return xe_ttm_stolen_io_mem_reserve(xe, mem);
479 default:
480 return -EINVAL;
481 }
482 }
483
xe_bo_trigger_rebind(struct xe_device * xe,struct xe_bo * bo,const struct ttm_operation_ctx * ctx)484 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
485 const struct ttm_operation_ctx *ctx)
486 {
487 struct dma_resv_iter cursor;
488 struct dma_fence *fence;
489 struct drm_gem_object *obj = &bo->ttm.base;
490 struct drm_gpuvm_bo *vm_bo;
491 bool idle = false;
492 int ret = 0;
493
494 dma_resv_assert_held(bo->ttm.base.resv);
495
496 if (!list_empty(&bo->ttm.base.gpuva.list)) {
497 dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
498 DMA_RESV_USAGE_BOOKKEEP);
499 dma_resv_for_each_fence_unlocked(&cursor, fence)
500 dma_fence_enable_sw_signaling(fence);
501 dma_resv_iter_end(&cursor);
502 }
503
504 drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
505 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
506 struct drm_gpuva *gpuva;
507
508 if (!xe_vm_in_fault_mode(vm)) {
509 drm_gpuvm_bo_evict(vm_bo, true);
510 continue;
511 }
512
513 if (!idle) {
514 long timeout;
515
516 if (ctx->no_wait_gpu &&
517 !dma_resv_test_signaled(bo->ttm.base.resv,
518 DMA_RESV_USAGE_BOOKKEEP))
519 return -EBUSY;
520
521 timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
522 DMA_RESV_USAGE_BOOKKEEP,
523 ctx->interruptible,
524 MAX_SCHEDULE_TIMEOUT);
525 if (!timeout)
526 return -ETIME;
527 if (timeout < 0)
528 return timeout;
529
530 idle = true;
531 }
532
533 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
534 struct xe_vma *vma = gpuva_to_vma(gpuva);
535
536 trace_xe_vma_evict(vma);
537 ret = xe_vm_invalidate_vma(vma);
538 if (XE_WARN_ON(ret))
539 return ret;
540 }
541 }
542
543 return ret;
544 }
545
546 /*
547 * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
548 * Note that unmapping the attachment is deferred to the next
549 * map_attachment time, or to bo destroy (after idling) whichever comes first.
550 * This is to avoid syncing before unmap_attachment(), assuming that the
551 * caller relies on idling the reservation object before moving the
552 * backing store out. Should that assumption not hold, then we will be able
553 * to unconditionally call unmap_attachment() when moving out to system.
554 */
xe_bo_move_dmabuf(struct ttm_buffer_object * ttm_bo,struct ttm_resource * new_res)555 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
556 struct ttm_resource *new_res)
557 {
558 struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
559 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
560 ttm);
561 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
562 struct sg_table *sg;
563
564 xe_assert(xe, attach);
565 xe_assert(xe, ttm_bo->ttm);
566
567 if (new_res->mem_type == XE_PL_SYSTEM)
568 goto out;
569
570 if (ttm_bo->sg) {
571 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
572 ttm_bo->sg = NULL;
573 }
574
575 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
576 if (IS_ERR(sg))
577 return PTR_ERR(sg);
578
579 ttm_bo->sg = sg;
580 xe_tt->sg = sg;
581
582 out:
583 ttm_bo_move_null(ttm_bo, new_res);
584
585 return 0;
586 }
587
588 /**
589 * xe_bo_move_notify - Notify subsystems of a pending move
590 * @bo: The buffer object
591 * @ctx: The struct ttm_operation_ctx controlling locking and waits.
592 *
593 * This function notifies subsystems of an upcoming buffer move.
594 * Upon receiving such a notification, subsystems should schedule
595 * halting access to the underlying pages and optionally add a fence
596 * to the buffer object's dma_resv object, that signals when access is
597 * stopped. The caller will wait on all dma_resv fences before
598 * starting the move.
599 *
600 * A subsystem may commence access to the object after obtaining
601 * bindings to the new backing memory under the object lock.
602 *
603 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
604 * negative error code on error.
605 */
xe_bo_move_notify(struct xe_bo * bo,const struct ttm_operation_ctx * ctx)606 static int xe_bo_move_notify(struct xe_bo *bo,
607 const struct ttm_operation_ctx *ctx)
608 {
609 struct ttm_buffer_object *ttm_bo = &bo->ttm;
610 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
611 struct ttm_resource *old_mem = ttm_bo->resource;
612 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
613 int ret;
614
615 /*
616 * If this starts to call into many components, consider
617 * using a notification chain here.
618 */
619
620 if (xe_bo_is_pinned(bo))
621 return -EINVAL;
622
623 xe_bo_vunmap(bo);
624 ret = xe_bo_trigger_rebind(xe, bo, ctx);
625 if (ret)
626 return ret;
627
628 /* Don't call move_notify() for imported dma-bufs. */
629 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
630 dma_buf_move_notify(ttm_bo->base.dma_buf);
631
632 /*
633 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
634 * so if we moved from VRAM make sure to unlink this from the userfault
635 * tracking.
636 */
637 if (mem_type_is_vram(old_mem_type)) {
638 mutex_lock(&xe->mem_access.vram_userfault.lock);
639 if (!list_empty(&bo->vram_userfault_link))
640 list_del_init(&bo->vram_userfault_link);
641 mutex_unlock(&xe->mem_access.vram_userfault.lock);
642 }
643
644 return 0;
645 }
646
xe_bo_move(struct ttm_buffer_object * ttm_bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)647 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
648 struct ttm_operation_ctx *ctx,
649 struct ttm_resource *new_mem,
650 struct ttm_place *hop)
651 {
652 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
653 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
654 struct ttm_resource *old_mem = ttm_bo->resource;
655 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
656 struct ttm_tt *ttm = ttm_bo->ttm;
657 struct xe_migrate *migrate = NULL;
658 struct dma_fence *fence;
659 bool move_lacks_source;
660 bool tt_has_data;
661 bool needs_clear;
662 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
663 ttm && ttm_tt_is_populated(ttm)) ? true : false;
664 int ret = 0;
665
666 /* Bo creation path, moving to system or TT. */
667 if ((!old_mem && ttm) && !handle_system_ccs) {
668 if (new_mem->mem_type == XE_PL_TT)
669 ret = xe_tt_map_sg(ttm);
670 if (!ret)
671 ttm_bo_move_null(ttm_bo, new_mem);
672 goto out;
673 }
674
675 if (ttm_bo->type == ttm_bo_type_sg) {
676 ret = xe_bo_move_notify(bo, ctx);
677 if (!ret)
678 ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
679 return ret;
680 }
681
682 tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
683 (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
684
685 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
686 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
687
688 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
689 (!ttm && ttm_bo->type == ttm_bo_type_device);
690
691 if (new_mem->mem_type == XE_PL_TT) {
692 ret = xe_tt_map_sg(ttm);
693 if (ret)
694 goto out;
695 }
696
697 if ((move_lacks_source && !needs_clear)) {
698 ttm_bo_move_null(ttm_bo, new_mem);
699 goto out;
700 }
701
702 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
703 ttm_bo_move_null(ttm_bo, new_mem);
704 goto out;
705 }
706
707 /*
708 * Failed multi-hop where the old_mem is still marked as
709 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
710 */
711 if (old_mem_type == XE_PL_TT &&
712 new_mem->mem_type == XE_PL_TT) {
713 ttm_bo_move_null(ttm_bo, new_mem);
714 goto out;
715 }
716
717 if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
718 ret = xe_bo_move_notify(bo, ctx);
719 if (ret)
720 goto out;
721 }
722
723 if (old_mem_type == XE_PL_TT &&
724 new_mem->mem_type == XE_PL_SYSTEM) {
725 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
726 DMA_RESV_USAGE_BOOKKEEP,
727 false,
728 MAX_SCHEDULE_TIMEOUT);
729 if (timeout < 0) {
730 ret = timeout;
731 goto out;
732 }
733
734 if (!handle_system_ccs) {
735 ttm_bo_move_null(ttm_bo, new_mem);
736 goto out;
737 }
738 }
739
740 if (!move_lacks_source &&
741 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
742 (mem_type_is_vram(old_mem_type) &&
743 new_mem->mem_type == XE_PL_SYSTEM))) {
744 hop->fpfn = 0;
745 hop->lpfn = 0;
746 hop->mem_type = XE_PL_TT;
747 hop->flags = TTM_PL_FLAG_TEMPORARY;
748 ret = -EMULTIHOP;
749 goto out;
750 }
751
752 if (bo->tile)
753 migrate = bo->tile->migrate;
754 else if (resource_is_vram(new_mem))
755 migrate = mem_type_to_migrate(xe, new_mem->mem_type);
756 else if (mem_type_is_vram(old_mem_type))
757 migrate = mem_type_to_migrate(xe, old_mem_type);
758 else
759 migrate = xe->tiles[0].migrate;
760
761 xe_assert(xe, migrate);
762 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
763 if (xe_rpm_reclaim_safe(xe)) {
764 /*
765 * We might be called through swapout in the validation path of
766 * another TTM device, so acquire rpm here.
767 */
768 xe_pm_runtime_get(xe);
769 } else {
770 drm_WARN_ON(&xe->drm, handle_system_ccs);
771 xe_pm_runtime_get_noresume(xe);
772 }
773
774 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
775 /*
776 * Kernel memory that is pinned should only be moved on suspend
777 * / resume, some of the pinned memory is required for the
778 * device to resume / use the GPU to move other evicted memory
779 * (user memory) around. This likely could be optimized a bit
780 * futher where we find the minimum set of pinned memory
781 * required for resume but for simplity doing a memcpy for all
782 * pinned memory.
783 */
784 ret = xe_bo_vmap(bo);
785 if (!ret) {
786 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
787
788 /* Create a new VMAP once kernel BO back in VRAM */
789 if (!ret && resource_is_vram(new_mem)) {
790 struct xe_mem_region *vram = res_to_mem_region(new_mem);
791 void __iomem *new_addr = vram->mapping +
792 (new_mem->start << PAGE_SHIFT);
793
794 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
795 ret = -EINVAL;
796 xe_pm_runtime_put(xe);
797 goto out;
798 }
799
800 xe_assert(xe, new_mem->start ==
801 bo->placements->fpfn);
802
803 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
804 }
805 }
806 } else {
807 if (move_lacks_source) {
808 u32 flags = 0;
809
810 if (mem_type_is_vram(new_mem->mem_type))
811 flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
812 else if (handle_system_ccs)
813 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
814
815 fence = xe_migrate_clear(migrate, bo, new_mem, flags);
816 }
817 else
818 fence = xe_migrate_copy(migrate, bo, bo, old_mem,
819 new_mem, handle_system_ccs);
820 if (IS_ERR(fence)) {
821 ret = PTR_ERR(fence);
822 xe_pm_runtime_put(xe);
823 goto out;
824 }
825 if (!move_lacks_source) {
826 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
827 true, new_mem);
828 if (ret) {
829 dma_fence_wait(fence, false);
830 ttm_bo_move_null(ttm_bo, new_mem);
831 ret = 0;
832 }
833 } else {
834 /*
835 * ttm_bo_move_accel_cleanup() may blow up if
836 * bo->resource == NULL, so just attach the
837 * fence and set the new resource.
838 */
839 dma_resv_add_fence(ttm_bo->base.resv, fence,
840 DMA_RESV_USAGE_KERNEL);
841 ttm_bo_move_null(ttm_bo, new_mem);
842 }
843
844 dma_fence_put(fence);
845 }
846
847 xe_pm_runtime_put(xe);
848
849 out:
850 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
851 ttm_bo->ttm) {
852 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
853 DMA_RESV_USAGE_KERNEL,
854 false,
855 MAX_SCHEDULE_TIMEOUT);
856 if (timeout < 0)
857 ret = timeout;
858
859 xe_tt_unmap_sg(ttm_bo->ttm);
860 }
861
862 return ret;
863 }
864
865 /**
866 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
867 * @bo: The buffer object to move.
868 *
869 * On successful completion, the object memory will be moved to sytem memory.
870 *
871 * This is needed to for special handling of pinned VRAM object during
872 * suspend-resume.
873 *
874 * Return: 0 on success. Negative error code on failure.
875 */
xe_bo_evict_pinned(struct xe_bo * bo)876 int xe_bo_evict_pinned(struct xe_bo *bo)
877 {
878 struct ttm_place place = {
879 .mem_type = XE_PL_TT,
880 };
881 struct ttm_placement placement = {
882 .placement = &place,
883 .num_placement = 1,
884 };
885 struct ttm_operation_ctx ctx = {
886 .interruptible = false,
887 };
888 struct ttm_resource *new_mem;
889 int ret;
890
891 xe_bo_assert_held(bo);
892
893 if (WARN_ON(!bo->ttm.resource))
894 return -EINVAL;
895
896 if (WARN_ON(!xe_bo_is_pinned(bo)))
897 return -EINVAL;
898
899 if (!xe_bo_is_vram(bo))
900 return 0;
901
902 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
903 if (ret)
904 return ret;
905
906 if (!bo->ttm.ttm) {
907 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
908 if (!bo->ttm.ttm) {
909 ret = -ENOMEM;
910 goto err_res_free;
911 }
912 }
913
914 ret = ttm_bo_populate(&bo->ttm, &ctx);
915 if (ret)
916 goto err_res_free;
917
918 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
919 if (ret)
920 goto err_res_free;
921
922 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
923 if (ret)
924 goto err_res_free;
925
926 return 0;
927
928 err_res_free:
929 ttm_resource_free(&bo->ttm, &new_mem);
930 return ret;
931 }
932
933 /**
934 * xe_bo_restore_pinned() - Restore a pinned VRAM object
935 * @bo: The buffer object to move.
936 *
937 * On successful completion, the object memory will be moved back to VRAM.
938 *
939 * This is needed to for special handling of pinned VRAM object during
940 * suspend-resume.
941 *
942 * Return: 0 on success. Negative error code on failure.
943 */
xe_bo_restore_pinned(struct xe_bo * bo)944 int xe_bo_restore_pinned(struct xe_bo *bo)
945 {
946 struct ttm_operation_ctx ctx = {
947 .interruptible = false,
948 };
949 struct ttm_resource *new_mem;
950 struct ttm_place *place = &bo->placements[0];
951 int ret;
952
953 xe_bo_assert_held(bo);
954
955 if (WARN_ON(!bo->ttm.resource))
956 return -EINVAL;
957
958 if (WARN_ON(!xe_bo_is_pinned(bo)))
959 return -EINVAL;
960
961 if (WARN_ON(xe_bo_is_vram(bo)))
962 return -EINVAL;
963
964 if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo)))
965 return -EINVAL;
966
967 if (!mem_type_is_vram(place->mem_type))
968 return 0;
969
970 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
971 if (ret)
972 return ret;
973
974 ret = ttm_bo_populate(&bo->ttm, &ctx);
975 if (ret)
976 goto err_res_free;
977
978 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
979 if (ret)
980 goto err_res_free;
981
982 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
983 if (ret)
984 goto err_res_free;
985
986 return 0;
987
988 err_res_free:
989 ttm_resource_free(&bo->ttm, &new_mem);
990 return ret;
991 }
992
xe_ttm_io_mem_pfn(struct ttm_buffer_object * ttm_bo,unsigned long page_offset)993 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
994 unsigned long page_offset)
995 {
996 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
997 struct xe_res_cursor cursor;
998 struct xe_mem_region *vram;
999
1000 if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
1001 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
1002
1003 vram = res_to_mem_region(ttm_bo->resource);
1004 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
1005 return (vram->io_start + cursor.start) >> PAGE_SHIFT;
1006 }
1007
1008 static void __xe_bo_vunmap(struct xe_bo *bo);
1009
1010 /*
1011 * TODO: Move this function to TTM so we don't rely on how TTM does its
1012 * locking, thereby abusing TTM internals.
1013 */
xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object * ttm_bo)1014 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1015 {
1016 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1017 bool locked;
1018
1019 xe_assert(xe, !kref_read(&ttm_bo->kref));
1020
1021 /*
1022 * We can typically only race with TTM trylocking under the
1023 * lru_lock, which will immediately be unlocked again since
1024 * the ttm_bo refcount is zero at this point. So trylocking *should*
1025 * always succeed here, as long as we hold the lru lock.
1026 */
1027 spin_lock(&ttm_bo->bdev->lru_lock);
1028 locked = dma_resv_trylock(ttm_bo->base.resv);
1029 spin_unlock(&ttm_bo->bdev->lru_lock);
1030 xe_assert(xe, locked);
1031
1032 return locked;
1033 }
1034
xe_ttm_bo_release_notify(struct ttm_buffer_object * ttm_bo)1035 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1036 {
1037 struct dma_resv_iter cursor;
1038 struct dma_fence *fence;
1039 struct dma_fence *replacement = NULL;
1040 struct xe_bo *bo;
1041
1042 if (!xe_bo_is_xe_bo(ttm_bo))
1043 return;
1044
1045 bo = ttm_to_xe_bo(ttm_bo);
1046 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1047
1048 /*
1049 * Corner case where TTM fails to allocate memory and this BOs resv
1050 * still points the VMs resv
1051 */
1052 if (ttm_bo->base.resv != &ttm_bo->base._resv)
1053 return;
1054
1055 if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1056 return;
1057
1058 /*
1059 * Scrub the preempt fences if any. The unbind fence is already
1060 * attached to the resv.
1061 * TODO: Don't do this for external bos once we scrub them after
1062 * unbind.
1063 */
1064 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1065 DMA_RESV_USAGE_BOOKKEEP, fence) {
1066 if (xe_fence_is_xe_preempt(fence) &&
1067 !dma_fence_is_signaled(fence)) {
1068 if (!replacement)
1069 replacement = dma_fence_get_stub();
1070
1071 dma_resv_replace_fences(ttm_bo->base.resv,
1072 fence->context,
1073 replacement,
1074 DMA_RESV_USAGE_BOOKKEEP);
1075 }
1076 }
1077 dma_fence_put(replacement);
1078
1079 dma_resv_unlock(ttm_bo->base.resv);
1080 }
1081
xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object * ttm_bo)1082 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1083 {
1084 if (!xe_bo_is_xe_bo(ttm_bo))
1085 return;
1086
1087 /*
1088 * Object is idle and about to be destroyed. Release the
1089 * dma-buf attachment.
1090 */
1091 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1092 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1093 struct xe_ttm_tt, ttm);
1094
1095 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1096 DMA_BIDIRECTIONAL);
1097 ttm_bo->sg = NULL;
1098 xe_tt->sg = NULL;
1099 }
1100 }
1101
xe_ttm_bo_purge(struct ttm_buffer_object * ttm_bo,struct ttm_operation_ctx * ctx)1102 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
1103 {
1104 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1105
1106 if (ttm_bo->ttm) {
1107 struct ttm_placement place = {};
1108 int ret = ttm_bo_validate(ttm_bo, &place, ctx);
1109
1110 drm_WARN_ON(&xe->drm, ret);
1111 }
1112 }
1113
xe_ttm_bo_swap_notify(struct ttm_buffer_object * ttm_bo)1114 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
1115 {
1116 struct ttm_operation_ctx ctx = {
1117 .interruptible = false
1118 };
1119
1120 if (ttm_bo->ttm) {
1121 struct xe_ttm_tt *xe_tt =
1122 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
1123
1124 if (xe_tt->purgeable)
1125 xe_ttm_bo_purge(ttm_bo, &ctx);
1126 }
1127 }
1128
1129 const struct ttm_device_funcs xe_ttm_funcs = {
1130 .ttm_tt_create = xe_ttm_tt_create,
1131 .ttm_tt_populate = xe_ttm_tt_populate,
1132 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1133 .ttm_tt_destroy = xe_ttm_tt_destroy,
1134 .evict_flags = xe_evict_flags,
1135 .move = xe_bo_move,
1136 .io_mem_reserve = xe_ttm_io_mem_reserve,
1137 .io_mem_pfn = xe_ttm_io_mem_pfn,
1138 .release_notify = xe_ttm_bo_release_notify,
1139 .eviction_valuable = ttm_bo_eviction_valuable,
1140 .delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1141 .swap_notify = xe_ttm_bo_swap_notify,
1142 };
1143
xe_ttm_bo_destroy(struct ttm_buffer_object * ttm_bo)1144 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1145 {
1146 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1147 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1148
1149 if (bo->ttm.base.import_attach)
1150 drm_prime_gem_destroy(&bo->ttm.base, NULL);
1151 drm_gem_object_release(&bo->ttm.base);
1152
1153 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1154
1155 if (bo->ggtt_node && bo->ggtt_node->base.size)
1156 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo);
1157
1158 #ifdef CONFIG_PROC_FS
1159 if (bo->client)
1160 xe_drm_client_remove_bo(bo);
1161 #endif
1162
1163 if (bo->vm && xe_bo_is_user(bo))
1164 xe_vm_put(bo->vm);
1165
1166 mutex_lock(&xe->mem_access.vram_userfault.lock);
1167 if (!list_empty(&bo->vram_userfault_link))
1168 list_del(&bo->vram_userfault_link);
1169 mutex_unlock(&xe->mem_access.vram_userfault.lock);
1170
1171 kfree(bo);
1172 }
1173
xe_gem_object_free(struct drm_gem_object * obj)1174 static void xe_gem_object_free(struct drm_gem_object *obj)
1175 {
1176 /* Our BO reference counting scheme works as follows:
1177 *
1178 * The gem object kref is typically used throughout the driver,
1179 * and the gem object holds a ttm_buffer_object refcount, so
1180 * that when the last gem object reference is put, which is when
1181 * we end up in this function, we put also that ttm_buffer_object
1182 * refcount. Anything using gem interfaces is then no longer
1183 * allowed to access the object in a way that requires a gem
1184 * refcount, including locking the object.
1185 *
1186 * driver ttm callbacks is allowed to use the ttm_buffer_object
1187 * refcount directly if needed.
1188 */
1189 __xe_bo_vunmap(gem_to_xe_bo(obj));
1190 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1191 }
1192
xe_gem_object_close(struct drm_gem_object * obj,struct drm_file * file_priv)1193 static void xe_gem_object_close(struct drm_gem_object *obj,
1194 struct drm_file *file_priv)
1195 {
1196 struct xe_bo *bo = gem_to_xe_bo(obj);
1197
1198 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1199 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1200
1201 xe_bo_lock(bo, false);
1202 ttm_bo_set_bulk_move(&bo->ttm, NULL);
1203 xe_bo_unlock(bo);
1204 }
1205 }
1206
xe_gem_fault(struct vm_fault * vmf)1207 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1208 {
1209 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1210 struct drm_device *ddev = tbo->base.dev;
1211 struct xe_device *xe = to_xe_device(ddev);
1212 struct xe_bo *bo = ttm_to_xe_bo(tbo);
1213 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1214 vm_fault_t ret;
1215 int idx;
1216
1217 if (needs_rpm)
1218 xe_pm_runtime_get(xe);
1219
1220 ret = ttm_bo_vm_reserve(tbo, vmf);
1221 if (ret)
1222 goto out;
1223
1224 if (drm_dev_enter(ddev, &idx)) {
1225 trace_xe_bo_cpu_fault(bo);
1226
1227 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1228 TTM_BO_VM_NUM_PREFAULT);
1229 drm_dev_exit(idx);
1230 } else {
1231 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1232 }
1233
1234 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1235 goto out;
1236 /*
1237 * ttm_bo_vm_reserve() already has dma_resv_lock.
1238 */
1239 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1240 mutex_lock(&xe->mem_access.vram_userfault.lock);
1241 if (list_empty(&bo->vram_userfault_link))
1242 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1243 mutex_unlock(&xe->mem_access.vram_userfault.lock);
1244 }
1245
1246 dma_resv_unlock(tbo->base.resv);
1247 out:
1248 if (needs_rpm)
1249 xe_pm_runtime_put(xe);
1250
1251 return ret;
1252 }
1253
1254 static const struct vm_operations_struct xe_gem_vm_ops = {
1255 .fault = xe_gem_fault,
1256 .open = ttm_bo_vm_open,
1257 .close = ttm_bo_vm_close,
1258 .access = ttm_bo_vm_access
1259 };
1260
1261 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1262 .free = xe_gem_object_free,
1263 .close = xe_gem_object_close,
1264 .mmap = drm_gem_ttm_mmap,
1265 .export = xe_gem_prime_export,
1266 .vm_ops = &xe_gem_vm_ops,
1267 };
1268
1269 /**
1270 * xe_bo_alloc - Allocate storage for a struct xe_bo
1271 *
1272 * This funcition is intended to allocate storage to be used for input
1273 * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1274 * created is needed before the call to __xe_bo_create_locked().
1275 * If __xe_bo_create_locked ends up never to be called, then the
1276 * storage allocated with this function needs to be freed using
1277 * xe_bo_free().
1278 *
1279 * Return: A pointer to an uninitialized struct xe_bo on success,
1280 * ERR_PTR(-ENOMEM) on error.
1281 */
xe_bo_alloc(void)1282 struct xe_bo *xe_bo_alloc(void)
1283 {
1284 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1285
1286 if (!bo)
1287 return ERR_PTR(-ENOMEM);
1288
1289 return bo;
1290 }
1291
1292 /**
1293 * xe_bo_free - Free storage allocated using xe_bo_alloc()
1294 * @bo: The buffer object storage.
1295 *
1296 * Refer to xe_bo_alloc() documentation for valid use-cases.
1297 */
xe_bo_free(struct xe_bo * bo)1298 void xe_bo_free(struct xe_bo *bo)
1299 {
1300 kfree(bo);
1301 }
1302
___xe_bo_create_locked(struct xe_device * xe,struct xe_bo * bo,struct xe_tile * tile,struct dma_resv * resv,struct ttm_lru_bulk_move * bulk,size_t size,u16 cpu_caching,enum ttm_bo_type type,u32 flags)1303 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1304 struct xe_tile *tile, struct dma_resv *resv,
1305 struct ttm_lru_bulk_move *bulk, size_t size,
1306 u16 cpu_caching, enum ttm_bo_type type,
1307 u32 flags)
1308 {
1309 struct ttm_operation_ctx ctx = {
1310 .interruptible = true,
1311 .no_wait_gpu = false,
1312 };
1313 struct ttm_placement *placement;
1314 uint32_t alignment;
1315 size_t aligned_size;
1316 int err;
1317
1318 /* Only kernel objects should set GT */
1319 xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1320
1321 if (XE_WARN_ON(!size)) {
1322 xe_bo_free(bo);
1323 return ERR_PTR(-EINVAL);
1324 }
1325
1326 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1327 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1328 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1329 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1330 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1331
1332 aligned_size = ALIGN(size, align);
1333 if (type != ttm_bo_type_device)
1334 size = ALIGN(size, align);
1335 flags |= XE_BO_FLAG_INTERNAL_64K;
1336 alignment = align >> PAGE_SHIFT;
1337 } else {
1338 aligned_size = ALIGN(size, SZ_4K);
1339 flags &= ~XE_BO_FLAG_INTERNAL_64K;
1340 alignment = SZ_4K >> PAGE_SHIFT;
1341 }
1342
1343 if (type == ttm_bo_type_device && aligned_size != size)
1344 return ERR_PTR(-EINVAL);
1345
1346 if (!bo) {
1347 bo = xe_bo_alloc();
1348 if (IS_ERR(bo))
1349 return bo;
1350 }
1351
1352 bo->ccs_cleared = false;
1353 bo->tile = tile;
1354 bo->size = size;
1355 bo->flags = flags;
1356 bo->cpu_caching = cpu_caching;
1357 bo->ttm.base.funcs = &xe_gem_object_funcs;
1358 bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1359 INIT_LIST_HEAD(&bo->pinned_link);
1360 #ifdef CONFIG_PROC_FS
1361 INIT_LIST_HEAD(&bo->client_link);
1362 #endif
1363 INIT_LIST_HEAD(&bo->vram_userfault_link);
1364
1365 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1366
1367 if (resv) {
1368 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1369 ctx.resv = resv;
1370 }
1371
1372 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1373 err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1374 if (WARN_ON(err)) {
1375 xe_ttm_bo_destroy(&bo->ttm);
1376 return ERR_PTR(err);
1377 }
1378 }
1379
1380 /* Defer populating type_sg bos */
1381 placement = (type == ttm_bo_type_sg ||
1382 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1383 &bo->placement;
1384 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1385 placement, alignment,
1386 &ctx, NULL, resv, xe_ttm_bo_destroy);
1387 if (err)
1388 return ERR_PTR(err);
1389
1390 /*
1391 * The VRAM pages underneath are potentially still being accessed by the
1392 * GPU, as per async GPU clearing and async evictions. However TTM makes
1393 * sure to add any corresponding move/clear fences into the objects
1394 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1395 *
1396 * For KMD internal buffers we don't care about GPU clearing, however we
1397 * still need to handle async evictions, where the VRAM is still being
1398 * accessed by the GPU. Most internal callers are not expecting this,
1399 * since they are missing the required synchronisation before accessing
1400 * the memory. To keep things simple just sync wait any kernel fences
1401 * here, if the buffer is designated KMD internal.
1402 *
1403 * For normal userspace objects we should already have the required
1404 * pipelining or sync waiting elsewhere, since we already have to deal
1405 * with things like async GPU clearing.
1406 */
1407 if (type == ttm_bo_type_kernel) {
1408 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1409 DMA_RESV_USAGE_KERNEL,
1410 ctx.interruptible,
1411 MAX_SCHEDULE_TIMEOUT);
1412
1413 if (timeout < 0) {
1414 if (!resv)
1415 dma_resv_unlock(bo->ttm.base.resv);
1416 xe_bo_put(bo);
1417 return ERR_PTR(timeout);
1418 }
1419 }
1420
1421 bo->created = true;
1422 if (bulk)
1423 ttm_bo_set_bulk_move(&bo->ttm, bulk);
1424 else
1425 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1426
1427 return bo;
1428 }
1429
__xe_bo_fixed_placement(struct xe_device * xe,struct xe_bo * bo,u32 flags,u64 start,u64 end,u64 size)1430 static int __xe_bo_fixed_placement(struct xe_device *xe,
1431 struct xe_bo *bo,
1432 u32 flags,
1433 u64 start, u64 end, u64 size)
1434 {
1435 struct ttm_place *place = bo->placements;
1436
1437 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1438 return -EINVAL;
1439
1440 place->flags = TTM_PL_FLAG_CONTIGUOUS;
1441 place->fpfn = start >> PAGE_SHIFT;
1442 place->lpfn = end >> PAGE_SHIFT;
1443
1444 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1445 case XE_BO_FLAG_VRAM0:
1446 place->mem_type = XE_PL_VRAM0;
1447 break;
1448 case XE_BO_FLAG_VRAM1:
1449 place->mem_type = XE_PL_VRAM1;
1450 break;
1451 case XE_BO_FLAG_STOLEN:
1452 place->mem_type = XE_PL_STOLEN;
1453 break;
1454
1455 default:
1456 /* 0 or multiple of the above set */
1457 return -EINVAL;
1458 }
1459
1460 bo->placement = (struct ttm_placement) {
1461 .num_placement = 1,
1462 .placement = place,
1463 };
1464
1465 return 0;
1466 }
1467
1468 static struct xe_bo *
__xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,u16 cpu_caching,enum ttm_bo_type type,u32 flags,u64 alignment)1469 __xe_bo_create_locked(struct xe_device *xe,
1470 struct xe_tile *tile, struct xe_vm *vm,
1471 size_t size, u64 start, u64 end,
1472 u16 cpu_caching, enum ttm_bo_type type, u32 flags,
1473 u64 alignment)
1474 {
1475 struct xe_bo *bo = NULL;
1476 int err;
1477
1478 if (vm)
1479 xe_vm_assert_held(vm);
1480
1481 if (start || end != ~0ULL) {
1482 bo = xe_bo_alloc();
1483 if (IS_ERR(bo))
1484 return bo;
1485
1486 flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1487 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1488 if (err) {
1489 xe_bo_free(bo);
1490 return ERR_PTR(err);
1491 }
1492 }
1493
1494 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1495 vm && !xe_vm_in_fault_mode(vm) &&
1496 flags & XE_BO_FLAG_USER ?
1497 &vm->lru_bulk_move : NULL, size,
1498 cpu_caching, type, flags);
1499 if (IS_ERR(bo))
1500 return bo;
1501
1502 bo->min_align = alignment;
1503
1504 /*
1505 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
1506 * to ensure the shared resv doesn't disappear under the bo, the bo
1507 * will keep a reference to the vm, and avoid circular references
1508 * by having all the vm's bo refereferences released at vm close
1509 * time.
1510 */
1511 if (vm && xe_bo_is_user(bo))
1512 xe_vm_get(vm);
1513 bo->vm = vm;
1514
1515 if (bo->flags & XE_BO_FLAG_GGTT) {
1516 if (!tile && flags & XE_BO_FLAG_STOLEN)
1517 tile = xe_device_get_root_tile(xe);
1518
1519 xe_assert(xe, tile);
1520
1521 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
1522 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo,
1523 start + bo->size, U64_MAX);
1524 } else {
1525 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo);
1526 }
1527 if (err)
1528 goto err_unlock_put_bo;
1529 }
1530
1531 return bo;
1532
1533 err_unlock_put_bo:
1534 __xe_bo_unset_bulk_move(bo);
1535 xe_bo_unlock_vm_held(bo);
1536 xe_bo_put(bo);
1537 return ERR_PTR(err);
1538 }
1539
1540 struct xe_bo *
xe_bo_create_locked_range(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,enum ttm_bo_type type,u32 flags,u64 alignment)1541 xe_bo_create_locked_range(struct xe_device *xe,
1542 struct xe_tile *tile, struct xe_vm *vm,
1543 size_t size, u64 start, u64 end,
1544 enum ttm_bo_type type, u32 flags, u64 alignment)
1545 {
1546 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
1547 flags, alignment);
1548 }
1549
xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1550 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
1551 struct xe_vm *vm, size_t size,
1552 enum ttm_bo_type type, u32 flags)
1553 {
1554 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
1555 flags, 0);
1556 }
1557
xe_bo_create_user(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u16 cpu_caching,u32 flags)1558 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
1559 struct xe_vm *vm, size_t size,
1560 u16 cpu_caching,
1561 u32 flags)
1562 {
1563 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
1564 cpu_caching, ttm_bo_type_device,
1565 flags | XE_BO_FLAG_USER, 0);
1566 if (!IS_ERR(bo))
1567 xe_bo_unlock_vm_held(bo);
1568
1569 return bo;
1570 }
1571
xe_bo_create(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1572 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
1573 struct xe_vm *vm, size_t size,
1574 enum ttm_bo_type type, u32 flags)
1575 {
1576 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
1577
1578 if (!IS_ERR(bo))
1579 xe_bo_unlock_vm_held(bo);
1580
1581 return bo;
1582 }
1583
xe_bo_create_pin_map_at(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags)1584 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
1585 struct xe_vm *vm,
1586 size_t size, u64 offset,
1587 enum ttm_bo_type type, u32 flags)
1588 {
1589 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset,
1590 type, flags, 0);
1591 }
1592
xe_bo_create_pin_map_at_aligned(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags,u64 alignment)1593 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
1594 struct xe_tile *tile,
1595 struct xe_vm *vm,
1596 size_t size, u64 offset,
1597 enum ttm_bo_type type, u32 flags,
1598 u64 alignment)
1599 {
1600 struct xe_bo *bo;
1601 int err;
1602 u64 start = offset == ~0ull ? 0 : offset;
1603 u64 end = offset == ~0ull ? offset : start + size;
1604
1605 if (flags & XE_BO_FLAG_STOLEN &&
1606 xe_ttm_stolen_cpu_access_needs_ggtt(xe))
1607 flags |= XE_BO_FLAG_GGTT;
1608
1609 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
1610 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS,
1611 alignment);
1612 if (IS_ERR(bo))
1613 return bo;
1614
1615 err = xe_bo_pin(bo);
1616 if (err)
1617 goto err_put;
1618
1619 err = xe_bo_vmap(bo);
1620 if (err)
1621 goto err_unpin;
1622
1623 xe_bo_unlock_vm_held(bo);
1624
1625 return bo;
1626
1627 err_unpin:
1628 xe_bo_unpin(bo);
1629 err_put:
1630 xe_bo_unlock_vm_held(bo);
1631 xe_bo_put(bo);
1632 return ERR_PTR(err);
1633 }
1634
xe_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1635 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1636 struct xe_vm *vm, size_t size,
1637 enum ttm_bo_type type, u32 flags)
1638 {
1639 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
1640 }
1641
xe_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,enum ttm_bo_type type,u32 flags)1642 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1643 const void *data, size_t size,
1644 enum ttm_bo_type type, u32 flags)
1645 {
1646 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
1647 ALIGN(size, PAGE_SIZE),
1648 type, flags);
1649 if (IS_ERR(bo))
1650 return bo;
1651
1652 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1653
1654 return bo;
1655 }
1656
__xe_bo_unpin_map_no_vm(void * arg)1657 static void __xe_bo_unpin_map_no_vm(void *arg)
1658 {
1659 xe_bo_unpin_map_no_vm(arg);
1660 }
1661
xe_managed_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,size_t size,u32 flags)1662 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1663 size_t size, u32 flags)
1664 {
1665 struct xe_bo *bo;
1666 int ret;
1667
1668 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
1669 if (IS_ERR(bo))
1670 return bo;
1671
1672 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
1673 if (ret)
1674 return ERR_PTR(ret);
1675
1676 return bo;
1677 }
1678
xe_managed_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,u32 flags)1679 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1680 const void *data, size_t size, u32 flags)
1681 {
1682 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
1683
1684 if (IS_ERR(bo))
1685 return bo;
1686
1687 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1688
1689 return bo;
1690 }
1691
1692 /**
1693 * xe_managed_bo_reinit_in_vram
1694 * @xe: xe device
1695 * @tile: Tile where the new buffer will be created
1696 * @src: Managed buffer object allocated in system memory
1697 *
1698 * Replace a managed src buffer object allocated in system memory with a new
1699 * one allocated in vram, copying the data between them.
1700 * Buffer object in VRAM is not going to have the same GGTT address, the caller
1701 * is responsible for making sure that any old references to it are updated.
1702 *
1703 * Returns 0 for success, negative error code otherwise.
1704 */
xe_managed_bo_reinit_in_vram(struct xe_device * xe,struct xe_tile * tile,struct xe_bo ** src)1705 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
1706 {
1707 struct xe_bo *bo;
1708 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
1709
1710 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
1711
1712 xe_assert(xe, IS_DGFX(xe));
1713 xe_assert(xe, !(*src)->vmap.is_iomem);
1714
1715 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
1716 (*src)->size, dst_flags);
1717 if (IS_ERR(bo))
1718 return PTR_ERR(bo);
1719
1720 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
1721 *src = bo;
1722
1723 return 0;
1724 }
1725
1726 /*
1727 * XXX: This is in the VM bind data path, likely should calculate this once and
1728 * store, with a recalculation if the BO is moved.
1729 */
vram_region_gpu_offset(struct ttm_resource * res)1730 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
1731 {
1732 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
1733
1734 if (res->mem_type == XE_PL_STOLEN)
1735 return xe_ttm_stolen_gpu_offset(xe);
1736
1737 return res_to_mem_region(res)->dpa_base;
1738 }
1739
1740 /**
1741 * xe_bo_pin_external - pin an external BO
1742 * @bo: buffer object to be pinned
1743 *
1744 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1745 * BO. Unique call compared to xe_bo_pin as this function has it own set of
1746 * asserts and code to ensure evict / restore on suspend / resume.
1747 *
1748 * Returns 0 for success, negative error code otherwise.
1749 */
xe_bo_pin_external(struct xe_bo * bo)1750 int xe_bo_pin_external(struct xe_bo *bo)
1751 {
1752 struct xe_device *xe = xe_bo_device(bo);
1753 int err;
1754
1755 xe_assert(xe, !bo->vm);
1756 xe_assert(xe, xe_bo_is_user(bo));
1757
1758 if (!xe_bo_is_pinned(bo)) {
1759 err = xe_bo_validate(bo, NULL, false);
1760 if (err)
1761 return err;
1762
1763 if (xe_bo_is_vram(bo)) {
1764 spin_lock(&xe->pinned.lock);
1765 list_add_tail(&bo->pinned_link,
1766 &xe->pinned.external_vram);
1767 spin_unlock(&xe->pinned.lock);
1768 }
1769 }
1770
1771 ttm_bo_pin(&bo->ttm);
1772
1773 /*
1774 * FIXME: If we always use the reserve / unreserve functions for locking
1775 * we do not need this.
1776 */
1777 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1778
1779 return 0;
1780 }
1781
xe_bo_pin(struct xe_bo * bo)1782 int xe_bo_pin(struct xe_bo *bo)
1783 {
1784 struct ttm_place *place = &bo->placements[0];
1785 struct xe_device *xe = xe_bo_device(bo);
1786 int err;
1787
1788 /* We currently don't expect user BO to be pinned */
1789 xe_assert(xe, !xe_bo_is_user(bo));
1790
1791 /* Pinned object must be in GGTT or have pinned flag */
1792 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
1793 XE_BO_FLAG_GGTT));
1794
1795 /*
1796 * No reason we can't support pinning imported dma-bufs we just don't
1797 * expect to pin an imported dma-buf.
1798 */
1799 xe_assert(xe, !bo->ttm.base.import_attach);
1800
1801 /* We only expect at most 1 pin */
1802 xe_assert(xe, !xe_bo_is_pinned(bo));
1803
1804 err = xe_bo_validate(bo, NULL, false);
1805 if (err)
1806 return err;
1807
1808 /*
1809 * For pinned objects in on DGFX, which are also in vram, we expect
1810 * these to be in contiguous VRAM memory. Required eviction / restore
1811 * during suspend / resume (force restore to same physical address).
1812 */
1813 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1814 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1815 if (mem_type_is_vram(place->mem_type)) {
1816 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
1817
1818 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
1819 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
1820 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
1821 }
1822 }
1823
1824 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
1825 spin_lock(&xe->pinned.lock);
1826 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
1827 spin_unlock(&xe->pinned.lock);
1828 }
1829
1830 ttm_bo_pin(&bo->ttm);
1831
1832 /*
1833 * FIXME: If we always use the reserve / unreserve functions for locking
1834 * we do not need this.
1835 */
1836 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1837
1838 return 0;
1839 }
1840
1841 /**
1842 * xe_bo_unpin_external - unpin an external BO
1843 * @bo: buffer object to be unpinned
1844 *
1845 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1846 * BO. Unique call compared to xe_bo_unpin as this function has it own set of
1847 * asserts and code to ensure evict / restore on suspend / resume.
1848 *
1849 * Returns 0 for success, negative error code otherwise.
1850 */
xe_bo_unpin_external(struct xe_bo * bo)1851 void xe_bo_unpin_external(struct xe_bo *bo)
1852 {
1853 struct xe_device *xe = xe_bo_device(bo);
1854
1855 xe_assert(xe, !bo->vm);
1856 xe_assert(xe, xe_bo_is_pinned(bo));
1857 xe_assert(xe, xe_bo_is_user(bo));
1858
1859 spin_lock(&xe->pinned.lock);
1860 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
1861 list_del_init(&bo->pinned_link);
1862 spin_unlock(&xe->pinned.lock);
1863
1864 ttm_bo_unpin(&bo->ttm);
1865
1866 /*
1867 * FIXME: If we always use the reserve / unreserve functions for locking
1868 * we do not need this.
1869 */
1870 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1871 }
1872
xe_bo_unpin(struct xe_bo * bo)1873 void xe_bo_unpin(struct xe_bo *bo)
1874 {
1875 struct ttm_place *place = &bo->placements[0];
1876 struct xe_device *xe = xe_bo_device(bo);
1877
1878 xe_assert(xe, !bo->ttm.base.import_attach);
1879 xe_assert(xe, xe_bo_is_pinned(bo));
1880
1881 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
1882 spin_lock(&xe->pinned.lock);
1883 xe_assert(xe, !list_empty(&bo->pinned_link));
1884 list_del_init(&bo->pinned_link);
1885 spin_unlock(&xe->pinned.lock);
1886 }
1887 ttm_bo_unpin(&bo->ttm);
1888 }
1889
1890 /**
1891 * xe_bo_validate() - Make sure the bo is in an allowed placement
1892 * @bo: The bo,
1893 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
1894 * NULL. Used together with @allow_res_evict.
1895 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
1896 * reservation object.
1897 *
1898 * Make sure the bo is in allowed placement, migrating it if necessary. If
1899 * needed, other bos will be evicted. If bos selected for eviction shares
1900 * the @vm's reservation object, they can be evicted iff @allow_res_evict is
1901 * set to true, otherwise they will be bypassed.
1902 *
1903 * Return: 0 on success, negative error code on failure. May return
1904 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
1905 */
xe_bo_validate(struct xe_bo * bo,struct xe_vm * vm,bool allow_res_evict)1906 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
1907 {
1908 struct ttm_operation_ctx ctx = {
1909 .interruptible = true,
1910 .no_wait_gpu = false,
1911 };
1912
1913 if (vm) {
1914 lockdep_assert_held(&vm->lock);
1915 xe_vm_assert_held(vm);
1916
1917 ctx.allow_res_evict = allow_res_evict;
1918 ctx.resv = xe_vm_resv(vm);
1919 }
1920
1921 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
1922 }
1923
xe_bo_is_xe_bo(struct ttm_buffer_object * bo)1924 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
1925 {
1926 if (bo->destroy == &xe_ttm_bo_destroy)
1927 return true;
1928
1929 return false;
1930 }
1931
1932 /*
1933 * Resolve a BO address. There is no assert to check if the proper lock is held
1934 * so it should only be used in cases where it is not fatal to get the wrong
1935 * address, such as printing debug information, but not in cases where memory is
1936 * written based on this result.
1937 */
__xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)1938 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1939 {
1940 struct xe_device *xe = xe_bo_device(bo);
1941 struct xe_res_cursor cur;
1942 u64 page;
1943
1944 xe_assert(xe, page_size <= PAGE_SIZE);
1945 page = offset >> PAGE_SHIFT;
1946 offset &= (PAGE_SIZE - 1);
1947
1948 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
1949 xe_assert(xe, bo->ttm.ttm);
1950
1951 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
1952 page_size, &cur);
1953 return xe_res_dma(&cur) + offset;
1954 } else {
1955 struct xe_res_cursor cur;
1956
1957 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
1958 page_size, &cur);
1959 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
1960 }
1961 }
1962
xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)1963 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1964 {
1965 if (!READ_ONCE(bo->ttm.pin_count))
1966 xe_bo_assert_held(bo);
1967 return __xe_bo_addr(bo, offset, page_size);
1968 }
1969
xe_bo_vmap(struct xe_bo * bo)1970 int xe_bo_vmap(struct xe_bo *bo)
1971 {
1972 void *virtual;
1973 bool is_iomem;
1974 int ret;
1975
1976 xe_bo_assert_held(bo);
1977
1978 if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS))
1979 return -EINVAL;
1980
1981 if (!iosys_map_is_null(&bo->vmap))
1982 return 0;
1983
1984 /*
1985 * We use this more or less deprecated interface for now since
1986 * ttm_bo_vmap() doesn't offer the optimization of kmapping
1987 * single page bos, which is done here.
1988 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
1989 * to use struct iosys_map.
1990 */
1991 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
1992 if (ret)
1993 return ret;
1994
1995 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
1996 if (is_iomem)
1997 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
1998 else
1999 iosys_map_set_vaddr(&bo->vmap, virtual);
2000
2001 return 0;
2002 }
2003
__xe_bo_vunmap(struct xe_bo * bo)2004 static void __xe_bo_vunmap(struct xe_bo *bo)
2005 {
2006 if (!iosys_map_is_null(&bo->vmap)) {
2007 iosys_map_clear(&bo->vmap);
2008 ttm_bo_kunmap(&bo->kmap);
2009 }
2010 }
2011
xe_bo_vunmap(struct xe_bo * bo)2012 void xe_bo_vunmap(struct xe_bo *bo)
2013 {
2014 xe_bo_assert_held(bo);
2015 __xe_bo_vunmap(bo);
2016 }
2017
xe_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2018 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
2019 struct drm_file *file)
2020 {
2021 struct xe_device *xe = to_xe_device(dev);
2022 struct xe_file *xef = to_xe_file(file);
2023 struct drm_xe_gem_create *args = data;
2024 struct xe_vm *vm = NULL;
2025 struct xe_bo *bo;
2026 unsigned int bo_flags;
2027 u32 handle;
2028 int err;
2029
2030 if (XE_IOCTL_DBG(xe, args->extensions) ||
2031 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
2032 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2033 return -EINVAL;
2034
2035 /* at least one valid memory placement must be specified */
2036 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
2037 !args->placement))
2038 return -EINVAL;
2039
2040 if (XE_IOCTL_DBG(xe, args->flags &
2041 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
2042 DRM_XE_GEM_CREATE_FLAG_SCANOUT |
2043 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
2044 return -EINVAL;
2045
2046 if (XE_IOCTL_DBG(xe, args->handle))
2047 return -EINVAL;
2048
2049 if (XE_IOCTL_DBG(xe, !args->size))
2050 return -EINVAL;
2051
2052 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
2053 return -EINVAL;
2054
2055 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
2056 return -EINVAL;
2057
2058 bo_flags = 0;
2059 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2060 bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2061
2062 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2063 bo_flags |= XE_BO_FLAG_SCANOUT;
2064
2065 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2066
2067 /* CCS formats need physical placement at a 64K alignment in VRAM. */
2068 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2069 (bo_flags & XE_BO_FLAG_SCANOUT) &&
2070 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2071 IS_ALIGNED(args->size, SZ_64K))
2072 bo_flags |= XE_BO_FLAG_NEEDS_64K;
2073
2074 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2075 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2076 return -EINVAL;
2077
2078 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2079 }
2080
2081 if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2082 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2083 return -EINVAL;
2084
2085 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2086 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2087 return -EINVAL;
2088
2089 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2090 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2091 return -EINVAL;
2092
2093 if (args->vm_id) {
2094 vm = xe_vm_lookup(xef, args->vm_id);
2095 if (XE_IOCTL_DBG(xe, !vm))
2096 return -ENOENT;
2097 err = xe_vm_lock(vm, true);
2098 if (err)
2099 goto out_vm;
2100 }
2101
2102 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2103 bo_flags);
2104
2105 if (vm)
2106 xe_vm_unlock(vm);
2107
2108 if (IS_ERR(bo)) {
2109 err = PTR_ERR(bo);
2110 goto out_vm;
2111 }
2112
2113 err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2114 if (err)
2115 goto out_bulk;
2116
2117 args->handle = handle;
2118 goto out_put;
2119
2120 out_bulk:
2121 if (vm && !xe_vm_in_fault_mode(vm)) {
2122 xe_vm_lock(vm, false);
2123 __xe_bo_unset_bulk_move(bo);
2124 xe_vm_unlock(vm);
2125 }
2126 out_put:
2127 xe_bo_put(bo);
2128 out_vm:
2129 if (vm)
2130 xe_vm_put(vm);
2131
2132 return err;
2133 }
2134
xe_gem_mmap_offset_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2135 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2136 struct drm_file *file)
2137 {
2138 struct xe_device *xe = to_xe_device(dev);
2139 struct drm_xe_gem_mmap_offset *args = data;
2140 struct drm_gem_object *gem_obj;
2141
2142 if (XE_IOCTL_DBG(xe, args->extensions) ||
2143 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2144 return -EINVAL;
2145
2146 if (XE_IOCTL_DBG(xe, args->flags))
2147 return -EINVAL;
2148
2149 gem_obj = drm_gem_object_lookup(file, args->handle);
2150 if (XE_IOCTL_DBG(xe, !gem_obj))
2151 return -ENOENT;
2152
2153 /* The mmap offset was set up at BO allocation time. */
2154 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2155
2156 xe_bo_put(gem_to_xe_bo(gem_obj));
2157 return 0;
2158 }
2159
2160 /**
2161 * xe_bo_lock() - Lock the buffer object's dma_resv object
2162 * @bo: The struct xe_bo whose lock is to be taken
2163 * @intr: Whether to perform any wait interruptible
2164 *
2165 * Locks the buffer object's dma_resv object. If the buffer object is
2166 * pointing to a shared dma_resv object, that shared lock is locked.
2167 *
2168 * Return: 0 on success, -EINTR if @intr is true and the wait for a
2169 * contended lock was interrupted. If @intr is set to false, the
2170 * function always returns 0.
2171 */
xe_bo_lock(struct xe_bo * bo,bool intr)2172 int xe_bo_lock(struct xe_bo *bo, bool intr)
2173 {
2174 if (intr)
2175 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2176
2177 dma_resv_lock(bo->ttm.base.resv, NULL);
2178
2179 return 0;
2180 }
2181
2182 /**
2183 * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2184 * @bo: The struct xe_bo whose lock is to be released.
2185 *
2186 * Unlock a buffer object lock that was locked by xe_bo_lock().
2187 */
xe_bo_unlock(struct xe_bo * bo)2188 void xe_bo_unlock(struct xe_bo *bo)
2189 {
2190 dma_resv_unlock(bo->ttm.base.resv);
2191 }
2192
2193 /**
2194 * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2195 * @bo: The buffer object to migrate
2196 * @mem_type: The TTM memory type intended to migrate to
2197 *
2198 * Check whether the buffer object supports migration to the
2199 * given memory type. Note that pinning may affect the ability to migrate as
2200 * returned by this function.
2201 *
2202 * This function is primarily intended as a helper for checking the
2203 * possibility to migrate buffer objects and can be called without
2204 * the object lock held.
2205 *
2206 * Return: true if migration is possible, false otherwise.
2207 */
xe_bo_can_migrate(struct xe_bo * bo,u32 mem_type)2208 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2209 {
2210 unsigned int cur_place;
2211
2212 if (bo->ttm.type == ttm_bo_type_kernel)
2213 return true;
2214
2215 if (bo->ttm.type == ttm_bo_type_sg)
2216 return false;
2217
2218 for (cur_place = 0; cur_place < bo->placement.num_placement;
2219 cur_place++) {
2220 if (bo->placements[cur_place].mem_type == mem_type)
2221 return true;
2222 }
2223
2224 return false;
2225 }
2226
xe_place_from_ttm_type(u32 mem_type,struct ttm_place * place)2227 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2228 {
2229 memset(place, 0, sizeof(*place));
2230 place->mem_type = mem_type;
2231 }
2232
2233 /**
2234 * xe_bo_migrate - Migrate an object to the desired region id
2235 * @bo: The buffer object to migrate.
2236 * @mem_type: The TTM region type to migrate to.
2237 *
2238 * Attempt to migrate the buffer object to the desired memory region. The
2239 * buffer object may not be pinned, and must be locked.
2240 * On successful completion, the object memory type will be updated,
2241 * but an async migration task may not have completed yet, and to
2242 * accomplish that, the object's kernel fences must be signaled with
2243 * the object lock held.
2244 *
2245 * Return: 0 on success. Negative error code on failure. In particular may
2246 * return -EINTR or -ERESTARTSYS if signal pending.
2247 */
xe_bo_migrate(struct xe_bo * bo,u32 mem_type)2248 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2249 {
2250 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2251 struct ttm_operation_ctx ctx = {
2252 .interruptible = true,
2253 .no_wait_gpu = false,
2254 };
2255 struct ttm_placement placement;
2256 struct ttm_place requested;
2257
2258 xe_bo_assert_held(bo);
2259
2260 if (bo->ttm.resource->mem_type == mem_type)
2261 return 0;
2262
2263 if (xe_bo_is_pinned(bo))
2264 return -EBUSY;
2265
2266 if (!xe_bo_can_migrate(bo, mem_type))
2267 return -EINVAL;
2268
2269 xe_place_from_ttm_type(mem_type, &requested);
2270 placement.num_placement = 1;
2271 placement.placement = &requested;
2272
2273 /*
2274 * Stolen needs to be handled like below VRAM handling if we ever need
2275 * to support it.
2276 */
2277 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2278
2279 if (mem_type_is_vram(mem_type)) {
2280 u32 c = 0;
2281
2282 add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2283 }
2284
2285 return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2286 }
2287
2288 /**
2289 * xe_bo_evict - Evict an object to evict placement
2290 * @bo: The buffer object to migrate.
2291 * @force_alloc: Set force_alloc in ttm_operation_ctx
2292 *
2293 * On successful completion, the object memory will be moved to evict
2294 * placement. Ths function blocks until the object has been fully moved.
2295 *
2296 * Return: 0 on success. Negative error code on failure.
2297 */
xe_bo_evict(struct xe_bo * bo,bool force_alloc)2298 int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
2299 {
2300 struct ttm_operation_ctx ctx = {
2301 .interruptible = false,
2302 .no_wait_gpu = false,
2303 .force_alloc = force_alloc,
2304 };
2305 struct ttm_placement placement;
2306 int ret;
2307
2308 xe_evict_flags(&bo->ttm, &placement);
2309 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2310 if (ret)
2311 return ret;
2312
2313 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2314 false, MAX_SCHEDULE_TIMEOUT);
2315
2316 return 0;
2317 }
2318
2319 /**
2320 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2321 * placed in system memory.
2322 * @bo: The xe_bo
2323 *
2324 * Return: true if extra pages need to be allocated, false otherwise.
2325 */
xe_bo_needs_ccs_pages(struct xe_bo * bo)2326 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2327 {
2328 struct xe_device *xe = xe_bo_device(bo);
2329
2330 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2331 return false;
2332
2333 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2334 return false;
2335
2336 /* On discrete GPUs, if the GPU can access this buffer from
2337 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2338 * can't be used since there's no CCS storage associated with
2339 * non-VRAM addresses.
2340 */
2341 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2342 return false;
2343
2344 return true;
2345 }
2346
2347 /**
2348 * __xe_bo_release_dummy() - Dummy kref release function
2349 * @kref: The embedded struct kref.
2350 *
2351 * Dummy release function for xe_bo_put_deferred(). Keep off.
2352 */
__xe_bo_release_dummy(struct kref * kref)2353 void __xe_bo_release_dummy(struct kref *kref)
2354 {
2355 }
2356
2357 /**
2358 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
2359 * @deferred: The lockless list used for the call to xe_bo_put_deferred().
2360 *
2361 * Puts all bos whose put was deferred by xe_bo_put_deferred().
2362 * The @deferred list can be either an onstack local list or a global
2363 * shared list used by a workqueue.
2364 */
xe_bo_put_commit(struct llist_head * deferred)2365 void xe_bo_put_commit(struct llist_head *deferred)
2366 {
2367 struct llist_node *freed;
2368 struct xe_bo *bo, *next;
2369
2370 if (!deferred)
2371 return;
2372
2373 freed = llist_del_all(deferred);
2374 if (!freed)
2375 return;
2376
2377 llist_for_each_entry_safe(bo, next, freed, freed)
2378 drm_gem_object_free(&bo->ttm.base.refcount);
2379 }
2380
xe_bo_put(struct xe_bo * bo)2381 void xe_bo_put(struct xe_bo *bo)
2382 {
2383 might_sleep();
2384 if (bo) {
2385 #ifdef CONFIG_PROC_FS
2386 if (bo->client)
2387 might_lock(&bo->client->bos_lock);
2388 #endif
2389 if (bo->ggtt_node && bo->ggtt_node->ggtt)
2390 might_lock(&bo->ggtt_node->ggtt->lock);
2391 drm_gem_object_put(&bo->ttm.base);
2392 }
2393 }
2394
2395 /**
2396 * xe_bo_dumb_create - Create a dumb bo as backing for a fb
2397 * @file_priv: ...
2398 * @dev: ...
2399 * @args: ...
2400 *
2401 * See dumb_create() hook in include/drm/drm_drv.h
2402 *
2403 * Return: ...
2404 */
xe_bo_dumb_create(struct drm_file * file_priv,struct drm_device * dev,struct drm_mode_create_dumb * args)2405 int xe_bo_dumb_create(struct drm_file *file_priv,
2406 struct drm_device *dev,
2407 struct drm_mode_create_dumb *args)
2408 {
2409 struct xe_device *xe = to_xe_device(dev);
2410 struct xe_bo *bo;
2411 uint32_t handle;
2412 int cpp = DIV_ROUND_UP(args->bpp, 8);
2413 int err;
2414 u32 page_size = max_t(u32, PAGE_SIZE,
2415 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
2416
2417 args->pitch = ALIGN(args->width * cpp, 64);
2418 args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
2419 page_size);
2420
2421 bo = xe_bo_create_user(xe, NULL, NULL, args->size,
2422 DRM_XE_GEM_CPU_CACHING_WC,
2423 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
2424 XE_BO_FLAG_SCANOUT |
2425 XE_BO_FLAG_NEEDS_CPU_ACCESS);
2426 if (IS_ERR(bo))
2427 return PTR_ERR(bo);
2428
2429 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
2430 /* drop reference from allocate - handle holds it now */
2431 drm_gem_object_put(&bo->ttm.base);
2432 if (!err)
2433 args->handle = handle;
2434 return err;
2435 }
2436
xe_bo_runtime_pm_release_mmap_offset(struct xe_bo * bo)2437 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
2438 {
2439 struct ttm_buffer_object *tbo = &bo->ttm;
2440 struct ttm_device *bdev = tbo->bdev;
2441
2442 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
2443
2444 list_del_init(&bo->vram_userfault_link);
2445 }
2446
2447 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2448 #include "tests/xe_bo.c"
2449 #endif
2450