xref: /linux/fs/xfs/scrub/common.c (revision ca27313fb3f23e4ac18532ede4ec1c7cc5814c4a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs_platform.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode.h"
16 #include "xfs_icache.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_rmap.h"
23 #include "xfs_rmap_btree.h"
24 #include "xfs_log.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_dir2_priv.h"
29 #include "xfs_dir2.h"
30 #include "xfs_attr.h"
31 #include "xfs_reflink.h"
32 #include "xfs_ag.h"
33 #include "xfs_error.h"
34 #include "xfs_quota.h"
35 #include "xfs_exchmaps.h"
36 #include "xfs_rtbitmap.h"
37 #include "xfs_rtgroup.h"
38 #include "xfs_rtrmap_btree.h"
39 #include "xfs_bmap_util.h"
40 #include "xfs_rtrefcount_btree.h"
41 #include "scrub/scrub.h"
42 #include "scrub/common.h"
43 #include "scrub/trace.h"
44 #include "scrub/repair.h"
45 #include "scrub/health.h"
46 #include "scrub/tempfile.h"
47 
48 /* Common code for the metadata scrubbers. */
49 
50 /*
51  * Handling operational errors.
52  *
53  * The *_process_error() family of functions are used to process error return
54  * codes from functions called as part of a scrub operation.
55  *
56  * If there's no error, we return true to tell the caller that it's ok
57  * to move on to the next check in its list.
58  *
59  * For non-verifier errors (e.g. ENOMEM) we return false to tell the
60  * caller that something bad happened, and we preserve *error so that
61  * the caller can return the *error up the stack to userspace.
62  *
63  * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
64  * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
65  * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
66  * not via return codes.  We return false to tell the caller that
67  * something bad happened.  Since the error has been cleared, the caller
68  * will (presumably) return that zero and scrubbing will move on to
69  * whatever's next.
70  *
71  * ftrace can be used to record the precise metadata location and the
72  * approximate code location of the failed operation.
73  */
74 
75 /* Check for operational errors. */
76 static bool
77 __xchk_process_error(
78 	struct xfs_scrub	*sc,
79 	xfs_agnumber_t		agno,
80 	xfs_agblock_t		bno,
81 	int			*error,
82 	__u32			errflag,
83 	void			*ret_ip)
84 {
85 	switch (*error) {
86 	case 0:
87 		return true;
88 	case -EDEADLOCK:
89 	case -ECHRNG:
90 		/* Used to restart an op with deadlock avoidance. */
91 		trace_xchk_deadlock_retry(
92 				sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
93 				sc->sm, *error);
94 		break;
95 	case -ECANCELED:
96 		/*
97 		 * ECANCELED here means that the caller set one of the scrub
98 		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
99 		 * quickly.  Set error to zero and do not continue.
100 		 */
101 		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
102 		*error = 0;
103 		break;
104 	case -EFSBADCRC:
105 	case -EFSCORRUPTED:
106 	case -EIO:
107 	case -ENODATA:
108 		/* Note the badness but don't abort. */
109 		sc->sm->sm_flags |= errflag;
110 		*error = 0;
111 		fallthrough;
112 	default:
113 		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
114 		break;
115 	}
116 	return false;
117 }
118 
119 bool
120 xchk_process_error(
121 	struct xfs_scrub	*sc,
122 	xfs_agnumber_t		agno,
123 	xfs_agblock_t		bno,
124 	int			*error)
125 {
126 	return __xchk_process_error(sc, agno, bno, error,
127 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
128 }
129 
130 bool
131 xchk_process_rt_error(
132 	struct xfs_scrub	*sc,
133 	xfs_rgnumber_t		rgno,
134 	xfs_rgblock_t		rgbno,
135 	int			*error)
136 {
137 	return __xchk_process_error(sc, rgno, rgbno, error,
138 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
139 }
140 
141 bool
142 xchk_xref_process_error(
143 	struct xfs_scrub	*sc,
144 	xfs_agnumber_t		agno,
145 	xfs_agblock_t		bno,
146 	int			*error)
147 {
148 	return __xchk_process_error(sc, agno, bno, error,
149 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
150 }
151 
152 /* Check for operational errors for a file offset. */
153 static bool
154 __xchk_fblock_process_error(
155 	struct xfs_scrub	*sc,
156 	int			whichfork,
157 	xfs_fileoff_t		offset,
158 	int			*error,
159 	__u32			errflag,
160 	void			*ret_ip)
161 {
162 	switch (*error) {
163 	case 0:
164 		return true;
165 	case -EDEADLOCK:
166 	case -ECHRNG:
167 		/* Used to restart an op with deadlock avoidance. */
168 		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
169 		break;
170 	case -ECANCELED:
171 		/*
172 		 * ECANCELED here means that the caller set one of the scrub
173 		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
174 		 * quickly.  Set error to zero and do not continue.
175 		 */
176 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
177 				ret_ip);
178 		*error = 0;
179 		break;
180 	case -EFSBADCRC:
181 	case -EFSCORRUPTED:
182 	case -EIO:
183 	case -ENODATA:
184 		/* Note the badness but don't abort. */
185 		sc->sm->sm_flags |= errflag;
186 		*error = 0;
187 		fallthrough;
188 	default:
189 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
190 				ret_ip);
191 		break;
192 	}
193 	return false;
194 }
195 
196 bool
197 xchk_fblock_process_error(
198 	struct xfs_scrub	*sc,
199 	int			whichfork,
200 	xfs_fileoff_t		offset,
201 	int			*error)
202 {
203 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
204 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
205 }
206 
207 bool
208 xchk_fblock_xref_process_error(
209 	struct xfs_scrub	*sc,
210 	int			whichfork,
211 	xfs_fileoff_t		offset,
212 	int			*error)
213 {
214 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
215 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
216 }
217 
218 /*
219  * Handling scrub corruption/optimization/warning checks.
220  *
221  * The *_set_{corrupt,preen,warning}() family of functions are used to
222  * record the presence of metadata that is incorrect (corrupt), could be
223  * optimized somehow (preen), or should be flagged for administrative
224  * review but is not incorrect (warn).
225  *
226  * ftrace can be used to record the precise metadata location and
227  * approximate code location of the failed check.
228  */
229 
230 /* Record a block which could be optimized. */
231 void
232 xchk_block_set_preen(
233 	struct xfs_scrub	*sc,
234 	struct xfs_buf		*bp)
235 {
236 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
237 	trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
238 }
239 
240 /*
241  * Record an inode which could be optimized.  The trace data will
242  * include the block given by bp if bp is given; otherwise it will use
243  * the block location of the inode record itself.
244  */
245 void
246 xchk_ino_set_preen(
247 	struct xfs_scrub	*sc,
248 	xfs_ino_t		ino)
249 {
250 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
251 	trace_xchk_ino_preen(sc, ino, __return_address);
252 }
253 
254 /* Record something being wrong with the filesystem primary superblock. */
255 void
256 xchk_set_corrupt(
257 	struct xfs_scrub	*sc)
258 {
259 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
260 	trace_xchk_fs_error(sc, 0, __return_address);
261 }
262 
263 /* Record a corrupt block. */
264 void
265 xchk_block_set_corrupt(
266 	struct xfs_scrub	*sc,
267 	struct xfs_buf		*bp)
268 {
269 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
270 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
271 }
272 
273 #ifdef CONFIG_XFS_QUOTA
274 /* Record a corrupt quota counter. */
275 void
276 xchk_qcheck_set_corrupt(
277 	struct xfs_scrub	*sc,
278 	unsigned int		dqtype,
279 	xfs_dqid_t		id)
280 {
281 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
282 	trace_xchk_qcheck_error(sc, dqtype, id, __return_address);
283 }
284 #endif
285 
286 /* Record a corruption while cross-referencing. */
287 void
288 xchk_block_xref_set_corrupt(
289 	struct xfs_scrub	*sc,
290 	struct xfs_buf		*bp)
291 {
292 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
293 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
294 }
295 
296 /*
297  * Record a corrupt inode.  The trace data will include the block given
298  * by bp if bp is given; otherwise it will use the block location of the
299  * inode record itself.
300  */
301 void
302 xchk_ino_set_corrupt(
303 	struct xfs_scrub	*sc,
304 	xfs_ino_t		ino)
305 {
306 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
307 	trace_xchk_ino_error(sc, ino, __return_address);
308 }
309 
310 /* Record a corruption while cross-referencing with an inode. */
311 void
312 xchk_ino_xref_set_corrupt(
313 	struct xfs_scrub	*sc,
314 	xfs_ino_t		ino)
315 {
316 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
317 	trace_xchk_ino_error(sc, ino, __return_address);
318 }
319 
320 /* Record corruption in a block indexed by a file fork. */
321 void
322 xchk_fblock_set_corrupt(
323 	struct xfs_scrub	*sc,
324 	int			whichfork,
325 	xfs_fileoff_t		offset)
326 {
327 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
328 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
329 }
330 
331 /* Record a corruption while cross-referencing a fork block. */
332 void
333 xchk_fblock_xref_set_corrupt(
334 	struct xfs_scrub	*sc,
335 	int			whichfork,
336 	xfs_fileoff_t		offset)
337 {
338 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
339 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
340 }
341 
342 /*
343  * Warn about inodes that need administrative review but is not
344  * incorrect.
345  */
346 void
347 xchk_ino_set_warning(
348 	struct xfs_scrub	*sc,
349 	xfs_ino_t		ino)
350 {
351 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
352 	trace_xchk_ino_warning(sc, ino, __return_address);
353 }
354 
355 /* Warn about a block indexed by a file fork that needs review. */
356 void
357 xchk_fblock_set_warning(
358 	struct xfs_scrub	*sc,
359 	int			whichfork,
360 	xfs_fileoff_t		offset)
361 {
362 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
363 	trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
364 }
365 
366 /* Signal an incomplete scrub. */
367 void
368 xchk_set_incomplete(
369 	struct xfs_scrub	*sc)
370 {
371 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
372 	trace_xchk_incomplete(sc, __return_address);
373 }
374 
375 /*
376  * rmap scrubbing -- compute the number of blocks with a given owner,
377  * at least according to the reverse mapping data.
378  */
379 
380 struct xchk_rmap_ownedby_info {
381 	const struct xfs_owner_info	*oinfo;
382 	xfs_filblks_t			*blocks;
383 };
384 
385 STATIC int
386 xchk_count_rmap_ownedby_irec(
387 	struct xfs_btree_cur		*cur,
388 	const struct xfs_rmap_irec	*rec,
389 	void				*priv)
390 {
391 	struct xchk_rmap_ownedby_info	*sroi = priv;
392 	bool				irec_attr;
393 	bool				oinfo_attr;
394 
395 	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
396 	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
397 
398 	if (rec->rm_owner != sroi->oinfo->oi_owner)
399 		return 0;
400 
401 	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
402 		(*sroi->blocks) += rec->rm_blockcount;
403 
404 	return 0;
405 }
406 
407 /*
408  * Calculate the number of blocks the rmap thinks are owned by something.
409  * The caller should pass us an rmapbt cursor.
410  */
411 int
412 xchk_count_rmap_ownedby_ag(
413 	struct xfs_scrub		*sc,
414 	struct xfs_btree_cur		*cur,
415 	const struct xfs_owner_info	*oinfo,
416 	xfs_filblks_t			*blocks)
417 {
418 	struct xchk_rmap_ownedby_info	sroi = {
419 		.oinfo			= oinfo,
420 		.blocks			= blocks,
421 	};
422 
423 	*blocks = 0;
424 	return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
425 			&sroi);
426 }
427 
428 /*
429  * AG scrubbing
430  *
431  * These helpers facilitate locking an allocation group's header
432  * buffers, setting up cursors for all btrees that are present, and
433  * cleaning everything up once we're through.
434  */
435 
436 /* Decide if we want to return an AG header read failure. */
437 static inline bool
438 want_ag_read_header_failure(
439 	struct xfs_scrub	*sc,
440 	unsigned int		type)
441 {
442 	/* Return all AG header read failures when scanning btrees. */
443 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
444 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
445 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
446 		return true;
447 	/*
448 	 * If we're scanning a given type of AG header, we only want to
449 	 * see read failures from that specific header.  We'd like the
450 	 * other headers to cross-check them, but this isn't required.
451 	 */
452 	if (sc->sm->sm_type == type)
453 		return true;
454 	return false;
455 }
456 
457 /*
458  * Grab the AG header buffers for the attached perag structure.
459  *
460  * The headers should be released by xchk_ag_free, but as a fail safe we attach
461  * all the buffers we grab to the scrub transaction so they'll all be freed
462  * when we cancel it.
463  */
464 static inline int
465 xchk_perag_read_headers(
466 	struct xfs_scrub	*sc,
467 	struct xchk_ag		*sa)
468 {
469 	int			error;
470 
471 	error = xfs_ialloc_read_agi(sa->pag, sc->tp, 0, &sa->agi_bp);
472 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
473 		return error;
474 
475 	error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
476 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
477 		return error;
478 
479 	return 0;
480 }
481 
482 /*
483  * Grab the AG headers for the attached perag structure and wait for pending
484  * intents to drain.
485  */
486 int
487 xchk_perag_drain_and_lock(
488 	struct xfs_scrub	*sc)
489 {
490 	struct xchk_ag		*sa = &sc->sa;
491 	int			error = 0;
492 
493 	ASSERT(sa->pag != NULL);
494 	ASSERT(sa->agi_bp == NULL);
495 	ASSERT(sa->agf_bp == NULL);
496 
497 	do {
498 		if (xchk_should_terminate(sc, &error))
499 			return error;
500 
501 		error = xchk_perag_read_headers(sc, sa);
502 		if (error)
503 			return error;
504 
505 		/*
506 		 * If we've grabbed an inode for scrubbing then we assume that
507 		 * holding its ILOCK will suffice to coordinate with any intent
508 		 * chains involving this inode.
509 		 */
510 		if (sc->ip)
511 			return 0;
512 
513 		/*
514 		 * Decide if this AG is quiet enough for all metadata to be
515 		 * consistent with each other.  XFS allows the AG header buffer
516 		 * locks to cycle across transaction rolls while processing
517 		 * chains of deferred ops, which means that there could be
518 		 * other threads in the middle of processing a chain of
519 		 * deferred ops.  For regular operations we are careful about
520 		 * ordering operations to prevent collisions between threads
521 		 * (which is why we don't need a per-AG lock), but scrub and
522 		 * repair have to serialize against chained operations.
523 		 *
524 		 * We just locked all the AG headers buffers; now take a look
525 		 * to see if there are any intents in progress.  If there are,
526 		 * drop the AG headers and wait for the intents to drain.
527 		 * Since we hold all the AG header locks for the duration of
528 		 * the scrub, this is the only time we have to sample the
529 		 * intents counter; any threads increasing it after this point
530 		 * can't possibly be in the middle of a chain of AG metadata
531 		 * updates.
532 		 *
533 		 * Obviously, this should be slanted against scrub and in favor
534 		 * of runtime threads.
535 		 */
536 		if (!xfs_group_intent_busy(pag_group(sa->pag)))
537 			return 0;
538 
539 		if (sa->agf_bp) {
540 			xfs_trans_brelse(sc->tp, sa->agf_bp);
541 			sa->agf_bp = NULL;
542 		}
543 
544 		if (sa->agi_bp) {
545 			xfs_trans_brelse(sc->tp, sa->agi_bp);
546 			sa->agi_bp = NULL;
547 		}
548 
549 		if (!(sc->flags & XCHK_FSGATES_DRAIN))
550 			return -ECHRNG;
551 		error = xfs_group_intent_drain(pag_group(sa->pag));
552 		if (error == -ERESTARTSYS)
553 			error = -EINTR;
554 	} while (!error);
555 
556 	return error;
557 }
558 
559 /*
560  * Grab the per-AG structure, grab all AG header buffers, and wait until there
561  * aren't any pending intents.  Returns -ENOENT if we can't grab the perag
562  * structure.
563  */
564 int
565 xchk_ag_read_headers(
566 	struct xfs_scrub	*sc,
567 	xfs_agnumber_t		agno,
568 	struct xchk_ag		*sa)
569 {
570 	struct xfs_mount	*mp = sc->mp;
571 
572 	ASSERT(!sa->pag);
573 	sa->pag = xfs_perag_get(mp, agno);
574 	if (!sa->pag)
575 		return -ENOENT;
576 
577 	return xchk_perag_drain_and_lock(sc);
578 }
579 
580 /* Release all the AG btree cursors. */
581 void
582 xchk_ag_btcur_free(
583 	struct xchk_ag		*sa)
584 {
585 	if (sa->refc_cur)
586 		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
587 	if (sa->rmap_cur)
588 		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
589 	if (sa->fino_cur)
590 		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
591 	if (sa->ino_cur)
592 		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
593 	if (sa->cnt_cur)
594 		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
595 	if (sa->bno_cur)
596 		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
597 
598 	sa->refc_cur = NULL;
599 	sa->rmap_cur = NULL;
600 	sa->fino_cur = NULL;
601 	sa->ino_cur = NULL;
602 	sa->bno_cur = NULL;
603 	sa->cnt_cur = NULL;
604 }
605 
606 /* Initialize all the btree cursors for an AG. */
607 void
608 xchk_ag_btcur_init(
609 	struct xfs_scrub	*sc,
610 	struct xchk_ag		*sa)
611 {
612 	struct xfs_mount	*mp = sc->mp;
613 
614 	if (sa->agf_bp) {
615 		/* Set up a bnobt cursor for cross-referencing. */
616 		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
617 				sa->pag);
618 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur,
619 				XFS_SCRUB_TYPE_BNOBT);
620 
621 		/* Set up a cntbt cursor for cross-referencing. */
622 		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
623 				sa->pag);
624 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur,
625 				XFS_SCRUB_TYPE_CNTBT);
626 
627 		/* Set up a rmapbt cursor for cross-referencing. */
628 		if (xfs_has_rmapbt(mp)) {
629 			sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp,
630 					sa->agf_bp, sa->pag);
631 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur,
632 					XFS_SCRUB_TYPE_RMAPBT);
633 		}
634 
635 		/* Set up a refcountbt cursor for cross-referencing. */
636 		if (xfs_has_reflink(mp)) {
637 			sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
638 					sa->agf_bp, sa->pag);
639 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur,
640 					XFS_SCRUB_TYPE_REFCNTBT);
641 		}
642 	}
643 
644 	if (sa->agi_bp) {
645 		/* Set up a inobt cursor for cross-referencing. */
646 		sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp,
647 				sa->agi_bp);
648 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur,
649 				XFS_SCRUB_TYPE_INOBT);
650 
651 		/* Set up a finobt cursor for cross-referencing. */
652 		if (xfs_has_finobt(mp)) {
653 			sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp,
654 					sa->agi_bp);
655 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur,
656 					XFS_SCRUB_TYPE_FINOBT);
657 		}
658 	}
659 }
660 
661 /* Release the AG header context and btree cursors. */
662 void
663 xchk_ag_free(
664 	struct xfs_scrub	*sc,
665 	struct xchk_ag		*sa)
666 {
667 	xchk_ag_btcur_free(sa);
668 	xrep_reset_perag_resv(sc);
669 	if (sa->agf_bp) {
670 		xfs_trans_brelse(sc->tp, sa->agf_bp);
671 		sa->agf_bp = NULL;
672 	}
673 	if (sa->agi_bp) {
674 		xfs_trans_brelse(sc->tp, sa->agi_bp);
675 		sa->agi_bp = NULL;
676 	}
677 	if (sa->pag) {
678 		xfs_perag_put(sa->pag);
679 		sa->pag = NULL;
680 	}
681 }
682 
683 /*
684  * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
685  * order.  Locking order requires us to get the AGI before the AGF.  We use the
686  * transaction to avoid deadlocking on crosslinked metadata buffers; either the
687  * caller passes one in (bmap scrub) or we have to create a transaction
688  * ourselves.  Returns ENOENT if the perag struct cannot be grabbed.
689  */
690 int
691 xchk_ag_init(
692 	struct xfs_scrub	*sc,
693 	xfs_agnumber_t		agno,
694 	struct xchk_ag		*sa)
695 {
696 	int			error;
697 
698 	error = xchk_ag_read_headers(sc, agno, sa);
699 	if (error)
700 		return error;
701 
702 	xchk_ag_btcur_init(sc, sa);
703 	return 0;
704 }
705 
706 #ifdef CONFIG_XFS_RT
707 /*
708  * For scrubbing a realtime group, grab all the in-core resources we'll need to
709  * check the metadata, which means taking the ILOCK of the realtime group's
710  * metadata inodes.  Callers must not join these inodes to the transaction with
711  * non-zero lockflags or concurrency problems will result.  The @rtglock_flags
712  * argument takes XFS_RTGLOCK_* flags.
713  */
714 int
715 xchk_rtgroup_init(
716 	struct xfs_scrub	*sc,
717 	xfs_rgnumber_t		rgno,
718 	struct xchk_rt		*sr)
719 {
720 	ASSERT(sr->rtg == NULL);
721 	ASSERT(sr->rtlock_flags == 0);
722 
723 	sr->rtg = xfs_rtgroup_get(sc->mp, rgno);
724 	if (!sr->rtg)
725 		return -ENOENT;
726 	return 0;
727 }
728 
729 /* Lock all the rt group metadata inode ILOCKs and wait for intents. */
730 int
731 xchk_rtgroup_lock(
732 	struct xfs_scrub	*sc,
733 	struct xchk_rt		*sr,
734 	unsigned int		rtglock_flags)
735 {
736 	int			error = 0;
737 
738 	ASSERT(sr->rtg != NULL);
739 
740 	/*
741 	 * If we're /only/ locking the rtbitmap in shared mode, then we're
742 	 * obviously not trying to compare records in two metadata inodes.
743 	 * There's no need to drain intents here because the caller (most
744 	 * likely the rgsuper scanner) doesn't need that level of consistency.
745 	 */
746 	if (rtglock_flags == XFS_RTGLOCK_BITMAP_SHARED) {
747 		xfs_rtgroup_lock(sr->rtg, rtglock_flags);
748 		sr->rtlock_flags = rtglock_flags;
749 		return 0;
750 	}
751 
752 	do {
753 		if (xchk_should_terminate(sc, &error))
754 			return error;
755 
756 		xfs_rtgroup_lock(sr->rtg, rtglock_flags);
757 
758 		/*
759 		 * If we've grabbed a non-metadata file for scrubbing, we
760 		 * assume that holding its ILOCK will suffice to coordinate
761 		 * with any rt intent chains involving this inode.
762 		 */
763 		if (sc->ip && !xfs_is_internal_inode(sc->ip))
764 			break;
765 
766 		/*
767 		 * Decide if the rt group is quiet enough for all metadata to
768 		 * be consistent with each other.  Regular file IO doesn't get
769 		 * to lock all the rt inodes at the same time, which means that
770 		 * there could be other threads in the middle of processing a
771 		 * chain of deferred ops.
772 		 *
773 		 * We just locked all the metadata inodes for this rt group;
774 		 * now take a look to see if there are any intents in progress.
775 		 * If there are, drop the rt group inode locks and wait for the
776 		 * intents to drain.  Since we hold the rt group inode locks
777 		 * for the duration of the scrub, this is the only time we have
778 		 * to sample the intents counter; any threads increasing it
779 		 * after this point can't possibly be in the middle of a chain
780 		 * of rt metadata updates.
781 		 *
782 		 * Obviously, this should be slanted against scrub and in favor
783 		 * of runtime threads.
784 		 */
785 		if (!xfs_group_intent_busy(rtg_group(sr->rtg)))
786 			break;
787 
788 		xfs_rtgroup_unlock(sr->rtg, rtglock_flags);
789 
790 		if (!(sc->flags & XCHK_FSGATES_DRAIN))
791 			return -ECHRNG;
792 		error = xfs_group_intent_drain(rtg_group(sr->rtg));
793 		if (error) {
794 			if (error == -ERESTARTSYS)
795 				error = -EINTR;
796 			return error;
797 		}
798 	} while (1);
799 
800 	sr->rtlock_flags = rtglock_flags;
801 
802 	if (xfs_has_rtrmapbt(sc->mp) && (rtglock_flags & XFS_RTGLOCK_RMAP))
803 		sr->rmap_cur = xfs_rtrmapbt_init_cursor(sc->tp, sr->rtg);
804 
805 	if (xfs_has_rtreflink(sc->mp) && (rtglock_flags & XFS_RTGLOCK_REFCOUNT))
806 		sr->refc_cur = xfs_rtrefcountbt_init_cursor(sc->tp, sr->rtg);
807 
808 	return 0;
809 }
810 
811 /*
812  * Free all the btree cursors and other incore data relating to the realtime
813  * group.  This has to be done /before/ committing (or cancelling) the scrub
814  * transaction.
815  */
816 void
817 xchk_rtgroup_btcur_free(
818 	struct xchk_rt		*sr)
819 {
820 	if (sr->rmap_cur)
821 		xfs_btree_del_cursor(sr->rmap_cur, XFS_BTREE_ERROR);
822 	if (sr->refc_cur)
823 		xfs_btree_del_cursor(sr->refc_cur, XFS_BTREE_ERROR);
824 
825 	sr->refc_cur = NULL;
826 	sr->rmap_cur = NULL;
827 }
828 
829 /*
830  * Unlock the realtime group.  This must be done /after/ committing (or
831  * cancelling) the scrub transaction.
832  */
833 void
834 xchk_rtgroup_unlock(
835 	struct xchk_rt		*sr)
836 {
837 	ASSERT(sr->rtg != NULL);
838 
839 	if (sr->rtlock_flags) {
840 		xfs_rtgroup_unlock(sr->rtg, sr->rtlock_flags);
841 		sr->rtlock_flags = 0;
842 	}
843 }
844 
845 /*
846  * Unlock the realtime group and release its resources.  This must be done
847  * /after/ committing (or cancelling) the scrub transaction.
848  */
849 void
850 xchk_rtgroup_free(
851 	struct xfs_scrub	*sc,
852 	struct xchk_rt		*sr)
853 {
854 	ASSERT(sr->rtg != NULL);
855 
856 	xchk_rtgroup_unlock(sr);
857 
858 	xfs_rtgroup_put(sr->rtg);
859 	sr->rtg = NULL;
860 }
861 #endif /* CONFIG_XFS_RT */
862 
863 /* Per-scrubber setup functions */
864 
865 void
866 xchk_trans_cancel(
867 	struct xfs_scrub	*sc)
868 {
869 	xfs_trans_cancel(sc->tp);
870 	sc->tp = NULL;
871 }
872 
873 void
874 xchk_trans_alloc_empty(
875 	struct xfs_scrub	*sc)
876 {
877 	sc->tp = xfs_trans_alloc_empty(sc->mp);
878 }
879 
880 /*
881  * Grab an empty transaction so that we can re-grab locked buffers if
882  * one of our btrees turns out to be cyclic.
883  *
884  * If we're going to repair something, we need to ask for the largest possible
885  * log reservation so that we can handle the worst case scenario for metadata
886  * updates while rebuilding a metadata item.  We also need to reserve as many
887  * blocks in the head transaction as we think we're going to need to rebuild
888  * the metadata object.
889  */
890 int
891 xchk_trans_alloc(
892 	struct xfs_scrub	*sc,
893 	uint			resblks)
894 {
895 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
896 		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
897 				resblks, 0, 0, &sc->tp);
898 
899 	xchk_trans_alloc_empty(sc);
900 	return 0;
901 }
902 
903 /* Set us up with a transaction and an empty context. */
904 int
905 xchk_setup_fs(
906 	struct xfs_scrub	*sc)
907 {
908 	uint			resblks;
909 
910 	resblks = xrep_calc_ag_resblks(sc);
911 	return xchk_trans_alloc(sc, resblks);
912 }
913 
914 /* Set us up with a transaction and an empty context to repair rt metadata. */
915 int
916 xchk_setup_rt(
917 	struct xfs_scrub	*sc)
918 {
919 	return xchk_trans_alloc(sc, xrep_calc_rtgroup_resblks(sc));
920 }
921 
922 /* Set us up with AG headers and btree cursors. */
923 int
924 xchk_setup_ag_btree(
925 	struct xfs_scrub	*sc,
926 	bool			force_log)
927 {
928 	struct xfs_mount	*mp = sc->mp;
929 	int			error;
930 
931 	/*
932 	 * If the caller asks us to checkpont the log, do so.  This
933 	 * expensive operation should be performed infrequently and only
934 	 * as a last resort.  Any caller that sets force_log should
935 	 * document why they need to do so.
936 	 */
937 	if (force_log) {
938 		error = xchk_checkpoint_log(mp);
939 		if (error)
940 			return error;
941 	}
942 
943 	error = xchk_setup_fs(sc);
944 	if (error)
945 		return error;
946 
947 	return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
948 }
949 
950 /* Push everything out of the log onto disk. */
951 int
952 xchk_checkpoint_log(
953 	struct xfs_mount	*mp)
954 {
955 	int			error;
956 
957 	error = xfs_log_force(mp, XFS_LOG_SYNC);
958 	if (error)
959 		return error;
960 	xfs_ail_push_all_sync(mp->m_ail);
961 	return 0;
962 }
963 
964 /* Verify that an inode is allocated ondisk, then return its cached inode. */
965 int
966 xchk_iget(
967 	struct xfs_scrub	*sc,
968 	xfs_ino_t		inum,
969 	struct xfs_inode	**ipp)
970 {
971 	ASSERT(sc->tp != NULL);
972 
973 	return xfs_iget(sc->mp, sc->tp, inum, XCHK_IGET_FLAGS, 0, ipp);
974 }
975 
976 /*
977  * Try to grab an inode in a manner that avoids races with physical inode
978  * allocation.  If we can't, return the locked AGI buffer so that the caller
979  * can single-step the loading process to see where things went wrong.
980  * Callers must have a valid scrub transaction.
981  *
982  * If the iget succeeds, return 0, a NULL AGI, and the inode.
983  *
984  * If the iget fails, return the error, the locked AGI, and a NULL inode.  This
985  * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
986  * no longer allocated; or any other corruption or runtime error.
987  *
988  * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
989  *
990  * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
991  */
992 int
993 xchk_iget_agi(
994 	struct xfs_scrub	*sc,
995 	xfs_ino_t		inum,
996 	struct xfs_buf		**agi_bpp,
997 	struct xfs_inode	**ipp)
998 {
999 	struct xfs_mount	*mp = sc->mp;
1000 	struct xfs_trans	*tp = sc->tp;
1001 	struct xfs_perag	*pag;
1002 	int			error;
1003 
1004 	ASSERT(sc->tp != NULL);
1005 
1006 again:
1007 	*agi_bpp = NULL;
1008 	*ipp = NULL;
1009 	error = 0;
1010 
1011 	if (xchk_should_terminate(sc, &error))
1012 		return error;
1013 
1014 	/*
1015 	 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
1016 	 * in the iget cache miss path.
1017 	 */
1018 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1019 	error = xfs_ialloc_read_agi(pag, tp, 0, agi_bpp);
1020 	xfs_perag_put(pag);
1021 	if (error)
1022 		return error;
1023 
1024 	error = xfs_iget(mp, tp, inum, XFS_IGET_NORETRY | XCHK_IGET_FLAGS, 0,
1025 			ipp);
1026 	if (error == -EAGAIN) {
1027 		/*
1028 		 * The inode may be in core but temporarily unavailable and may
1029 		 * require the AGI buffer before it can be returned.  Drop the
1030 		 * AGI buffer and retry the lookup.
1031 		 *
1032 		 * Incore lookup will fail with EAGAIN on a cache hit if the
1033 		 * inode is queued to the inactivation list.  The inactivation
1034 		 * worker may remove the inode from the unlinked list and hence
1035 		 * needs the AGI.
1036 		 *
1037 		 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
1038 		 * to allow inodegc to make progress and move the inode to
1039 		 * IRECLAIMABLE state where xfs_iget will be able to return it
1040 		 * again if it can lock the inode.
1041 		 */
1042 		xfs_trans_brelse(tp, *agi_bpp);
1043 		delay(1);
1044 		goto again;
1045 	}
1046 	if (error)
1047 		return error;
1048 
1049 	/* We got the inode, so we can release the AGI. */
1050 	ASSERT(*ipp != NULL);
1051 	xfs_trans_brelse(tp, *agi_bpp);
1052 	*agi_bpp = NULL;
1053 	return 0;
1054 }
1055 
1056 #ifdef CONFIG_XFS_QUOTA
1057 /*
1058  * Try to attach dquots to this inode if we think we might want to repair it.
1059  * Callers must not hold any ILOCKs.  If the dquots are broken and cannot be
1060  * attached, a quotacheck will be scheduled.
1061  */
1062 int
1063 xchk_ino_dqattach(
1064 	struct xfs_scrub	*sc)
1065 {
1066 	ASSERT(sc->tp != NULL);
1067 	ASSERT(sc->ip != NULL);
1068 
1069 	if (!xchk_could_repair(sc))
1070 		return 0;
1071 
1072 	return xrep_ino_dqattach(sc);
1073 }
1074 #endif
1075 
1076 /* Install an inode that we opened by handle for scrubbing. */
1077 int
1078 xchk_install_handle_inode(
1079 	struct xfs_scrub	*sc,
1080 	struct xfs_inode	*ip)
1081 {
1082 	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
1083 		xchk_irele(sc, ip);
1084 		return -ENOENT;
1085 	}
1086 
1087 	sc->ip = ip;
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Install an already-referenced inode for scrubbing.  Get our own reference to
1093  * the inode to make disposal simpler.  The inode must not be in I_FREEING or
1094  * I_WILL_FREE state!
1095  */
1096 int
1097 xchk_install_live_inode(
1098 	struct xfs_scrub	*sc,
1099 	struct xfs_inode	*ip)
1100 {
1101 	if (!igrab(VFS_I(ip))) {
1102 		xchk_ino_set_corrupt(sc, ip->i_ino);
1103 		return -EFSCORRUPTED;
1104 	}
1105 
1106 	sc->ip = ip;
1107 	return 0;
1108 }
1109 
1110 /*
1111  * In preparation to scrub metadata structures that hang off of an inode,
1112  * grab either the inode referenced in the scrub control structure or the
1113  * inode passed in.  If the inumber does not reference an allocated inode
1114  * record, the function returns ENOENT to end the scrub early.  The inode
1115  * is not locked.
1116  */
1117 int
1118 xchk_iget_for_scrubbing(
1119 	struct xfs_scrub	*sc)
1120 {
1121 	struct xfs_imap		imap;
1122 	struct xfs_mount	*mp = sc->mp;
1123 	struct xfs_perag	*pag;
1124 	struct xfs_buf		*agi_bp;
1125 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
1126 	struct xfs_inode	*ip = NULL;
1127 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
1128 	int			error;
1129 
1130 	ASSERT(sc->tp == NULL);
1131 
1132 	/* We want to scan the inode we already had opened. */
1133 	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
1134 		return xchk_install_live_inode(sc, ip_in);
1135 
1136 	/*
1137 	 * On pre-metadir filesystems, reject internal metadata files.  For
1138 	 * metadir filesystems, limited scrubbing of any file in the metadata
1139 	 * directory tree by handle is allowed, because that is the only way to
1140 	 * validate the lack of parent pointers in the sb-root metadata inodes.
1141 	 */
1142 	if (!xfs_has_metadir(mp) && xfs_is_sb_inum(mp, sc->sm->sm_ino))
1143 		return -ENOENT;
1144 	/* Reject obviously bad inode numbers. */
1145 	if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
1146 		return -ENOENT;
1147 
1148 	/* Try a safe untrusted iget. */
1149 	error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
1150 	if (!error)
1151 		return xchk_install_handle_inode(sc, ip);
1152 	if (error == -ENOENT)
1153 		return error;
1154 	if (error != -EINVAL)
1155 		goto out_error;
1156 
1157 	/*
1158 	 * EINVAL with IGET_UNTRUSTED probably means one of several things:
1159 	 * userspace gave us an inode number that doesn't correspond to fs
1160 	 * space; the inode btree lacks a record for this inode; or there is a
1161 	 * record, and it says this inode is free.
1162 	 *
1163 	 * We want to look up this inode in the inobt to distinguish two
1164 	 * scenarios: (1) the inobt says the inode is free, in which case
1165 	 * there's nothing to do; and (2) the inobt says the inode is
1166 	 * allocated, but loading it failed due to corruption.
1167 	 *
1168 	 * Allocate a transaction and grab the AGI to prevent inobt activity
1169 	 * in this AG.  Retry the iget in case someone allocated a new inode
1170 	 * after the first iget failed.
1171 	 */
1172 	error = xchk_trans_alloc(sc, 0);
1173 	if (error)
1174 		goto out_error;
1175 
1176 	error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
1177 	if (error == 0) {
1178 		/* Actually got the inode, so install it. */
1179 		xchk_trans_cancel(sc);
1180 		return xchk_install_handle_inode(sc, ip);
1181 	}
1182 	if (error == -ENOENT)
1183 		goto out_gone;
1184 	if (error != -EINVAL)
1185 		goto out_cancel;
1186 
1187 	/* Ensure that we have protected against inode allocation/freeing. */
1188 	if (agi_bp == NULL) {
1189 		ASSERT(agi_bp != NULL);
1190 		error = -ECANCELED;
1191 		goto out_cancel;
1192 	}
1193 
1194 	/*
1195 	 * Untrusted iget failed a second time.  Let's try an inobt lookup.
1196 	 * If the inobt thinks this the inode neither can exist inside the
1197 	 * filesystem nor is allocated, return ENOENT to signal that the check
1198 	 * can be skipped.
1199 	 *
1200 	 * If the lookup returns corruption, we'll mark this inode corrupt and
1201 	 * exit to userspace.  There's little chance of fixing anything until
1202 	 * the inobt is straightened out, but there's nothing we can do here.
1203 	 *
1204 	 * If the lookup encounters any other error, exit to userspace.
1205 	 *
1206 	 * If the lookup succeeds, something else must be very wrong in the fs
1207 	 * such that setting up the incore inode failed in some strange way.
1208 	 * Treat those as corruptions.
1209 	 */
1210 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
1211 	if (!pag) {
1212 		error = -EFSCORRUPTED;
1213 		goto out_cancel;
1214 	}
1215 
1216 	error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
1217 			XFS_IGET_UNTRUSTED);
1218 	xfs_perag_put(pag);
1219 	if (error == -EINVAL || error == -ENOENT)
1220 		goto out_gone;
1221 	if (!error)
1222 		error = -EFSCORRUPTED;
1223 
1224 out_cancel:
1225 	xchk_trans_cancel(sc);
1226 out_error:
1227 	trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
1228 			error, __return_address);
1229 	return error;
1230 out_gone:
1231 	/* The file is gone, so there's nothing to check. */
1232 	xchk_trans_cancel(sc);
1233 	return -ENOENT;
1234 }
1235 
1236 /* Release an inode, possibly dropping it in the process. */
1237 void
1238 xchk_irele(
1239 	struct xfs_scrub	*sc,
1240 	struct xfs_inode	*ip)
1241 {
1242 	if (sc->tp) {
1243 		/*
1244 		 * If we are in a transaction, we /cannot/ drop the inode
1245 		 * ourselves, because the VFS will trigger writeback, which
1246 		 * can require a transaction.  Clear DONTCACHE to force the
1247 		 * inode to the LRU, where someone else can take care of
1248 		 * dropping it.
1249 		 *
1250 		 * Note that when we grabbed our reference to the inode, it
1251 		 * could have had an active ref and DONTCACHE set if a sysadmin
1252 		 * is trying to coerce a change in file access mode.  icache
1253 		 * hits do not clear DONTCACHE, so we must do it here.
1254 		 */
1255 		spin_lock(&VFS_I(ip)->i_lock);
1256 		inode_state_clear(VFS_I(ip), I_DONTCACHE);
1257 		spin_unlock(&VFS_I(ip)->i_lock);
1258 	}
1259 
1260 	xfs_irele(ip);
1261 }
1262 
1263 /*
1264  * Set us up to scrub metadata mapped by a file's fork.  Callers must not use
1265  * this to operate on user-accessible regular file data because the MMAPLOCK is
1266  * not taken.
1267  */
1268 int
1269 xchk_setup_inode_contents(
1270 	struct xfs_scrub	*sc,
1271 	unsigned int		resblks)
1272 {
1273 	int			error;
1274 
1275 	error = xchk_iget_for_scrubbing(sc);
1276 	if (error)
1277 		return error;
1278 
1279 	error = xrep_tempfile_adjust_directory_tree(sc);
1280 	if (error)
1281 		return error;
1282 
1283 	/* Lock the inode so the VFS cannot touch this file. */
1284 	xchk_ilock(sc, XFS_IOLOCK_EXCL);
1285 
1286 	error = xchk_trans_alloc(sc, resblks);
1287 	if (error)
1288 		goto out;
1289 
1290 	error = xchk_ino_dqattach(sc);
1291 	if (error)
1292 		goto out;
1293 
1294 	xchk_ilock(sc, XFS_ILOCK_EXCL);
1295 out:
1296 	/* scrub teardown will unlock and release the inode for us */
1297 	return error;
1298 }
1299 
1300 void
1301 xchk_ilock(
1302 	struct xfs_scrub	*sc,
1303 	unsigned int		ilock_flags)
1304 {
1305 	xfs_ilock(sc->ip, ilock_flags);
1306 	sc->ilock_flags |= ilock_flags;
1307 }
1308 
1309 bool
1310 xchk_ilock_nowait(
1311 	struct xfs_scrub	*sc,
1312 	unsigned int		ilock_flags)
1313 {
1314 	if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1315 		sc->ilock_flags |= ilock_flags;
1316 		return true;
1317 	}
1318 
1319 	return false;
1320 }
1321 
1322 void
1323 xchk_iunlock(
1324 	struct xfs_scrub	*sc,
1325 	unsigned int		ilock_flags)
1326 {
1327 	sc->ilock_flags &= ~ilock_flags;
1328 	xfs_iunlock(sc->ip, ilock_flags);
1329 }
1330 
1331 /*
1332  * Predicate that decides if we need to evaluate the cross-reference check.
1333  * If there was an error accessing the cross-reference btree, just delete
1334  * the cursor and skip the check.
1335  */
1336 bool
1337 xchk_should_check_xref(
1338 	struct xfs_scrub	*sc,
1339 	int			*error,
1340 	struct xfs_btree_cur	**curpp)
1341 {
1342 	/* No point in xref if we already know we're corrupt. */
1343 	if (xchk_skip_xref(sc->sm))
1344 		return false;
1345 
1346 	if (*error == 0)
1347 		return true;
1348 
1349 	if (curpp) {
1350 		/* If we've already given up on xref, just bail out. */
1351 		if (!*curpp)
1352 			return false;
1353 
1354 		/* xref error, delete cursor and bail out. */
1355 		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1356 		*curpp = NULL;
1357 	}
1358 
1359 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1360 	trace_xchk_xref_error(sc, *error, __return_address);
1361 
1362 	/*
1363 	 * Errors encountered during cross-referencing with another
1364 	 * data structure should not cause this scrubber to abort.
1365 	 */
1366 	*error = 0;
1367 	return false;
1368 }
1369 
1370 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
1371 void
1372 xchk_buffer_recheck(
1373 	struct xfs_scrub	*sc,
1374 	struct xfs_buf		*bp)
1375 {
1376 	xfs_failaddr_t		fa;
1377 
1378 	if (bp->b_ops == NULL) {
1379 		xchk_block_set_corrupt(sc, bp);
1380 		return;
1381 	}
1382 	if (bp->b_ops->verify_struct == NULL) {
1383 		xchk_set_incomplete(sc);
1384 		return;
1385 	}
1386 	fa = bp->b_ops->verify_struct(bp);
1387 	if (!fa)
1388 		return;
1389 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1390 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1391 }
1392 
1393 static inline int
1394 xchk_metadata_inode_subtype(
1395 	struct xfs_scrub	*sc,
1396 	unsigned int		scrub_type)
1397 {
1398 	struct xfs_scrub_subord	*sub;
1399 	int			error;
1400 
1401 	sub = xchk_scrub_create_subord(sc, scrub_type);
1402 	if (!sub)
1403 		return -ENOMEM;
1404 
1405 	error = sub->sc.ops->scrub(&sub->sc);
1406 	xchk_scrub_free_subord(sub);
1407 	return error;
1408 }
1409 
1410 /*
1411  * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
1412  * pointed to by sc->ip and the ILOCK must be held.
1413  */
1414 int
1415 xchk_metadata_inode_forks(
1416 	struct xfs_scrub	*sc)
1417 {
1418 	bool			shared;
1419 	int			error;
1420 
1421 	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1422 		return 0;
1423 
1424 	/* Check the inode record. */
1425 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1426 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1427 		return error;
1428 
1429 	/* Metadata inodes don't live on the rt device. */
1430 	if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1431 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1432 		return 0;
1433 	}
1434 
1435 	/* They should never participate in reflink. */
1436 	if (xfs_is_reflink_inode(sc->ip)) {
1437 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1438 		return 0;
1439 	}
1440 
1441 	/* Invoke the data fork scrubber. */
1442 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1443 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1444 		return error;
1445 
1446 	/* Look for incorrect shared blocks. */
1447 	if (xfs_has_reflink(sc->mp)) {
1448 		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1449 				&shared);
1450 		if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1451 				&error))
1452 			return error;
1453 		if (shared)
1454 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1455 	}
1456 
1457 	/*
1458 	 * Metadata files can only have extended attributes on metadir
1459 	 * filesystems, either for parent pointers or for actual xattr data.
1460 	 */
1461 	if (xfs_inode_hasattr(sc->ip)) {
1462 		if (!xfs_has_metadir(sc->mp)) {
1463 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1464 			return 0;
1465 		}
1466 
1467 		error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1468 		if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1469 			return error;
1470 	}
1471 
1472 	return 0;
1473 }
1474 
1475 /*
1476  * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1477  * operation.  Callers must not hold any locks that intersect with the CPU
1478  * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1479  * to change kernel code.
1480  */
1481 void
1482 xchk_fsgates_enable(
1483 	struct xfs_scrub	*sc,
1484 	unsigned int		scrub_fsgates)
1485 {
1486 	ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1487 	ASSERT(!(sc->flags & scrub_fsgates));
1488 
1489 	trace_xchk_fsgates_enable(sc, scrub_fsgates);
1490 
1491 	if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1492 		xfs_defer_drain_wait_enable();
1493 
1494 	if (scrub_fsgates & XCHK_FSGATES_QUOTA)
1495 		xfs_dqtrx_hook_enable();
1496 
1497 	if (scrub_fsgates & XCHK_FSGATES_DIRENTS)
1498 		xfs_dir_hook_enable();
1499 
1500 	if (scrub_fsgates & XCHK_FSGATES_RMAP)
1501 		xfs_rmap_hook_enable();
1502 
1503 	sc->flags |= scrub_fsgates;
1504 }
1505 
1506 /*
1507  * Decide if this is this a cached inode that's also allocated.  The caller
1508  * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1509  * from being allocated or freed.
1510  *
1511  * Look up an inode by number in the given file system.  If the inode number
1512  * is invalid, return -EINVAL.  If the inode is not in cache, return -ENODATA.
1513  * If the inode is being reclaimed, return -ENODATA because we know the inode
1514  * cache cannot be updating the ondisk metadata.
1515  *
1516  * Otherwise, the incore inode is the one we want, and it is either live,
1517  * somewhere in the inactivation machinery, or reclaimable.  The inode is
1518  * allocated if i_mode is nonzero.  In all three cases, the cached inode will
1519  * be more up to date than the ondisk inode buffer, so we must use the incore
1520  * i_mode.
1521  */
1522 int
1523 xchk_inode_is_allocated(
1524 	struct xfs_scrub	*sc,
1525 	xfs_agino_t		agino,
1526 	bool			*inuse)
1527 {
1528 	struct xfs_mount	*mp = sc->mp;
1529 	struct xfs_perag	*pag = sc->sa.pag;
1530 	xfs_ino_t		ino;
1531 	struct xfs_inode	*ip;
1532 	int			error;
1533 
1534 	/* caller must hold perag reference */
1535 	if (pag == NULL) {
1536 		ASSERT(pag != NULL);
1537 		return -EINVAL;
1538 	}
1539 
1540 	/* caller must have AGI buffer */
1541 	if (sc->sa.agi_bp == NULL) {
1542 		ASSERT(sc->sa.agi_bp != NULL);
1543 		return -EINVAL;
1544 	}
1545 
1546 	/* reject inode numbers outside existing AGs */
1547 	ino = xfs_agino_to_ino(pag, agino);
1548 	if (!xfs_verify_ino(mp, ino))
1549 		return -EINVAL;
1550 
1551 	error = -ENODATA;
1552 	rcu_read_lock();
1553 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1554 	if (!ip) {
1555 		/* cache miss */
1556 		goto out_rcu;
1557 	}
1558 
1559 	/*
1560 	 * If the inode number doesn't match, the incore inode got reused
1561 	 * during an RCU grace period and the radix tree hasn't been updated.
1562 	 * This isn't the inode we want.
1563 	 */
1564 	spin_lock(&ip->i_flags_lock);
1565 	if (ip->i_ino != ino)
1566 		goto out_skip;
1567 
1568 	trace_xchk_inode_is_allocated(ip);
1569 
1570 	/*
1571 	 * We have an incore inode that matches the inode we want, and the
1572 	 * caller holds the perag structure and the AGI buffer.  Let's check
1573 	 * our assumptions below:
1574 	 */
1575 
1576 #ifdef DEBUG
1577 	/*
1578 	 * (1) If the incore inode is live (i.e. referenced from the dcache),
1579 	 * it will not be INEW, nor will it be in the inactivation or reclaim
1580 	 * machinery.  The ondisk inode had better be allocated.  This is the
1581 	 * most trivial case.
1582 	 */
1583 	if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1584 			     XFS_INACTIVATING))) {
1585 		/* live inode */
1586 		ASSERT(VFS_I(ip)->i_mode != 0);
1587 	}
1588 
1589 	/*
1590 	 * If the incore inode is INEW, there are several possibilities:
1591 	 *
1592 	 * (2) For a file that is being created, note that we allocate the
1593 	 * ondisk inode before allocating, initializing, and adding the incore
1594 	 * inode to the radix tree.
1595 	 *
1596 	 * (3) If the incore inode is being recycled, the inode has to be
1597 	 * allocated because we don't allow freed inodes to be recycled.
1598 	 * Recycling doesn't touch i_mode.
1599 	 */
1600 	if (ip->i_flags & XFS_INEW) {
1601 		/* created on disk already or recycling */
1602 		ASSERT(VFS_I(ip)->i_mode != 0);
1603 	}
1604 
1605 	/*
1606 	 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1607 	 * inactivation has not started (!INACTIVATING), it is still allocated.
1608 	 */
1609 	if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1610 	    !(ip->i_flags & XFS_INACTIVATING)) {
1611 		/* definitely before difree */
1612 		ASSERT(VFS_I(ip)->i_mode != 0);
1613 	}
1614 #endif
1615 
1616 	/*
1617 	 * If the incore inode is undergoing inactivation (INACTIVATING), there
1618 	 * are two possibilities:
1619 	 *
1620 	 * (5) It is before the point where it would get freed ondisk, in which
1621 	 * case i_mode is still nonzero.
1622 	 *
1623 	 * (6) It has already been freed, in which case i_mode is zero.
1624 	 *
1625 	 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1626 	 * and we've taken the AGI buffer lock, which prevents that from
1627 	 * happening.
1628 	 */
1629 
1630 	/*
1631 	 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1632 	 * reclaim (IRECLAIMABLE) could be allocated or free.  i_mode still
1633 	 * reflects the ondisk state.
1634 	 */
1635 
1636 	/*
1637 	 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1638 	 * the flush code uses i_mode to format the ondisk inode.
1639 	 */
1640 
1641 	/*
1642 	 * (9) If the inode is in IRECLAIM and was reachable via the radix
1643 	 * tree, it still has the same i_mode as it did before it entered
1644 	 * reclaim.  The inode object is still alive because we hold the RCU
1645 	 * read lock.
1646 	 */
1647 
1648 	*inuse = VFS_I(ip)->i_mode != 0;
1649 	error = 0;
1650 
1651 out_skip:
1652 	spin_unlock(&ip->i_flags_lock);
1653 out_rcu:
1654 	rcu_read_unlock();
1655 	return error;
1656 }
1657 
1658 /* Is this inode a root directory for either tree? */
1659 bool
1660 xchk_inode_is_dirtree_root(const struct xfs_inode *ip)
1661 {
1662 	struct xfs_mount	*mp = ip->i_mount;
1663 
1664 	return ip == mp->m_rootip ||
1665 		(xfs_has_metadir(mp) && ip == mp->m_metadirip);
1666 }
1667 
1668 /* Does the superblock point down to this inode? */
1669 bool
1670 xchk_inode_is_sb_rooted(const struct xfs_inode *ip)
1671 {
1672 	return xchk_inode_is_dirtree_root(ip) ||
1673 	       xfs_is_sb_inum(ip->i_mount, ip->i_ino);
1674 }
1675 
1676 /* What is the root directory inumber for this inode? */
1677 xfs_ino_t
1678 xchk_inode_rootdir_inum(const struct xfs_inode *ip)
1679 {
1680 	struct xfs_mount	*mp = ip->i_mount;
1681 
1682 	if (xfs_is_metadir_inode(ip))
1683 		return mp->m_metadirip->i_ino;
1684 	return mp->m_rootip->i_ino;
1685 }
1686 
1687 static int
1688 xchk_meta_btree_count_blocks(
1689 	struct xfs_scrub	*sc,
1690 	xfs_extnum_t		*nextents,
1691 	xfs_filblks_t		*count)
1692 {
1693 	struct xfs_btree_cur	*cur;
1694 	int			error;
1695 
1696 	if (!sc->sr.rtg) {
1697 		ASSERT(0);
1698 		return -EFSCORRUPTED;
1699 	}
1700 
1701 	switch (sc->ip->i_metatype) {
1702 	case XFS_METAFILE_RTRMAP:
1703 		cur = xfs_rtrmapbt_init_cursor(sc->tp, sc->sr.rtg);
1704 		break;
1705 	case XFS_METAFILE_RTREFCOUNT:
1706 		cur = xfs_rtrefcountbt_init_cursor(sc->tp, sc->sr.rtg);
1707 		break;
1708 	default:
1709 		ASSERT(0);
1710 		return -EFSCORRUPTED;
1711 	}
1712 
1713 	error = xfs_btree_count_blocks(cur, count);
1714 	xfs_btree_del_cursor(cur, error);
1715 	if (!error) {
1716 		*nextents = 0;
1717 		(*count)--;	/* don't count the btree iroot */
1718 	}
1719 	return error;
1720 }
1721 
1722 /* Count the blocks used by a file, even if it's a metadata inode. */
1723 int
1724 xchk_inode_count_blocks(
1725 	struct xfs_scrub	*sc,
1726 	int			whichfork,
1727 	xfs_extnum_t		*nextents,
1728 	xfs_filblks_t		*count)
1729 {
1730 	struct xfs_ifork	*ifp = xfs_ifork_ptr(sc->ip, whichfork);
1731 
1732 	if (!ifp) {
1733 		*nextents = 0;
1734 		*count = 0;
1735 		return 0;
1736 	}
1737 
1738 	if (ifp->if_format == XFS_DINODE_FMT_META_BTREE) {
1739 		ASSERT(whichfork == XFS_DATA_FORK);
1740 		return xchk_meta_btree_count_blocks(sc, nextents, count);
1741 	}
1742 
1743 	return xfs_bmap_count_blocks(sc->tp, sc->ip, whichfork, nextents,
1744 			count);
1745 }
1746