xref: /linux/fs/xfs/scrub/common.c (revision f3f5edc5e41e038cf66d124a4cbacf6ff0983513)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode.h"
16 #include "xfs_icache.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_rmap.h"
23 #include "xfs_rmap_btree.h"
24 #include "xfs_log.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_dir2_priv.h"
29 #include "xfs_dir2.h"
30 #include "xfs_attr.h"
31 #include "xfs_reflink.h"
32 #include "xfs_ag.h"
33 #include "xfs_error.h"
34 #include "xfs_quota.h"
35 #include "xfs_exchmaps.h"
36 #include "xfs_rtbitmap.h"
37 #include "xfs_rtgroup.h"
38 #include "xfs_rtrmap_btree.h"
39 #include "xfs_bmap_util.h"
40 #include "xfs_rtrefcount_btree.h"
41 #include "scrub/scrub.h"
42 #include "scrub/common.h"
43 #include "scrub/trace.h"
44 #include "scrub/repair.h"
45 #include "scrub/health.h"
46 #include "scrub/tempfile.h"
47 
48 /* Common code for the metadata scrubbers. */
49 
50 /*
51  * Handling operational errors.
52  *
53  * The *_process_error() family of functions are used to process error return
54  * codes from functions called as part of a scrub operation.
55  *
56  * If there's no error, we return true to tell the caller that it's ok
57  * to move on to the next check in its list.
58  *
59  * For non-verifier errors (e.g. ENOMEM) we return false to tell the
60  * caller that something bad happened, and we preserve *error so that
61  * the caller can return the *error up the stack to userspace.
62  *
63  * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
64  * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
65  * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
66  * not via return codes.  We return false to tell the caller that
67  * something bad happened.  Since the error has been cleared, the caller
68  * will (presumably) return that zero and scrubbing will move on to
69  * whatever's next.
70  *
71  * ftrace can be used to record the precise metadata location and the
72  * approximate code location of the failed operation.
73  */
74 
75 /* Check for operational errors. */
76 static bool
__xchk_process_error(struct xfs_scrub * sc,xfs_agnumber_t agno,xfs_agblock_t bno,int * error,__u32 errflag,void * ret_ip)77 __xchk_process_error(
78 	struct xfs_scrub	*sc,
79 	xfs_agnumber_t		agno,
80 	xfs_agblock_t		bno,
81 	int			*error,
82 	__u32			errflag,
83 	void			*ret_ip)
84 {
85 	switch (*error) {
86 	case 0:
87 		return true;
88 	case -EDEADLOCK:
89 	case -ECHRNG:
90 		/* Used to restart an op with deadlock avoidance. */
91 		trace_xchk_deadlock_retry(
92 				sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
93 				sc->sm, *error);
94 		break;
95 	case -ECANCELED:
96 		/*
97 		 * ECANCELED here means that the caller set one of the scrub
98 		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
99 		 * quickly.  Set error to zero and do not continue.
100 		 */
101 		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
102 		*error = 0;
103 		break;
104 	case -EFSBADCRC:
105 	case -EFSCORRUPTED:
106 		/* Note the badness but don't abort. */
107 		sc->sm->sm_flags |= errflag;
108 		*error = 0;
109 		fallthrough;
110 	default:
111 		trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
112 		break;
113 	}
114 	return false;
115 }
116 
117 bool
xchk_process_error(struct xfs_scrub * sc,xfs_agnumber_t agno,xfs_agblock_t bno,int * error)118 xchk_process_error(
119 	struct xfs_scrub	*sc,
120 	xfs_agnumber_t		agno,
121 	xfs_agblock_t		bno,
122 	int			*error)
123 {
124 	return __xchk_process_error(sc, agno, bno, error,
125 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
126 }
127 
128 bool
xchk_process_rt_error(struct xfs_scrub * sc,xfs_rgnumber_t rgno,xfs_rgblock_t rgbno,int * error)129 xchk_process_rt_error(
130 	struct xfs_scrub	*sc,
131 	xfs_rgnumber_t		rgno,
132 	xfs_rgblock_t		rgbno,
133 	int			*error)
134 {
135 	return __xchk_process_error(sc, rgno, rgbno, error,
136 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
137 }
138 
139 bool
xchk_xref_process_error(struct xfs_scrub * sc,xfs_agnumber_t agno,xfs_agblock_t bno,int * error)140 xchk_xref_process_error(
141 	struct xfs_scrub	*sc,
142 	xfs_agnumber_t		agno,
143 	xfs_agblock_t		bno,
144 	int			*error)
145 {
146 	return __xchk_process_error(sc, agno, bno, error,
147 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
148 }
149 
150 /* Check for operational errors for a file offset. */
151 static bool
__xchk_fblock_process_error(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset,int * error,__u32 errflag,void * ret_ip)152 __xchk_fblock_process_error(
153 	struct xfs_scrub	*sc,
154 	int			whichfork,
155 	xfs_fileoff_t		offset,
156 	int			*error,
157 	__u32			errflag,
158 	void			*ret_ip)
159 {
160 	switch (*error) {
161 	case 0:
162 		return true;
163 	case -EDEADLOCK:
164 	case -ECHRNG:
165 		/* Used to restart an op with deadlock avoidance. */
166 		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
167 		break;
168 	case -ECANCELED:
169 		/*
170 		 * ECANCELED here means that the caller set one of the scrub
171 		 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
172 		 * quickly.  Set error to zero and do not continue.
173 		 */
174 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
175 				ret_ip);
176 		*error = 0;
177 		break;
178 	case -EFSBADCRC:
179 	case -EFSCORRUPTED:
180 		/* Note the badness but don't abort. */
181 		sc->sm->sm_flags |= errflag;
182 		*error = 0;
183 		fallthrough;
184 	default:
185 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
186 				ret_ip);
187 		break;
188 	}
189 	return false;
190 }
191 
192 bool
xchk_fblock_process_error(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset,int * error)193 xchk_fblock_process_error(
194 	struct xfs_scrub	*sc,
195 	int			whichfork,
196 	xfs_fileoff_t		offset,
197 	int			*error)
198 {
199 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
200 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
201 }
202 
203 bool
xchk_fblock_xref_process_error(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset,int * error)204 xchk_fblock_xref_process_error(
205 	struct xfs_scrub	*sc,
206 	int			whichfork,
207 	xfs_fileoff_t		offset,
208 	int			*error)
209 {
210 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
211 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
212 }
213 
214 /*
215  * Handling scrub corruption/optimization/warning checks.
216  *
217  * The *_set_{corrupt,preen,warning}() family of functions are used to
218  * record the presence of metadata that is incorrect (corrupt), could be
219  * optimized somehow (preen), or should be flagged for administrative
220  * review but is not incorrect (warn).
221  *
222  * ftrace can be used to record the precise metadata location and
223  * approximate code location of the failed check.
224  */
225 
226 /* Record a block which could be optimized. */
227 void
xchk_block_set_preen(struct xfs_scrub * sc,struct xfs_buf * bp)228 xchk_block_set_preen(
229 	struct xfs_scrub	*sc,
230 	struct xfs_buf		*bp)
231 {
232 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
233 	trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
234 }
235 
236 /*
237  * Record an inode which could be optimized.  The trace data will
238  * include the block given by bp if bp is given; otherwise it will use
239  * the block location of the inode record itself.
240  */
241 void
xchk_ino_set_preen(struct xfs_scrub * sc,xfs_ino_t ino)242 xchk_ino_set_preen(
243 	struct xfs_scrub	*sc,
244 	xfs_ino_t		ino)
245 {
246 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
247 	trace_xchk_ino_preen(sc, ino, __return_address);
248 }
249 
250 /* Record something being wrong with the filesystem primary superblock. */
251 void
xchk_set_corrupt(struct xfs_scrub * sc)252 xchk_set_corrupt(
253 	struct xfs_scrub	*sc)
254 {
255 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
256 	trace_xchk_fs_error(sc, 0, __return_address);
257 }
258 
259 /* Record a corrupt block. */
260 void
xchk_block_set_corrupt(struct xfs_scrub * sc,struct xfs_buf * bp)261 xchk_block_set_corrupt(
262 	struct xfs_scrub	*sc,
263 	struct xfs_buf		*bp)
264 {
265 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
266 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
267 }
268 
269 #ifdef CONFIG_XFS_QUOTA
270 /* Record a corrupt quota counter. */
271 void
xchk_qcheck_set_corrupt(struct xfs_scrub * sc,unsigned int dqtype,xfs_dqid_t id)272 xchk_qcheck_set_corrupt(
273 	struct xfs_scrub	*sc,
274 	unsigned int		dqtype,
275 	xfs_dqid_t		id)
276 {
277 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
278 	trace_xchk_qcheck_error(sc, dqtype, id, __return_address);
279 }
280 #endif
281 
282 /* Record a corruption while cross-referencing. */
283 void
xchk_block_xref_set_corrupt(struct xfs_scrub * sc,struct xfs_buf * bp)284 xchk_block_xref_set_corrupt(
285 	struct xfs_scrub	*sc,
286 	struct xfs_buf		*bp)
287 {
288 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
289 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
290 }
291 
292 /*
293  * Record a corrupt inode.  The trace data will include the block given
294  * by bp if bp is given; otherwise it will use the block location of the
295  * inode record itself.
296  */
297 void
xchk_ino_set_corrupt(struct xfs_scrub * sc,xfs_ino_t ino)298 xchk_ino_set_corrupt(
299 	struct xfs_scrub	*sc,
300 	xfs_ino_t		ino)
301 {
302 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
303 	trace_xchk_ino_error(sc, ino, __return_address);
304 }
305 
306 /* Record a corruption while cross-referencing with an inode. */
307 void
xchk_ino_xref_set_corrupt(struct xfs_scrub * sc,xfs_ino_t ino)308 xchk_ino_xref_set_corrupt(
309 	struct xfs_scrub	*sc,
310 	xfs_ino_t		ino)
311 {
312 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
313 	trace_xchk_ino_error(sc, ino, __return_address);
314 }
315 
316 /* Record corruption in a block indexed by a file fork. */
317 void
xchk_fblock_set_corrupt(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset)318 xchk_fblock_set_corrupt(
319 	struct xfs_scrub	*sc,
320 	int			whichfork,
321 	xfs_fileoff_t		offset)
322 {
323 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
324 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
325 }
326 
327 /* Record a corruption while cross-referencing a fork block. */
328 void
xchk_fblock_xref_set_corrupt(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset)329 xchk_fblock_xref_set_corrupt(
330 	struct xfs_scrub	*sc,
331 	int			whichfork,
332 	xfs_fileoff_t		offset)
333 {
334 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
335 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
336 }
337 
338 /*
339  * Warn about inodes that need administrative review but is not
340  * incorrect.
341  */
342 void
xchk_ino_set_warning(struct xfs_scrub * sc,xfs_ino_t ino)343 xchk_ino_set_warning(
344 	struct xfs_scrub	*sc,
345 	xfs_ino_t		ino)
346 {
347 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
348 	trace_xchk_ino_warning(sc, ino, __return_address);
349 }
350 
351 /* Warn about a block indexed by a file fork that needs review. */
352 void
xchk_fblock_set_warning(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset)353 xchk_fblock_set_warning(
354 	struct xfs_scrub	*sc,
355 	int			whichfork,
356 	xfs_fileoff_t		offset)
357 {
358 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
359 	trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
360 }
361 
362 /* Signal an incomplete scrub. */
363 void
xchk_set_incomplete(struct xfs_scrub * sc)364 xchk_set_incomplete(
365 	struct xfs_scrub	*sc)
366 {
367 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
368 	trace_xchk_incomplete(sc, __return_address);
369 }
370 
371 /*
372  * rmap scrubbing -- compute the number of blocks with a given owner,
373  * at least according to the reverse mapping data.
374  */
375 
376 struct xchk_rmap_ownedby_info {
377 	const struct xfs_owner_info	*oinfo;
378 	xfs_filblks_t			*blocks;
379 };
380 
381 STATIC int
xchk_count_rmap_ownedby_irec(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)382 xchk_count_rmap_ownedby_irec(
383 	struct xfs_btree_cur		*cur,
384 	const struct xfs_rmap_irec	*rec,
385 	void				*priv)
386 {
387 	struct xchk_rmap_ownedby_info	*sroi = priv;
388 	bool				irec_attr;
389 	bool				oinfo_attr;
390 
391 	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
392 	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
393 
394 	if (rec->rm_owner != sroi->oinfo->oi_owner)
395 		return 0;
396 
397 	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
398 		(*sroi->blocks) += rec->rm_blockcount;
399 
400 	return 0;
401 }
402 
403 /*
404  * Calculate the number of blocks the rmap thinks are owned by something.
405  * The caller should pass us an rmapbt cursor.
406  */
407 int
xchk_count_rmap_ownedby_ag(struct xfs_scrub * sc,struct xfs_btree_cur * cur,const struct xfs_owner_info * oinfo,xfs_filblks_t * blocks)408 xchk_count_rmap_ownedby_ag(
409 	struct xfs_scrub		*sc,
410 	struct xfs_btree_cur		*cur,
411 	const struct xfs_owner_info	*oinfo,
412 	xfs_filblks_t			*blocks)
413 {
414 	struct xchk_rmap_ownedby_info	sroi = {
415 		.oinfo			= oinfo,
416 		.blocks			= blocks,
417 	};
418 
419 	*blocks = 0;
420 	return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
421 			&sroi);
422 }
423 
424 /*
425  * AG scrubbing
426  *
427  * These helpers facilitate locking an allocation group's header
428  * buffers, setting up cursors for all btrees that are present, and
429  * cleaning everything up once we're through.
430  */
431 
432 /* Decide if we want to return an AG header read failure. */
433 static inline bool
want_ag_read_header_failure(struct xfs_scrub * sc,unsigned int type)434 want_ag_read_header_failure(
435 	struct xfs_scrub	*sc,
436 	unsigned int		type)
437 {
438 	/* Return all AG header read failures when scanning btrees. */
439 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
440 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
441 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
442 		return true;
443 	/*
444 	 * If we're scanning a given type of AG header, we only want to
445 	 * see read failures from that specific header.  We'd like the
446 	 * other headers to cross-check them, but this isn't required.
447 	 */
448 	if (sc->sm->sm_type == type)
449 		return true;
450 	return false;
451 }
452 
453 /*
454  * Grab the AG header buffers for the attached perag structure.
455  *
456  * The headers should be released by xchk_ag_free, but as a fail safe we attach
457  * all the buffers we grab to the scrub transaction so they'll all be freed
458  * when we cancel it.
459  */
460 static inline int
xchk_perag_read_headers(struct xfs_scrub * sc,struct xchk_ag * sa)461 xchk_perag_read_headers(
462 	struct xfs_scrub	*sc,
463 	struct xchk_ag		*sa)
464 {
465 	int			error;
466 
467 	error = xfs_ialloc_read_agi(sa->pag, sc->tp, 0, &sa->agi_bp);
468 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
469 		return error;
470 
471 	error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
472 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
473 		return error;
474 
475 	return 0;
476 }
477 
478 /*
479  * Grab the AG headers for the attached perag structure and wait for pending
480  * intents to drain.
481  */
482 int
xchk_perag_drain_and_lock(struct xfs_scrub * sc)483 xchk_perag_drain_and_lock(
484 	struct xfs_scrub	*sc)
485 {
486 	struct xchk_ag		*sa = &sc->sa;
487 	int			error = 0;
488 
489 	ASSERT(sa->pag != NULL);
490 	ASSERT(sa->agi_bp == NULL);
491 	ASSERT(sa->agf_bp == NULL);
492 
493 	do {
494 		if (xchk_should_terminate(sc, &error))
495 			return error;
496 
497 		error = xchk_perag_read_headers(sc, sa);
498 		if (error)
499 			return error;
500 
501 		/*
502 		 * If we've grabbed an inode for scrubbing then we assume that
503 		 * holding its ILOCK will suffice to coordinate with any intent
504 		 * chains involving this inode.
505 		 */
506 		if (sc->ip)
507 			return 0;
508 
509 		/*
510 		 * Decide if this AG is quiet enough for all metadata to be
511 		 * consistent with each other.  XFS allows the AG header buffer
512 		 * locks to cycle across transaction rolls while processing
513 		 * chains of deferred ops, which means that there could be
514 		 * other threads in the middle of processing a chain of
515 		 * deferred ops.  For regular operations we are careful about
516 		 * ordering operations to prevent collisions between threads
517 		 * (which is why we don't need a per-AG lock), but scrub and
518 		 * repair have to serialize against chained operations.
519 		 *
520 		 * We just locked all the AG headers buffers; now take a look
521 		 * to see if there are any intents in progress.  If there are,
522 		 * drop the AG headers and wait for the intents to drain.
523 		 * Since we hold all the AG header locks for the duration of
524 		 * the scrub, this is the only time we have to sample the
525 		 * intents counter; any threads increasing it after this point
526 		 * can't possibly be in the middle of a chain of AG metadata
527 		 * updates.
528 		 *
529 		 * Obviously, this should be slanted against scrub and in favor
530 		 * of runtime threads.
531 		 */
532 		if (!xfs_group_intent_busy(pag_group(sa->pag)))
533 			return 0;
534 
535 		if (sa->agf_bp) {
536 			xfs_trans_brelse(sc->tp, sa->agf_bp);
537 			sa->agf_bp = NULL;
538 		}
539 
540 		if (sa->agi_bp) {
541 			xfs_trans_brelse(sc->tp, sa->agi_bp);
542 			sa->agi_bp = NULL;
543 		}
544 
545 		if (!(sc->flags & XCHK_FSGATES_DRAIN))
546 			return -ECHRNG;
547 		error = xfs_group_intent_drain(pag_group(sa->pag));
548 		if (error == -ERESTARTSYS)
549 			error = -EINTR;
550 	} while (!error);
551 
552 	return error;
553 }
554 
555 /*
556  * Grab the per-AG structure, grab all AG header buffers, and wait until there
557  * aren't any pending intents.  Returns -ENOENT if we can't grab the perag
558  * structure.
559  */
560 int
xchk_ag_read_headers(struct xfs_scrub * sc,xfs_agnumber_t agno,struct xchk_ag * sa)561 xchk_ag_read_headers(
562 	struct xfs_scrub	*sc,
563 	xfs_agnumber_t		agno,
564 	struct xchk_ag		*sa)
565 {
566 	struct xfs_mount	*mp = sc->mp;
567 
568 	ASSERT(!sa->pag);
569 	sa->pag = xfs_perag_get(mp, agno);
570 	if (!sa->pag)
571 		return -ENOENT;
572 
573 	return xchk_perag_drain_and_lock(sc);
574 }
575 
576 /* Release all the AG btree cursors. */
577 void
xchk_ag_btcur_free(struct xchk_ag * sa)578 xchk_ag_btcur_free(
579 	struct xchk_ag		*sa)
580 {
581 	if (sa->refc_cur)
582 		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
583 	if (sa->rmap_cur)
584 		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
585 	if (sa->fino_cur)
586 		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
587 	if (sa->ino_cur)
588 		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
589 	if (sa->cnt_cur)
590 		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
591 	if (sa->bno_cur)
592 		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
593 
594 	sa->refc_cur = NULL;
595 	sa->rmap_cur = NULL;
596 	sa->fino_cur = NULL;
597 	sa->ino_cur = NULL;
598 	sa->bno_cur = NULL;
599 	sa->cnt_cur = NULL;
600 }
601 
602 /* Initialize all the btree cursors for an AG. */
603 void
xchk_ag_btcur_init(struct xfs_scrub * sc,struct xchk_ag * sa)604 xchk_ag_btcur_init(
605 	struct xfs_scrub	*sc,
606 	struct xchk_ag		*sa)
607 {
608 	struct xfs_mount	*mp = sc->mp;
609 
610 	if (sa->agf_bp) {
611 		/* Set up a bnobt cursor for cross-referencing. */
612 		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
613 				sa->pag);
614 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur,
615 				XFS_SCRUB_TYPE_BNOBT);
616 
617 		/* Set up a cntbt cursor for cross-referencing. */
618 		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
619 				sa->pag);
620 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur,
621 				XFS_SCRUB_TYPE_CNTBT);
622 
623 		/* Set up a rmapbt cursor for cross-referencing. */
624 		if (xfs_has_rmapbt(mp)) {
625 			sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp,
626 					sa->agf_bp, sa->pag);
627 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur,
628 					XFS_SCRUB_TYPE_RMAPBT);
629 		}
630 
631 		/* Set up a refcountbt cursor for cross-referencing. */
632 		if (xfs_has_reflink(mp)) {
633 			sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
634 					sa->agf_bp, sa->pag);
635 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur,
636 					XFS_SCRUB_TYPE_REFCNTBT);
637 		}
638 	}
639 
640 	if (sa->agi_bp) {
641 		/* Set up a inobt cursor for cross-referencing. */
642 		sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp,
643 				sa->agi_bp);
644 		xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur,
645 				XFS_SCRUB_TYPE_INOBT);
646 
647 		/* Set up a finobt cursor for cross-referencing. */
648 		if (xfs_has_finobt(mp)) {
649 			sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp,
650 					sa->agi_bp);
651 			xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur,
652 					XFS_SCRUB_TYPE_FINOBT);
653 		}
654 	}
655 }
656 
657 /* Release the AG header context and btree cursors. */
658 void
xchk_ag_free(struct xfs_scrub * sc,struct xchk_ag * sa)659 xchk_ag_free(
660 	struct xfs_scrub	*sc,
661 	struct xchk_ag		*sa)
662 {
663 	xchk_ag_btcur_free(sa);
664 	xrep_reset_perag_resv(sc);
665 	if (sa->agf_bp) {
666 		xfs_trans_brelse(sc->tp, sa->agf_bp);
667 		sa->agf_bp = NULL;
668 	}
669 	if (sa->agi_bp) {
670 		xfs_trans_brelse(sc->tp, sa->agi_bp);
671 		sa->agi_bp = NULL;
672 	}
673 	if (sa->pag) {
674 		xfs_perag_put(sa->pag);
675 		sa->pag = NULL;
676 	}
677 }
678 
679 /*
680  * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
681  * order.  Locking order requires us to get the AGI before the AGF.  We use the
682  * transaction to avoid deadlocking on crosslinked metadata buffers; either the
683  * caller passes one in (bmap scrub) or we have to create a transaction
684  * ourselves.  Returns ENOENT if the perag struct cannot be grabbed.
685  */
686 int
xchk_ag_init(struct xfs_scrub * sc,xfs_agnumber_t agno,struct xchk_ag * sa)687 xchk_ag_init(
688 	struct xfs_scrub	*sc,
689 	xfs_agnumber_t		agno,
690 	struct xchk_ag		*sa)
691 {
692 	int			error;
693 
694 	error = xchk_ag_read_headers(sc, agno, sa);
695 	if (error)
696 		return error;
697 
698 	xchk_ag_btcur_init(sc, sa);
699 	return 0;
700 }
701 
702 #ifdef CONFIG_XFS_RT
703 /*
704  * For scrubbing a realtime group, grab all the in-core resources we'll need to
705  * check the metadata, which means taking the ILOCK of the realtime group's
706  * metadata inodes.  Callers must not join these inodes to the transaction with
707  * non-zero lockflags or concurrency problems will result.  The @rtglock_flags
708  * argument takes XFS_RTGLOCK_* flags.
709  */
710 int
xchk_rtgroup_init(struct xfs_scrub * sc,xfs_rgnumber_t rgno,struct xchk_rt * sr)711 xchk_rtgroup_init(
712 	struct xfs_scrub	*sc,
713 	xfs_rgnumber_t		rgno,
714 	struct xchk_rt		*sr)
715 {
716 	ASSERT(sr->rtg == NULL);
717 	ASSERT(sr->rtlock_flags == 0);
718 
719 	sr->rtg = xfs_rtgroup_get(sc->mp, rgno);
720 	if (!sr->rtg)
721 		return -ENOENT;
722 	return 0;
723 }
724 
725 /* Lock all the rt group metadata inode ILOCKs and wait for intents. */
726 int
xchk_rtgroup_lock(struct xfs_scrub * sc,struct xchk_rt * sr,unsigned int rtglock_flags)727 xchk_rtgroup_lock(
728 	struct xfs_scrub	*sc,
729 	struct xchk_rt		*sr,
730 	unsigned int		rtglock_flags)
731 {
732 	int			error = 0;
733 
734 	ASSERT(sr->rtg != NULL);
735 
736 	/*
737 	 * If we're /only/ locking the rtbitmap in shared mode, then we're
738 	 * obviously not trying to compare records in two metadata inodes.
739 	 * There's no need to drain intents here because the caller (most
740 	 * likely the rgsuper scanner) doesn't need that level of consistency.
741 	 */
742 	if (rtglock_flags == XFS_RTGLOCK_BITMAP_SHARED) {
743 		xfs_rtgroup_lock(sr->rtg, rtglock_flags);
744 		sr->rtlock_flags = rtglock_flags;
745 		return 0;
746 	}
747 
748 	do {
749 		if (xchk_should_terminate(sc, &error))
750 			return error;
751 
752 		xfs_rtgroup_lock(sr->rtg, rtglock_flags);
753 
754 		/*
755 		 * If we've grabbed a non-metadata file for scrubbing, we
756 		 * assume that holding its ILOCK will suffice to coordinate
757 		 * with any rt intent chains involving this inode.
758 		 */
759 		if (sc->ip && !xfs_is_internal_inode(sc->ip))
760 			break;
761 
762 		/*
763 		 * Decide if the rt group is quiet enough for all metadata to
764 		 * be consistent with each other.  Regular file IO doesn't get
765 		 * to lock all the rt inodes at the same time, which means that
766 		 * there could be other threads in the middle of processing a
767 		 * chain of deferred ops.
768 		 *
769 		 * We just locked all the metadata inodes for this rt group;
770 		 * now take a look to see if there are any intents in progress.
771 		 * If there are, drop the rt group inode locks and wait for the
772 		 * intents to drain.  Since we hold the rt group inode locks
773 		 * for the duration of the scrub, this is the only time we have
774 		 * to sample the intents counter; any threads increasing it
775 		 * after this point can't possibly be in the middle of a chain
776 		 * of rt metadata updates.
777 		 *
778 		 * Obviously, this should be slanted against scrub and in favor
779 		 * of runtime threads.
780 		 */
781 		if (!xfs_group_intent_busy(rtg_group(sr->rtg)))
782 			break;
783 
784 		xfs_rtgroup_unlock(sr->rtg, rtglock_flags);
785 
786 		if (!(sc->flags & XCHK_FSGATES_DRAIN))
787 			return -ECHRNG;
788 		error = xfs_group_intent_drain(rtg_group(sr->rtg));
789 		if (error) {
790 			if (error == -ERESTARTSYS)
791 				error = -EINTR;
792 			return error;
793 		}
794 	} while (1);
795 
796 	sr->rtlock_flags = rtglock_flags;
797 
798 	if (xfs_has_rtrmapbt(sc->mp) && (rtglock_flags & XFS_RTGLOCK_RMAP))
799 		sr->rmap_cur = xfs_rtrmapbt_init_cursor(sc->tp, sr->rtg);
800 
801 	if (xfs_has_rtreflink(sc->mp) && (rtglock_flags & XFS_RTGLOCK_REFCOUNT))
802 		sr->refc_cur = xfs_rtrefcountbt_init_cursor(sc->tp, sr->rtg);
803 
804 	return 0;
805 }
806 
807 /*
808  * Free all the btree cursors and other incore data relating to the realtime
809  * group.  This has to be done /before/ committing (or cancelling) the scrub
810  * transaction.
811  */
812 void
xchk_rtgroup_btcur_free(struct xchk_rt * sr)813 xchk_rtgroup_btcur_free(
814 	struct xchk_rt		*sr)
815 {
816 	if (sr->rmap_cur)
817 		xfs_btree_del_cursor(sr->rmap_cur, XFS_BTREE_ERROR);
818 	if (sr->refc_cur)
819 		xfs_btree_del_cursor(sr->refc_cur, XFS_BTREE_ERROR);
820 
821 	sr->refc_cur = NULL;
822 	sr->rmap_cur = NULL;
823 }
824 
825 /*
826  * Unlock the realtime group.  This must be done /after/ committing (or
827  * cancelling) the scrub transaction.
828  */
829 void
xchk_rtgroup_unlock(struct xchk_rt * sr)830 xchk_rtgroup_unlock(
831 	struct xchk_rt		*sr)
832 {
833 	ASSERT(sr->rtg != NULL);
834 
835 	if (sr->rtlock_flags) {
836 		xfs_rtgroup_unlock(sr->rtg, sr->rtlock_flags);
837 		sr->rtlock_flags = 0;
838 	}
839 }
840 
841 /*
842  * Unlock the realtime group and release its resources.  This must be done
843  * /after/ committing (or cancelling) the scrub transaction.
844  */
845 void
xchk_rtgroup_free(struct xfs_scrub * sc,struct xchk_rt * sr)846 xchk_rtgroup_free(
847 	struct xfs_scrub	*sc,
848 	struct xchk_rt		*sr)
849 {
850 	ASSERT(sr->rtg != NULL);
851 
852 	xchk_rtgroup_unlock(sr);
853 
854 	xfs_rtgroup_put(sr->rtg);
855 	sr->rtg = NULL;
856 }
857 #endif /* CONFIG_XFS_RT */
858 
859 /* Per-scrubber setup functions */
860 
861 void
xchk_trans_cancel(struct xfs_scrub * sc)862 xchk_trans_cancel(
863 	struct xfs_scrub	*sc)
864 {
865 	xfs_trans_cancel(sc->tp);
866 	sc->tp = NULL;
867 }
868 
869 void
xchk_trans_alloc_empty(struct xfs_scrub * sc)870 xchk_trans_alloc_empty(
871 	struct xfs_scrub	*sc)
872 {
873 	sc->tp = xfs_trans_alloc_empty(sc->mp);
874 }
875 
876 /*
877  * Grab an empty transaction so that we can re-grab locked buffers if
878  * one of our btrees turns out to be cyclic.
879  *
880  * If we're going to repair something, we need to ask for the largest possible
881  * log reservation so that we can handle the worst case scenario for metadata
882  * updates while rebuilding a metadata item.  We also need to reserve as many
883  * blocks in the head transaction as we think we're going to need to rebuild
884  * the metadata object.
885  */
886 int
xchk_trans_alloc(struct xfs_scrub * sc,uint resblks)887 xchk_trans_alloc(
888 	struct xfs_scrub	*sc,
889 	uint			resblks)
890 {
891 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
892 		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
893 				resblks, 0, 0, &sc->tp);
894 
895 	xchk_trans_alloc_empty(sc);
896 	return 0;
897 }
898 
899 /* Set us up with a transaction and an empty context. */
900 int
xchk_setup_fs(struct xfs_scrub * sc)901 xchk_setup_fs(
902 	struct xfs_scrub	*sc)
903 {
904 	uint			resblks;
905 
906 	resblks = xrep_calc_ag_resblks(sc);
907 	return xchk_trans_alloc(sc, resblks);
908 }
909 
910 /* Set us up with a transaction and an empty context to repair rt metadata. */
911 int
xchk_setup_rt(struct xfs_scrub * sc)912 xchk_setup_rt(
913 	struct xfs_scrub	*sc)
914 {
915 	return xchk_trans_alloc(sc, xrep_calc_rtgroup_resblks(sc));
916 }
917 
918 /* Set us up with AG headers and btree cursors. */
919 int
xchk_setup_ag_btree(struct xfs_scrub * sc,bool force_log)920 xchk_setup_ag_btree(
921 	struct xfs_scrub	*sc,
922 	bool			force_log)
923 {
924 	struct xfs_mount	*mp = sc->mp;
925 	int			error;
926 
927 	/*
928 	 * If the caller asks us to checkpont the log, do so.  This
929 	 * expensive operation should be performed infrequently and only
930 	 * as a last resort.  Any caller that sets force_log should
931 	 * document why they need to do so.
932 	 */
933 	if (force_log) {
934 		error = xchk_checkpoint_log(mp);
935 		if (error)
936 			return error;
937 	}
938 
939 	error = xchk_setup_fs(sc);
940 	if (error)
941 		return error;
942 
943 	return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
944 }
945 
946 /* Push everything out of the log onto disk. */
947 int
xchk_checkpoint_log(struct xfs_mount * mp)948 xchk_checkpoint_log(
949 	struct xfs_mount	*mp)
950 {
951 	int			error;
952 
953 	error = xfs_log_force(mp, XFS_LOG_SYNC);
954 	if (error)
955 		return error;
956 	xfs_ail_push_all_sync(mp->m_ail);
957 	return 0;
958 }
959 
960 /* Verify that an inode is allocated ondisk, then return its cached inode. */
961 int
xchk_iget(struct xfs_scrub * sc,xfs_ino_t inum,struct xfs_inode ** ipp)962 xchk_iget(
963 	struct xfs_scrub	*sc,
964 	xfs_ino_t		inum,
965 	struct xfs_inode	**ipp)
966 {
967 	ASSERT(sc->tp != NULL);
968 
969 	return xfs_iget(sc->mp, sc->tp, inum, XCHK_IGET_FLAGS, 0, ipp);
970 }
971 
972 /*
973  * Try to grab an inode in a manner that avoids races with physical inode
974  * allocation.  If we can't, return the locked AGI buffer so that the caller
975  * can single-step the loading process to see where things went wrong.
976  * Callers must have a valid scrub transaction.
977  *
978  * If the iget succeeds, return 0, a NULL AGI, and the inode.
979  *
980  * If the iget fails, return the error, the locked AGI, and a NULL inode.  This
981  * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
982  * no longer allocated; or any other corruption or runtime error.
983  *
984  * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
985  *
986  * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
987  */
988 int
xchk_iget_agi(struct xfs_scrub * sc,xfs_ino_t inum,struct xfs_buf ** agi_bpp,struct xfs_inode ** ipp)989 xchk_iget_agi(
990 	struct xfs_scrub	*sc,
991 	xfs_ino_t		inum,
992 	struct xfs_buf		**agi_bpp,
993 	struct xfs_inode	**ipp)
994 {
995 	struct xfs_mount	*mp = sc->mp;
996 	struct xfs_trans	*tp = sc->tp;
997 	struct xfs_perag	*pag;
998 	int			error;
999 
1000 	ASSERT(sc->tp != NULL);
1001 
1002 again:
1003 	*agi_bpp = NULL;
1004 	*ipp = NULL;
1005 	error = 0;
1006 
1007 	if (xchk_should_terminate(sc, &error))
1008 		return error;
1009 
1010 	/*
1011 	 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
1012 	 * in the iget cache miss path.
1013 	 */
1014 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1015 	error = xfs_ialloc_read_agi(pag, tp, 0, agi_bpp);
1016 	xfs_perag_put(pag);
1017 	if (error)
1018 		return error;
1019 
1020 	error = xfs_iget(mp, tp, inum, XFS_IGET_NORETRY | XCHK_IGET_FLAGS, 0,
1021 			ipp);
1022 	if (error == -EAGAIN) {
1023 		/*
1024 		 * The inode may be in core but temporarily unavailable and may
1025 		 * require the AGI buffer before it can be returned.  Drop the
1026 		 * AGI buffer and retry the lookup.
1027 		 *
1028 		 * Incore lookup will fail with EAGAIN on a cache hit if the
1029 		 * inode is queued to the inactivation list.  The inactivation
1030 		 * worker may remove the inode from the unlinked list and hence
1031 		 * needs the AGI.
1032 		 *
1033 		 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
1034 		 * to allow inodegc to make progress and move the inode to
1035 		 * IRECLAIMABLE state where xfs_iget will be able to return it
1036 		 * again if it can lock the inode.
1037 		 */
1038 		xfs_trans_brelse(tp, *agi_bpp);
1039 		delay(1);
1040 		goto again;
1041 	}
1042 	if (error)
1043 		return error;
1044 
1045 	/* We got the inode, so we can release the AGI. */
1046 	ASSERT(*ipp != NULL);
1047 	xfs_trans_brelse(tp, *agi_bpp);
1048 	*agi_bpp = NULL;
1049 	return 0;
1050 }
1051 
1052 #ifdef CONFIG_XFS_QUOTA
1053 /*
1054  * Try to attach dquots to this inode if we think we might want to repair it.
1055  * Callers must not hold any ILOCKs.  If the dquots are broken and cannot be
1056  * attached, a quotacheck will be scheduled.
1057  */
1058 int
xchk_ino_dqattach(struct xfs_scrub * sc)1059 xchk_ino_dqattach(
1060 	struct xfs_scrub	*sc)
1061 {
1062 	ASSERT(sc->tp != NULL);
1063 	ASSERT(sc->ip != NULL);
1064 
1065 	if (!xchk_could_repair(sc))
1066 		return 0;
1067 
1068 	return xrep_ino_dqattach(sc);
1069 }
1070 #endif
1071 
1072 /* Install an inode that we opened by handle for scrubbing. */
1073 int
xchk_install_handle_inode(struct xfs_scrub * sc,struct xfs_inode * ip)1074 xchk_install_handle_inode(
1075 	struct xfs_scrub	*sc,
1076 	struct xfs_inode	*ip)
1077 {
1078 	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
1079 		xchk_irele(sc, ip);
1080 		return -ENOENT;
1081 	}
1082 
1083 	sc->ip = ip;
1084 	return 0;
1085 }
1086 
1087 /*
1088  * Install an already-referenced inode for scrubbing.  Get our own reference to
1089  * the inode to make disposal simpler.  The inode must not be in I_FREEING or
1090  * I_WILL_FREE state!
1091  */
1092 int
xchk_install_live_inode(struct xfs_scrub * sc,struct xfs_inode * ip)1093 xchk_install_live_inode(
1094 	struct xfs_scrub	*sc,
1095 	struct xfs_inode	*ip)
1096 {
1097 	if (!igrab(VFS_I(ip))) {
1098 		xchk_ino_set_corrupt(sc, ip->i_ino);
1099 		return -EFSCORRUPTED;
1100 	}
1101 
1102 	sc->ip = ip;
1103 	return 0;
1104 }
1105 
1106 /*
1107  * In preparation to scrub metadata structures that hang off of an inode,
1108  * grab either the inode referenced in the scrub control structure or the
1109  * inode passed in.  If the inumber does not reference an allocated inode
1110  * record, the function returns ENOENT to end the scrub early.  The inode
1111  * is not locked.
1112  */
1113 int
xchk_iget_for_scrubbing(struct xfs_scrub * sc)1114 xchk_iget_for_scrubbing(
1115 	struct xfs_scrub	*sc)
1116 {
1117 	struct xfs_imap		imap;
1118 	struct xfs_mount	*mp = sc->mp;
1119 	struct xfs_perag	*pag;
1120 	struct xfs_buf		*agi_bp;
1121 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
1122 	struct xfs_inode	*ip = NULL;
1123 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
1124 	int			error;
1125 
1126 	ASSERT(sc->tp == NULL);
1127 
1128 	/* We want to scan the inode we already had opened. */
1129 	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
1130 		return xchk_install_live_inode(sc, ip_in);
1131 
1132 	/*
1133 	 * On pre-metadir filesystems, reject internal metadata files.  For
1134 	 * metadir filesystems, limited scrubbing of any file in the metadata
1135 	 * directory tree by handle is allowed, because that is the only way to
1136 	 * validate the lack of parent pointers in the sb-root metadata inodes.
1137 	 */
1138 	if (!xfs_has_metadir(mp) && xfs_is_sb_inum(mp, sc->sm->sm_ino))
1139 		return -ENOENT;
1140 	/* Reject obviously bad inode numbers. */
1141 	if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
1142 		return -ENOENT;
1143 
1144 	/* Try a safe untrusted iget. */
1145 	error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
1146 	if (!error)
1147 		return xchk_install_handle_inode(sc, ip);
1148 	if (error == -ENOENT)
1149 		return error;
1150 	if (error != -EINVAL)
1151 		goto out_error;
1152 
1153 	/*
1154 	 * EINVAL with IGET_UNTRUSTED probably means one of several things:
1155 	 * userspace gave us an inode number that doesn't correspond to fs
1156 	 * space; the inode btree lacks a record for this inode; or there is a
1157 	 * record, and it says this inode is free.
1158 	 *
1159 	 * We want to look up this inode in the inobt to distinguish two
1160 	 * scenarios: (1) the inobt says the inode is free, in which case
1161 	 * there's nothing to do; and (2) the inobt says the inode is
1162 	 * allocated, but loading it failed due to corruption.
1163 	 *
1164 	 * Allocate a transaction and grab the AGI to prevent inobt activity
1165 	 * in this AG.  Retry the iget in case someone allocated a new inode
1166 	 * after the first iget failed.
1167 	 */
1168 	error = xchk_trans_alloc(sc, 0);
1169 	if (error)
1170 		goto out_error;
1171 
1172 	error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
1173 	if (error == 0) {
1174 		/* Actually got the inode, so install it. */
1175 		xchk_trans_cancel(sc);
1176 		return xchk_install_handle_inode(sc, ip);
1177 	}
1178 	if (error == -ENOENT)
1179 		goto out_gone;
1180 	if (error != -EINVAL)
1181 		goto out_cancel;
1182 
1183 	/* Ensure that we have protected against inode allocation/freeing. */
1184 	if (agi_bp == NULL) {
1185 		ASSERT(agi_bp != NULL);
1186 		error = -ECANCELED;
1187 		goto out_cancel;
1188 	}
1189 
1190 	/*
1191 	 * Untrusted iget failed a second time.  Let's try an inobt lookup.
1192 	 * If the inobt thinks this the inode neither can exist inside the
1193 	 * filesystem nor is allocated, return ENOENT to signal that the check
1194 	 * can be skipped.
1195 	 *
1196 	 * If the lookup returns corruption, we'll mark this inode corrupt and
1197 	 * exit to userspace.  There's little chance of fixing anything until
1198 	 * the inobt is straightened out, but there's nothing we can do here.
1199 	 *
1200 	 * If the lookup encounters any other error, exit to userspace.
1201 	 *
1202 	 * If the lookup succeeds, something else must be very wrong in the fs
1203 	 * such that setting up the incore inode failed in some strange way.
1204 	 * Treat those as corruptions.
1205 	 */
1206 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
1207 	if (!pag) {
1208 		error = -EFSCORRUPTED;
1209 		goto out_cancel;
1210 	}
1211 
1212 	error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
1213 			XFS_IGET_UNTRUSTED);
1214 	xfs_perag_put(pag);
1215 	if (error == -EINVAL || error == -ENOENT)
1216 		goto out_gone;
1217 	if (!error)
1218 		error = -EFSCORRUPTED;
1219 
1220 out_cancel:
1221 	xchk_trans_cancel(sc);
1222 out_error:
1223 	trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
1224 			error, __return_address);
1225 	return error;
1226 out_gone:
1227 	/* The file is gone, so there's nothing to check. */
1228 	xchk_trans_cancel(sc);
1229 	return -ENOENT;
1230 }
1231 
1232 /* Release an inode, possibly dropping it in the process. */
1233 void
xchk_irele(struct xfs_scrub * sc,struct xfs_inode * ip)1234 xchk_irele(
1235 	struct xfs_scrub	*sc,
1236 	struct xfs_inode	*ip)
1237 {
1238 	if (sc->tp) {
1239 		/*
1240 		 * If we are in a transaction, we /cannot/ drop the inode
1241 		 * ourselves, because the VFS will trigger writeback, which
1242 		 * can require a transaction.  Clear DONTCACHE to force the
1243 		 * inode to the LRU, where someone else can take care of
1244 		 * dropping it.
1245 		 *
1246 		 * Note that when we grabbed our reference to the inode, it
1247 		 * could have had an active ref and DONTCACHE set if a sysadmin
1248 		 * is trying to coerce a change in file access mode.  icache
1249 		 * hits do not clear DONTCACHE, so we must do it here.
1250 		 */
1251 		spin_lock(&VFS_I(ip)->i_lock);
1252 		VFS_I(ip)->i_state &= ~I_DONTCACHE;
1253 		spin_unlock(&VFS_I(ip)->i_lock);
1254 	}
1255 
1256 	xfs_irele(ip);
1257 }
1258 
1259 /*
1260  * Set us up to scrub metadata mapped by a file's fork.  Callers must not use
1261  * this to operate on user-accessible regular file data because the MMAPLOCK is
1262  * not taken.
1263  */
1264 int
xchk_setup_inode_contents(struct xfs_scrub * sc,unsigned int resblks)1265 xchk_setup_inode_contents(
1266 	struct xfs_scrub	*sc,
1267 	unsigned int		resblks)
1268 {
1269 	int			error;
1270 
1271 	error = xchk_iget_for_scrubbing(sc);
1272 	if (error)
1273 		return error;
1274 
1275 	error = xrep_tempfile_adjust_directory_tree(sc);
1276 	if (error)
1277 		return error;
1278 
1279 	/* Lock the inode so the VFS cannot touch this file. */
1280 	xchk_ilock(sc, XFS_IOLOCK_EXCL);
1281 
1282 	error = xchk_trans_alloc(sc, resblks);
1283 	if (error)
1284 		goto out;
1285 
1286 	error = xchk_ino_dqattach(sc);
1287 	if (error)
1288 		goto out;
1289 
1290 	xchk_ilock(sc, XFS_ILOCK_EXCL);
1291 out:
1292 	/* scrub teardown will unlock and release the inode for us */
1293 	return error;
1294 }
1295 
1296 void
xchk_ilock(struct xfs_scrub * sc,unsigned int ilock_flags)1297 xchk_ilock(
1298 	struct xfs_scrub	*sc,
1299 	unsigned int		ilock_flags)
1300 {
1301 	xfs_ilock(sc->ip, ilock_flags);
1302 	sc->ilock_flags |= ilock_flags;
1303 }
1304 
1305 bool
xchk_ilock_nowait(struct xfs_scrub * sc,unsigned int ilock_flags)1306 xchk_ilock_nowait(
1307 	struct xfs_scrub	*sc,
1308 	unsigned int		ilock_flags)
1309 {
1310 	if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1311 		sc->ilock_flags |= ilock_flags;
1312 		return true;
1313 	}
1314 
1315 	return false;
1316 }
1317 
1318 void
xchk_iunlock(struct xfs_scrub * sc,unsigned int ilock_flags)1319 xchk_iunlock(
1320 	struct xfs_scrub	*sc,
1321 	unsigned int		ilock_flags)
1322 {
1323 	sc->ilock_flags &= ~ilock_flags;
1324 	xfs_iunlock(sc->ip, ilock_flags);
1325 }
1326 
1327 /*
1328  * Predicate that decides if we need to evaluate the cross-reference check.
1329  * If there was an error accessing the cross-reference btree, just delete
1330  * the cursor and skip the check.
1331  */
1332 bool
xchk_should_check_xref(struct xfs_scrub * sc,int * error,struct xfs_btree_cur ** curpp)1333 xchk_should_check_xref(
1334 	struct xfs_scrub	*sc,
1335 	int			*error,
1336 	struct xfs_btree_cur	**curpp)
1337 {
1338 	/* No point in xref if we already know we're corrupt. */
1339 	if (xchk_skip_xref(sc->sm))
1340 		return false;
1341 
1342 	if (*error == 0)
1343 		return true;
1344 
1345 	if (curpp) {
1346 		/* If we've already given up on xref, just bail out. */
1347 		if (!*curpp)
1348 			return false;
1349 
1350 		/* xref error, delete cursor and bail out. */
1351 		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1352 		*curpp = NULL;
1353 	}
1354 
1355 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1356 	trace_xchk_xref_error(sc, *error, __return_address);
1357 
1358 	/*
1359 	 * Errors encountered during cross-referencing with another
1360 	 * data structure should not cause this scrubber to abort.
1361 	 */
1362 	*error = 0;
1363 	return false;
1364 }
1365 
1366 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
1367 void
xchk_buffer_recheck(struct xfs_scrub * sc,struct xfs_buf * bp)1368 xchk_buffer_recheck(
1369 	struct xfs_scrub	*sc,
1370 	struct xfs_buf		*bp)
1371 {
1372 	xfs_failaddr_t		fa;
1373 
1374 	if (bp->b_ops == NULL) {
1375 		xchk_block_set_corrupt(sc, bp);
1376 		return;
1377 	}
1378 	if (bp->b_ops->verify_struct == NULL) {
1379 		xchk_set_incomplete(sc);
1380 		return;
1381 	}
1382 	fa = bp->b_ops->verify_struct(bp);
1383 	if (!fa)
1384 		return;
1385 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1386 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1387 }
1388 
1389 static inline int
xchk_metadata_inode_subtype(struct xfs_scrub * sc,unsigned int scrub_type)1390 xchk_metadata_inode_subtype(
1391 	struct xfs_scrub	*sc,
1392 	unsigned int		scrub_type)
1393 {
1394 	struct xfs_scrub_subord	*sub;
1395 	int			error;
1396 
1397 	sub = xchk_scrub_create_subord(sc, scrub_type);
1398 	error = sub->sc.ops->scrub(&sub->sc);
1399 	xchk_scrub_free_subord(sub);
1400 	return error;
1401 }
1402 
1403 /*
1404  * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
1405  * pointed to by sc->ip and the ILOCK must be held.
1406  */
1407 int
xchk_metadata_inode_forks(struct xfs_scrub * sc)1408 xchk_metadata_inode_forks(
1409 	struct xfs_scrub	*sc)
1410 {
1411 	bool			shared;
1412 	int			error;
1413 
1414 	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1415 		return 0;
1416 
1417 	/* Check the inode record. */
1418 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1419 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1420 		return error;
1421 
1422 	/* Metadata inodes don't live on the rt device. */
1423 	if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1424 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1425 		return 0;
1426 	}
1427 
1428 	/* They should never participate in reflink. */
1429 	if (xfs_is_reflink_inode(sc->ip)) {
1430 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1431 		return 0;
1432 	}
1433 
1434 	/* Invoke the data fork scrubber. */
1435 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1436 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1437 		return error;
1438 
1439 	/* Look for incorrect shared blocks. */
1440 	if (xfs_has_reflink(sc->mp)) {
1441 		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1442 				&shared);
1443 		if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1444 				&error))
1445 			return error;
1446 		if (shared)
1447 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1448 	}
1449 
1450 	/*
1451 	 * Metadata files can only have extended attributes on metadir
1452 	 * filesystems, either for parent pointers or for actual xattr data.
1453 	 */
1454 	if (xfs_inode_hasattr(sc->ip)) {
1455 		if (!xfs_has_metadir(sc->mp)) {
1456 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1457 			return 0;
1458 		}
1459 
1460 		error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1461 		if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1462 			return error;
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 /*
1469  * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1470  * operation.  Callers must not hold any locks that intersect with the CPU
1471  * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1472  * to change kernel code.
1473  */
1474 void
xchk_fsgates_enable(struct xfs_scrub * sc,unsigned int scrub_fsgates)1475 xchk_fsgates_enable(
1476 	struct xfs_scrub	*sc,
1477 	unsigned int		scrub_fsgates)
1478 {
1479 	ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1480 	ASSERT(!(sc->flags & scrub_fsgates));
1481 
1482 	trace_xchk_fsgates_enable(sc, scrub_fsgates);
1483 
1484 	if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1485 		xfs_defer_drain_wait_enable();
1486 
1487 	if (scrub_fsgates & XCHK_FSGATES_QUOTA)
1488 		xfs_dqtrx_hook_enable();
1489 
1490 	if (scrub_fsgates & XCHK_FSGATES_DIRENTS)
1491 		xfs_dir_hook_enable();
1492 
1493 	if (scrub_fsgates & XCHK_FSGATES_RMAP)
1494 		xfs_rmap_hook_enable();
1495 
1496 	sc->flags |= scrub_fsgates;
1497 }
1498 
1499 /*
1500  * Decide if this is this a cached inode that's also allocated.  The caller
1501  * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1502  * from being allocated or freed.
1503  *
1504  * Look up an inode by number in the given file system.  If the inode number
1505  * is invalid, return -EINVAL.  If the inode is not in cache, return -ENODATA.
1506  * If the inode is being reclaimed, return -ENODATA because we know the inode
1507  * cache cannot be updating the ondisk metadata.
1508  *
1509  * Otherwise, the incore inode is the one we want, and it is either live,
1510  * somewhere in the inactivation machinery, or reclaimable.  The inode is
1511  * allocated if i_mode is nonzero.  In all three cases, the cached inode will
1512  * be more up to date than the ondisk inode buffer, so we must use the incore
1513  * i_mode.
1514  */
1515 int
xchk_inode_is_allocated(struct xfs_scrub * sc,xfs_agino_t agino,bool * inuse)1516 xchk_inode_is_allocated(
1517 	struct xfs_scrub	*sc,
1518 	xfs_agino_t		agino,
1519 	bool			*inuse)
1520 {
1521 	struct xfs_mount	*mp = sc->mp;
1522 	struct xfs_perag	*pag = sc->sa.pag;
1523 	xfs_ino_t		ino;
1524 	struct xfs_inode	*ip;
1525 	int			error;
1526 
1527 	/* caller must hold perag reference */
1528 	if (pag == NULL) {
1529 		ASSERT(pag != NULL);
1530 		return -EINVAL;
1531 	}
1532 
1533 	/* caller must have AGI buffer */
1534 	if (sc->sa.agi_bp == NULL) {
1535 		ASSERT(sc->sa.agi_bp != NULL);
1536 		return -EINVAL;
1537 	}
1538 
1539 	/* reject inode numbers outside existing AGs */
1540 	ino = xfs_agino_to_ino(pag, agino);
1541 	if (!xfs_verify_ino(mp, ino))
1542 		return -EINVAL;
1543 
1544 	error = -ENODATA;
1545 	rcu_read_lock();
1546 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1547 	if (!ip) {
1548 		/* cache miss */
1549 		goto out_rcu;
1550 	}
1551 
1552 	/*
1553 	 * If the inode number doesn't match, the incore inode got reused
1554 	 * during an RCU grace period and the radix tree hasn't been updated.
1555 	 * This isn't the inode we want.
1556 	 */
1557 	spin_lock(&ip->i_flags_lock);
1558 	if (ip->i_ino != ino)
1559 		goto out_skip;
1560 
1561 	trace_xchk_inode_is_allocated(ip);
1562 
1563 	/*
1564 	 * We have an incore inode that matches the inode we want, and the
1565 	 * caller holds the perag structure and the AGI buffer.  Let's check
1566 	 * our assumptions below:
1567 	 */
1568 
1569 #ifdef DEBUG
1570 	/*
1571 	 * (1) If the incore inode is live (i.e. referenced from the dcache),
1572 	 * it will not be INEW, nor will it be in the inactivation or reclaim
1573 	 * machinery.  The ondisk inode had better be allocated.  This is the
1574 	 * most trivial case.
1575 	 */
1576 	if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1577 			     XFS_INACTIVATING))) {
1578 		/* live inode */
1579 		ASSERT(VFS_I(ip)->i_mode != 0);
1580 	}
1581 
1582 	/*
1583 	 * If the incore inode is INEW, there are several possibilities:
1584 	 *
1585 	 * (2) For a file that is being created, note that we allocate the
1586 	 * ondisk inode before allocating, initializing, and adding the incore
1587 	 * inode to the radix tree.
1588 	 *
1589 	 * (3) If the incore inode is being recycled, the inode has to be
1590 	 * allocated because we don't allow freed inodes to be recycled.
1591 	 * Recycling doesn't touch i_mode.
1592 	 */
1593 	if (ip->i_flags & XFS_INEW) {
1594 		/* created on disk already or recycling */
1595 		ASSERT(VFS_I(ip)->i_mode != 0);
1596 	}
1597 
1598 	/*
1599 	 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1600 	 * inactivation has not started (!INACTIVATING), it is still allocated.
1601 	 */
1602 	if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1603 	    !(ip->i_flags & XFS_INACTIVATING)) {
1604 		/* definitely before difree */
1605 		ASSERT(VFS_I(ip)->i_mode != 0);
1606 	}
1607 #endif
1608 
1609 	/*
1610 	 * If the incore inode is undergoing inactivation (INACTIVATING), there
1611 	 * are two possibilities:
1612 	 *
1613 	 * (5) It is before the point where it would get freed ondisk, in which
1614 	 * case i_mode is still nonzero.
1615 	 *
1616 	 * (6) It has already been freed, in which case i_mode is zero.
1617 	 *
1618 	 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1619 	 * and we've taken the AGI buffer lock, which prevents that from
1620 	 * happening.
1621 	 */
1622 
1623 	/*
1624 	 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1625 	 * reclaim (IRECLAIMABLE) could be allocated or free.  i_mode still
1626 	 * reflects the ondisk state.
1627 	 */
1628 
1629 	/*
1630 	 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1631 	 * the flush code uses i_mode to format the ondisk inode.
1632 	 */
1633 
1634 	/*
1635 	 * (9) If the inode is in IRECLAIM and was reachable via the radix
1636 	 * tree, it still has the same i_mode as it did before it entered
1637 	 * reclaim.  The inode object is still alive because we hold the RCU
1638 	 * read lock.
1639 	 */
1640 
1641 	*inuse = VFS_I(ip)->i_mode != 0;
1642 	error = 0;
1643 
1644 out_skip:
1645 	spin_unlock(&ip->i_flags_lock);
1646 out_rcu:
1647 	rcu_read_unlock();
1648 	return error;
1649 }
1650 
1651 /* Is this inode a root directory for either tree? */
1652 bool
xchk_inode_is_dirtree_root(const struct xfs_inode * ip)1653 xchk_inode_is_dirtree_root(const struct xfs_inode *ip)
1654 {
1655 	struct xfs_mount	*mp = ip->i_mount;
1656 
1657 	return ip == mp->m_rootip ||
1658 		(xfs_has_metadir(mp) && ip == mp->m_metadirip);
1659 }
1660 
1661 /* Does the superblock point down to this inode? */
1662 bool
xchk_inode_is_sb_rooted(const struct xfs_inode * ip)1663 xchk_inode_is_sb_rooted(const struct xfs_inode *ip)
1664 {
1665 	return xchk_inode_is_dirtree_root(ip) ||
1666 	       xfs_is_sb_inum(ip->i_mount, ip->i_ino);
1667 }
1668 
1669 /* What is the root directory inumber for this inode? */
1670 xfs_ino_t
xchk_inode_rootdir_inum(const struct xfs_inode * ip)1671 xchk_inode_rootdir_inum(const struct xfs_inode *ip)
1672 {
1673 	struct xfs_mount	*mp = ip->i_mount;
1674 
1675 	if (xfs_is_metadir_inode(ip))
1676 		return mp->m_metadirip->i_ino;
1677 	return mp->m_rootip->i_ino;
1678 }
1679 
1680 static int
xchk_meta_btree_count_blocks(struct xfs_scrub * sc,xfs_extnum_t * nextents,xfs_filblks_t * count)1681 xchk_meta_btree_count_blocks(
1682 	struct xfs_scrub	*sc,
1683 	xfs_extnum_t		*nextents,
1684 	xfs_filblks_t		*count)
1685 {
1686 	struct xfs_btree_cur	*cur;
1687 	int			error;
1688 
1689 	if (!sc->sr.rtg) {
1690 		ASSERT(0);
1691 		return -EFSCORRUPTED;
1692 	}
1693 
1694 	switch (sc->ip->i_metatype) {
1695 	case XFS_METAFILE_RTRMAP:
1696 		cur = xfs_rtrmapbt_init_cursor(sc->tp, sc->sr.rtg);
1697 		break;
1698 	case XFS_METAFILE_RTREFCOUNT:
1699 		cur = xfs_rtrefcountbt_init_cursor(sc->tp, sc->sr.rtg);
1700 		break;
1701 	default:
1702 		ASSERT(0);
1703 		return -EFSCORRUPTED;
1704 	}
1705 
1706 	error = xfs_btree_count_blocks(cur, count);
1707 	xfs_btree_del_cursor(cur, error);
1708 	if (!error) {
1709 		*nextents = 0;
1710 		(*count)--;	/* don't count the btree iroot */
1711 	}
1712 	return error;
1713 }
1714 
1715 /* Count the blocks used by a file, even if it's a metadata inode. */
1716 int
xchk_inode_count_blocks(struct xfs_scrub * sc,int whichfork,xfs_extnum_t * nextents,xfs_filblks_t * count)1717 xchk_inode_count_blocks(
1718 	struct xfs_scrub	*sc,
1719 	int			whichfork,
1720 	xfs_extnum_t		*nextents,
1721 	xfs_filblks_t		*count)
1722 {
1723 	struct xfs_ifork	*ifp = xfs_ifork_ptr(sc->ip, whichfork);
1724 
1725 	if (!ifp) {
1726 		*nextents = 0;
1727 		*count = 0;
1728 		return 0;
1729 	}
1730 
1731 	if (ifp->if_format == XFS_DINODE_FMT_META_BTREE) {
1732 		ASSERT(whichfork == XFS_DATA_FORK);
1733 		return xchk_meta_btree_count_blocks(sc, nextents, count);
1734 	}
1735 
1736 	return xfs_bmap_count_blocks(sc->tp, sc->ip, whichfork, nextents,
1737 			count);
1738 }
1739