xref: /linux/net/core/xdp.c (revision 74f1af95820fc2ee580a775a3a17c416db30b38c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* net/core/xdp.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 #include <linux/bpf.h>
7 #include <linux/btf.h>
8 #include <linux/btf_ids.h>
9 #include <linux/filter.h>
10 #include <linux/types.h>
11 #include <linux/mm.h>
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/idr.h>
15 #include <linux/rhashtable.h>
16 #include <linux/bug.h>
17 #include <net/page_pool/helpers.h>
18 
19 #include <net/hotdata.h>
20 #include <net/netdev_lock.h>
21 #include <net/xdp.h>
22 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */
23 #include <trace/events/xdp.h>
24 #include <net/xdp_sock_drv.h>
25 
26 #define REG_STATE_NEW		0x0
27 #define REG_STATE_REGISTERED	0x1
28 #define REG_STATE_UNREGISTERED	0x2
29 #define REG_STATE_UNUSED	0x3
30 
31 static DEFINE_IDA(mem_id_pool);
32 static DEFINE_MUTEX(mem_id_lock);
33 #define MEM_ID_MAX 0xFFFE
34 #define MEM_ID_MIN 1
35 static int mem_id_next = MEM_ID_MIN;
36 
37 static bool mem_id_init; /* false */
38 static struct rhashtable *mem_id_ht;
39 
40 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed)
41 {
42 	const u32 *k = data;
43 	const u32 key = *k;
44 
45 	BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id)
46 		     != sizeof(u32));
47 
48 	/* Use cyclic increasing ID as direct hash key */
49 	return key;
50 }
51 
52 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg,
53 			  const void *ptr)
54 {
55 	const struct xdp_mem_allocator *xa = ptr;
56 	u32 mem_id = *(u32 *)arg->key;
57 
58 	return xa->mem.id != mem_id;
59 }
60 
61 static const struct rhashtable_params mem_id_rht_params = {
62 	.nelem_hint = 64,
63 	.head_offset = offsetof(struct xdp_mem_allocator, node),
64 	.key_offset  = offsetof(struct xdp_mem_allocator, mem.id),
65 	.key_len = sizeof_field(struct xdp_mem_allocator, mem.id),
66 	.max_size = MEM_ID_MAX,
67 	.min_size = 8,
68 	.automatic_shrinking = true,
69 	.hashfn    = xdp_mem_id_hashfn,
70 	.obj_cmpfn = xdp_mem_id_cmp,
71 };
72 
73 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu)
74 {
75 	struct xdp_mem_allocator *xa;
76 
77 	xa = container_of(rcu, struct xdp_mem_allocator, rcu);
78 
79 	/* Allow this ID to be reused */
80 	ida_free(&mem_id_pool, xa->mem.id);
81 
82 	kfree(xa);
83 }
84 
85 static void mem_xa_remove(struct xdp_mem_allocator *xa)
86 {
87 	trace_mem_disconnect(xa);
88 
89 	if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params))
90 		call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free);
91 }
92 
93 static void mem_allocator_disconnect(void *allocator)
94 {
95 	struct xdp_mem_allocator *xa;
96 	struct rhashtable_iter iter;
97 
98 	mutex_lock(&mem_id_lock);
99 
100 	rhashtable_walk_enter(mem_id_ht, &iter);
101 	do {
102 		rhashtable_walk_start(&iter);
103 
104 		while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) {
105 			if (xa->allocator == allocator)
106 				mem_xa_remove(xa);
107 		}
108 
109 		rhashtable_walk_stop(&iter);
110 
111 	} while (xa == ERR_PTR(-EAGAIN));
112 	rhashtable_walk_exit(&iter);
113 
114 	mutex_unlock(&mem_id_lock);
115 }
116 
117 void xdp_unreg_mem_model(struct xdp_mem_info *mem)
118 {
119 	struct xdp_mem_allocator *xa;
120 	int type = mem->type;
121 	int id = mem->id;
122 
123 	/* Reset mem info to defaults */
124 	mem->id = 0;
125 	mem->type = 0;
126 
127 	if (id == 0)
128 		return;
129 
130 	if (type == MEM_TYPE_PAGE_POOL) {
131 		xa = rhashtable_lookup_fast(mem_id_ht, &id, mem_id_rht_params);
132 		page_pool_destroy(xa->page_pool);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model);
136 
137 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq)
138 {
139 	if (xdp_rxq->reg_state != REG_STATE_REGISTERED) {
140 		WARN(1, "Missing register, driver bug");
141 		return;
142 	}
143 
144 	xdp_unreg_mem_model(&xdp_rxq->mem);
145 }
146 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model);
147 
148 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq)
149 {
150 	/* Simplify driver cleanup code paths, allow unreg "unused" */
151 	if (xdp_rxq->reg_state == REG_STATE_UNUSED)
152 		return;
153 
154 	xdp_rxq_info_unreg_mem_model(xdp_rxq);
155 
156 	xdp_rxq->reg_state = REG_STATE_UNREGISTERED;
157 	xdp_rxq->dev = NULL;
158 }
159 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg);
160 
161 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq)
162 {
163 	memset(xdp_rxq, 0, sizeof(*xdp_rxq));
164 }
165 
166 /* Returns 0 on success, negative on failure */
167 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
168 		       struct net_device *dev, u32 queue_index,
169 		       unsigned int napi_id, u32 frag_size)
170 {
171 	if (!dev) {
172 		WARN(1, "Missing net_device from driver");
173 		return -ENODEV;
174 	}
175 
176 	if (xdp_rxq->reg_state == REG_STATE_UNUSED) {
177 		WARN(1, "Driver promised not to register this");
178 		return -EINVAL;
179 	}
180 
181 	if (xdp_rxq->reg_state == REG_STATE_REGISTERED) {
182 		WARN(1, "Missing unregister, handled but fix driver");
183 		xdp_rxq_info_unreg(xdp_rxq);
184 	}
185 
186 	/* State either UNREGISTERED or NEW */
187 	xdp_rxq_info_init(xdp_rxq);
188 	xdp_rxq->dev = dev;
189 	xdp_rxq->queue_index = queue_index;
190 	xdp_rxq->frag_size = frag_size;
191 
192 	xdp_rxq->reg_state = REG_STATE_REGISTERED;
193 	return 0;
194 }
195 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg);
196 
197 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq)
198 {
199 	xdp_rxq->reg_state = REG_STATE_UNUSED;
200 }
201 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused);
202 
203 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq)
204 {
205 	return (xdp_rxq->reg_state == REG_STATE_REGISTERED);
206 }
207 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg);
208 
209 static int __mem_id_init_hash_table(void)
210 {
211 	struct rhashtable *rht;
212 	int ret;
213 
214 	if (unlikely(mem_id_init))
215 		return 0;
216 
217 	rht = kzalloc(sizeof(*rht), GFP_KERNEL);
218 	if (!rht)
219 		return -ENOMEM;
220 
221 	ret = rhashtable_init(rht, &mem_id_rht_params);
222 	if (ret < 0) {
223 		kfree(rht);
224 		return ret;
225 	}
226 	mem_id_ht = rht;
227 	smp_mb(); /* mutex lock should provide enough pairing */
228 	mem_id_init = true;
229 
230 	return 0;
231 }
232 
233 /* Allocate a cyclic ID that maps to allocator pointer.
234  * See: https://www.kernel.org/doc/html/latest/core-api/idr.html
235  *
236  * Caller must lock mem_id_lock.
237  */
238 static int __mem_id_cyclic_get(gfp_t gfp)
239 {
240 	int retries = 1;
241 	int id;
242 
243 again:
244 	id = ida_alloc_range(&mem_id_pool, mem_id_next, MEM_ID_MAX - 1, gfp);
245 	if (id < 0) {
246 		if (id == -ENOSPC) {
247 			/* Cyclic allocator, reset next id */
248 			if (retries--) {
249 				mem_id_next = MEM_ID_MIN;
250 				goto again;
251 			}
252 		}
253 		return id; /* errno */
254 	}
255 	mem_id_next = id + 1;
256 
257 	return id;
258 }
259 
260 static bool __is_supported_mem_type(enum xdp_mem_type type)
261 {
262 	if (type == MEM_TYPE_PAGE_POOL)
263 		return is_page_pool_compiled_in();
264 
265 	if (type >= MEM_TYPE_MAX)
266 		return false;
267 
268 	return true;
269 }
270 
271 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem,
272 						     enum xdp_mem_type type,
273 						     void *allocator)
274 {
275 	struct xdp_mem_allocator *xdp_alloc;
276 	gfp_t gfp = GFP_KERNEL;
277 	int id, errno, ret;
278 	void *ptr;
279 
280 	if (!__is_supported_mem_type(type))
281 		return ERR_PTR(-EOPNOTSUPP);
282 
283 	mem->type = type;
284 
285 	if (!allocator) {
286 		if (type == MEM_TYPE_PAGE_POOL)
287 			return ERR_PTR(-EINVAL); /* Setup time check page_pool req */
288 		return NULL;
289 	}
290 
291 	/* Delay init of rhashtable to save memory if feature isn't used */
292 	if (!mem_id_init) {
293 		mutex_lock(&mem_id_lock);
294 		ret = __mem_id_init_hash_table();
295 		mutex_unlock(&mem_id_lock);
296 		if (ret < 0)
297 			return ERR_PTR(ret);
298 	}
299 
300 	xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp);
301 	if (!xdp_alloc)
302 		return ERR_PTR(-ENOMEM);
303 
304 	mutex_lock(&mem_id_lock);
305 	id = __mem_id_cyclic_get(gfp);
306 	if (id < 0) {
307 		errno = id;
308 		goto err;
309 	}
310 	mem->id = id;
311 	xdp_alloc->mem = *mem;
312 	xdp_alloc->allocator = allocator;
313 
314 	/* Insert allocator into ID lookup table */
315 	ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node);
316 	if (IS_ERR(ptr)) {
317 		ida_free(&mem_id_pool, mem->id);
318 		mem->id = 0;
319 		errno = PTR_ERR(ptr);
320 		goto err;
321 	}
322 
323 	if (type == MEM_TYPE_PAGE_POOL)
324 		page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem);
325 
326 	mutex_unlock(&mem_id_lock);
327 
328 	return xdp_alloc;
329 err:
330 	mutex_unlock(&mem_id_lock);
331 	kfree(xdp_alloc);
332 	return ERR_PTR(errno);
333 }
334 
335 int xdp_reg_mem_model(struct xdp_mem_info *mem,
336 		      enum xdp_mem_type type, void *allocator)
337 {
338 	struct xdp_mem_allocator *xdp_alloc;
339 
340 	xdp_alloc = __xdp_reg_mem_model(mem, type, allocator);
341 	if (IS_ERR(xdp_alloc))
342 		return PTR_ERR(xdp_alloc);
343 	return 0;
344 }
345 EXPORT_SYMBOL_GPL(xdp_reg_mem_model);
346 
347 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq,
348 			       enum xdp_mem_type type, void *allocator)
349 {
350 	struct xdp_mem_allocator *xdp_alloc;
351 
352 	if (xdp_rxq->reg_state != REG_STATE_REGISTERED) {
353 		WARN(1, "Missing register, driver bug");
354 		return -EFAULT;
355 	}
356 
357 	xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator);
358 	if (IS_ERR(xdp_alloc))
359 		return PTR_ERR(xdp_alloc);
360 
361 	if (type == MEM_TYPE_XSK_BUFF_POOL && allocator)
362 		xsk_pool_set_rxq_info(allocator, xdp_rxq);
363 
364 	if (trace_mem_connect_enabled() && xdp_alloc)
365 		trace_mem_connect(xdp_alloc, xdp_rxq);
366 	return 0;
367 }
368 
369 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model);
370 
371 /**
372  * xdp_reg_page_pool - register &page_pool as a memory provider for XDP
373  * @pool: &page_pool to register
374  *
375  * Can be used to register pools manually without connecting to any XDP RxQ
376  * info, so that the XDP layer will be aware of them. Then, they can be
377  * attached to an RxQ info manually via xdp_rxq_info_attach_page_pool().
378  *
379  * Return: %0 on success, -errno on error.
380  */
381 int xdp_reg_page_pool(struct page_pool *pool)
382 {
383 	struct xdp_mem_info mem;
384 
385 	return xdp_reg_mem_model(&mem, MEM_TYPE_PAGE_POOL, pool);
386 }
387 EXPORT_SYMBOL_GPL(xdp_reg_page_pool);
388 
389 /**
390  * xdp_unreg_page_pool - unregister &page_pool from the memory providers list
391  * @pool: &page_pool to unregister
392  *
393  * A shorthand for manual unregistering page pools. If the pool was previously
394  * attached to an RxQ info, it must be detached first.
395  */
396 void xdp_unreg_page_pool(const struct page_pool *pool)
397 {
398 	struct xdp_mem_info mem = {
399 		.type	= MEM_TYPE_PAGE_POOL,
400 		.id	= pool->xdp_mem_id,
401 	};
402 
403 	xdp_unreg_mem_model(&mem);
404 }
405 EXPORT_SYMBOL_GPL(xdp_unreg_page_pool);
406 
407 /**
408  * xdp_rxq_info_attach_page_pool - attach registered pool to RxQ info
409  * @xdp_rxq: XDP RxQ info to attach the pool to
410  * @pool: pool to attach
411  *
412  * If the pool was registered manually, this function must be called instead
413  * of xdp_rxq_info_reg_mem_model() to connect it to the RxQ info.
414  */
415 void xdp_rxq_info_attach_page_pool(struct xdp_rxq_info *xdp_rxq,
416 				   const struct page_pool *pool)
417 {
418 	struct xdp_mem_info mem = {
419 		.type	= MEM_TYPE_PAGE_POOL,
420 		.id	= pool->xdp_mem_id,
421 	};
422 
423 	xdp_rxq_info_attach_mem_model(xdp_rxq, &mem);
424 }
425 EXPORT_SYMBOL_GPL(xdp_rxq_info_attach_page_pool);
426 
427 /* XDP RX runs under NAPI protection, and in different delivery error
428  * scenarios (e.g. queue full), it is possible to return the xdp_frame
429  * while still leveraging this protection.  The @napi_direct boolean
430  * is used for those calls sites.  Thus, allowing for faster recycling
431  * of xdp_frames/pages in those cases.
432  */
433 void __xdp_return(netmem_ref netmem, enum xdp_mem_type mem_type,
434 		  bool napi_direct, struct xdp_buff *xdp)
435 {
436 	switch (mem_type) {
437 	case MEM_TYPE_PAGE_POOL:
438 		netmem = netmem_compound_head(netmem);
439 		if (napi_direct && xdp_return_frame_no_direct())
440 			napi_direct = false;
441 		/* No need to check netmem_is_pp() as mem->type knows this a
442 		 * page_pool page
443 		 */
444 		page_pool_put_full_netmem(netmem_get_pp(netmem), netmem,
445 					  napi_direct);
446 		break;
447 	case MEM_TYPE_PAGE_SHARED:
448 		page_frag_free(__netmem_address(netmem));
449 		break;
450 	case MEM_TYPE_PAGE_ORDER0:
451 		put_page(__netmem_to_page(netmem));
452 		break;
453 	case MEM_TYPE_XSK_BUFF_POOL:
454 		/* NB! Only valid from an xdp_buff! */
455 		xsk_buff_free(xdp);
456 		break;
457 	default:
458 		/* Not possible, checked in xdp_rxq_info_reg_mem_model() */
459 		WARN(1, "Incorrect XDP memory type (%d) usage", mem_type);
460 		break;
461 	}
462 }
463 
464 void xdp_return_frame(struct xdp_frame *xdpf)
465 {
466 	struct skb_shared_info *sinfo;
467 
468 	if (likely(!xdp_frame_has_frags(xdpf)))
469 		goto out;
470 
471 	sinfo = xdp_get_shared_info_from_frame(xdpf);
472 	for (u32 i = 0; i < sinfo->nr_frags; i++)
473 		__xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type,
474 			     false, NULL);
475 
476 out:
477 	__xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, false, NULL);
478 }
479 EXPORT_SYMBOL_GPL(xdp_return_frame);
480 
481 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf)
482 {
483 	struct skb_shared_info *sinfo;
484 
485 	if (likely(!xdp_frame_has_frags(xdpf)))
486 		goto out;
487 
488 	sinfo = xdp_get_shared_info_from_frame(xdpf);
489 	for (u32 i = 0; i < sinfo->nr_frags; i++)
490 		__xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type,
491 			     true, NULL);
492 
493 out:
494 	__xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, true, NULL);
495 }
496 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi);
497 
498 /* XDP bulk APIs introduce a defer/flush mechanism to return
499  * pages belonging to the same xdp_mem_allocator object
500  * (identified via the mem.id field) in bulk to optimize
501  * I-cache and D-cache.
502  * The bulk queue size is set to 16 to be aligned to how
503  * XDP_REDIRECT bulking works. The bulk is flushed when
504  * it is full or when mem.id changes.
505  * xdp_frame_bulk is usually stored/allocated on the function
506  * call-stack to avoid locking penalties.
507  */
508 
509 /* Must be called with rcu_read_lock held */
510 void xdp_return_frame_bulk(struct xdp_frame *xdpf,
511 			   struct xdp_frame_bulk *bq)
512 {
513 	if (xdpf->mem_type != MEM_TYPE_PAGE_POOL) {
514 		xdp_return_frame(xdpf);
515 		return;
516 	}
517 
518 	if (bq->count == XDP_BULK_QUEUE_SIZE)
519 		xdp_flush_frame_bulk(bq);
520 
521 	if (unlikely(xdp_frame_has_frags(xdpf))) {
522 		struct skb_shared_info *sinfo;
523 		int i;
524 
525 		sinfo = xdp_get_shared_info_from_frame(xdpf);
526 		for (i = 0; i < sinfo->nr_frags; i++) {
527 			skb_frag_t *frag = &sinfo->frags[i];
528 
529 			bq->q[bq->count++] = skb_frag_netmem(frag);
530 			if (bq->count == XDP_BULK_QUEUE_SIZE)
531 				xdp_flush_frame_bulk(bq);
532 		}
533 	}
534 	bq->q[bq->count++] = virt_to_netmem(xdpf->data);
535 }
536 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk);
537 
538 /**
539  * xdp_return_frag -- free one XDP frag or decrement its refcount
540  * @netmem: network memory reference to release
541  * @xdp: &xdp_buff to release the frag for
542  */
543 void xdp_return_frag(netmem_ref netmem, const struct xdp_buff *xdp)
544 {
545 	__xdp_return(netmem, xdp->rxq->mem.type, true, NULL);
546 }
547 EXPORT_SYMBOL_GPL(xdp_return_frag);
548 
549 void xdp_return_buff(struct xdp_buff *xdp)
550 {
551 	struct skb_shared_info *sinfo;
552 
553 	if (likely(!xdp_buff_has_frags(xdp)))
554 		goto out;
555 
556 	sinfo = xdp_get_shared_info_from_buff(xdp);
557 	for (u32 i = 0; i < sinfo->nr_frags; i++)
558 		__xdp_return(skb_frag_netmem(&sinfo->frags[i]),
559 			     xdp->rxq->mem.type, true, xdp);
560 
561 out:
562 	__xdp_return(virt_to_netmem(xdp->data), xdp->rxq->mem.type, true, xdp);
563 }
564 EXPORT_SYMBOL_GPL(xdp_return_buff);
565 
566 void xdp_attachment_setup(struct xdp_attachment_info *info,
567 			  struct netdev_bpf *bpf)
568 {
569 	if (info->prog)
570 		bpf_prog_put(info->prog);
571 	info->prog = bpf->prog;
572 	info->flags = bpf->flags;
573 }
574 EXPORT_SYMBOL_GPL(xdp_attachment_setup);
575 
576 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp)
577 {
578 	unsigned int metasize, totsize;
579 	void *addr, *data_to_copy;
580 	struct xdp_frame *xdpf;
581 	struct page *page;
582 
583 	/* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */
584 	metasize = xdp_data_meta_unsupported(xdp) ? 0 :
585 		   xdp->data - xdp->data_meta;
586 	totsize = xdp->data_end - xdp->data + metasize;
587 
588 	if (sizeof(*xdpf) + totsize > PAGE_SIZE)
589 		return NULL;
590 
591 	page = dev_alloc_page();
592 	if (!page)
593 		return NULL;
594 
595 	addr = page_to_virt(page);
596 	xdpf = addr;
597 	memset(xdpf, 0, sizeof(*xdpf));
598 
599 	addr += sizeof(*xdpf);
600 	data_to_copy = metasize ? xdp->data_meta : xdp->data;
601 	memcpy(addr, data_to_copy, totsize);
602 
603 	xdpf->data = addr + metasize;
604 	xdpf->len = totsize - metasize;
605 	xdpf->headroom = 0;
606 	xdpf->metasize = metasize;
607 	xdpf->frame_sz = PAGE_SIZE;
608 	xdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
609 
610 	xsk_buff_free(xdp);
611 	return xdpf;
612 }
613 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame);
614 
615 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */
616 void xdp_warn(const char *msg, const char *func, const int line)
617 {
618 	WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg);
619 };
620 EXPORT_SYMBOL_GPL(xdp_warn);
621 
622 /**
623  * xdp_build_skb_from_buff - create an skb from &xdp_buff
624  * @xdp: &xdp_buff to convert to an skb
625  *
626  * Perform common operations to create a new skb to pass up the stack from
627  * &xdp_buff: allocate an skb head from the NAPI percpu cache, initialize
628  * skb data pointers and offsets, set the recycle bit if the buff is
629  * PP-backed, Rx queue index, protocol and update frags info.
630  *
631  * Return: new &sk_buff on success, %NULL on error.
632  */
633 struct sk_buff *xdp_build_skb_from_buff(const struct xdp_buff *xdp)
634 {
635 	const struct xdp_rxq_info *rxq = xdp->rxq;
636 	const struct skb_shared_info *sinfo;
637 	struct sk_buff *skb;
638 	u32 nr_frags = 0;
639 	int metalen;
640 
641 	if (unlikely(xdp_buff_has_frags(xdp))) {
642 		sinfo = xdp_get_shared_info_from_buff(xdp);
643 		nr_frags = sinfo->nr_frags;
644 	}
645 
646 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
647 	if (unlikely(!skb))
648 		return NULL;
649 
650 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
651 	__skb_put(skb, xdp->data_end - xdp->data);
652 
653 	metalen = xdp->data - xdp->data_meta;
654 	if (metalen > 0)
655 		skb_metadata_set(skb, metalen);
656 
657 	if (rxq->mem.type == MEM_TYPE_PAGE_POOL)
658 		skb_mark_for_recycle(skb);
659 
660 	skb_record_rx_queue(skb, rxq->queue_index);
661 
662 	if (unlikely(nr_frags)) {
663 		u32 tsize;
664 
665 		tsize = sinfo->xdp_frags_truesize ? : nr_frags * xdp->frame_sz;
666 		xdp_update_skb_shared_info(skb, nr_frags,
667 					   sinfo->xdp_frags_size, tsize,
668 					   xdp_buff_is_frag_pfmemalloc(xdp));
669 	}
670 
671 	skb->protocol = eth_type_trans(skb, rxq->dev);
672 
673 	return skb;
674 }
675 EXPORT_SYMBOL_GPL(xdp_build_skb_from_buff);
676 
677 /**
678  * xdp_copy_frags_from_zc - copy frags from XSk buff to skb
679  * @skb: skb to copy frags to
680  * @xdp: XSk &xdp_buff from which the frags will be copied
681  * @pp: &page_pool backing page allocation, if available
682  *
683  * Copy all frags from XSk &xdp_buff to the skb to pass it up the stack.
684  * Allocate a new buffer for each frag, copy it and attach to the skb.
685  *
686  * Return: true on success, false on netmem allocation fail.
687  */
688 static noinline bool xdp_copy_frags_from_zc(struct sk_buff *skb,
689 					    const struct xdp_buff *xdp,
690 					    struct page_pool *pp)
691 {
692 	struct skb_shared_info *sinfo = skb_shinfo(skb);
693 	const struct skb_shared_info *xinfo;
694 	u32 nr_frags, tsize = 0;
695 	bool pfmemalloc = false;
696 
697 	xinfo = xdp_get_shared_info_from_buff(xdp);
698 	nr_frags = xinfo->nr_frags;
699 
700 	for (u32 i = 0; i < nr_frags; i++) {
701 		const skb_frag_t *frag = &xinfo->frags[i];
702 		u32 len = skb_frag_size(frag);
703 		u32 offset, truesize = len;
704 		struct page *page;
705 
706 		page = page_pool_dev_alloc(pp, &offset, &truesize);
707 		if (unlikely(!page)) {
708 			sinfo->nr_frags = i;
709 			return false;
710 		}
711 
712 		memcpy(page_address(page) + offset, skb_frag_address(frag),
713 		       LARGEST_ALIGN(len));
714 		__skb_fill_page_desc_noacc(sinfo, i, page, offset, len);
715 
716 		tsize += truesize;
717 		pfmemalloc |= page_is_pfmemalloc(page);
718 	}
719 
720 	xdp_update_skb_shared_info(skb, nr_frags, xinfo->xdp_frags_size,
721 				   tsize, pfmemalloc);
722 
723 	return true;
724 }
725 
726 /**
727  * xdp_build_skb_from_zc - create an skb from XSk &xdp_buff
728  * @xdp: source XSk buff
729  *
730  * Similar to xdp_build_skb_from_buff(), but for XSk frames. Allocate an skb
731  * head, new buffer for the head, copy the data and initialize the skb fields.
732  * If there are frags, allocate new buffers for them and copy.
733  * Buffers are allocated from the system percpu pools to try recycling them.
734  * If new skb was built successfully, @xdp is returned to XSk pool's freelist.
735  * On error, it remains untouched and the caller must take care of this.
736  *
737  * Return: new &sk_buff on success, %NULL on error.
738  */
739 struct sk_buff *xdp_build_skb_from_zc(struct xdp_buff *xdp)
740 {
741 	const struct xdp_rxq_info *rxq = xdp->rxq;
742 	u32 len = xdp->data_end - xdp->data_meta;
743 	u32 truesize = xdp->frame_sz;
744 	struct sk_buff *skb = NULL;
745 	struct page_pool *pp;
746 	int metalen;
747 	void *data;
748 
749 	if (!IS_ENABLED(CONFIG_PAGE_POOL))
750 		return NULL;
751 
752 	local_lock_nested_bh(&system_page_pool.bh_lock);
753 	pp = this_cpu_read(system_page_pool.pool);
754 	data = page_pool_dev_alloc_va(pp, &truesize);
755 	if (unlikely(!data))
756 		goto out;
757 
758 	skb = napi_build_skb(data, truesize);
759 	if (unlikely(!skb)) {
760 		page_pool_free_va(pp, data, true);
761 		goto out;
762 	}
763 
764 	skb_mark_for_recycle(skb);
765 	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
766 
767 	memcpy(__skb_put(skb, len), xdp->data_meta, LARGEST_ALIGN(len));
768 
769 	metalen = xdp->data - xdp->data_meta;
770 	if (metalen > 0) {
771 		skb_metadata_set(skb, metalen);
772 		__skb_pull(skb, metalen);
773 	}
774 
775 	skb_record_rx_queue(skb, rxq->queue_index);
776 
777 	if (unlikely(xdp_buff_has_frags(xdp)) &&
778 	    unlikely(!xdp_copy_frags_from_zc(skb, xdp, pp))) {
779 		napi_consume_skb(skb, true);
780 		skb = NULL;
781 		goto out;
782 	}
783 
784 	xsk_buff_free(xdp);
785 
786 	skb->protocol = eth_type_trans(skb, rxq->dev);
787 
788 out:
789 	local_unlock_nested_bh(&system_page_pool.bh_lock);
790 	return skb;
791 }
792 EXPORT_SYMBOL_GPL(xdp_build_skb_from_zc);
793 
794 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf,
795 					   struct sk_buff *skb,
796 					   struct net_device *dev)
797 {
798 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
799 	unsigned int headroom, frame_size;
800 	void *hard_start;
801 	u8 nr_frags;
802 
803 	/* xdp frags frame */
804 	if (unlikely(xdp_frame_has_frags(xdpf)))
805 		nr_frags = sinfo->nr_frags;
806 
807 	/* Part of headroom was reserved to xdpf */
808 	headroom = sizeof(*xdpf) + xdpf->headroom;
809 
810 	/* Memory size backing xdp_frame data already have reserved
811 	 * room for build_skb to place skb_shared_info in tailroom.
812 	 */
813 	frame_size = xdpf->frame_sz;
814 
815 	hard_start = xdpf->data - headroom;
816 	skb = build_skb_around(skb, hard_start, frame_size);
817 	if (unlikely(!skb))
818 		return NULL;
819 
820 	skb_reserve(skb, headroom);
821 	__skb_put(skb, xdpf->len);
822 	if (xdpf->metasize)
823 		skb_metadata_set(skb, xdpf->metasize);
824 
825 	if (unlikely(xdp_frame_has_frags(xdpf)))
826 		xdp_update_skb_shared_info(skb, nr_frags,
827 					   sinfo->xdp_frags_size,
828 					   nr_frags * xdpf->frame_sz,
829 					   xdp_frame_is_frag_pfmemalloc(xdpf));
830 
831 	/* Essential SKB info: protocol and skb->dev */
832 	skb->protocol = eth_type_trans(skb, dev);
833 
834 	/* Optional SKB info, currently missing:
835 	 * - HW checksum info		(skb->ip_summed)
836 	 * - HW RX hash			(skb_set_hash)
837 	 * - RX ring dev queue index	(skb_record_rx_queue)
838 	 */
839 
840 	if (xdpf->mem_type == MEM_TYPE_PAGE_POOL)
841 		skb_mark_for_recycle(skb);
842 
843 	/* Allow SKB to reuse area used by xdp_frame */
844 	xdp_scrub_frame(xdpf);
845 
846 	return skb;
847 }
848 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame);
849 
850 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf,
851 					 struct net_device *dev)
852 {
853 	struct sk_buff *skb;
854 
855 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
856 	if (unlikely(!skb))
857 		return NULL;
858 
859 	memset(skb, 0, offsetof(struct sk_buff, tail));
860 
861 	return __xdp_build_skb_from_frame(xdpf, skb, dev);
862 }
863 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame);
864 
865 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf)
866 {
867 	unsigned int headroom, totalsize;
868 	struct xdp_frame *nxdpf;
869 	struct page *page;
870 	void *addr;
871 
872 	headroom = xdpf->headroom + sizeof(*xdpf);
873 	totalsize = headroom + xdpf->len;
874 
875 	if (unlikely(totalsize > PAGE_SIZE))
876 		return NULL;
877 	page = dev_alloc_page();
878 	if (!page)
879 		return NULL;
880 	addr = page_to_virt(page);
881 
882 	memcpy(addr, xdpf, totalsize);
883 
884 	nxdpf = addr;
885 	nxdpf->data = addr + headroom;
886 	nxdpf->frame_sz = PAGE_SIZE;
887 	nxdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
888 
889 	return nxdpf;
890 }
891 
892 __bpf_kfunc_start_defs();
893 
894 /**
895  * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp.
896  * @ctx: XDP context pointer.
897  * @timestamp: Return value pointer.
898  *
899  * Return:
900  * * Returns 0 on success or ``-errno`` on error.
901  * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc
902  * * ``-ENODATA``    : means no RX-timestamp available for this frame
903  */
904 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp)
905 {
906 	return -EOPNOTSUPP;
907 }
908 
909 /**
910  * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash.
911  * @ctx: XDP context pointer.
912  * @hash: Return value pointer.
913  * @rss_type: Return value pointer for RSS type.
914  *
915  * The RSS hash type (@rss_type) specifies what portion of packet headers NIC
916  * hardware used when calculating RSS hash value.  The RSS type can be decoded
917  * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits
918  * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types*
919  * ``XDP_RSS_TYPE_L*``.
920  *
921  * Return:
922  * * Returns 0 on success or ``-errno`` on error.
923  * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc
924  * * ``-ENODATA``    : means no RX-hash available for this frame
925  */
926 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash,
927 					 enum xdp_rss_hash_type *rss_type)
928 {
929 	return -EOPNOTSUPP;
930 }
931 
932 /**
933  * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag
934  * @ctx: XDP context pointer.
935  * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID).
936  * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP)
937  *
938  * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*,
939  * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use
940  * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)**
941  * and should be used as follows:
942  * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();``
943  *
944  * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag.
945  * Driver is expected to provide those in **host byte order (usually LE)**,
946  * so the bpf program should not perform byte conversion.
947  * According to 802.1Q standard, *VLAN TCI (Tag control information)*
948  * is a bit field that contains:
949  * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``,
950  * *Drop eligible indicator (DEI)* - 1 bit,
951  * *Priority code point (PCP)* - 3 bits.
952  * For detailed meaning of DEI and PCP, please refer to other sources.
953  *
954  * Return:
955  * * Returns 0 on success or ``-errno`` on error.
956  * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc
957  * * ``-ENODATA``    : VLAN tag was not stripped or is not available
958  */
959 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx,
960 					     __be16 *vlan_proto, u16 *vlan_tci)
961 {
962 	return -EOPNOTSUPP;
963 }
964 
965 __bpf_kfunc_end_defs();
966 
967 BTF_KFUNCS_START(xdp_metadata_kfunc_ids)
968 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS)
969 XDP_METADATA_KFUNC_xxx
970 #undef XDP_METADATA_KFUNC
971 BTF_KFUNCS_END(xdp_metadata_kfunc_ids)
972 
973 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = {
974 	.owner = THIS_MODULE,
975 	.set   = &xdp_metadata_kfunc_ids,
976 };
977 
978 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted)
979 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str)
980 XDP_METADATA_KFUNC_xxx
981 #undef XDP_METADATA_KFUNC
982 
983 u32 bpf_xdp_metadata_kfunc_id(int id)
984 {
985 	/* xdp_metadata_kfunc_ids is sorted and can't be used */
986 	return xdp_metadata_kfunc_ids_unsorted[id];
987 }
988 
989 bool bpf_dev_bound_kfunc_id(u32 btf_id)
990 {
991 	return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id);
992 }
993 
994 static int __init xdp_metadata_init(void)
995 {
996 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set);
997 }
998 late_initcall(xdp_metadata_init);
999 
1000 void xdp_set_features_flag_locked(struct net_device *dev, xdp_features_t val)
1001 {
1002 	val &= NETDEV_XDP_ACT_MASK;
1003 	if (dev->xdp_features == val)
1004 		return;
1005 
1006 	netdev_assert_locked_or_invisible(dev);
1007 	dev->xdp_features = val;
1008 
1009 	if (dev->reg_state == NETREG_REGISTERED)
1010 		call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev);
1011 }
1012 EXPORT_SYMBOL_GPL(xdp_set_features_flag_locked);
1013 
1014 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val)
1015 {
1016 	netdev_lock(dev);
1017 	xdp_set_features_flag_locked(dev, val);
1018 	netdev_unlock(dev);
1019 }
1020 EXPORT_SYMBOL_GPL(xdp_set_features_flag);
1021 
1022 void xdp_features_set_redirect_target_locked(struct net_device *dev,
1023 					     bool support_sg)
1024 {
1025 	xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT);
1026 
1027 	if (support_sg)
1028 		val |= NETDEV_XDP_ACT_NDO_XMIT_SG;
1029 	xdp_set_features_flag_locked(dev, val);
1030 }
1031 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target_locked);
1032 
1033 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg)
1034 {
1035 	netdev_lock(dev);
1036 	xdp_features_set_redirect_target_locked(dev, support_sg);
1037 	netdev_unlock(dev);
1038 }
1039 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target);
1040 
1041 void xdp_features_clear_redirect_target_locked(struct net_device *dev)
1042 {
1043 	xdp_features_t val = dev->xdp_features;
1044 
1045 	val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG);
1046 	xdp_set_features_flag_locked(dev, val);
1047 }
1048 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target_locked);
1049 
1050 void xdp_features_clear_redirect_target(struct net_device *dev)
1051 {
1052 	netdev_lock(dev);
1053 	xdp_features_clear_redirect_target_locked(dev);
1054 	netdev_unlock(dev);
1055 }
1056 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target);
1057