1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/xdr.c
4 *
5 * Generic XDR support.
6 *
7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8 */
9
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/string.h>
14 #include <linux/kernel.h>
15 #include <linux/pagemap.h>
16 #include <linux/errno.h>
17 #include <linux/sunrpc/xdr.h>
18 #include <linux/sunrpc/msg_prot.h>
19 #include <linux/bvec.h>
20 #include <trace/events/sunrpc.h>
21
22 static void _copy_to_pages(struct page **, size_t, const char *, size_t);
23
24
25 /*
26 * XDR functions for basic NFS types
27 */
28 __be32 *
xdr_encode_netobj(__be32 * p,const struct xdr_netobj * obj)29 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj)
30 {
31 unsigned int quadlen = XDR_QUADLEN(obj->len);
32
33 p[quadlen] = 0; /* zero trailing bytes */
34 *p++ = cpu_to_be32(obj->len);
35 memcpy(p, obj->data, obj->len);
36 return p + XDR_QUADLEN(obj->len);
37 }
38 EXPORT_SYMBOL_GPL(xdr_encode_netobj);
39
40 __be32 *
xdr_decode_netobj(__be32 * p,struct xdr_netobj * obj)41 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj)
42 {
43 unsigned int len;
44
45 if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ)
46 return NULL;
47 obj->len = len;
48 obj->data = (u8 *) p;
49 return p + XDR_QUADLEN(len);
50 }
51 EXPORT_SYMBOL_GPL(xdr_decode_netobj);
52
53 /**
54 * xdr_encode_opaque_fixed - Encode fixed length opaque data
55 * @p: pointer to current position in XDR buffer.
56 * @ptr: pointer to data to encode (or NULL)
57 * @nbytes: size of data.
58 *
59 * Copy the array of data of length nbytes at ptr to the XDR buffer
60 * at position p, then align to the next 32-bit boundary by padding
61 * with zero bytes (see RFC1832).
62 * Note: if ptr is NULL, only the padding is performed.
63 *
64 * Returns the updated current XDR buffer position
65 *
66 */
xdr_encode_opaque_fixed(__be32 * p,const void * ptr,unsigned int nbytes)67 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes)
68 {
69 if (likely(nbytes != 0)) {
70 unsigned int quadlen = XDR_QUADLEN(nbytes);
71 unsigned int padding = (quadlen << 2) - nbytes;
72
73 if (ptr != NULL)
74 memcpy(p, ptr, nbytes);
75 if (padding != 0)
76 memset((char *)p + nbytes, 0, padding);
77 p += quadlen;
78 }
79 return p;
80 }
81 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed);
82
83 /**
84 * xdr_encode_opaque - Encode variable length opaque data
85 * @p: pointer to current position in XDR buffer.
86 * @ptr: pointer to data to encode (or NULL)
87 * @nbytes: size of data.
88 *
89 * Returns the updated current XDR buffer position
90 */
xdr_encode_opaque(__be32 * p,const void * ptr,unsigned int nbytes)91 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes)
92 {
93 *p++ = cpu_to_be32(nbytes);
94 return xdr_encode_opaque_fixed(p, ptr, nbytes);
95 }
96 EXPORT_SYMBOL_GPL(xdr_encode_opaque);
97
98 __be32 *
xdr_encode_string(__be32 * p,const char * string)99 xdr_encode_string(__be32 *p, const char *string)
100 {
101 return xdr_encode_array(p, string, strlen(string));
102 }
103 EXPORT_SYMBOL_GPL(xdr_encode_string);
104
105 __be32 *
xdr_decode_string_inplace(__be32 * p,char ** sp,unsigned int * lenp,unsigned int maxlen)106 xdr_decode_string_inplace(__be32 *p, char **sp,
107 unsigned int *lenp, unsigned int maxlen)
108 {
109 u32 len;
110
111 len = be32_to_cpu(*p++);
112 if (len > maxlen)
113 return NULL;
114 *lenp = len;
115 *sp = (char *) p;
116 return p + XDR_QUADLEN(len);
117 }
118 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace);
119
120 /**
121 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf
122 * @buf: XDR buffer where string resides
123 * @len: length of string, in bytes
124 *
125 */
xdr_terminate_string(const struct xdr_buf * buf,const u32 len)126 void xdr_terminate_string(const struct xdr_buf *buf, const u32 len)
127 {
128 char *kaddr;
129
130 kaddr = kmap_atomic(buf->pages[0]);
131 kaddr[buf->page_base + len] = '\0';
132 kunmap_atomic(kaddr);
133 }
134 EXPORT_SYMBOL_GPL(xdr_terminate_string);
135
xdr_buf_pagecount(const struct xdr_buf * buf)136 size_t xdr_buf_pagecount(const struct xdr_buf *buf)
137 {
138 if (!buf->page_len)
139 return 0;
140 return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
141 }
142
143 int
xdr_alloc_bvec(struct xdr_buf * buf,gfp_t gfp)144 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp)
145 {
146 size_t i, n = xdr_buf_pagecount(buf);
147
148 if (n != 0 && buf->bvec == NULL) {
149 buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp);
150 if (!buf->bvec)
151 return -ENOMEM;
152 for (i = 0; i < n; i++) {
153 bvec_set_page(&buf->bvec[i], buf->pages[i], PAGE_SIZE,
154 0);
155 }
156 }
157 return 0;
158 }
159
160 void
xdr_free_bvec(struct xdr_buf * buf)161 xdr_free_bvec(struct xdr_buf *buf)
162 {
163 kfree(buf->bvec);
164 buf->bvec = NULL;
165 }
166
167 /**
168 * xdr_buf_to_bvec - Copy components of an xdr_buf into a bio_vec array
169 * @bvec: bio_vec array to populate
170 * @bvec_size: element count of @bio_vec
171 * @xdr: xdr_buf to be copied
172 *
173 * Returns the number of entries consumed in @bvec.
174 */
xdr_buf_to_bvec(struct bio_vec * bvec,unsigned int bvec_size,const struct xdr_buf * xdr)175 unsigned int xdr_buf_to_bvec(struct bio_vec *bvec, unsigned int bvec_size,
176 const struct xdr_buf *xdr)
177 {
178 const struct kvec *head = xdr->head;
179 const struct kvec *tail = xdr->tail;
180 unsigned int count = 0;
181
182 if (head->iov_len) {
183 bvec_set_virt(bvec++, head->iov_base, head->iov_len);
184 ++count;
185 }
186
187 if (xdr->page_len) {
188 unsigned int offset, len, remaining;
189 struct page **pages = xdr->pages;
190
191 offset = offset_in_page(xdr->page_base);
192 remaining = xdr->page_len;
193 while (remaining > 0) {
194 len = min_t(unsigned int, remaining,
195 PAGE_SIZE - offset);
196 bvec_set_page(bvec++, *pages++, len, offset);
197 remaining -= len;
198 offset = 0;
199 if (unlikely(++count > bvec_size))
200 goto bvec_overflow;
201 }
202 }
203
204 if (tail->iov_len) {
205 bvec_set_virt(bvec, tail->iov_base, tail->iov_len);
206 if (unlikely(++count > bvec_size))
207 goto bvec_overflow;
208 }
209
210 return count;
211
212 bvec_overflow:
213 pr_warn_once("%s: bio_vec array overflow\n", __func__);
214 return count - 1;
215 }
216 EXPORT_SYMBOL_GPL(xdr_buf_to_bvec);
217
218 /**
219 * xdr_inline_pages - Prepare receive buffer for a large reply
220 * @xdr: xdr_buf into which reply will be placed
221 * @offset: expected offset where data payload will start, in bytes
222 * @pages: vector of struct page pointers
223 * @base: offset in first page where receive should start, in bytes
224 * @len: expected size of the upper layer data payload, in bytes
225 *
226 */
227 void
xdr_inline_pages(struct xdr_buf * xdr,unsigned int offset,struct page ** pages,unsigned int base,unsigned int len)228 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
229 struct page **pages, unsigned int base, unsigned int len)
230 {
231 struct kvec *head = xdr->head;
232 struct kvec *tail = xdr->tail;
233 char *buf = (char *)head->iov_base;
234 unsigned int buflen = head->iov_len;
235
236 head->iov_len = offset;
237
238 xdr->pages = pages;
239 xdr->page_base = base;
240 xdr->page_len = len;
241
242 tail->iov_base = buf + offset;
243 tail->iov_len = buflen - offset;
244 xdr->buflen += len;
245 }
246 EXPORT_SYMBOL_GPL(xdr_inline_pages);
247
248 /*
249 * Helper routines for doing 'memmove' like operations on a struct xdr_buf
250 */
251
252 /**
253 * _shift_data_left_pages
254 * @pages: vector of pages containing both the source and dest memory area.
255 * @pgto_base: page vector address of destination
256 * @pgfrom_base: page vector address of source
257 * @len: number of bytes to copy
258 *
259 * Note: the addresses pgto_base and pgfrom_base are both calculated in
260 * the same way:
261 * if a memory area starts at byte 'base' in page 'pages[i]',
262 * then its address is given as (i << PAGE_CACHE_SHIFT) + base
263 * Alse note: pgto_base must be < pgfrom_base, but the memory areas
264 * they point to may overlap.
265 */
266 static void
_shift_data_left_pages(struct page ** pages,size_t pgto_base,size_t pgfrom_base,size_t len)267 _shift_data_left_pages(struct page **pages, size_t pgto_base,
268 size_t pgfrom_base, size_t len)
269 {
270 struct page **pgfrom, **pgto;
271 char *vfrom, *vto;
272 size_t copy;
273
274 BUG_ON(pgfrom_base <= pgto_base);
275
276 if (!len)
277 return;
278
279 pgto = pages + (pgto_base >> PAGE_SHIFT);
280 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
281
282 pgto_base &= ~PAGE_MASK;
283 pgfrom_base &= ~PAGE_MASK;
284
285 do {
286 if (pgto_base >= PAGE_SIZE) {
287 pgto_base = 0;
288 pgto++;
289 }
290 if (pgfrom_base >= PAGE_SIZE){
291 pgfrom_base = 0;
292 pgfrom++;
293 }
294
295 copy = len;
296 if (copy > (PAGE_SIZE - pgto_base))
297 copy = PAGE_SIZE - pgto_base;
298 if (copy > (PAGE_SIZE - pgfrom_base))
299 copy = PAGE_SIZE - pgfrom_base;
300
301 vto = kmap_atomic(*pgto);
302 if (*pgto != *pgfrom) {
303 vfrom = kmap_atomic(*pgfrom);
304 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
305 kunmap_atomic(vfrom);
306 } else
307 memmove(vto + pgto_base, vto + pgfrom_base, copy);
308 flush_dcache_page(*pgto);
309 kunmap_atomic(vto);
310
311 pgto_base += copy;
312 pgfrom_base += copy;
313
314 } while ((len -= copy) != 0);
315 }
316
317 /**
318 * _shift_data_right_pages
319 * @pages: vector of pages containing both the source and dest memory area.
320 * @pgto_base: page vector address of destination
321 * @pgfrom_base: page vector address of source
322 * @len: number of bytes to copy
323 *
324 * Note: the addresses pgto_base and pgfrom_base are both calculated in
325 * the same way:
326 * if a memory area starts at byte 'base' in page 'pages[i]',
327 * then its address is given as (i << PAGE_SHIFT) + base
328 * Also note: pgfrom_base must be < pgto_base, but the memory areas
329 * they point to may overlap.
330 */
331 static void
_shift_data_right_pages(struct page ** pages,size_t pgto_base,size_t pgfrom_base,size_t len)332 _shift_data_right_pages(struct page **pages, size_t pgto_base,
333 size_t pgfrom_base, size_t len)
334 {
335 struct page **pgfrom, **pgto;
336 char *vfrom, *vto;
337 size_t copy;
338
339 BUG_ON(pgto_base <= pgfrom_base);
340
341 if (!len)
342 return;
343
344 pgto_base += len;
345 pgfrom_base += len;
346
347 pgto = pages + (pgto_base >> PAGE_SHIFT);
348 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT);
349
350 pgto_base &= ~PAGE_MASK;
351 pgfrom_base &= ~PAGE_MASK;
352
353 do {
354 /* Are any pointers crossing a page boundary? */
355 if (pgto_base == 0) {
356 pgto_base = PAGE_SIZE;
357 pgto--;
358 }
359 if (pgfrom_base == 0) {
360 pgfrom_base = PAGE_SIZE;
361 pgfrom--;
362 }
363
364 copy = len;
365 if (copy > pgto_base)
366 copy = pgto_base;
367 if (copy > pgfrom_base)
368 copy = pgfrom_base;
369 pgto_base -= copy;
370 pgfrom_base -= copy;
371
372 vto = kmap_atomic(*pgto);
373 if (*pgto != *pgfrom) {
374 vfrom = kmap_atomic(*pgfrom);
375 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy);
376 kunmap_atomic(vfrom);
377 } else
378 memmove(vto + pgto_base, vto + pgfrom_base, copy);
379 flush_dcache_page(*pgto);
380 kunmap_atomic(vto);
381
382 } while ((len -= copy) != 0);
383 }
384
385 /**
386 * _copy_to_pages
387 * @pages: array of pages
388 * @pgbase: page vector address of destination
389 * @p: pointer to source data
390 * @len: length
391 *
392 * Copies data from an arbitrary memory location into an array of pages
393 * The copy is assumed to be non-overlapping.
394 */
395 static void
_copy_to_pages(struct page ** pages,size_t pgbase,const char * p,size_t len)396 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
397 {
398 struct page **pgto;
399 char *vto;
400 size_t copy;
401
402 if (!len)
403 return;
404
405 pgto = pages + (pgbase >> PAGE_SHIFT);
406 pgbase &= ~PAGE_MASK;
407
408 for (;;) {
409 copy = PAGE_SIZE - pgbase;
410 if (copy > len)
411 copy = len;
412
413 vto = kmap_atomic(*pgto);
414 memcpy(vto + pgbase, p, copy);
415 kunmap_atomic(vto);
416
417 len -= copy;
418 if (len == 0)
419 break;
420
421 pgbase += copy;
422 if (pgbase == PAGE_SIZE) {
423 flush_dcache_page(*pgto);
424 pgbase = 0;
425 pgto++;
426 }
427 p += copy;
428 }
429 flush_dcache_page(*pgto);
430 }
431
432 /**
433 * _copy_from_pages
434 * @p: pointer to destination
435 * @pages: array of pages
436 * @pgbase: offset of source data
437 * @len: length
438 *
439 * Copies data into an arbitrary memory location from an array of pages
440 * The copy is assumed to be non-overlapping.
441 */
442 void
_copy_from_pages(char * p,struct page ** pages,size_t pgbase,size_t len)443 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
444 {
445 struct page **pgfrom;
446 char *vfrom;
447 size_t copy;
448
449 if (!len)
450 return;
451
452 pgfrom = pages + (pgbase >> PAGE_SHIFT);
453 pgbase &= ~PAGE_MASK;
454
455 do {
456 copy = PAGE_SIZE - pgbase;
457 if (copy > len)
458 copy = len;
459
460 vfrom = kmap_atomic(*pgfrom);
461 memcpy(p, vfrom + pgbase, copy);
462 kunmap_atomic(vfrom);
463
464 pgbase += copy;
465 if (pgbase == PAGE_SIZE) {
466 pgbase = 0;
467 pgfrom++;
468 }
469 p += copy;
470
471 } while ((len -= copy) != 0);
472 }
473 EXPORT_SYMBOL_GPL(_copy_from_pages);
474
xdr_buf_iov_zero(const struct kvec * iov,unsigned int base,unsigned int len)475 static void xdr_buf_iov_zero(const struct kvec *iov, unsigned int base,
476 unsigned int len)
477 {
478 if (base >= iov->iov_len)
479 return;
480 if (len > iov->iov_len - base)
481 len = iov->iov_len - base;
482 memset(iov->iov_base + base, 0, len);
483 }
484
485 /**
486 * xdr_buf_pages_zero
487 * @buf: xdr_buf
488 * @pgbase: beginning offset
489 * @len: length
490 */
xdr_buf_pages_zero(const struct xdr_buf * buf,unsigned int pgbase,unsigned int len)491 static void xdr_buf_pages_zero(const struct xdr_buf *buf, unsigned int pgbase,
492 unsigned int len)
493 {
494 struct page **pages = buf->pages;
495 struct page **page;
496 char *vpage;
497 unsigned int zero;
498
499 if (!len)
500 return;
501 if (pgbase >= buf->page_len) {
502 xdr_buf_iov_zero(buf->tail, pgbase - buf->page_len, len);
503 return;
504 }
505 if (pgbase + len > buf->page_len) {
506 xdr_buf_iov_zero(buf->tail, 0, pgbase + len - buf->page_len);
507 len = buf->page_len - pgbase;
508 }
509
510 pgbase += buf->page_base;
511
512 page = pages + (pgbase >> PAGE_SHIFT);
513 pgbase &= ~PAGE_MASK;
514
515 do {
516 zero = PAGE_SIZE - pgbase;
517 if (zero > len)
518 zero = len;
519
520 vpage = kmap_atomic(*page);
521 memset(vpage + pgbase, 0, zero);
522 kunmap_atomic(vpage);
523
524 flush_dcache_page(*page);
525 pgbase = 0;
526 page++;
527
528 } while ((len -= zero) != 0);
529 }
530
xdr_buf_pages_fill_sparse(const struct xdr_buf * buf,unsigned int buflen,gfp_t gfp)531 static unsigned int xdr_buf_pages_fill_sparse(const struct xdr_buf *buf,
532 unsigned int buflen, gfp_t gfp)
533 {
534 unsigned int i, npages, pagelen;
535
536 if (!(buf->flags & XDRBUF_SPARSE_PAGES))
537 return buflen;
538 if (buflen <= buf->head->iov_len)
539 return buflen;
540 pagelen = buflen - buf->head->iov_len;
541 if (pagelen > buf->page_len)
542 pagelen = buf->page_len;
543 npages = (pagelen + buf->page_base + PAGE_SIZE - 1) >> PAGE_SHIFT;
544 for (i = 0; i < npages; i++) {
545 if (!buf->pages[i])
546 continue;
547 buf->pages[i] = alloc_page(gfp);
548 if (likely(buf->pages[i]))
549 continue;
550 buflen -= pagelen;
551 pagelen = i << PAGE_SHIFT;
552 if (pagelen > buf->page_base)
553 buflen += pagelen - buf->page_base;
554 break;
555 }
556 return buflen;
557 }
558
xdr_buf_try_expand(struct xdr_buf * buf,unsigned int len)559 static void xdr_buf_try_expand(struct xdr_buf *buf, unsigned int len)
560 {
561 struct kvec *head = buf->head;
562 struct kvec *tail = buf->tail;
563 unsigned int sum = head->iov_len + buf->page_len + tail->iov_len;
564 unsigned int free_space, newlen;
565
566 if (sum > buf->len) {
567 free_space = min_t(unsigned int, sum - buf->len, len);
568 newlen = xdr_buf_pages_fill_sparse(buf, buf->len + free_space,
569 GFP_KERNEL);
570 free_space = newlen - buf->len;
571 buf->len = newlen;
572 len -= free_space;
573 if (!len)
574 return;
575 }
576
577 if (buf->buflen > sum) {
578 /* Expand the tail buffer */
579 free_space = min_t(unsigned int, buf->buflen - sum, len);
580 tail->iov_len += free_space;
581 buf->len += free_space;
582 }
583 }
584
xdr_buf_tail_copy_right(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)585 static void xdr_buf_tail_copy_right(const struct xdr_buf *buf,
586 unsigned int base, unsigned int len,
587 unsigned int shift)
588 {
589 const struct kvec *tail = buf->tail;
590 unsigned int to = base + shift;
591
592 if (to >= tail->iov_len)
593 return;
594 if (len + to > tail->iov_len)
595 len = tail->iov_len - to;
596 memmove(tail->iov_base + to, tail->iov_base + base, len);
597 }
598
xdr_buf_pages_copy_right(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)599 static void xdr_buf_pages_copy_right(const struct xdr_buf *buf,
600 unsigned int base, unsigned int len,
601 unsigned int shift)
602 {
603 const struct kvec *tail = buf->tail;
604 unsigned int to = base + shift;
605 unsigned int pglen = 0;
606 unsigned int talen = 0, tato = 0;
607
608 if (base >= buf->page_len)
609 return;
610 if (len > buf->page_len - base)
611 len = buf->page_len - base;
612 if (to >= buf->page_len) {
613 tato = to - buf->page_len;
614 if (tail->iov_len >= len + tato)
615 talen = len;
616 else if (tail->iov_len > tato)
617 talen = tail->iov_len - tato;
618 } else if (len + to >= buf->page_len) {
619 pglen = buf->page_len - to;
620 talen = len - pglen;
621 if (talen > tail->iov_len)
622 talen = tail->iov_len;
623 } else
624 pglen = len;
625
626 _copy_from_pages(tail->iov_base + tato, buf->pages,
627 buf->page_base + base + pglen, talen);
628 _shift_data_right_pages(buf->pages, buf->page_base + to,
629 buf->page_base + base, pglen);
630 }
631
xdr_buf_head_copy_right(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)632 static void xdr_buf_head_copy_right(const struct xdr_buf *buf,
633 unsigned int base, unsigned int len,
634 unsigned int shift)
635 {
636 const struct kvec *head = buf->head;
637 const struct kvec *tail = buf->tail;
638 unsigned int to = base + shift;
639 unsigned int pglen = 0, pgto = 0;
640 unsigned int talen = 0, tato = 0;
641
642 if (base >= head->iov_len)
643 return;
644 if (len > head->iov_len - base)
645 len = head->iov_len - base;
646 if (to >= buf->page_len + head->iov_len) {
647 tato = to - buf->page_len - head->iov_len;
648 talen = len;
649 } else if (to >= head->iov_len) {
650 pgto = to - head->iov_len;
651 pglen = len;
652 if (pgto + pglen > buf->page_len) {
653 talen = pgto + pglen - buf->page_len;
654 pglen -= talen;
655 }
656 } else {
657 pglen = len - to;
658 if (pglen > buf->page_len) {
659 talen = pglen - buf->page_len;
660 pglen = buf->page_len;
661 }
662 }
663
664 len -= talen;
665 base += len;
666 if (talen + tato > tail->iov_len)
667 talen = tail->iov_len > tato ? tail->iov_len - tato : 0;
668 memcpy(tail->iov_base + tato, head->iov_base + base, talen);
669
670 len -= pglen;
671 base -= pglen;
672 _copy_to_pages(buf->pages, buf->page_base + pgto, head->iov_base + base,
673 pglen);
674
675 base -= len;
676 memmove(head->iov_base + to, head->iov_base + base, len);
677 }
678
xdr_buf_tail_shift_right(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)679 static void xdr_buf_tail_shift_right(const struct xdr_buf *buf,
680 unsigned int base, unsigned int len,
681 unsigned int shift)
682 {
683 const struct kvec *tail = buf->tail;
684
685 if (base >= tail->iov_len || !shift || !len)
686 return;
687 xdr_buf_tail_copy_right(buf, base, len, shift);
688 }
689
xdr_buf_pages_shift_right(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)690 static void xdr_buf_pages_shift_right(const struct xdr_buf *buf,
691 unsigned int base, unsigned int len,
692 unsigned int shift)
693 {
694 if (!shift || !len)
695 return;
696 if (base >= buf->page_len) {
697 xdr_buf_tail_shift_right(buf, base - buf->page_len, len, shift);
698 return;
699 }
700 if (base + len > buf->page_len)
701 xdr_buf_tail_shift_right(buf, 0, base + len - buf->page_len,
702 shift);
703 xdr_buf_pages_copy_right(buf, base, len, shift);
704 }
705
xdr_buf_head_shift_right(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)706 static void xdr_buf_head_shift_right(const struct xdr_buf *buf,
707 unsigned int base, unsigned int len,
708 unsigned int shift)
709 {
710 const struct kvec *head = buf->head;
711
712 if (!shift)
713 return;
714 if (base >= head->iov_len) {
715 xdr_buf_pages_shift_right(buf, head->iov_len - base, len,
716 shift);
717 return;
718 }
719 if (base + len > head->iov_len)
720 xdr_buf_pages_shift_right(buf, 0, base + len - head->iov_len,
721 shift);
722 xdr_buf_head_copy_right(buf, base, len, shift);
723 }
724
xdr_buf_tail_copy_left(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)725 static void xdr_buf_tail_copy_left(const struct xdr_buf *buf, unsigned int base,
726 unsigned int len, unsigned int shift)
727 {
728 const struct kvec *tail = buf->tail;
729
730 if (base >= tail->iov_len)
731 return;
732 if (len > tail->iov_len - base)
733 len = tail->iov_len - base;
734 /* Shift data into head */
735 if (shift > buf->page_len + base) {
736 const struct kvec *head = buf->head;
737 unsigned int hdto =
738 head->iov_len + buf->page_len + base - shift;
739 unsigned int hdlen = len;
740
741 if (WARN_ONCE(shift > head->iov_len + buf->page_len + base,
742 "SUNRPC: Misaligned data.\n"))
743 return;
744 if (hdto + hdlen > head->iov_len)
745 hdlen = head->iov_len - hdto;
746 memcpy(head->iov_base + hdto, tail->iov_base + base, hdlen);
747 base += hdlen;
748 len -= hdlen;
749 if (!len)
750 return;
751 }
752 /* Shift data into pages */
753 if (shift > base) {
754 unsigned int pgto = buf->page_len + base - shift;
755 unsigned int pglen = len;
756
757 if (pgto + pglen > buf->page_len)
758 pglen = buf->page_len - pgto;
759 _copy_to_pages(buf->pages, buf->page_base + pgto,
760 tail->iov_base + base, pglen);
761 base += pglen;
762 len -= pglen;
763 if (!len)
764 return;
765 }
766 memmove(tail->iov_base + base - shift, tail->iov_base + base, len);
767 }
768
xdr_buf_pages_copy_left(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)769 static void xdr_buf_pages_copy_left(const struct xdr_buf *buf,
770 unsigned int base, unsigned int len,
771 unsigned int shift)
772 {
773 unsigned int pgto;
774
775 if (base >= buf->page_len)
776 return;
777 if (len > buf->page_len - base)
778 len = buf->page_len - base;
779 /* Shift data into head */
780 if (shift > base) {
781 const struct kvec *head = buf->head;
782 unsigned int hdto = head->iov_len + base - shift;
783 unsigned int hdlen = len;
784
785 if (WARN_ONCE(shift > head->iov_len + base,
786 "SUNRPC: Misaligned data.\n"))
787 return;
788 if (hdto + hdlen > head->iov_len)
789 hdlen = head->iov_len - hdto;
790 _copy_from_pages(head->iov_base + hdto, buf->pages,
791 buf->page_base + base, hdlen);
792 base += hdlen;
793 len -= hdlen;
794 if (!len)
795 return;
796 }
797 pgto = base - shift;
798 _shift_data_left_pages(buf->pages, buf->page_base + pgto,
799 buf->page_base + base, len);
800 }
801
xdr_buf_tail_shift_left(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)802 static void xdr_buf_tail_shift_left(const struct xdr_buf *buf,
803 unsigned int base, unsigned int len,
804 unsigned int shift)
805 {
806 if (!shift || !len)
807 return;
808 xdr_buf_tail_copy_left(buf, base, len, shift);
809 }
810
xdr_buf_pages_shift_left(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)811 static void xdr_buf_pages_shift_left(const struct xdr_buf *buf,
812 unsigned int base, unsigned int len,
813 unsigned int shift)
814 {
815 if (!shift || !len)
816 return;
817 if (base >= buf->page_len) {
818 xdr_buf_tail_shift_left(buf, base - buf->page_len, len, shift);
819 return;
820 }
821 xdr_buf_pages_copy_left(buf, base, len, shift);
822 len += base;
823 if (len <= buf->page_len)
824 return;
825 xdr_buf_tail_copy_left(buf, 0, len - buf->page_len, shift);
826 }
827
xdr_buf_head_shift_left(const struct xdr_buf * buf,unsigned int base,unsigned int len,unsigned int shift)828 static void xdr_buf_head_shift_left(const struct xdr_buf *buf,
829 unsigned int base, unsigned int len,
830 unsigned int shift)
831 {
832 const struct kvec *head = buf->head;
833 unsigned int bytes;
834
835 if (!shift || !len)
836 return;
837
838 if (shift > base) {
839 bytes = (shift - base);
840 if (bytes >= len)
841 return;
842 base += bytes;
843 len -= bytes;
844 }
845
846 if (base < head->iov_len) {
847 bytes = min_t(unsigned int, len, head->iov_len - base);
848 memmove(head->iov_base + (base - shift),
849 head->iov_base + base, bytes);
850 base += bytes;
851 len -= bytes;
852 }
853 xdr_buf_pages_shift_left(buf, base - head->iov_len, len, shift);
854 }
855
856 /**
857 * xdr_shrink_bufhead
858 * @buf: xdr_buf
859 * @len: new length of buf->head[0]
860 *
861 * Shrinks XDR buffer's header kvec buf->head[0], setting it to
862 * 'len' bytes. The extra data is not lost, but is instead
863 * moved into the inlined pages and/or the tail.
864 */
xdr_shrink_bufhead(struct xdr_buf * buf,unsigned int len)865 static unsigned int xdr_shrink_bufhead(struct xdr_buf *buf, unsigned int len)
866 {
867 struct kvec *head = buf->head;
868 unsigned int shift, buflen = max(buf->len, len);
869
870 WARN_ON_ONCE(len > head->iov_len);
871 if (head->iov_len > buflen) {
872 buf->buflen -= head->iov_len - buflen;
873 head->iov_len = buflen;
874 }
875 if (len >= head->iov_len)
876 return 0;
877 shift = head->iov_len - len;
878 xdr_buf_try_expand(buf, shift);
879 xdr_buf_head_shift_right(buf, len, buflen - len, shift);
880 head->iov_len = len;
881 buf->buflen -= shift;
882 buf->len -= shift;
883 return shift;
884 }
885
886 /**
887 * xdr_shrink_pagelen - shrinks buf->pages to @len bytes
888 * @buf: xdr_buf
889 * @len: new page buffer length
890 *
891 * The extra data is not lost, but is instead moved into buf->tail.
892 * Returns the actual number of bytes moved.
893 */
xdr_shrink_pagelen(struct xdr_buf * buf,unsigned int len)894 static unsigned int xdr_shrink_pagelen(struct xdr_buf *buf, unsigned int len)
895 {
896 unsigned int shift, buflen = buf->len - buf->head->iov_len;
897
898 WARN_ON_ONCE(len > buf->page_len);
899 if (buf->head->iov_len >= buf->len || len > buflen)
900 buflen = len;
901 if (buf->page_len > buflen) {
902 buf->buflen -= buf->page_len - buflen;
903 buf->page_len = buflen;
904 }
905 if (len >= buf->page_len)
906 return 0;
907 shift = buf->page_len - len;
908 xdr_buf_try_expand(buf, shift);
909 xdr_buf_pages_shift_right(buf, len, buflen - len, shift);
910 buf->page_len = len;
911 buf->len -= shift;
912 buf->buflen -= shift;
913 return shift;
914 }
915
916 /**
917 * xdr_stream_pos - Return the current offset from the start of the xdr_stream
918 * @xdr: pointer to struct xdr_stream
919 */
xdr_stream_pos(const struct xdr_stream * xdr)920 unsigned int xdr_stream_pos(const struct xdr_stream *xdr)
921 {
922 return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2;
923 }
924 EXPORT_SYMBOL_GPL(xdr_stream_pos);
925
xdr_stream_set_pos(struct xdr_stream * xdr,unsigned int pos)926 static void xdr_stream_set_pos(struct xdr_stream *xdr, unsigned int pos)
927 {
928 unsigned int blen = xdr->buf->len;
929
930 xdr->nwords = blen > pos ? XDR_QUADLEN(blen) - XDR_QUADLEN(pos) : 0;
931 }
932
xdr_stream_page_set_pos(struct xdr_stream * xdr,unsigned int pos)933 static void xdr_stream_page_set_pos(struct xdr_stream *xdr, unsigned int pos)
934 {
935 xdr_stream_set_pos(xdr, pos + xdr->buf->head[0].iov_len);
936 }
937
938 /**
939 * xdr_page_pos - Return the current offset from the start of the xdr pages
940 * @xdr: pointer to struct xdr_stream
941 */
xdr_page_pos(const struct xdr_stream * xdr)942 unsigned int xdr_page_pos(const struct xdr_stream *xdr)
943 {
944 unsigned int pos = xdr_stream_pos(xdr);
945
946 WARN_ON(pos < xdr->buf->head[0].iov_len);
947 return pos - xdr->buf->head[0].iov_len;
948 }
949 EXPORT_SYMBOL_GPL(xdr_page_pos);
950
951 /**
952 * xdr_init_encode - Initialize a struct xdr_stream for sending data.
953 * @xdr: pointer to xdr_stream struct
954 * @buf: pointer to XDR buffer in which to encode data
955 * @p: current pointer inside XDR buffer
956 * @rqst: pointer to controlling rpc_rqst, for debugging
957 *
958 * Note: at the moment the RPC client only passes the length of our
959 * scratch buffer in the xdr_buf's header kvec. Previously this
960 * meant we needed to call xdr_adjust_iovec() after encoding the
961 * data. With the new scheme, the xdr_stream manages the details
962 * of the buffer length, and takes care of adjusting the kvec
963 * length for us.
964 */
xdr_init_encode(struct xdr_stream * xdr,struct xdr_buf * buf,__be32 * p,struct rpc_rqst * rqst)965 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
966 struct rpc_rqst *rqst)
967 {
968 struct kvec *iov = buf->head;
969 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
970
971 xdr_reset_scratch_buffer(xdr);
972 BUG_ON(scratch_len < 0);
973 xdr->buf = buf;
974 xdr->iov = iov;
975 xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len);
976 xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len);
977 BUG_ON(iov->iov_len > scratch_len);
978
979 if (p != xdr->p && p != NULL) {
980 size_t len;
981
982 BUG_ON(p < xdr->p || p > xdr->end);
983 len = (char *)p - (char *)xdr->p;
984 xdr->p = p;
985 buf->len += len;
986 iov->iov_len += len;
987 }
988 xdr->rqst = rqst;
989 }
990 EXPORT_SYMBOL_GPL(xdr_init_encode);
991
992 /**
993 * xdr_init_encode_pages - Initialize an xdr_stream for encoding into pages
994 * @xdr: pointer to xdr_stream struct
995 * @buf: pointer to XDR buffer into which to encode data
996 *
997 */
xdr_init_encode_pages(struct xdr_stream * xdr,struct xdr_buf * buf)998 void xdr_init_encode_pages(struct xdr_stream *xdr, struct xdr_buf *buf)
999 {
1000 xdr_reset_scratch_buffer(xdr);
1001
1002 xdr->buf = buf;
1003 xdr->page_ptr = buf->pages;
1004 xdr->iov = NULL;
1005 xdr->p = page_address(*xdr->page_ptr);
1006 xdr->end = (void *)xdr->p + min_t(u32, buf->buflen, PAGE_SIZE);
1007 xdr->rqst = NULL;
1008 }
1009 EXPORT_SYMBOL_GPL(xdr_init_encode_pages);
1010
1011 /**
1012 * __xdr_commit_encode - Ensure all data is written to buffer
1013 * @xdr: pointer to xdr_stream
1014 *
1015 * We handle encoding across page boundaries by giving the caller a
1016 * temporary location to write to, then later copying the data into
1017 * place; xdr_commit_encode does that copying.
1018 *
1019 * Normally the caller doesn't need to call this directly, as the
1020 * following xdr_reserve_space will do it. But an explicit call may be
1021 * required at the end of encoding, or any other time when the xdr_buf
1022 * data might be read.
1023 */
__xdr_commit_encode(struct xdr_stream * xdr)1024 void __xdr_commit_encode(struct xdr_stream *xdr)
1025 {
1026 size_t shift = xdr->scratch.iov_len;
1027 void *page;
1028
1029 page = page_address(*xdr->page_ptr);
1030 memcpy(xdr->scratch.iov_base, page, shift);
1031 memmove(page, page + shift, (void *)xdr->p - page);
1032 xdr_reset_scratch_buffer(xdr);
1033 }
1034 EXPORT_SYMBOL_GPL(__xdr_commit_encode);
1035
1036 /*
1037 * The buffer space to be reserved crosses the boundary between
1038 * xdr->buf->head and xdr->buf->pages, or between two pages
1039 * in xdr->buf->pages.
1040 */
xdr_get_next_encode_buffer(struct xdr_stream * xdr,size_t nbytes)1041 static noinline __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr,
1042 size_t nbytes)
1043 {
1044 int space_left;
1045 int frag1bytes, frag2bytes;
1046 void *p;
1047
1048 if (nbytes > PAGE_SIZE)
1049 goto out_overflow; /* Bigger buffers require special handling */
1050 if (xdr->buf->len + nbytes > xdr->buf->buflen)
1051 goto out_overflow; /* Sorry, we're totally out of space */
1052 frag1bytes = (xdr->end - xdr->p) << 2;
1053 frag2bytes = nbytes - frag1bytes;
1054 if (xdr->iov)
1055 xdr->iov->iov_len += frag1bytes;
1056 else
1057 xdr->buf->page_len += frag1bytes;
1058 xdr->page_ptr++;
1059 xdr->iov = NULL;
1060
1061 /*
1062 * If the last encode didn't end exactly on a page boundary, the
1063 * next one will straddle boundaries. Encode into the next
1064 * page, then copy it back later in xdr_commit_encode. We use
1065 * the "scratch" iov to track any temporarily unused fragment of
1066 * space at the end of the previous buffer:
1067 */
1068 xdr_set_scratch_buffer(xdr, xdr->p, frag1bytes);
1069
1070 /*
1071 * xdr->p is where the next encode will start after
1072 * xdr_commit_encode() has shifted this one back:
1073 */
1074 p = page_address(*xdr->page_ptr);
1075 xdr->p = p + frag2bytes;
1076 space_left = xdr->buf->buflen - xdr->buf->len;
1077 if (space_left - frag1bytes >= PAGE_SIZE)
1078 xdr->end = p + PAGE_SIZE;
1079 else
1080 xdr->end = p + space_left - frag1bytes;
1081
1082 xdr->buf->page_len += frag2bytes;
1083 xdr->buf->len += nbytes;
1084 return p;
1085 out_overflow:
1086 trace_rpc_xdr_overflow(xdr, nbytes);
1087 return NULL;
1088 }
1089
1090 /**
1091 * xdr_reserve_space - Reserve buffer space for sending
1092 * @xdr: pointer to xdr_stream
1093 * @nbytes: number of bytes to reserve
1094 *
1095 * Checks that we have enough buffer space to encode 'nbytes' more
1096 * bytes of data. If so, update the total xdr_buf length, and
1097 * adjust the length of the current kvec.
1098 *
1099 * The returned pointer is valid only until the next call to
1100 * xdr_reserve_space() or xdr_commit_encode() on @xdr. The current
1101 * implementation of this API guarantees that space reserved for a
1102 * four-byte data item remains valid until @xdr is destroyed, but
1103 * that might not always be true in the future.
1104 */
xdr_reserve_space(struct xdr_stream * xdr,size_t nbytes)1105 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
1106 {
1107 __be32 *p = xdr->p;
1108 __be32 *q;
1109
1110 xdr_commit_encode(xdr);
1111 /* align nbytes on the next 32-bit boundary */
1112 nbytes += 3;
1113 nbytes &= ~3;
1114 q = p + (nbytes >> 2);
1115 if (unlikely(q > xdr->end || q < p))
1116 return xdr_get_next_encode_buffer(xdr, nbytes);
1117 xdr->p = q;
1118 if (xdr->iov)
1119 xdr->iov->iov_len += nbytes;
1120 else
1121 xdr->buf->page_len += nbytes;
1122 xdr->buf->len += nbytes;
1123 return p;
1124 }
1125 EXPORT_SYMBOL_GPL(xdr_reserve_space);
1126
1127 /**
1128 * xdr_reserve_space_vec - Reserves a large amount of buffer space for sending
1129 * @xdr: pointer to xdr_stream
1130 * @nbytes: number of bytes to reserve
1131 *
1132 * The size argument passed to xdr_reserve_space() is determined based
1133 * on the number of bytes remaining in the current page to avoid
1134 * invalidating iov_base pointers when xdr_commit_encode() is called.
1135 *
1136 * Return values:
1137 * %0: success
1138 * %-EMSGSIZE: not enough space is available in @xdr
1139 */
xdr_reserve_space_vec(struct xdr_stream * xdr,size_t nbytes)1140 int xdr_reserve_space_vec(struct xdr_stream *xdr, size_t nbytes)
1141 {
1142 size_t thislen;
1143 __be32 *p;
1144
1145 /*
1146 * svcrdma requires every READ payload to start somewhere
1147 * in xdr->pages.
1148 */
1149 if (xdr->iov == xdr->buf->head) {
1150 xdr->iov = NULL;
1151 xdr->end = xdr->p;
1152 }
1153
1154 /* XXX: Let's find a way to make this more efficient */
1155 while (nbytes) {
1156 thislen = xdr->buf->page_len % PAGE_SIZE;
1157 thislen = min_t(size_t, nbytes, PAGE_SIZE - thislen);
1158
1159 p = xdr_reserve_space(xdr, thislen);
1160 if (!p)
1161 return -EMSGSIZE;
1162
1163 nbytes -= thislen;
1164 }
1165
1166 return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(xdr_reserve_space_vec);
1169
1170 /**
1171 * xdr_truncate_encode - truncate an encode buffer
1172 * @xdr: pointer to xdr_stream
1173 * @len: new length of buffer
1174 *
1175 * Truncates the xdr stream, so that xdr->buf->len == len,
1176 * and xdr->p points at offset len from the start of the buffer, and
1177 * head, tail, and page lengths are adjusted to correspond.
1178 *
1179 * If this means moving xdr->p to a different buffer, we assume that
1180 * the end pointer should be set to the end of the current page,
1181 * except in the case of the head buffer when we assume the head
1182 * buffer's current length represents the end of the available buffer.
1183 *
1184 * This is *not* safe to use on a buffer that already has inlined page
1185 * cache pages (as in a zero-copy server read reply), except for the
1186 * simple case of truncating from one position in the tail to another.
1187 *
1188 */
xdr_truncate_encode(struct xdr_stream * xdr,size_t len)1189 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len)
1190 {
1191 struct xdr_buf *buf = xdr->buf;
1192 struct kvec *head = buf->head;
1193 struct kvec *tail = buf->tail;
1194 int fraglen;
1195 int new;
1196
1197 if (len > buf->len) {
1198 WARN_ON_ONCE(1);
1199 return;
1200 }
1201 xdr_commit_encode(xdr);
1202
1203 fraglen = min_t(int, buf->len - len, tail->iov_len);
1204 tail->iov_len -= fraglen;
1205 buf->len -= fraglen;
1206 if (tail->iov_len) {
1207 xdr->p = tail->iov_base + tail->iov_len;
1208 WARN_ON_ONCE(!xdr->end);
1209 WARN_ON_ONCE(!xdr->iov);
1210 return;
1211 }
1212 WARN_ON_ONCE(fraglen);
1213 fraglen = min_t(int, buf->len - len, buf->page_len);
1214 buf->page_len -= fraglen;
1215 buf->len -= fraglen;
1216
1217 new = buf->page_base + buf->page_len;
1218
1219 xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT);
1220
1221 if (buf->page_len) {
1222 xdr->p = page_address(*xdr->page_ptr);
1223 xdr->end = (void *)xdr->p + PAGE_SIZE;
1224 xdr->p = (void *)xdr->p + (new % PAGE_SIZE);
1225 WARN_ON_ONCE(xdr->iov);
1226 return;
1227 }
1228 if (fraglen)
1229 xdr->end = head->iov_base + head->iov_len;
1230 /* (otherwise assume xdr->end is already set) */
1231 xdr->page_ptr--;
1232 head->iov_len = len;
1233 buf->len = len;
1234 xdr->p = head->iov_base + head->iov_len;
1235 xdr->iov = buf->head;
1236 }
1237 EXPORT_SYMBOL(xdr_truncate_encode);
1238
1239 /**
1240 * xdr_truncate_decode - Truncate a decoding stream
1241 * @xdr: pointer to struct xdr_stream
1242 * @len: Number of bytes to remove
1243 *
1244 */
xdr_truncate_decode(struct xdr_stream * xdr,size_t len)1245 void xdr_truncate_decode(struct xdr_stream *xdr, size_t len)
1246 {
1247 unsigned int nbytes = xdr_align_size(len);
1248
1249 xdr->buf->len -= nbytes;
1250 xdr->nwords -= XDR_QUADLEN(nbytes);
1251 }
1252 EXPORT_SYMBOL_GPL(xdr_truncate_decode);
1253
1254 /**
1255 * xdr_restrict_buflen - decrease available buffer space
1256 * @xdr: pointer to xdr_stream
1257 * @newbuflen: new maximum number of bytes available
1258 *
1259 * Adjust our idea of how much space is available in the buffer.
1260 * If we've already used too much space in the buffer, returns -1.
1261 * If the available space is already smaller than newbuflen, returns 0
1262 * and does nothing. Otherwise, adjusts xdr->buf->buflen to newbuflen
1263 * and ensures xdr->end is set at most offset newbuflen from the start
1264 * of the buffer.
1265 */
xdr_restrict_buflen(struct xdr_stream * xdr,int newbuflen)1266 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen)
1267 {
1268 struct xdr_buf *buf = xdr->buf;
1269 int left_in_this_buf = (void *)xdr->end - (void *)xdr->p;
1270 int end_offset = buf->len + left_in_this_buf;
1271
1272 if (newbuflen < 0 || newbuflen < buf->len)
1273 return -1;
1274 if (newbuflen > buf->buflen)
1275 return 0;
1276 if (newbuflen < end_offset)
1277 xdr->end = (void *)xdr->end + newbuflen - end_offset;
1278 buf->buflen = newbuflen;
1279 return 0;
1280 }
1281 EXPORT_SYMBOL(xdr_restrict_buflen);
1282
1283 /**
1284 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
1285 * @xdr: pointer to xdr_stream
1286 * @pages: array of pages to insert
1287 * @base: starting offset of first data byte in @pages
1288 * @len: number of data bytes in @pages to insert
1289 *
1290 * After the @pages are added, the tail iovec is instantiated pointing to
1291 * end of the head buffer, and the stream is set up to encode subsequent
1292 * items into the tail.
1293 */
xdr_write_pages(struct xdr_stream * xdr,struct page ** pages,unsigned int base,unsigned int len)1294 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
1295 unsigned int len)
1296 {
1297 struct xdr_buf *buf = xdr->buf;
1298 struct kvec *tail = buf->tail;
1299
1300 buf->pages = pages;
1301 buf->page_base = base;
1302 buf->page_len = len;
1303
1304 tail->iov_base = xdr->p;
1305 tail->iov_len = 0;
1306 xdr->iov = tail;
1307
1308 if (len & 3) {
1309 unsigned int pad = 4 - (len & 3);
1310
1311 BUG_ON(xdr->p >= xdr->end);
1312 tail->iov_base = (char *)xdr->p + (len & 3);
1313 tail->iov_len += pad;
1314 len += pad;
1315 *xdr->p++ = 0;
1316 }
1317 buf->buflen += len;
1318 buf->len += len;
1319 }
1320 EXPORT_SYMBOL_GPL(xdr_write_pages);
1321
xdr_set_iov(struct xdr_stream * xdr,struct kvec * iov,unsigned int base,unsigned int len)1322 static unsigned int xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov,
1323 unsigned int base, unsigned int len)
1324 {
1325 if (len > iov->iov_len)
1326 len = iov->iov_len;
1327 if (unlikely(base > len))
1328 base = len;
1329 xdr->p = (__be32*)(iov->iov_base + base);
1330 xdr->end = (__be32*)(iov->iov_base + len);
1331 xdr->iov = iov;
1332 xdr->page_ptr = NULL;
1333 return len - base;
1334 }
1335
xdr_set_tail_base(struct xdr_stream * xdr,unsigned int base,unsigned int len)1336 static unsigned int xdr_set_tail_base(struct xdr_stream *xdr,
1337 unsigned int base, unsigned int len)
1338 {
1339 struct xdr_buf *buf = xdr->buf;
1340
1341 xdr_stream_set_pos(xdr, base + buf->page_len + buf->head->iov_len);
1342 return xdr_set_iov(xdr, buf->tail, base, len);
1343 }
1344
xdr_stream_unmap_current_page(struct xdr_stream * xdr)1345 static void xdr_stream_unmap_current_page(struct xdr_stream *xdr)
1346 {
1347 if (xdr->page_kaddr) {
1348 kunmap_local(xdr->page_kaddr);
1349 xdr->page_kaddr = NULL;
1350 }
1351 }
1352
xdr_set_page_base(struct xdr_stream * xdr,unsigned int base,unsigned int len)1353 static unsigned int xdr_set_page_base(struct xdr_stream *xdr,
1354 unsigned int base, unsigned int len)
1355 {
1356 unsigned int pgnr;
1357 unsigned int maxlen;
1358 unsigned int pgoff;
1359 unsigned int pgend;
1360 void *kaddr;
1361
1362 maxlen = xdr->buf->page_len;
1363 if (base >= maxlen)
1364 return 0;
1365 else
1366 maxlen -= base;
1367 if (len > maxlen)
1368 len = maxlen;
1369
1370 xdr_stream_unmap_current_page(xdr);
1371 xdr_stream_page_set_pos(xdr, base);
1372 base += xdr->buf->page_base;
1373
1374 pgnr = base >> PAGE_SHIFT;
1375 xdr->page_ptr = &xdr->buf->pages[pgnr];
1376
1377 if (PageHighMem(*xdr->page_ptr)) {
1378 xdr->page_kaddr = kmap_local_page(*xdr->page_ptr);
1379 kaddr = xdr->page_kaddr;
1380 } else
1381 kaddr = page_address(*xdr->page_ptr);
1382
1383 pgoff = base & ~PAGE_MASK;
1384 xdr->p = (__be32*)(kaddr + pgoff);
1385
1386 pgend = pgoff + len;
1387 if (pgend > PAGE_SIZE)
1388 pgend = PAGE_SIZE;
1389 xdr->end = (__be32*)(kaddr + pgend);
1390 xdr->iov = NULL;
1391 return len;
1392 }
1393
xdr_set_page(struct xdr_stream * xdr,unsigned int base,unsigned int len)1394 static void xdr_set_page(struct xdr_stream *xdr, unsigned int base,
1395 unsigned int len)
1396 {
1397 if (xdr_set_page_base(xdr, base, len) == 0) {
1398 base -= xdr->buf->page_len;
1399 xdr_set_tail_base(xdr, base, len);
1400 }
1401 }
1402
xdr_set_next_page(struct xdr_stream * xdr)1403 static void xdr_set_next_page(struct xdr_stream *xdr)
1404 {
1405 unsigned int newbase;
1406
1407 newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT;
1408 newbase -= xdr->buf->page_base;
1409 if (newbase < xdr->buf->page_len)
1410 xdr_set_page_base(xdr, newbase, xdr_stream_remaining(xdr));
1411 else
1412 xdr_set_tail_base(xdr, 0, xdr_stream_remaining(xdr));
1413 }
1414
xdr_set_next_buffer(struct xdr_stream * xdr)1415 static bool xdr_set_next_buffer(struct xdr_stream *xdr)
1416 {
1417 if (xdr->page_ptr != NULL)
1418 xdr_set_next_page(xdr);
1419 else if (xdr->iov == xdr->buf->head)
1420 xdr_set_page(xdr, 0, xdr_stream_remaining(xdr));
1421 return xdr->p != xdr->end;
1422 }
1423
1424 /**
1425 * xdr_init_decode - Initialize an xdr_stream for decoding data.
1426 * @xdr: pointer to xdr_stream struct
1427 * @buf: pointer to XDR buffer from which to decode data
1428 * @p: current pointer inside XDR buffer
1429 * @rqst: pointer to controlling rpc_rqst, for debugging
1430 */
xdr_init_decode(struct xdr_stream * xdr,struct xdr_buf * buf,__be32 * p,struct rpc_rqst * rqst)1431 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p,
1432 struct rpc_rqst *rqst)
1433 {
1434 xdr->buf = buf;
1435 xdr->page_kaddr = NULL;
1436 xdr_reset_scratch_buffer(xdr);
1437 xdr->nwords = XDR_QUADLEN(buf->len);
1438 if (xdr_set_iov(xdr, buf->head, 0, buf->len) == 0 &&
1439 xdr_set_page_base(xdr, 0, buf->len) == 0)
1440 xdr_set_iov(xdr, buf->tail, 0, buf->len);
1441 if (p != NULL && p > xdr->p && xdr->end >= p) {
1442 xdr->nwords -= p - xdr->p;
1443 xdr->p = p;
1444 }
1445 xdr->rqst = rqst;
1446 }
1447 EXPORT_SYMBOL_GPL(xdr_init_decode);
1448
1449 /**
1450 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages
1451 * @xdr: pointer to xdr_stream struct
1452 * @buf: pointer to XDR buffer from which to decode data
1453 * @pages: list of pages to decode into
1454 * @len: length in bytes of buffer in pages
1455 */
xdr_init_decode_pages(struct xdr_stream * xdr,struct xdr_buf * buf,struct page ** pages,unsigned int len)1456 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf,
1457 struct page **pages, unsigned int len)
1458 {
1459 memset(buf, 0, sizeof(*buf));
1460 buf->pages = pages;
1461 buf->page_len = len;
1462 buf->buflen = len;
1463 buf->len = len;
1464 xdr_init_decode(xdr, buf, NULL, NULL);
1465 }
1466 EXPORT_SYMBOL_GPL(xdr_init_decode_pages);
1467
1468 /**
1469 * xdr_finish_decode - Clean up the xdr_stream after decoding data.
1470 * @xdr: pointer to xdr_stream struct
1471 */
xdr_finish_decode(struct xdr_stream * xdr)1472 void xdr_finish_decode(struct xdr_stream *xdr)
1473 {
1474 xdr_stream_unmap_current_page(xdr);
1475 }
1476 EXPORT_SYMBOL(xdr_finish_decode);
1477
__xdr_inline_decode(struct xdr_stream * xdr,size_t nbytes)1478 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
1479 {
1480 unsigned int nwords = XDR_QUADLEN(nbytes);
1481 __be32 *p = xdr->p;
1482 __be32 *q = p + nwords;
1483
1484 if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p))
1485 return NULL;
1486 xdr->p = q;
1487 xdr->nwords -= nwords;
1488 return p;
1489 }
1490
xdr_copy_to_scratch(struct xdr_stream * xdr,size_t nbytes)1491 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes)
1492 {
1493 __be32 *p;
1494 char *cpdest = xdr->scratch.iov_base;
1495 size_t cplen = (char *)xdr->end - (char *)xdr->p;
1496
1497 if (nbytes > xdr->scratch.iov_len)
1498 goto out_overflow;
1499 p = __xdr_inline_decode(xdr, cplen);
1500 if (p == NULL)
1501 return NULL;
1502 memcpy(cpdest, p, cplen);
1503 if (!xdr_set_next_buffer(xdr))
1504 goto out_overflow;
1505 cpdest += cplen;
1506 nbytes -= cplen;
1507 p = __xdr_inline_decode(xdr, nbytes);
1508 if (p == NULL)
1509 return NULL;
1510 memcpy(cpdest, p, nbytes);
1511 return xdr->scratch.iov_base;
1512 out_overflow:
1513 trace_rpc_xdr_overflow(xdr, nbytes);
1514 return NULL;
1515 }
1516
1517 /**
1518 * xdr_inline_decode - Retrieve XDR data to decode
1519 * @xdr: pointer to xdr_stream struct
1520 * @nbytes: number of bytes of data to decode
1521 *
1522 * Check if the input buffer is long enough to enable us to decode
1523 * 'nbytes' more bytes of data starting at the current position.
1524 * If so return the current pointer, then update the current
1525 * pointer position.
1526 */
xdr_inline_decode(struct xdr_stream * xdr,size_t nbytes)1527 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
1528 {
1529 __be32 *p;
1530
1531 if (unlikely(nbytes == 0))
1532 return xdr->p;
1533 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
1534 goto out_overflow;
1535 p = __xdr_inline_decode(xdr, nbytes);
1536 if (p != NULL)
1537 return p;
1538 return xdr_copy_to_scratch(xdr, nbytes);
1539 out_overflow:
1540 trace_rpc_xdr_overflow(xdr, nbytes);
1541 return NULL;
1542 }
1543 EXPORT_SYMBOL_GPL(xdr_inline_decode);
1544
xdr_realign_pages(struct xdr_stream * xdr)1545 static void xdr_realign_pages(struct xdr_stream *xdr)
1546 {
1547 struct xdr_buf *buf = xdr->buf;
1548 struct kvec *iov = buf->head;
1549 unsigned int cur = xdr_stream_pos(xdr);
1550 unsigned int copied;
1551
1552 /* Realign pages to current pointer position */
1553 if (iov->iov_len > cur) {
1554 copied = xdr_shrink_bufhead(buf, cur);
1555 trace_rpc_xdr_alignment(xdr, cur, copied);
1556 xdr_set_page(xdr, 0, buf->page_len);
1557 }
1558 }
1559
xdr_align_pages(struct xdr_stream * xdr,unsigned int len)1560 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len)
1561 {
1562 struct xdr_buf *buf = xdr->buf;
1563 unsigned int nwords = XDR_QUADLEN(len);
1564 unsigned int copied;
1565
1566 if (xdr->nwords == 0)
1567 return 0;
1568
1569 xdr_realign_pages(xdr);
1570 if (nwords > xdr->nwords) {
1571 nwords = xdr->nwords;
1572 len = nwords << 2;
1573 }
1574 if (buf->page_len <= len)
1575 len = buf->page_len;
1576 else if (nwords < xdr->nwords) {
1577 /* Truncate page data and move it into the tail */
1578 copied = xdr_shrink_pagelen(buf, len);
1579 trace_rpc_xdr_alignment(xdr, len, copied);
1580 }
1581 return len;
1582 }
1583
1584 /**
1585 * xdr_read_pages - align page-based XDR data to current pointer position
1586 * @xdr: pointer to xdr_stream struct
1587 * @len: number of bytes of page data
1588 *
1589 * Moves data beyond the current pointer position from the XDR head[] buffer
1590 * into the page list. Any data that lies beyond current position + @len
1591 * bytes is moved into the XDR tail[]. The xdr_stream current position is
1592 * then advanced past that data to align to the next XDR object in the tail.
1593 *
1594 * Returns the number of XDR encoded bytes now contained in the pages
1595 */
xdr_read_pages(struct xdr_stream * xdr,unsigned int len)1596 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
1597 {
1598 unsigned int nwords = XDR_QUADLEN(len);
1599 unsigned int base, end, pglen;
1600
1601 pglen = xdr_align_pages(xdr, nwords << 2);
1602 if (pglen == 0)
1603 return 0;
1604
1605 base = (nwords << 2) - pglen;
1606 end = xdr_stream_remaining(xdr) - pglen;
1607
1608 xdr_set_tail_base(xdr, base, end);
1609 return len <= pglen ? len : pglen;
1610 }
1611 EXPORT_SYMBOL_GPL(xdr_read_pages);
1612
1613 /**
1614 * xdr_set_pagelen - Sets the length of the XDR pages
1615 * @xdr: pointer to xdr_stream struct
1616 * @len: new length of the XDR page data
1617 *
1618 * Either grows or shrinks the length of the xdr pages by setting pagelen to
1619 * @len bytes. When shrinking, any extra data is moved into buf->tail, whereas
1620 * when growing any data beyond the current pointer is moved into the tail.
1621 *
1622 * Returns True if the operation was successful, and False otherwise.
1623 */
xdr_set_pagelen(struct xdr_stream * xdr,unsigned int len)1624 void xdr_set_pagelen(struct xdr_stream *xdr, unsigned int len)
1625 {
1626 struct xdr_buf *buf = xdr->buf;
1627 size_t remaining = xdr_stream_remaining(xdr);
1628 size_t base = 0;
1629
1630 if (len < buf->page_len) {
1631 base = buf->page_len - len;
1632 xdr_shrink_pagelen(buf, len);
1633 } else {
1634 xdr_buf_head_shift_right(buf, xdr_stream_pos(xdr),
1635 buf->page_len, remaining);
1636 if (len > buf->page_len)
1637 xdr_buf_try_expand(buf, len - buf->page_len);
1638 }
1639 xdr_set_tail_base(xdr, base, remaining);
1640 }
1641 EXPORT_SYMBOL_GPL(xdr_set_pagelen);
1642
1643 /**
1644 * xdr_enter_page - decode data from the XDR page
1645 * @xdr: pointer to xdr_stream struct
1646 * @len: number of bytes of page data
1647 *
1648 * Moves data beyond the current pointer position from the XDR head[] buffer
1649 * into the page list. Any data that lies beyond current position + "len"
1650 * bytes is moved into the XDR tail[]. The current pointer is then
1651 * repositioned at the beginning of the first XDR page.
1652 */
xdr_enter_page(struct xdr_stream * xdr,unsigned int len)1653 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len)
1654 {
1655 len = xdr_align_pages(xdr, len);
1656 /*
1657 * Position current pointer at beginning of tail, and
1658 * set remaining message length.
1659 */
1660 if (len != 0)
1661 xdr_set_page_base(xdr, 0, len);
1662 }
1663 EXPORT_SYMBOL_GPL(xdr_enter_page);
1664
1665 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
1666
xdr_buf_from_iov(const struct kvec * iov,struct xdr_buf * buf)1667 void xdr_buf_from_iov(const struct kvec *iov, struct xdr_buf *buf)
1668 {
1669 buf->head[0] = *iov;
1670 buf->tail[0] = empty_iov;
1671 buf->page_len = 0;
1672 buf->buflen = buf->len = iov->iov_len;
1673 }
1674 EXPORT_SYMBOL_GPL(xdr_buf_from_iov);
1675
1676 /**
1677 * xdr_buf_subsegment - set subbuf to a portion of buf
1678 * @buf: an xdr buffer
1679 * @subbuf: the result buffer
1680 * @base: beginning of range in bytes
1681 * @len: length of range in bytes
1682 *
1683 * sets @subbuf to an xdr buffer representing the portion of @buf of
1684 * length @len starting at offset @base.
1685 *
1686 * @buf and @subbuf may be pointers to the same struct xdr_buf.
1687 *
1688 * Returns -1 if base or length are out of bounds.
1689 */
xdr_buf_subsegment(const struct xdr_buf * buf,struct xdr_buf * subbuf,unsigned int base,unsigned int len)1690 int xdr_buf_subsegment(const struct xdr_buf *buf, struct xdr_buf *subbuf,
1691 unsigned int base, unsigned int len)
1692 {
1693 subbuf->buflen = subbuf->len = len;
1694 if (base < buf->head[0].iov_len) {
1695 subbuf->head[0].iov_base = buf->head[0].iov_base + base;
1696 subbuf->head[0].iov_len = min_t(unsigned int, len,
1697 buf->head[0].iov_len - base);
1698 len -= subbuf->head[0].iov_len;
1699 base = 0;
1700 } else {
1701 base -= buf->head[0].iov_len;
1702 subbuf->head[0].iov_base = buf->head[0].iov_base;
1703 subbuf->head[0].iov_len = 0;
1704 }
1705
1706 if (base < buf->page_len) {
1707 subbuf->page_len = min(buf->page_len - base, len);
1708 base += buf->page_base;
1709 subbuf->page_base = base & ~PAGE_MASK;
1710 subbuf->pages = &buf->pages[base >> PAGE_SHIFT];
1711 len -= subbuf->page_len;
1712 base = 0;
1713 } else {
1714 base -= buf->page_len;
1715 subbuf->pages = buf->pages;
1716 subbuf->page_base = 0;
1717 subbuf->page_len = 0;
1718 }
1719
1720 if (base < buf->tail[0].iov_len) {
1721 subbuf->tail[0].iov_base = buf->tail[0].iov_base + base;
1722 subbuf->tail[0].iov_len = min_t(unsigned int, len,
1723 buf->tail[0].iov_len - base);
1724 len -= subbuf->tail[0].iov_len;
1725 base = 0;
1726 } else {
1727 base -= buf->tail[0].iov_len;
1728 subbuf->tail[0].iov_base = buf->tail[0].iov_base;
1729 subbuf->tail[0].iov_len = 0;
1730 }
1731
1732 if (base || len)
1733 return -1;
1734 return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(xdr_buf_subsegment);
1737
1738 /**
1739 * xdr_stream_subsegment - set @subbuf to a portion of @xdr
1740 * @xdr: an xdr_stream set up for decoding
1741 * @subbuf: the result buffer
1742 * @nbytes: length of @xdr to extract, in bytes
1743 *
1744 * Sets up @subbuf to represent a portion of @xdr. The portion
1745 * starts at the current offset in @xdr, and extends for a length
1746 * of @nbytes. If this is successful, @xdr is advanced to the next
1747 * XDR data item following that portion.
1748 *
1749 * Return values:
1750 * %true: @subbuf has been initialized, and @xdr has been advanced.
1751 * %false: a bounds error has occurred
1752 */
xdr_stream_subsegment(struct xdr_stream * xdr,struct xdr_buf * subbuf,unsigned int nbytes)1753 bool xdr_stream_subsegment(struct xdr_stream *xdr, struct xdr_buf *subbuf,
1754 unsigned int nbytes)
1755 {
1756 unsigned int start = xdr_stream_pos(xdr);
1757 unsigned int remaining, len;
1758
1759 /* Extract @subbuf and bounds-check the fn arguments */
1760 if (xdr_buf_subsegment(xdr->buf, subbuf, start, nbytes))
1761 return false;
1762
1763 /* Advance @xdr by @nbytes */
1764 for (remaining = nbytes; remaining;) {
1765 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr))
1766 return false;
1767
1768 len = (char *)xdr->end - (char *)xdr->p;
1769 if (remaining <= len) {
1770 xdr->p = (__be32 *)((char *)xdr->p +
1771 (remaining + xdr_pad_size(nbytes)));
1772 break;
1773 }
1774
1775 xdr->p = (__be32 *)((char *)xdr->p + len);
1776 xdr->end = xdr->p;
1777 remaining -= len;
1778 }
1779
1780 xdr_stream_set_pos(xdr, start + nbytes);
1781 return true;
1782 }
1783 EXPORT_SYMBOL_GPL(xdr_stream_subsegment);
1784
1785 /**
1786 * xdr_stream_move_subsegment - Move part of a stream to another position
1787 * @xdr: the source xdr_stream
1788 * @offset: the source offset of the segment
1789 * @target: the target offset of the segment
1790 * @length: the number of bytes to move
1791 *
1792 * Moves @length bytes from @offset to @target in the xdr_stream, overwriting
1793 * anything in its space. Returns the number of bytes in the segment.
1794 */
xdr_stream_move_subsegment(struct xdr_stream * xdr,unsigned int offset,unsigned int target,unsigned int length)1795 unsigned int xdr_stream_move_subsegment(struct xdr_stream *xdr, unsigned int offset,
1796 unsigned int target, unsigned int length)
1797 {
1798 struct xdr_buf buf;
1799 unsigned int shift;
1800
1801 if (offset < target) {
1802 shift = target - offset;
1803 if (xdr_buf_subsegment(xdr->buf, &buf, offset, shift + length) < 0)
1804 return 0;
1805 xdr_buf_head_shift_right(&buf, 0, length, shift);
1806 } else if (offset > target) {
1807 shift = offset - target;
1808 if (xdr_buf_subsegment(xdr->buf, &buf, target, shift + length) < 0)
1809 return 0;
1810 xdr_buf_head_shift_left(&buf, shift, length, shift);
1811 }
1812 return length;
1813 }
1814 EXPORT_SYMBOL_GPL(xdr_stream_move_subsegment);
1815
1816 /**
1817 * xdr_stream_zero - zero out a portion of an xdr_stream
1818 * @xdr: an xdr_stream to zero out
1819 * @offset: the starting point in the stream
1820 * @length: the number of bytes to zero
1821 */
xdr_stream_zero(struct xdr_stream * xdr,unsigned int offset,unsigned int length)1822 unsigned int xdr_stream_zero(struct xdr_stream *xdr, unsigned int offset,
1823 unsigned int length)
1824 {
1825 struct xdr_buf buf;
1826
1827 if (xdr_buf_subsegment(xdr->buf, &buf, offset, length) < 0)
1828 return 0;
1829 if (buf.head[0].iov_len)
1830 xdr_buf_iov_zero(buf.head, 0, buf.head[0].iov_len);
1831 if (buf.page_len > 0)
1832 xdr_buf_pages_zero(&buf, 0, buf.page_len);
1833 if (buf.tail[0].iov_len)
1834 xdr_buf_iov_zero(buf.tail, 0, buf.tail[0].iov_len);
1835 return length;
1836 }
1837 EXPORT_SYMBOL_GPL(xdr_stream_zero);
1838
1839 /**
1840 * xdr_buf_trim - lop at most "len" bytes off the end of "buf"
1841 * @buf: buf to be trimmed
1842 * @len: number of bytes to reduce "buf" by
1843 *
1844 * Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note
1845 * that it's possible that we'll trim less than that amount if the xdr_buf is
1846 * too small, or if (for instance) it's all in the head and the parser has
1847 * already read too far into it.
1848 */
xdr_buf_trim(struct xdr_buf * buf,unsigned int len)1849 void xdr_buf_trim(struct xdr_buf *buf, unsigned int len)
1850 {
1851 size_t cur;
1852 unsigned int trim = len;
1853
1854 if (buf->tail[0].iov_len) {
1855 cur = min_t(size_t, buf->tail[0].iov_len, trim);
1856 buf->tail[0].iov_len -= cur;
1857 trim -= cur;
1858 if (!trim)
1859 goto fix_len;
1860 }
1861
1862 if (buf->page_len) {
1863 cur = min_t(unsigned int, buf->page_len, trim);
1864 buf->page_len -= cur;
1865 trim -= cur;
1866 if (!trim)
1867 goto fix_len;
1868 }
1869
1870 if (buf->head[0].iov_len) {
1871 cur = min_t(size_t, buf->head[0].iov_len, trim);
1872 buf->head[0].iov_len -= cur;
1873 trim -= cur;
1874 }
1875 fix_len:
1876 buf->len -= (len - trim);
1877 }
1878 EXPORT_SYMBOL_GPL(xdr_buf_trim);
1879
__read_bytes_from_xdr_buf(const struct xdr_buf * subbuf,void * obj,unsigned int len)1880 static void __read_bytes_from_xdr_buf(const struct xdr_buf *subbuf,
1881 void *obj, unsigned int len)
1882 {
1883 unsigned int this_len;
1884
1885 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1886 memcpy(obj, subbuf->head[0].iov_base, this_len);
1887 len -= this_len;
1888 obj += this_len;
1889 this_len = min_t(unsigned int, len, subbuf->page_len);
1890 _copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len);
1891 len -= this_len;
1892 obj += this_len;
1893 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1894 memcpy(obj, subbuf->tail[0].iov_base, this_len);
1895 }
1896
1897 /* obj is assumed to point to allocated memory of size at least len: */
read_bytes_from_xdr_buf(const struct xdr_buf * buf,unsigned int base,void * obj,unsigned int len)1898 int read_bytes_from_xdr_buf(const struct xdr_buf *buf, unsigned int base,
1899 void *obj, unsigned int len)
1900 {
1901 struct xdr_buf subbuf;
1902 int status;
1903
1904 status = xdr_buf_subsegment(buf, &subbuf, base, len);
1905 if (status != 0)
1906 return status;
1907 __read_bytes_from_xdr_buf(&subbuf, obj, len);
1908 return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf);
1911
__write_bytes_to_xdr_buf(const struct xdr_buf * subbuf,void * obj,unsigned int len)1912 static void __write_bytes_to_xdr_buf(const struct xdr_buf *subbuf,
1913 void *obj, unsigned int len)
1914 {
1915 unsigned int this_len;
1916
1917 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len);
1918 memcpy(subbuf->head[0].iov_base, obj, this_len);
1919 len -= this_len;
1920 obj += this_len;
1921 this_len = min_t(unsigned int, len, subbuf->page_len);
1922 _copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len);
1923 len -= this_len;
1924 obj += this_len;
1925 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len);
1926 memcpy(subbuf->tail[0].iov_base, obj, this_len);
1927 }
1928
1929 /* obj is assumed to point to allocated memory of size at least len: */
write_bytes_to_xdr_buf(const struct xdr_buf * buf,unsigned int base,void * obj,unsigned int len)1930 int write_bytes_to_xdr_buf(const struct xdr_buf *buf, unsigned int base,
1931 void *obj, unsigned int len)
1932 {
1933 struct xdr_buf subbuf;
1934 int status;
1935
1936 status = xdr_buf_subsegment(buf, &subbuf, base, len);
1937 if (status != 0)
1938 return status;
1939 __write_bytes_to_xdr_buf(&subbuf, obj, len);
1940 return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf);
1943
xdr_decode_word(const struct xdr_buf * buf,unsigned int base,u32 * obj)1944 int xdr_decode_word(const struct xdr_buf *buf, unsigned int base, u32 *obj)
1945 {
1946 __be32 raw;
1947 int status;
1948
1949 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
1950 if (status)
1951 return status;
1952 *obj = be32_to_cpu(raw);
1953 return 0;
1954 }
1955 EXPORT_SYMBOL_GPL(xdr_decode_word);
1956
xdr_encode_word(const struct xdr_buf * buf,unsigned int base,u32 obj)1957 int xdr_encode_word(const struct xdr_buf *buf, unsigned int base, u32 obj)
1958 {
1959 __be32 raw = cpu_to_be32(obj);
1960
1961 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
1962 }
1963 EXPORT_SYMBOL_GPL(xdr_encode_word);
1964
1965 /* Returns 0 on success, or else a negative error code. */
xdr_xcode_array2(const struct xdr_buf * buf,unsigned int base,struct xdr_array2_desc * desc,int encode)1966 static int xdr_xcode_array2(const struct xdr_buf *buf, unsigned int base,
1967 struct xdr_array2_desc *desc, int encode)
1968 {
1969 char *elem = NULL, *c;
1970 unsigned int copied = 0, todo, avail_here;
1971 struct page **ppages = NULL;
1972 int err;
1973
1974 if (encode) {
1975 if (xdr_encode_word(buf, base, desc->array_len) != 0)
1976 return -EINVAL;
1977 } else {
1978 if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
1979 desc->array_len > desc->array_maxlen ||
1980 (unsigned long) base + 4 + desc->array_len *
1981 desc->elem_size > buf->len)
1982 return -EINVAL;
1983 }
1984 base += 4;
1985
1986 if (!desc->xcode)
1987 return 0;
1988
1989 todo = desc->array_len * desc->elem_size;
1990
1991 /* process head */
1992 if (todo && base < buf->head->iov_len) {
1993 c = buf->head->iov_base + base;
1994 avail_here = min_t(unsigned int, todo,
1995 buf->head->iov_len - base);
1996 todo -= avail_here;
1997
1998 while (avail_here >= desc->elem_size) {
1999 err = desc->xcode(desc, c);
2000 if (err)
2001 goto out;
2002 c += desc->elem_size;
2003 avail_here -= desc->elem_size;
2004 }
2005 if (avail_here) {
2006 if (!elem) {
2007 elem = kmalloc(desc->elem_size, GFP_KERNEL);
2008 err = -ENOMEM;
2009 if (!elem)
2010 goto out;
2011 }
2012 if (encode) {
2013 err = desc->xcode(desc, elem);
2014 if (err)
2015 goto out;
2016 memcpy(c, elem, avail_here);
2017 } else
2018 memcpy(elem, c, avail_here);
2019 copied = avail_here;
2020 }
2021 base = buf->head->iov_len; /* align to start of pages */
2022 }
2023
2024 /* process pages array */
2025 base -= buf->head->iov_len;
2026 if (todo && base < buf->page_len) {
2027 unsigned int avail_page;
2028
2029 avail_here = min(todo, buf->page_len - base);
2030 todo -= avail_here;
2031
2032 base += buf->page_base;
2033 ppages = buf->pages + (base >> PAGE_SHIFT);
2034 base &= ~PAGE_MASK;
2035 avail_page = min_t(unsigned int, PAGE_SIZE - base,
2036 avail_here);
2037 c = kmap(*ppages) + base;
2038
2039 while (avail_here) {
2040 avail_here -= avail_page;
2041 if (copied || avail_page < desc->elem_size) {
2042 unsigned int l = min(avail_page,
2043 desc->elem_size - copied);
2044 if (!elem) {
2045 elem = kmalloc(desc->elem_size,
2046 GFP_KERNEL);
2047 err = -ENOMEM;
2048 if (!elem)
2049 goto out;
2050 }
2051 if (encode) {
2052 if (!copied) {
2053 err = desc->xcode(desc, elem);
2054 if (err)
2055 goto out;
2056 }
2057 memcpy(c, elem + copied, l);
2058 copied += l;
2059 if (copied == desc->elem_size)
2060 copied = 0;
2061 } else {
2062 memcpy(elem + copied, c, l);
2063 copied += l;
2064 if (copied == desc->elem_size) {
2065 err = desc->xcode(desc, elem);
2066 if (err)
2067 goto out;
2068 copied = 0;
2069 }
2070 }
2071 avail_page -= l;
2072 c += l;
2073 }
2074 while (avail_page >= desc->elem_size) {
2075 err = desc->xcode(desc, c);
2076 if (err)
2077 goto out;
2078 c += desc->elem_size;
2079 avail_page -= desc->elem_size;
2080 }
2081 if (avail_page) {
2082 unsigned int l = min(avail_page,
2083 desc->elem_size - copied);
2084 if (!elem) {
2085 elem = kmalloc(desc->elem_size,
2086 GFP_KERNEL);
2087 err = -ENOMEM;
2088 if (!elem)
2089 goto out;
2090 }
2091 if (encode) {
2092 if (!copied) {
2093 err = desc->xcode(desc, elem);
2094 if (err)
2095 goto out;
2096 }
2097 memcpy(c, elem + copied, l);
2098 copied += l;
2099 if (copied == desc->elem_size)
2100 copied = 0;
2101 } else {
2102 memcpy(elem + copied, c, l);
2103 copied += l;
2104 if (copied == desc->elem_size) {
2105 err = desc->xcode(desc, elem);
2106 if (err)
2107 goto out;
2108 copied = 0;
2109 }
2110 }
2111 }
2112 if (avail_here) {
2113 kunmap(*ppages);
2114 ppages++;
2115 c = kmap(*ppages);
2116 }
2117
2118 avail_page = min(avail_here,
2119 (unsigned int) PAGE_SIZE);
2120 }
2121 base = buf->page_len; /* align to start of tail */
2122 }
2123
2124 /* process tail */
2125 base -= buf->page_len;
2126 if (todo) {
2127 c = buf->tail->iov_base + base;
2128 if (copied) {
2129 unsigned int l = desc->elem_size - copied;
2130
2131 if (encode)
2132 memcpy(c, elem + copied, l);
2133 else {
2134 memcpy(elem + copied, c, l);
2135 err = desc->xcode(desc, elem);
2136 if (err)
2137 goto out;
2138 }
2139 todo -= l;
2140 c += l;
2141 }
2142 while (todo) {
2143 err = desc->xcode(desc, c);
2144 if (err)
2145 goto out;
2146 c += desc->elem_size;
2147 todo -= desc->elem_size;
2148 }
2149 }
2150 err = 0;
2151
2152 out:
2153 kfree(elem);
2154 if (ppages)
2155 kunmap(*ppages);
2156 return err;
2157 }
2158
xdr_decode_array2(const struct xdr_buf * buf,unsigned int base,struct xdr_array2_desc * desc)2159 int xdr_decode_array2(const struct xdr_buf *buf, unsigned int base,
2160 struct xdr_array2_desc *desc)
2161 {
2162 if (base >= buf->len)
2163 return -EINVAL;
2164
2165 return xdr_xcode_array2(buf, base, desc, 0);
2166 }
2167 EXPORT_SYMBOL_GPL(xdr_decode_array2);
2168
xdr_encode_array2(const struct xdr_buf * buf,unsigned int base,struct xdr_array2_desc * desc)2169 int xdr_encode_array2(const struct xdr_buf *buf, unsigned int base,
2170 struct xdr_array2_desc *desc)
2171 {
2172 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
2173 buf->head->iov_len + buf->page_len + buf->tail->iov_len)
2174 return -EINVAL;
2175
2176 return xdr_xcode_array2(buf, base, desc, 1);
2177 }
2178 EXPORT_SYMBOL_GPL(xdr_encode_array2);
2179
xdr_process_buf(const struct xdr_buf * buf,unsigned int offset,unsigned int len,int (* actor)(struct scatterlist *,void *),void * data)2180 int xdr_process_buf(const struct xdr_buf *buf, unsigned int offset,
2181 unsigned int len,
2182 int (*actor)(struct scatterlist *, void *), void *data)
2183 {
2184 int i, ret = 0;
2185 unsigned int page_len, thislen, page_offset;
2186 struct scatterlist sg[1];
2187
2188 sg_init_table(sg, 1);
2189
2190 if (offset >= buf->head[0].iov_len) {
2191 offset -= buf->head[0].iov_len;
2192 } else {
2193 thislen = buf->head[0].iov_len - offset;
2194 if (thislen > len)
2195 thislen = len;
2196 sg_set_buf(sg, buf->head[0].iov_base + offset, thislen);
2197 ret = actor(sg, data);
2198 if (ret)
2199 goto out;
2200 offset = 0;
2201 len -= thislen;
2202 }
2203 if (len == 0)
2204 goto out;
2205
2206 if (offset >= buf->page_len) {
2207 offset -= buf->page_len;
2208 } else {
2209 page_len = buf->page_len - offset;
2210 if (page_len > len)
2211 page_len = len;
2212 len -= page_len;
2213 page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1);
2214 i = (offset + buf->page_base) >> PAGE_SHIFT;
2215 thislen = PAGE_SIZE - page_offset;
2216 do {
2217 if (thislen > page_len)
2218 thislen = page_len;
2219 sg_set_page(sg, buf->pages[i], thislen, page_offset);
2220 ret = actor(sg, data);
2221 if (ret)
2222 goto out;
2223 page_len -= thislen;
2224 i++;
2225 page_offset = 0;
2226 thislen = PAGE_SIZE;
2227 } while (page_len != 0);
2228 offset = 0;
2229 }
2230 if (len == 0)
2231 goto out;
2232 if (offset < buf->tail[0].iov_len) {
2233 thislen = buf->tail[0].iov_len - offset;
2234 if (thislen > len)
2235 thislen = len;
2236 sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen);
2237 ret = actor(sg, data);
2238 len -= thislen;
2239 }
2240 if (len != 0)
2241 ret = -EINVAL;
2242 out:
2243 return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(xdr_process_buf);
2246
2247 /**
2248 * xdr_stream_decode_opaque - Decode variable length opaque
2249 * @xdr: pointer to xdr_stream
2250 * @ptr: location to store opaque data
2251 * @size: size of storage buffer @ptr
2252 *
2253 * Return values:
2254 * On success, returns size of object stored in *@ptr
2255 * %-EBADMSG on XDR buffer overflow
2256 * %-EMSGSIZE on overflow of storage buffer @ptr
2257 */
xdr_stream_decode_opaque(struct xdr_stream * xdr,void * ptr,size_t size)2258 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size)
2259 {
2260 ssize_t ret;
2261 void *p;
2262
2263 ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
2264 if (ret <= 0)
2265 return ret;
2266 memcpy(ptr, p, ret);
2267 return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque);
2270
2271 /**
2272 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque
2273 * @xdr: pointer to xdr_stream
2274 * @ptr: location to store pointer to opaque data
2275 * @maxlen: maximum acceptable object size
2276 * @gfp_flags: GFP mask to use
2277 *
2278 * Return values:
2279 * On success, returns size of object stored in *@ptr
2280 * %-EBADMSG on XDR buffer overflow
2281 * %-EMSGSIZE if the size of the object would exceed @maxlen
2282 * %-ENOMEM on memory allocation failure
2283 */
xdr_stream_decode_opaque_dup(struct xdr_stream * xdr,void ** ptr,size_t maxlen,gfp_t gfp_flags)2284 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr,
2285 size_t maxlen, gfp_t gfp_flags)
2286 {
2287 ssize_t ret;
2288 void *p;
2289
2290 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
2291 if (ret > 0) {
2292 *ptr = kmemdup(p, ret, gfp_flags);
2293 if (*ptr != NULL)
2294 return ret;
2295 ret = -ENOMEM;
2296 }
2297 *ptr = NULL;
2298 return ret;
2299 }
2300 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup);
2301
2302 /**
2303 * xdr_stream_decode_string - Decode variable length string
2304 * @xdr: pointer to xdr_stream
2305 * @str: location to store string
2306 * @size: size of storage buffer @str
2307 *
2308 * Return values:
2309 * On success, returns length of NUL-terminated string stored in *@str
2310 * %-EBADMSG on XDR buffer overflow
2311 * %-EMSGSIZE on overflow of storage buffer @str
2312 */
xdr_stream_decode_string(struct xdr_stream * xdr,char * str,size_t size)2313 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size)
2314 {
2315 ssize_t ret;
2316 void *p;
2317
2318 ret = xdr_stream_decode_opaque_inline(xdr, &p, size);
2319 if (ret > 0) {
2320 memcpy(str, p, ret);
2321 str[ret] = '\0';
2322 return strlen(str);
2323 }
2324 *str = '\0';
2325 return ret;
2326 }
2327 EXPORT_SYMBOL_GPL(xdr_stream_decode_string);
2328
2329 /**
2330 * xdr_stream_decode_string_dup - Decode and duplicate variable length string
2331 * @xdr: pointer to xdr_stream
2332 * @str: location to store pointer to string
2333 * @maxlen: maximum acceptable string length
2334 * @gfp_flags: GFP mask to use
2335 *
2336 * Return values:
2337 * On success, returns length of NUL-terminated string stored in *@ptr
2338 * %-EBADMSG on XDR buffer overflow
2339 * %-EMSGSIZE if the size of the string would exceed @maxlen
2340 * %-ENOMEM on memory allocation failure
2341 */
xdr_stream_decode_string_dup(struct xdr_stream * xdr,char ** str,size_t maxlen,gfp_t gfp_flags)2342 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str,
2343 size_t maxlen, gfp_t gfp_flags)
2344 {
2345 void *p;
2346 ssize_t ret;
2347
2348 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen);
2349 if (ret > 0) {
2350 char *s = kmemdup_nul(p, ret, gfp_flags);
2351 if (s != NULL) {
2352 *str = s;
2353 return strlen(s);
2354 }
2355 ret = -ENOMEM;
2356 }
2357 *str = NULL;
2358 return ret;
2359 }
2360 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup);
2361
2362 /**
2363 * xdr_stream_decode_opaque_auth - Decode struct opaque_auth (RFC5531 S8.2)
2364 * @xdr: pointer to xdr_stream
2365 * @flavor: location to store decoded flavor
2366 * @body: location to store decode body
2367 * @body_len: location to store length of decoded body
2368 *
2369 * Return values:
2370 * On success, returns the number of buffer bytes consumed
2371 * %-EBADMSG on XDR buffer overflow
2372 * %-EMSGSIZE if the decoded size of the body field exceeds 400 octets
2373 */
xdr_stream_decode_opaque_auth(struct xdr_stream * xdr,u32 * flavor,void ** body,unsigned int * body_len)2374 ssize_t xdr_stream_decode_opaque_auth(struct xdr_stream *xdr, u32 *flavor,
2375 void **body, unsigned int *body_len)
2376 {
2377 ssize_t ret, len;
2378
2379 len = xdr_stream_decode_u32(xdr, flavor);
2380 if (unlikely(len < 0))
2381 return len;
2382 ret = xdr_stream_decode_opaque_inline(xdr, body, RPC_MAX_AUTH_SIZE);
2383 if (unlikely(ret < 0))
2384 return ret;
2385 *body_len = ret;
2386 return len + ret;
2387 }
2388 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_auth);
2389
2390 /**
2391 * xdr_stream_encode_opaque_auth - Encode struct opaque_auth (RFC5531 S8.2)
2392 * @xdr: pointer to xdr_stream
2393 * @flavor: verifier flavor to encode
2394 * @body: content of body to encode
2395 * @body_len: length of body to encode
2396 *
2397 * Return values:
2398 * On success, returns length in bytes of XDR buffer consumed
2399 * %-EBADMSG on XDR buffer overflow
2400 * %-EMSGSIZE if the size of @body exceeds 400 octets
2401 */
xdr_stream_encode_opaque_auth(struct xdr_stream * xdr,u32 flavor,void * body,unsigned int body_len)2402 ssize_t xdr_stream_encode_opaque_auth(struct xdr_stream *xdr, u32 flavor,
2403 void *body, unsigned int body_len)
2404 {
2405 ssize_t ret, len;
2406
2407 if (unlikely(body_len > RPC_MAX_AUTH_SIZE))
2408 return -EMSGSIZE;
2409 len = xdr_stream_encode_u32(xdr, flavor);
2410 if (unlikely(len < 0))
2411 return len;
2412 ret = xdr_stream_encode_opaque(xdr, body, body_len);
2413 if (unlikely(ret < 0))
2414 return ret;
2415 return len + ret;
2416 }
2417 EXPORT_SYMBOL_GPL(xdr_stream_encode_opaque_auth);
2418