1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 #include <asm/uprobes.h>
45 #include <asm/ibt.h>
46
47 #include "perf_event.h"
48
49 struct x86_pmu x86_pmu __read_mostly;
50 static struct pmu pmu;
51
52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
53 .enabled = 1,
54 .pmu = &pmu,
55 };
56
57 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
58 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
59 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
60
61 /*
62 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
63 * from just a typename, as opposed to an actual function.
64 */
65 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all);
68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable);
69 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable);
70
71 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
72
73 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
76
77 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
80
81 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
83 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
84
85 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling);
86 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling);
88
89 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task);
90 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
91
92 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs);
93 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
94
95 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
96
97 /*
98 * This one is magic, it will get called even when PMU init fails (because
99 * there is no PMU), in which case it should simply return NULL.
100 */
101 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
102
103 u64 __read_mostly hw_cache_event_ids
104 [PERF_COUNT_HW_CACHE_MAX]
105 [PERF_COUNT_HW_CACHE_OP_MAX]
106 [PERF_COUNT_HW_CACHE_RESULT_MAX];
107 u64 __read_mostly hw_cache_extra_regs
108 [PERF_COUNT_HW_CACHE_MAX]
109 [PERF_COUNT_HW_CACHE_OP_MAX]
110 [PERF_COUNT_HW_CACHE_RESULT_MAX];
111
112 /*
113 * Propagate event elapsed time into the generic event.
114 * Can only be executed on the CPU where the event is active.
115 * Returns the delta events processed.
116 */
x86_perf_event_update(struct perf_event * event)117 u64 x86_perf_event_update(struct perf_event *event)
118 {
119 struct hw_perf_event *hwc = &event->hw;
120 int shift = 64 - x86_pmu.cntval_bits;
121 u64 prev_raw_count, new_raw_count;
122 u64 delta;
123
124 if (unlikely(!hwc->event_base))
125 return 0;
126
127 /*
128 * Careful: an NMI might modify the previous event value.
129 *
130 * Our tactic to handle this is to first atomically read and
131 * exchange a new raw count - then add that new-prev delta
132 * count to the generic event atomically:
133 */
134 prev_raw_count = local64_read(&hwc->prev_count);
135 do {
136 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
137 } while (!local64_try_cmpxchg(&hwc->prev_count,
138 &prev_raw_count, new_raw_count));
139
140 /*
141 * Now we have the new raw value and have updated the prev
142 * timestamp already. We can now calculate the elapsed delta
143 * (event-)time and add that to the generic event.
144 *
145 * Careful, not all hw sign-extends above the physical width
146 * of the count.
147 */
148 delta = (new_raw_count << shift) - (prev_raw_count << shift);
149 delta >>= shift;
150
151 local64_add(delta, &event->count);
152 local64_sub(delta, &hwc->period_left);
153
154 return new_raw_count;
155 }
156
157 /*
158 * Find and validate any extra registers to set up.
159 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)160 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
161 {
162 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
163 struct hw_perf_event_extra *reg;
164 struct extra_reg *er;
165
166 reg = &event->hw.extra_reg;
167
168 if (!extra_regs)
169 return 0;
170
171 for (er = extra_regs; er->msr; er++) {
172 if (er->event != (config & er->config_mask))
173 continue;
174 if (event->attr.config1 & ~er->valid_mask)
175 return -EINVAL;
176 /* Check if the extra msrs can be safely accessed*/
177 if (!er->extra_msr_access)
178 return -ENXIO;
179
180 reg->idx = er->idx;
181 reg->config = event->attr.config1;
182 reg->reg = er->msr;
183 break;
184 }
185 return 0;
186 }
187
188 static atomic_t active_events;
189 static atomic_t pmc_refcount;
190 static DEFINE_MUTEX(pmc_reserve_mutex);
191
192 #ifdef CONFIG_X86_LOCAL_APIC
193
get_possible_counter_mask(void)194 static inline u64 get_possible_counter_mask(void)
195 {
196 u64 cntr_mask = x86_pmu.cntr_mask64;
197 int i;
198
199 if (!is_hybrid())
200 return cntr_mask;
201
202 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
203 cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64;
204
205 return cntr_mask;
206 }
207
reserve_pmc_hardware(void)208 static bool reserve_pmc_hardware(void)
209 {
210 u64 cntr_mask = get_possible_counter_mask();
211 int i, end;
212
213 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
214 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
215 goto perfctr_fail;
216 }
217
218 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
219 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
220 goto eventsel_fail;
221 }
222
223 return true;
224
225 eventsel_fail:
226 end = i;
227 for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
228 release_evntsel_nmi(x86_pmu_config_addr(i));
229 i = X86_PMC_IDX_MAX;
230
231 perfctr_fail:
232 end = i;
233 for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
234 release_perfctr_nmi(x86_pmu_event_addr(i));
235
236 return false;
237 }
238
release_pmc_hardware(void)239 static void release_pmc_hardware(void)
240 {
241 u64 cntr_mask = get_possible_counter_mask();
242 int i;
243
244 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
245 release_perfctr_nmi(x86_pmu_event_addr(i));
246 release_evntsel_nmi(x86_pmu_config_addr(i));
247 }
248 }
249
250 #else
251
reserve_pmc_hardware(void)252 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)253 static void release_pmc_hardware(void) {}
254
255 #endif
256
check_hw_exists(struct pmu * pmu,unsigned long * cntr_mask,unsigned long * fixed_cntr_mask)257 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
258 unsigned long *fixed_cntr_mask)
259 {
260 u64 val, val_fail = -1, val_new= ~0;
261 int i, reg, reg_fail = -1, ret = 0;
262 int bios_fail = 0;
263 int reg_safe = -1;
264
265 /*
266 * Check to see if the BIOS enabled any of the counters, if so
267 * complain and bail.
268 */
269 for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) {
270 reg = x86_pmu_config_addr(i);
271 ret = rdmsrl_safe(reg, &val);
272 if (ret)
273 goto msr_fail;
274 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
275 bios_fail = 1;
276 val_fail = val;
277 reg_fail = reg;
278 } else {
279 reg_safe = i;
280 }
281 }
282
283 if (*(u64 *)fixed_cntr_mask) {
284 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
285 ret = rdmsrl_safe(reg, &val);
286 if (ret)
287 goto msr_fail;
288 for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) {
289 if (fixed_counter_disabled(i, pmu))
290 continue;
291 if (val & (0x03ULL << i*4)) {
292 bios_fail = 1;
293 val_fail = val;
294 reg_fail = reg;
295 }
296 }
297 }
298
299 /*
300 * If all the counters are enabled, the below test will always
301 * fail. The tools will also become useless in this scenario.
302 * Just fail and disable the hardware counters.
303 */
304
305 if (reg_safe == -1) {
306 reg = reg_safe;
307 goto msr_fail;
308 }
309
310 /*
311 * Read the current value, change it and read it back to see if it
312 * matches, this is needed to detect certain hardware emulators
313 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
314 */
315 reg = x86_pmu_event_addr(reg_safe);
316 if (rdmsrl_safe(reg, &val))
317 goto msr_fail;
318 val ^= 0xffffUL;
319 ret = wrmsrl_safe(reg, val);
320 ret |= rdmsrl_safe(reg, &val_new);
321 if (ret || val != val_new)
322 goto msr_fail;
323
324 /*
325 * We still allow the PMU driver to operate:
326 */
327 if (bios_fail) {
328 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
329 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
330 reg_fail, val_fail);
331 }
332
333 return true;
334
335 msr_fail:
336 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
337 pr_cont("PMU not available due to virtualization, using software events only.\n");
338 } else {
339 pr_cont("Broken PMU hardware detected, using software events only.\n");
340 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
341 reg, val_new);
342 }
343
344 return false;
345 }
346
hw_perf_event_destroy(struct perf_event * event)347 static void hw_perf_event_destroy(struct perf_event *event)
348 {
349 x86_release_hardware();
350 atomic_dec(&active_events);
351 }
352
hw_perf_lbr_event_destroy(struct perf_event * event)353 void hw_perf_lbr_event_destroy(struct perf_event *event)
354 {
355 hw_perf_event_destroy(event);
356
357 /* undo the lbr/bts event accounting */
358 x86_del_exclusive(x86_lbr_exclusive_lbr);
359 }
360
x86_pmu_initialized(void)361 static inline int x86_pmu_initialized(void)
362 {
363 return x86_pmu.handle_irq != NULL;
364 }
365
366 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)367 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
368 {
369 struct perf_event_attr *attr = &event->attr;
370 unsigned int cache_type, cache_op, cache_result;
371 u64 config, val;
372
373 config = attr->config;
374
375 cache_type = (config >> 0) & 0xff;
376 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
377 return -EINVAL;
378 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
379
380 cache_op = (config >> 8) & 0xff;
381 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
382 return -EINVAL;
383 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
384
385 cache_result = (config >> 16) & 0xff;
386 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
387 return -EINVAL;
388 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
389
390 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
391 if (val == 0)
392 return -ENOENT;
393
394 if (val == -1)
395 return -EINVAL;
396
397 hwc->config |= val;
398 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
399 return x86_pmu_extra_regs(val, event);
400 }
401
x86_reserve_hardware(void)402 int x86_reserve_hardware(void)
403 {
404 int err = 0;
405
406 if (!atomic_inc_not_zero(&pmc_refcount)) {
407 mutex_lock(&pmc_reserve_mutex);
408 if (atomic_read(&pmc_refcount) == 0) {
409 if (!reserve_pmc_hardware()) {
410 err = -EBUSY;
411 } else {
412 reserve_ds_buffers();
413 reserve_lbr_buffers();
414 }
415 }
416 if (!err)
417 atomic_inc(&pmc_refcount);
418 mutex_unlock(&pmc_reserve_mutex);
419 }
420
421 return err;
422 }
423
x86_release_hardware(void)424 void x86_release_hardware(void)
425 {
426 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
427 release_pmc_hardware();
428 release_ds_buffers();
429 release_lbr_buffers();
430 mutex_unlock(&pmc_reserve_mutex);
431 }
432 }
433
434 /*
435 * Check if we can create event of a certain type (that no conflicting events
436 * are present).
437 */
x86_add_exclusive(unsigned int what)438 int x86_add_exclusive(unsigned int what)
439 {
440 int i;
441
442 /*
443 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
444 * LBR and BTS are still mutually exclusive.
445 */
446 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
447 goto out;
448
449 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
450 mutex_lock(&pmc_reserve_mutex);
451 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
452 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
453 goto fail_unlock;
454 }
455 atomic_inc(&x86_pmu.lbr_exclusive[what]);
456 mutex_unlock(&pmc_reserve_mutex);
457 }
458
459 out:
460 atomic_inc(&active_events);
461 return 0;
462
463 fail_unlock:
464 mutex_unlock(&pmc_reserve_mutex);
465 return -EBUSY;
466 }
467
x86_del_exclusive(unsigned int what)468 void x86_del_exclusive(unsigned int what)
469 {
470 atomic_dec(&active_events);
471
472 /*
473 * See the comment in x86_add_exclusive().
474 */
475 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
476 return;
477
478 atomic_dec(&x86_pmu.lbr_exclusive[what]);
479 }
480
x86_setup_perfctr(struct perf_event * event)481 int x86_setup_perfctr(struct perf_event *event)
482 {
483 struct perf_event_attr *attr = &event->attr;
484 struct hw_perf_event *hwc = &event->hw;
485 u64 config;
486
487 if (!is_sampling_event(event)) {
488 hwc->sample_period = x86_pmu.max_period;
489 hwc->last_period = hwc->sample_period;
490 local64_set(&hwc->period_left, hwc->sample_period);
491 }
492
493 if (attr->type == event->pmu->type)
494 return x86_pmu_extra_regs(event->attr.config, event);
495
496 if (attr->type == PERF_TYPE_HW_CACHE)
497 return set_ext_hw_attr(hwc, event);
498
499 if (attr->config >= x86_pmu.max_events)
500 return -EINVAL;
501
502 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
503
504 /*
505 * The generic map:
506 */
507 config = x86_pmu.event_map(attr->config);
508
509 if (config == 0)
510 return -ENOENT;
511
512 if (config == -1LL)
513 return -EINVAL;
514
515 hwc->config |= config;
516
517 return 0;
518 }
519
520 /*
521 * check that branch_sample_type is compatible with
522 * settings needed for precise_ip > 1 which implies
523 * using the LBR to capture ALL taken branches at the
524 * priv levels of the measurement
525 */
precise_br_compat(struct perf_event * event)526 static inline int precise_br_compat(struct perf_event *event)
527 {
528 u64 m = event->attr.branch_sample_type;
529 u64 b = 0;
530
531 /* must capture all branches */
532 if (!(m & PERF_SAMPLE_BRANCH_ANY))
533 return 0;
534
535 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
536
537 if (!event->attr.exclude_user)
538 b |= PERF_SAMPLE_BRANCH_USER;
539
540 if (!event->attr.exclude_kernel)
541 b |= PERF_SAMPLE_BRANCH_KERNEL;
542
543 /*
544 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
545 */
546
547 return m == b;
548 }
549
x86_pmu_max_precise(void)550 int x86_pmu_max_precise(void)
551 {
552 int precise = 0;
553
554 /* Support for constant skid */
555 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
556 precise++;
557
558 /* Support for IP fixup */
559 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
560 precise++;
561
562 if (x86_pmu.pebs_prec_dist)
563 precise++;
564 }
565 return precise;
566 }
567
x86_pmu_hw_config(struct perf_event * event)568 int x86_pmu_hw_config(struct perf_event *event)
569 {
570 if (event->attr.precise_ip) {
571 int precise = x86_pmu_max_precise();
572
573 if (event->attr.precise_ip > precise)
574 return -EOPNOTSUPP;
575
576 /* There's no sense in having PEBS for non sampling events: */
577 if (!is_sampling_event(event))
578 return -EINVAL;
579 }
580 /*
581 * check that PEBS LBR correction does not conflict with
582 * whatever the user is asking with attr->branch_sample_type
583 */
584 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
585 u64 *br_type = &event->attr.branch_sample_type;
586
587 if (has_branch_stack(event)) {
588 if (!precise_br_compat(event))
589 return -EOPNOTSUPP;
590
591 /* branch_sample_type is compatible */
592
593 } else {
594 /*
595 * user did not specify branch_sample_type
596 *
597 * For PEBS fixups, we capture all
598 * the branches at the priv level of the
599 * event.
600 */
601 *br_type = PERF_SAMPLE_BRANCH_ANY;
602
603 if (!event->attr.exclude_user)
604 *br_type |= PERF_SAMPLE_BRANCH_USER;
605
606 if (!event->attr.exclude_kernel)
607 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
608 }
609 }
610
611 if (branch_sample_call_stack(event))
612 event->attach_state |= PERF_ATTACH_TASK_DATA;
613
614 /*
615 * Generate PMC IRQs:
616 * (keep 'enabled' bit clear for now)
617 */
618 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
619
620 /*
621 * Count user and OS events unless requested not to
622 */
623 if (!event->attr.exclude_user)
624 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
625 if (!event->attr.exclude_kernel)
626 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
627
628 if (event->attr.type == event->pmu->type)
629 event->hw.config |= x86_pmu_get_event_config(event);
630
631 if (event->attr.sample_period && x86_pmu.limit_period) {
632 s64 left = event->attr.sample_period;
633 x86_pmu.limit_period(event, &left);
634 if (left > event->attr.sample_period)
635 return -EINVAL;
636 }
637
638 /* sample_regs_user never support XMM registers */
639 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
640 return -EINVAL;
641 /*
642 * Besides the general purpose registers, XMM registers may
643 * be collected in PEBS on some platforms, e.g. Icelake
644 */
645 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
646 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
647 return -EINVAL;
648
649 if (!event->attr.precise_ip)
650 return -EINVAL;
651 }
652
653 return x86_setup_perfctr(event);
654 }
655
656 /*
657 * Setup the hardware configuration for a given attr_type
658 */
__x86_pmu_event_init(struct perf_event * event)659 static int __x86_pmu_event_init(struct perf_event *event)
660 {
661 int err;
662
663 if (!x86_pmu_initialized())
664 return -ENODEV;
665
666 err = x86_reserve_hardware();
667 if (err)
668 return err;
669
670 atomic_inc(&active_events);
671 event->destroy = hw_perf_event_destroy;
672
673 event->hw.idx = -1;
674 event->hw.last_cpu = -1;
675 event->hw.last_tag = ~0ULL;
676
677 /* mark unused */
678 event->hw.extra_reg.idx = EXTRA_REG_NONE;
679 event->hw.branch_reg.idx = EXTRA_REG_NONE;
680
681 return x86_pmu.hw_config(event);
682 }
683
x86_pmu_disable_all(void)684 void x86_pmu_disable_all(void)
685 {
686 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
687 int idx;
688
689 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
690 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
691 u64 val;
692
693 if (!test_bit(idx, cpuc->active_mask))
694 continue;
695 rdmsrl(x86_pmu_config_addr(idx), val);
696 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
697 continue;
698 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
699 wrmsrl(x86_pmu_config_addr(idx), val);
700 if (is_counter_pair(hwc))
701 wrmsrl(x86_pmu_config_addr(idx + 1), 0);
702 }
703 }
704
perf_guest_get_msrs(int * nr,void * data)705 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
706 {
707 return static_call(x86_pmu_guest_get_msrs)(nr, data);
708 }
709 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
710
711 /*
712 * There may be PMI landing after enabled=0. The PMI hitting could be before or
713 * after disable_all.
714 *
715 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
716 * It will not be re-enabled in the NMI handler again, because enabled=0. After
717 * handling the NMI, disable_all will be called, which will not change the
718 * state either. If PMI hits after disable_all, the PMU is already disabled
719 * before entering NMI handler. The NMI handler will not change the state
720 * either.
721 *
722 * So either situation is harmless.
723 */
x86_pmu_disable(struct pmu * pmu)724 static void x86_pmu_disable(struct pmu *pmu)
725 {
726 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
727
728 if (!x86_pmu_initialized())
729 return;
730
731 if (!cpuc->enabled)
732 return;
733
734 cpuc->n_added = 0;
735 cpuc->enabled = 0;
736 barrier();
737
738 static_call(x86_pmu_disable_all)();
739 }
740
x86_pmu_enable_all(int added)741 void x86_pmu_enable_all(int added)
742 {
743 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
744 int idx;
745
746 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
747 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
748
749 if (!test_bit(idx, cpuc->active_mask))
750 continue;
751
752 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
753 }
754 }
755
is_x86_event(struct perf_event * event)756 static inline int is_x86_event(struct perf_event *event)
757 {
758 int i;
759
760 if (!is_hybrid())
761 return event->pmu == &pmu;
762
763 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
764 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
765 return true;
766 }
767
768 return false;
769 }
770
x86_get_pmu(unsigned int cpu)771 struct pmu *x86_get_pmu(unsigned int cpu)
772 {
773 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
774
775 /*
776 * All CPUs of the hybrid type have been offline.
777 * The x86_get_pmu() should not be invoked.
778 */
779 if (WARN_ON_ONCE(!cpuc->pmu))
780 return &pmu;
781
782 return cpuc->pmu;
783 }
784 /*
785 * Event scheduler state:
786 *
787 * Assign events iterating over all events and counters, beginning
788 * with events with least weights first. Keep the current iterator
789 * state in struct sched_state.
790 */
791 struct sched_state {
792 int weight;
793 int event; /* event index */
794 int counter; /* counter index */
795 int unassigned; /* number of events to be assigned left */
796 int nr_gp; /* number of GP counters used */
797 u64 used;
798 };
799
800 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
801 #define SCHED_STATES_MAX 2
802
803 struct perf_sched {
804 int max_weight;
805 int max_events;
806 int max_gp;
807 int saved_states;
808 struct event_constraint **constraints;
809 struct sched_state state;
810 struct sched_state saved[SCHED_STATES_MAX];
811 };
812
813 /*
814 * Initialize iterator that runs through all events and counters.
815 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)816 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
817 int num, int wmin, int wmax, int gpmax)
818 {
819 int idx;
820
821 memset(sched, 0, sizeof(*sched));
822 sched->max_events = num;
823 sched->max_weight = wmax;
824 sched->max_gp = gpmax;
825 sched->constraints = constraints;
826
827 for (idx = 0; idx < num; idx++) {
828 if (constraints[idx]->weight == wmin)
829 break;
830 }
831
832 sched->state.event = idx; /* start with min weight */
833 sched->state.weight = wmin;
834 sched->state.unassigned = num;
835 }
836
perf_sched_save_state(struct perf_sched * sched)837 static void perf_sched_save_state(struct perf_sched *sched)
838 {
839 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
840 return;
841
842 sched->saved[sched->saved_states] = sched->state;
843 sched->saved_states++;
844 }
845
perf_sched_restore_state(struct perf_sched * sched)846 static bool perf_sched_restore_state(struct perf_sched *sched)
847 {
848 if (!sched->saved_states)
849 return false;
850
851 sched->saved_states--;
852 sched->state = sched->saved[sched->saved_states];
853
854 /* this assignment didn't work out */
855 /* XXX broken vs EVENT_PAIR */
856 sched->state.used &= ~BIT_ULL(sched->state.counter);
857
858 /* try the next one */
859 sched->state.counter++;
860
861 return true;
862 }
863
864 /*
865 * Select a counter for the current event to schedule. Return true on
866 * success.
867 */
__perf_sched_find_counter(struct perf_sched * sched)868 static bool __perf_sched_find_counter(struct perf_sched *sched)
869 {
870 struct event_constraint *c;
871 int idx;
872
873 if (!sched->state.unassigned)
874 return false;
875
876 if (sched->state.event >= sched->max_events)
877 return false;
878
879 c = sched->constraints[sched->state.event];
880 /* Prefer fixed purpose counters */
881 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
882 idx = INTEL_PMC_IDX_FIXED;
883 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
884 u64 mask = BIT_ULL(idx);
885
886 if (sched->state.used & mask)
887 continue;
888
889 sched->state.used |= mask;
890 goto done;
891 }
892 }
893
894 /* Grab the first unused counter starting with idx */
895 idx = sched->state.counter;
896 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
897 u64 mask = BIT_ULL(idx);
898
899 if (c->flags & PERF_X86_EVENT_PAIR)
900 mask |= mask << 1;
901
902 if (sched->state.used & mask)
903 continue;
904
905 if (sched->state.nr_gp++ >= sched->max_gp)
906 return false;
907
908 sched->state.used |= mask;
909 goto done;
910 }
911
912 return false;
913
914 done:
915 sched->state.counter = idx;
916
917 if (c->overlap)
918 perf_sched_save_state(sched);
919
920 return true;
921 }
922
perf_sched_find_counter(struct perf_sched * sched)923 static bool perf_sched_find_counter(struct perf_sched *sched)
924 {
925 while (!__perf_sched_find_counter(sched)) {
926 if (!perf_sched_restore_state(sched))
927 return false;
928 }
929
930 return true;
931 }
932
933 /*
934 * Go through all unassigned events and find the next one to schedule.
935 * Take events with the least weight first. Return true on success.
936 */
perf_sched_next_event(struct perf_sched * sched)937 static bool perf_sched_next_event(struct perf_sched *sched)
938 {
939 struct event_constraint *c;
940
941 if (!sched->state.unassigned || !--sched->state.unassigned)
942 return false;
943
944 do {
945 /* next event */
946 sched->state.event++;
947 if (sched->state.event >= sched->max_events) {
948 /* next weight */
949 sched->state.event = 0;
950 sched->state.weight++;
951 if (sched->state.weight > sched->max_weight)
952 return false;
953 }
954 c = sched->constraints[sched->state.event];
955 } while (c->weight != sched->state.weight);
956
957 sched->state.counter = 0; /* start with first counter */
958
959 return true;
960 }
961
962 /*
963 * Assign a counter for each event.
964 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)965 int perf_assign_events(struct event_constraint **constraints, int n,
966 int wmin, int wmax, int gpmax, int *assign)
967 {
968 struct perf_sched sched;
969
970 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
971
972 do {
973 if (!perf_sched_find_counter(&sched))
974 break; /* failed */
975 if (assign)
976 assign[sched.state.event] = sched.state.counter;
977 } while (perf_sched_next_event(&sched));
978
979 return sched.state.unassigned;
980 }
981 EXPORT_SYMBOL_GPL(perf_assign_events);
982
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)983 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
984 {
985 struct event_constraint *c;
986 struct perf_event *e;
987 int n0, i, wmin, wmax, unsched = 0;
988 struct hw_perf_event *hwc;
989 u64 used_mask = 0;
990
991 /*
992 * Compute the number of events already present; see x86_pmu_add(),
993 * validate_group() and x86_pmu_commit_txn(). For the former two
994 * cpuc->n_events hasn't been updated yet, while for the latter
995 * cpuc->n_txn contains the number of events added in the current
996 * transaction.
997 */
998 n0 = cpuc->n_events;
999 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1000 n0 -= cpuc->n_txn;
1001
1002 static_call_cond(x86_pmu_start_scheduling)(cpuc);
1003
1004 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1005 c = cpuc->event_constraint[i];
1006
1007 /*
1008 * Previously scheduled events should have a cached constraint,
1009 * while new events should not have one.
1010 */
1011 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1012
1013 /*
1014 * Request constraints for new events; or for those events that
1015 * have a dynamic constraint -- for those the constraint can
1016 * change due to external factors (sibling state, allow_tfa).
1017 */
1018 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1019 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1020 cpuc->event_constraint[i] = c;
1021 }
1022
1023 wmin = min(wmin, c->weight);
1024 wmax = max(wmax, c->weight);
1025 }
1026
1027 /*
1028 * fastpath, try to reuse previous register
1029 */
1030 for (i = 0; i < n; i++) {
1031 u64 mask;
1032
1033 hwc = &cpuc->event_list[i]->hw;
1034 c = cpuc->event_constraint[i];
1035
1036 /* never assigned */
1037 if (hwc->idx == -1)
1038 break;
1039
1040 /* constraint still honored */
1041 if (!test_bit(hwc->idx, c->idxmsk))
1042 break;
1043
1044 mask = BIT_ULL(hwc->idx);
1045 if (is_counter_pair(hwc))
1046 mask |= mask << 1;
1047
1048 /* not already used */
1049 if (used_mask & mask)
1050 break;
1051
1052 used_mask |= mask;
1053
1054 if (assign)
1055 assign[i] = hwc->idx;
1056 }
1057
1058 /* slow path */
1059 if (i != n) {
1060 int gpmax = x86_pmu_max_num_counters(cpuc->pmu);
1061
1062 /*
1063 * Do not allow scheduling of more than half the available
1064 * generic counters.
1065 *
1066 * This helps avoid counter starvation of sibling thread by
1067 * ensuring at most half the counters cannot be in exclusive
1068 * mode. There is no designated counters for the limits. Any
1069 * N/2 counters can be used. This helps with events with
1070 * specific counter constraints.
1071 */
1072 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1073 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1074 gpmax /= 2;
1075
1076 /*
1077 * Reduce the amount of available counters to allow fitting
1078 * the extra Merge events needed by large increment events.
1079 */
1080 if (x86_pmu.flags & PMU_FL_PAIR) {
1081 gpmax -= cpuc->n_pair;
1082 WARN_ON(gpmax <= 0);
1083 }
1084
1085 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1086 wmax, gpmax, assign);
1087 }
1088
1089 /*
1090 * In case of success (unsched = 0), mark events as committed,
1091 * so we do not put_constraint() in case new events are added
1092 * and fail to be scheduled
1093 *
1094 * We invoke the lower level commit callback to lock the resource
1095 *
1096 * We do not need to do all of this in case we are called to
1097 * validate an event group (assign == NULL)
1098 */
1099 if (!unsched && assign) {
1100 for (i = 0; i < n; i++)
1101 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1102 } else {
1103 for (i = n0; i < n; i++) {
1104 e = cpuc->event_list[i];
1105
1106 /*
1107 * release events that failed scheduling
1108 */
1109 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1110
1111 cpuc->event_constraint[i] = NULL;
1112 }
1113 }
1114
1115 static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1116
1117 return unsched ? -EINVAL : 0;
1118 }
1119
add_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1120 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1121 struct perf_event *event)
1122 {
1123 if (is_metric_event(event)) {
1124 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1125 return -EINVAL;
1126 cpuc->n_metric++;
1127 cpuc->n_txn_metric++;
1128 }
1129
1130 return 0;
1131 }
1132
del_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1133 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1134 struct perf_event *event)
1135 {
1136 if (is_metric_event(event))
1137 cpuc->n_metric--;
1138 }
1139
collect_event(struct cpu_hw_events * cpuc,struct perf_event * event,int max_count,int n)1140 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1141 int max_count, int n)
1142 {
1143 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1144
1145 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1146 return -EINVAL;
1147
1148 if (n >= max_count + cpuc->n_metric)
1149 return -EINVAL;
1150
1151 cpuc->event_list[n] = event;
1152 if (is_counter_pair(&event->hw)) {
1153 cpuc->n_pair++;
1154 cpuc->n_txn_pair++;
1155 }
1156
1157 return 0;
1158 }
1159
1160 /*
1161 * dogrp: true if must collect siblings events (group)
1162 * returns total number of events and error code
1163 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1164 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1165 {
1166 struct perf_event *event;
1167 int n, max_count;
1168
1169 max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu);
1170
1171 /* current number of events already accepted */
1172 n = cpuc->n_events;
1173 if (!cpuc->n_events)
1174 cpuc->pebs_output = 0;
1175
1176 if (!cpuc->is_fake && leader->attr.precise_ip) {
1177 /*
1178 * For PEBS->PT, if !aux_event, the group leader (PT) went
1179 * away, the group was broken down and this singleton event
1180 * can't schedule any more.
1181 */
1182 if (is_pebs_pt(leader) && !leader->aux_event)
1183 return -EINVAL;
1184
1185 /*
1186 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1187 */
1188 if (cpuc->pebs_output &&
1189 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1190 return -EINVAL;
1191
1192 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1193 }
1194
1195 if (is_x86_event(leader)) {
1196 if (collect_event(cpuc, leader, max_count, n))
1197 return -EINVAL;
1198 n++;
1199 }
1200
1201 if (!dogrp)
1202 return n;
1203
1204 for_each_sibling_event(event, leader) {
1205 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1206 continue;
1207
1208 if (collect_event(cpuc, event, max_count, n))
1209 return -EINVAL;
1210
1211 n++;
1212 }
1213 return n;
1214 }
1215
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1216 static inline void x86_assign_hw_event(struct perf_event *event,
1217 struct cpu_hw_events *cpuc, int i)
1218 {
1219 struct hw_perf_event *hwc = &event->hw;
1220 int idx;
1221
1222 idx = hwc->idx = cpuc->assign[i];
1223 hwc->last_cpu = smp_processor_id();
1224 hwc->last_tag = ++cpuc->tags[i];
1225
1226 static_call_cond(x86_pmu_assign)(event, idx);
1227
1228 switch (hwc->idx) {
1229 case INTEL_PMC_IDX_FIXED_BTS:
1230 case INTEL_PMC_IDX_FIXED_VLBR:
1231 hwc->config_base = 0;
1232 hwc->event_base = 0;
1233 break;
1234
1235 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1236 /* All the metric events are mapped onto the fixed counter 3. */
1237 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1238 fallthrough;
1239 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1240 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1241 hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED);
1242 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1243 INTEL_PMC_FIXED_RDPMC_BASE;
1244 break;
1245
1246 default:
1247 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1248 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1249 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1250 break;
1251 }
1252 }
1253
1254 /**
1255 * x86_perf_rdpmc_index - Return PMC counter used for event
1256 * @event: the perf_event to which the PMC counter was assigned
1257 *
1258 * The counter assigned to this performance event may change if interrupts
1259 * are enabled. This counter should thus never be used while interrupts are
1260 * enabled. Before this function is used to obtain the assigned counter the
1261 * event should be checked for validity using, for example,
1262 * perf_event_read_local(), within the same interrupt disabled section in
1263 * which this counter is planned to be used.
1264 *
1265 * Return: The index of the performance monitoring counter assigned to
1266 * @perf_event.
1267 */
x86_perf_rdpmc_index(struct perf_event * event)1268 int x86_perf_rdpmc_index(struct perf_event *event)
1269 {
1270 lockdep_assert_irqs_disabled();
1271
1272 return event->hw.event_base_rdpmc;
1273 }
1274
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1275 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1276 struct cpu_hw_events *cpuc,
1277 int i)
1278 {
1279 return hwc->idx == cpuc->assign[i] &&
1280 hwc->last_cpu == smp_processor_id() &&
1281 hwc->last_tag == cpuc->tags[i];
1282 }
1283
1284 static void x86_pmu_start(struct perf_event *event, int flags);
1285
x86_pmu_enable(struct pmu * pmu)1286 static void x86_pmu_enable(struct pmu *pmu)
1287 {
1288 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1289 struct perf_event *event;
1290 struct hw_perf_event *hwc;
1291 int i, added = cpuc->n_added;
1292
1293 if (!x86_pmu_initialized())
1294 return;
1295
1296 if (cpuc->enabled)
1297 return;
1298
1299 if (cpuc->n_added) {
1300 int n_running = cpuc->n_events - cpuc->n_added;
1301 /*
1302 * apply assignment obtained either from
1303 * hw_perf_group_sched_in() or x86_pmu_enable()
1304 *
1305 * step1: save events moving to new counters
1306 */
1307 for (i = 0; i < n_running; i++) {
1308 event = cpuc->event_list[i];
1309 hwc = &event->hw;
1310
1311 /*
1312 * we can avoid reprogramming counter if:
1313 * - assigned same counter as last time
1314 * - running on same CPU as last time
1315 * - no other event has used the counter since
1316 */
1317 if (hwc->idx == -1 ||
1318 match_prev_assignment(hwc, cpuc, i))
1319 continue;
1320
1321 /*
1322 * Ensure we don't accidentally enable a stopped
1323 * counter simply because we rescheduled.
1324 */
1325 if (hwc->state & PERF_HES_STOPPED)
1326 hwc->state |= PERF_HES_ARCH;
1327
1328 x86_pmu_stop(event, PERF_EF_UPDATE);
1329 }
1330
1331 /*
1332 * step2: reprogram moved events into new counters
1333 */
1334 for (i = 0; i < cpuc->n_events; i++) {
1335 event = cpuc->event_list[i];
1336 hwc = &event->hw;
1337
1338 if (!match_prev_assignment(hwc, cpuc, i))
1339 x86_assign_hw_event(event, cpuc, i);
1340 else if (i < n_running)
1341 continue;
1342
1343 if (hwc->state & PERF_HES_ARCH)
1344 continue;
1345
1346 /*
1347 * if cpuc->enabled = 0, then no wrmsr as
1348 * per x86_pmu_enable_event()
1349 */
1350 x86_pmu_start(event, PERF_EF_RELOAD);
1351 }
1352 cpuc->n_added = 0;
1353 perf_events_lapic_init();
1354 }
1355
1356 cpuc->enabled = 1;
1357 barrier();
1358
1359 static_call(x86_pmu_enable_all)(added);
1360 }
1361
1362 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1363
1364 /*
1365 * Set the next IRQ period, based on the hwc->period_left value.
1366 * To be called with the event disabled in hw:
1367 */
x86_perf_event_set_period(struct perf_event * event)1368 int x86_perf_event_set_period(struct perf_event *event)
1369 {
1370 struct hw_perf_event *hwc = &event->hw;
1371 s64 left = local64_read(&hwc->period_left);
1372 s64 period = hwc->sample_period;
1373 int ret = 0, idx = hwc->idx;
1374
1375 if (unlikely(!hwc->event_base))
1376 return 0;
1377
1378 /*
1379 * If we are way outside a reasonable range then just skip forward:
1380 */
1381 if (unlikely(left <= -period)) {
1382 left = period;
1383 local64_set(&hwc->period_left, left);
1384 hwc->last_period = period;
1385 ret = 1;
1386 }
1387
1388 if (unlikely(left <= 0)) {
1389 left += period;
1390 local64_set(&hwc->period_left, left);
1391 hwc->last_period = period;
1392 ret = 1;
1393 }
1394 /*
1395 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1396 */
1397 if (unlikely(left < 2))
1398 left = 2;
1399
1400 if (left > x86_pmu.max_period)
1401 left = x86_pmu.max_period;
1402
1403 static_call_cond(x86_pmu_limit_period)(event, &left);
1404
1405 this_cpu_write(pmc_prev_left[idx], left);
1406
1407 /*
1408 * The hw event starts counting from this event offset,
1409 * mark it to be able to extra future deltas:
1410 */
1411 local64_set(&hwc->prev_count, (u64)-left);
1412
1413 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1414
1415 /*
1416 * Sign extend the Merge event counter's upper 16 bits since
1417 * we currently declare a 48-bit counter width
1418 */
1419 if (is_counter_pair(hwc))
1420 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1421
1422 perf_event_update_userpage(event);
1423
1424 return ret;
1425 }
1426
x86_pmu_enable_event(struct perf_event * event)1427 void x86_pmu_enable_event(struct perf_event *event)
1428 {
1429 if (__this_cpu_read(cpu_hw_events.enabled))
1430 __x86_pmu_enable_event(&event->hw,
1431 ARCH_PERFMON_EVENTSEL_ENABLE);
1432 }
1433
1434 /*
1435 * Add a single event to the PMU.
1436 *
1437 * The event is added to the group of enabled events
1438 * but only if it can be scheduled with existing events.
1439 */
x86_pmu_add(struct perf_event * event,int flags)1440 static int x86_pmu_add(struct perf_event *event, int flags)
1441 {
1442 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1443 struct hw_perf_event *hwc;
1444 int assign[X86_PMC_IDX_MAX];
1445 int n, n0, ret;
1446
1447 hwc = &event->hw;
1448
1449 n0 = cpuc->n_events;
1450 ret = n = collect_events(cpuc, event, false);
1451 if (ret < 0)
1452 goto out;
1453
1454 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1455 if (!(flags & PERF_EF_START))
1456 hwc->state |= PERF_HES_ARCH;
1457
1458 /*
1459 * If group events scheduling transaction was started,
1460 * skip the schedulability test here, it will be performed
1461 * at commit time (->commit_txn) as a whole.
1462 *
1463 * If commit fails, we'll call ->del() on all events
1464 * for which ->add() was called.
1465 */
1466 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1467 goto done_collect;
1468
1469 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1470 if (ret)
1471 goto out;
1472 /*
1473 * copy new assignment, now we know it is possible
1474 * will be used by hw_perf_enable()
1475 */
1476 memcpy(cpuc->assign, assign, n*sizeof(int));
1477
1478 done_collect:
1479 /*
1480 * Commit the collect_events() state. See x86_pmu_del() and
1481 * x86_pmu_*_txn().
1482 */
1483 cpuc->n_events = n;
1484 cpuc->n_added += n - n0;
1485 cpuc->n_txn += n - n0;
1486
1487 /*
1488 * This is before x86_pmu_enable() will call x86_pmu_start(),
1489 * so we enable LBRs before an event needs them etc..
1490 */
1491 static_call_cond(x86_pmu_add)(event);
1492
1493 ret = 0;
1494 out:
1495 return ret;
1496 }
1497
x86_pmu_start(struct perf_event * event,int flags)1498 static void x86_pmu_start(struct perf_event *event, int flags)
1499 {
1500 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1501 int idx = event->hw.idx;
1502
1503 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1504 return;
1505
1506 if (WARN_ON_ONCE(idx == -1))
1507 return;
1508
1509 if (flags & PERF_EF_RELOAD) {
1510 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1511 static_call(x86_pmu_set_period)(event);
1512 }
1513
1514 event->hw.state = 0;
1515
1516 cpuc->events[idx] = event;
1517 __set_bit(idx, cpuc->active_mask);
1518 static_call(x86_pmu_enable)(event);
1519 perf_event_update_userpage(event);
1520 }
1521
perf_event_print_debug(void)1522 void perf_event_print_debug(void)
1523 {
1524 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1525 unsigned long *cntr_mask, *fixed_cntr_mask;
1526 struct event_constraint *pebs_constraints;
1527 struct cpu_hw_events *cpuc;
1528 u64 pebs, debugctl;
1529 int cpu, idx;
1530
1531 guard(irqsave)();
1532
1533 cpu = smp_processor_id();
1534 cpuc = &per_cpu(cpu_hw_events, cpu);
1535 cntr_mask = hybrid(cpuc->pmu, cntr_mask);
1536 fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
1537 pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1538
1539 if (!*(u64 *)cntr_mask)
1540 return;
1541
1542 if (x86_pmu.version >= 2) {
1543 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1544 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1545 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1546 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1547
1548 pr_info("\n");
1549 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1550 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1551 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1552 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1553 if (pebs_constraints) {
1554 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1555 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1556 }
1557 if (x86_pmu.lbr_nr) {
1558 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1559 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1560 }
1561 }
1562 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1563
1564 for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) {
1565 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1566 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1567
1568 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1569
1570 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1571 cpu, idx, pmc_ctrl);
1572 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1573 cpu, idx, pmc_count);
1574 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1575 cpu, idx, prev_left);
1576 }
1577 for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) {
1578 if (fixed_counter_disabled(idx, cpuc->pmu))
1579 continue;
1580 rdmsrl(x86_pmu_fixed_ctr_addr(idx), pmc_count);
1581
1582 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1583 cpu, idx, pmc_count);
1584 }
1585 }
1586
x86_pmu_stop(struct perf_event * event,int flags)1587 void x86_pmu_stop(struct perf_event *event, int flags)
1588 {
1589 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1590 struct hw_perf_event *hwc = &event->hw;
1591
1592 if (test_bit(hwc->idx, cpuc->active_mask)) {
1593 static_call(x86_pmu_disable)(event);
1594 __clear_bit(hwc->idx, cpuc->active_mask);
1595 cpuc->events[hwc->idx] = NULL;
1596 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1597 hwc->state |= PERF_HES_STOPPED;
1598 }
1599
1600 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1601 /*
1602 * Drain the remaining delta count out of a event
1603 * that we are disabling:
1604 */
1605 static_call(x86_pmu_update)(event);
1606 hwc->state |= PERF_HES_UPTODATE;
1607 }
1608 }
1609
x86_pmu_del(struct perf_event * event,int flags)1610 static void x86_pmu_del(struct perf_event *event, int flags)
1611 {
1612 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1613 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1614 int i;
1615
1616 /*
1617 * If we're called during a txn, we only need to undo x86_pmu.add.
1618 * The events never got scheduled and ->cancel_txn will truncate
1619 * the event_list.
1620 *
1621 * XXX assumes any ->del() called during a TXN will only be on
1622 * an event added during that same TXN.
1623 */
1624 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1625 goto do_del;
1626
1627 __set_bit(event->hw.idx, cpuc->dirty);
1628
1629 /*
1630 * Not a TXN, therefore cleanup properly.
1631 */
1632 x86_pmu_stop(event, PERF_EF_UPDATE);
1633
1634 for (i = 0; i < cpuc->n_events; i++) {
1635 if (event == cpuc->event_list[i])
1636 break;
1637 }
1638
1639 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1640 return;
1641
1642 /* If we have a newly added event; make sure to decrease n_added. */
1643 if (i >= cpuc->n_events - cpuc->n_added)
1644 --cpuc->n_added;
1645
1646 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1647
1648 /* Delete the array entry. */
1649 while (++i < cpuc->n_events) {
1650 cpuc->event_list[i-1] = cpuc->event_list[i];
1651 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1652 cpuc->assign[i-1] = cpuc->assign[i];
1653 }
1654 cpuc->event_constraint[i-1] = NULL;
1655 --cpuc->n_events;
1656 if (intel_cap.perf_metrics)
1657 del_nr_metric_event(cpuc, event);
1658
1659 perf_event_update_userpage(event);
1660
1661 do_del:
1662
1663 /*
1664 * This is after x86_pmu_stop(); so we disable LBRs after any
1665 * event can need them etc..
1666 */
1667 static_call_cond(x86_pmu_del)(event);
1668 }
1669
x86_pmu_handle_irq(struct pt_regs * regs)1670 int x86_pmu_handle_irq(struct pt_regs *regs)
1671 {
1672 struct perf_sample_data data;
1673 struct cpu_hw_events *cpuc;
1674 struct perf_event *event;
1675 int idx, handled = 0;
1676 u64 val;
1677
1678 cpuc = this_cpu_ptr(&cpu_hw_events);
1679
1680 /*
1681 * Some chipsets need to unmask the LVTPC in a particular spot
1682 * inside the nmi handler. As a result, the unmasking was pushed
1683 * into all the nmi handlers.
1684 *
1685 * This generic handler doesn't seem to have any issues where the
1686 * unmasking occurs so it was left at the top.
1687 */
1688 apic_write(APIC_LVTPC, APIC_DM_NMI);
1689
1690 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1691 if (!test_bit(idx, cpuc->active_mask))
1692 continue;
1693
1694 event = cpuc->events[idx];
1695
1696 val = static_call(x86_pmu_update)(event);
1697 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1698 continue;
1699
1700 /*
1701 * event overflow
1702 */
1703 handled++;
1704
1705 if (!static_call(x86_pmu_set_period)(event))
1706 continue;
1707
1708 perf_sample_data_init(&data, 0, event->hw.last_period);
1709
1710 if (has_branch_stack(event))
1711 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1712
1713 if (perf_event_overflow(event, &data, regs))
1714 x86_pmu_stop(event, 0);
1715 }
1716
1717 if (handled)
1718 inc_irq_stat(apic_perf_irqs);
1719
1720 return handled;
1721 }
1722
perf_events_lapic_init(void)1723 void perf_events_lapic_init(void)
1724 {
1725 if (!x86_pmu.apic || !x86_pmu_initialized())
1726 return;
1727
1728 /*
1729 * Always use NMI for PMU
1730 */
1731 apic_write(APIC_LVTPC, APIC_DM_NMI);
1732 }
1733
1734 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1735 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1736 {
1737 u64 start_clock;
1738 u64 finish_clock;
1739 int ret;
1740
1741 /*
1742 * All PMUs/events that share this PMI handler should make sure to
1743 * increment active_events for their events.
1744 */
1745 if (!atomic_read(&active_events))
1746 return NMI_DONE;
1747
1748 start_clock = sched_clock();
1749 ret = static_call(x86_pmu_handle_irq)(regs);
1750 finish_clock = sched_clock();
1751
1752 perf_sample_event_took(finish_clock - start_clock);
1753
1754 return ret;
1755 }
1756 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1757
1758 struct event_constraint emptyconstraint;
1759 struct event_constraint unconstrained;
1760
x86_pmu_prepare_cpu(unsigned int cpu)1761 static int x86_pmu_prepare_cpu(unsigned int cpu)
1762 {
1763 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1764 int i;
1765
1766 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1767 cpuc->kfree_on_online[i] = NULL;
1768 if (x86_pmu.cpu_prepare)
1769 return x86_pmu.cpu_prepare(cpu);
1770 return 0;
1771 }
1772
x86_pmu_dead_cpu(unsigned int cpu)1773 static int x86_pmu_dead_cpu(unsigned int cpu)
1774 {
1775 if (x86_pmu.cpu_dead)
1776 x86_pmu.cpu_dead(cpu);
1777 return 0;
1778 }
1779
x86_pmu_online_cpu(unsigned int cpu)1780 static int x86_pmu_online_cpu(unsigned int cpu)
1781 {
1782 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1783 int i;
1784
1785 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1786 kfree(cpuc->kfree_on_online[i]);
1787 cpuc->kfree_on_online[i] = NULL;
1788 }
1789 return 0;
1790 }
1791
x86_pmu_starting_cpu(unsigned int cpu)1792 static int x86_pmu_starting_cpu(unsigned int cpu)
1793 {
1794 if (x86_pmu.cpu_starting)
1795 x86_pmu.cpu_starting(cpu);
1796 return 0;
1797 }
1798
x86_pmu_dying_cpu(unsigned int cpu)1799 static int x86_pmu_dying_cpu(unsigned int cpu)
1800 {
1801 if (x86_pmu.cpu_dying)
1802 x86_pmu.cpu_dying(cpu);
1803 return 0;
1804 }
1805
pmu_check_apic(void)1806 static void __init pmu_check_apic(void)
1807 {
1808 if (boot_cpu_has(X86_FEATURE_APIC))
1809 return;
1810
1811 x86_pmu.apic = 0;
1812 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1813 pr_info("no hardware sampling interrupt available.\n");
1814
1815 /*
1816 * If we have a PMU initialized but no APIC
1817 * interrupts, we cannot sample hardware
1818 * events (user-space has to fall back and
1819 * sample via a hrtimer based software event):
1820 */
1821 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1822
1823 }
1824
1825 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1826 .name = "format",
1827 .attrs = NULL,
1828 };
1829
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1830 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1831 {
1832 struct perf_pmu_events_attr *pmu_attr =
1833 container_of(attr, struct perf_pmu_events_attr, attr);
1834 u64 config = 0;
1835
1836 if (pmu_attr->id < x86_pmu.max_events)
1837 config = x86_pmu.event_map(pmu_attr->id);
1838
1839 /* string trumps id */
1840 if (pmu_attr->event_str)
1841 return sprintf(page, "%s\n", pmu_attr->event_str);
1842
1843 return x86_pmu.events_sysfs_show(page, config);
1844 }
1845 EXPORT_SYMBOL_GPL(events_sysfs_show);
1846
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1847 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1848 char *page)
1849 {
1850 struct perf_pmu_events_ht_attr *pmu_attr =
1851 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1852
1853 /*
1854 * Report conditional events depending on Hyper-Threading.
1855 *
1856 * This is overly conservative as usually the HT special
1857 * handling is not needed if the other CPU thread is idle.
1858 *
1859 * Note this does not (and cannot) handle the case when thread
1860 * siblings are invisible, for example with virtualization
1861 * if they are owned by some other guest. The user tool
1862 * has to re-read when a thread sibling gets onlined later.
1863 */
1864 return sprintf(page, "%s",
1865 topology_max_smt_threads() > 1 ?
1866 pmu_attr->event_str_ht :
1867 pmu_attr->event_str_noht);
1868 }
1869
events_hybrid_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1870 ssize_t events_hybrid_sysfs_show(struct device *dev,
1871 struct device_attribute *attr,
1872 char *page)
1873 {
1874 struct perf_pmu_events_hybrid_attr *pmu_attr =
1875 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1876 struct x86_hybrid_pmu *pmu;
1877 const char *str, *next_str;
1878 int i;
1879
1880 if (hweight64(pmu_attr->pmu_type) == 1)
1881 return sprintf(page, "%s", pmu_attr->event_str);
1882
1883 /*
1884 * Hybrid PMUs may support the same event name, but with different
1885 * event encoding, e.g., the mem-loads event on an Atom PMU has
1886 * different event encoding from a Core PMU.
1887 *
1888 * The event_str includes all event encodings. Each event encoding
1889 * is divided by ";". The order of the event encodings must follow
1890 * the order of the hybrid PMU index.
1891 */
1892 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1893
1894 str = pmu_attr->event_str;
1895 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1896 if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1897 continue;
1898 if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1899 next_str = strchr(str, ';');
1900 if (next_str)
1901 return snprintf(page, next_str - str + 1, "%s", str);
1902 else
1903 return sprintf(page, "%s", str);
1904 }
1905 str = strchr(str, ';');
1906 str++;
1907 }
1908
1909 return 0;
1910 }
1911 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1912
1913 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1914 EVENT_ATTR(instructions, INSTRUCTIONS );
1915 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1916 EVENT_ATTR(cache-misses, CACHE_MISSES );
1917 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1918 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1919 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1920 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1921 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1922 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1923
1924 static struct attribute *empty_attrs;
1925
1926 static struct attribute *events_attr[] = {
1927 EVENT_PTR(CPU_CYCLES),
1928 EVENT_PTR(INSTRUCTIONS),
1929 EVENT_PTR(CACHE_REFERENCES),
1930 EVENT_PTR(CACHE_MISSES),
1931 EVENT_PTR(BRANCH_INSTRUCTIONS),
1932 EVENT_PTR(BRANCH_MISSES),
1933 EVENT_PTR(BUS_CYCLES),
1934 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1935 EVENT_PTR(STALLED_CYCLES_BACKEND),
1936 EVENT_PTR(REF_CPU_CYCLES),
1937 NULL,
1938 };
1939
1940 /*
1941 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1942 * out of events_attr attributes.
1943 */
1944 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1945 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1946 {
1947 struct perf_pmu_events_attr *pmu_attr;
1948
1949 if (idx >= x86_pmu.max_events)
1950 return 0;
1951
1952 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1953 /* str trumps id */
1954 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1955 }
1956
1957 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1958 .name = "events",
1959 .attrs = events_attr,
1960 .is_visible = is_visible,
1961 };
1962
x86_event_sysfs_show(char * page,u64 config,u64 event)1963 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1964 {
1965 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1966 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1967 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1968 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1969 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1970 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1971 ssize_t ret;
1972
1973 /*
1974 * We have whole page size to spend and just little data
1975 * to write, so we can safely use sprintf.
1976 */
1977 ret = sprintf(page, "event=0x%02llx", event);
1978
1979 if (umask)
1980 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1981
1982 if (edge)
1983 ret += sprintf(page + ret, ",edge");
1984
1985 if (pc)
1986 ret += sprintf(page + ret, ",pc");
1987
1988 if (any)
1989 ret += sprintf(page + ret, ",any");
1990
1991 if (inv)
1992 ret += sprintf(page + ret, ",inv");
1993
1994 if (cmask)
1995 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1996
1997 ret += sprintf(page + ret, "\n");
1998
1999 return ret;
2000 }
2001
2002 static struct attribute_group x86_pmu_attr_group;
2003 static struct attribute_group x86_pmu_caps_group;
2004
x86_pmu_static_call_update(void)2005 static void x86_pmu_static_call_update(void)
2006 {
2007 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2008 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2009 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2010 static_call_update(x86_pmu_enable, x86_pmu.enable);
2011 static_call_update(x86_pmu_disable, x86_pmu.disable);
2012
2013 static_call_update(x86_pmu_assign, x86_pmu.assign);
2014
2015 static_call_update(x86_pmu_add, x86_pmu.add);
2016 static_call_update(x86_pmu_del, x86_pmu.del);
2017 static_call_update(x86_pmu_read, x86_pmu.read);
2018
2019 static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2020 static_call_update(x86_pmu_update, x86_pmu.update);
2021 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2022
2023 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2024 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2025 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2026
2027 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2028 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2029 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2030
2031 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2032 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2033
2034 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2035 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2036
2037 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2038 static_call_update(x86_pmu_filter, x86_pmu.filter);
2039 }
2040
_x86_pmu_read(struct perf_event * event)2041 static void _x86_pmu_read(struct perf_event *event)
2042 {
2043 static_call(x86_pmu_update)(event);
2044 }
2045
x86_pmu_show_pmu_cap(struct pmu * pmu)2046 void x86_pmu_show_pmu_cap(struct pmu *pmu)
2047 {
2048 pr_info("... version: %d\n", x86_pmu.version);
2049 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
2050 pr_info("... generic registers: %d\n", x86_pmu_num_counters(pmu));
2051 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
2052 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2053 pr_info("... fixed-purpose events: %d\n", x86_pmu_num_counters_fixed(pmu));
2054 pr_info("... event mask: %016Lx\n", hybrid(pmu, intel_ctrl));
2055 }
2056
init_hw_perf_events(void)2057 static int __init init_hw_perf_events(void)
2058 {
2059 struct x86_pmu_quirk *quirk;
2060 int err;
2061
2062 pr_info("Performance Events: ");
2063
2064 switch (boot_cpu_data.x86_vendor) {
2065 case X86_VENDOR_INTEL:
2066 err = intel_pmu_init();
2067 break;
2068 case X86_VENDOR_AMD:
2069 err = amd_pmu_init();
2070 break;
2071 case X86_VENDOR_HYGON:
2072 err = amd_pmu_init();
2073 x86_pmu.name = "HYGON";
2074 break;
2075 case X86_VENDOR_ZHAOXIN:
2076 case X86_VENDOR_CENTAUR:
2077 err = zhaoxin_pmu_init();
2078 break;
2079 default:
2080 err = -ENOTSUPP;
2081 }
2082 if (err != 0) {
2083 pr_cont("no PMU driver, software events only.\n");
2084 err = 0;
2085 goto out_bad_pmu;
2086 }
2087
2088 pmu_check_apic();
2089
2090 /* sanity check that the hardware exists or is emulated */
2091 if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask))
2092 goto out_bad_pmu;
2093
2094 pr_cont("%s PMU driver.\n", x86_pmu.name);
2095
2096 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2097
2098 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2099 quirk->func();
2100
2101 if (!x86_pmu.intel_ctrl)
2102 x86_pmu.intel_ctrl = x86_pmu.cntr_mask64;
2103
2104 if (!x86_pmu.config_mask)
2105 x86_pmu.config_mask = X86_RAW_EVENT_MASK;
2106
2107 perf_events_lapic_init();
2108 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2109
2110 unconstrained = (struct event_constraint)
2111 __EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64,
2112 0, x86_pmu_num_counters(NULL), 0, 0);
2113
2114 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2115
2116 if (!x86_pmu.events_sysfs_show)
2117 x86_pmu_events_group.attrs = &empty_attrs;
2118
2119 pmu.attr_update = x86_pmu.attr_update;
2120
2121 if (!is_hybrid())
2122 x86_pmu_show_pmu_cap(NULL);
2123
2124 if (!x86_pmu.read)
2125 x86_pmu.read = _x86_pmu_read;
2126
2127 if (!x86_pmu.guest_get_msrs)
2128 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2129
2130 if (!x86_pmu.set_period)
2131 x86_pmu.set_period = x86_perf_event_set_period;
2132
2133 if (!x86_pmu.update)
2134 x86_pmu.update = x86_perf_event_update;
2135
2136 x86_pmu_static_call_update();
2137
2138 /*
2139 * Install callbacks. Core will call them for each online
2140 * cpu.
2141 */
2142 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2143 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2144 if (err)
2145 return err;
2146
2147 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2148 "perf/x86:starting", x86_pmu_starting_cpu,
2149 x86_pmu_dying_cpu);
2150 if (err)
2151 goto out;
2152
2153 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2154 x86_pmu_online_cpu, NULL);
2155 if (err)
2156 goto out1;
2157
2158 if (!is_hybrid()) {
2159 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2160 if (err)
2161 goto out2;
2162 } else {
2163 struct x86_hybrid_pmu *hybrid_pmu;
2164 int i, j;
2165
2166 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2167 hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2168
2169 hybrid_pmu->pmu = pmu;
2170 hybrid_pmu->pmu.type = -1;
2171 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2172 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2173
2174 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2175 (hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2176 if (err)
2177 break;
2178 }
2179
2180 if (i < x86_pmu.num_hybrid_pmus) {
2181 for (j = 0; j < i; j++)
2182 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2183 pr_warn("Failed to register hybrid PMUs\n");
2184 kfree(x86_pmu.hybrid_pmu);
2185 x86_pmu.hybrid_pmu = NULL;
2186 x86_pmu.num_hybrid_pmus = 0;
2187 goto out2;
2188 }
2189 }
2190
2191 return 0;
2192
2193 out2:
2194 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2195 out1:
2196 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2197 out:
2198 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2199 out_bad_pmu:
2200 memset(&x86_pmu, 0, sizeof(x86_pmu));
2201 return err;
2202 }
2203 early_initcall(init_hw_perf_events);
2204
x86_pmu_read(struct perf_event * event)2205 static void x86_pmu_read(struct perf_event *event)
2206 {
2207 static_call(x86_pmu_read)(event);
2208 }
2209
2210 /*
2211 * Start group events scheduling transaction
2212 * Set the flag to make pmu::enable() not perform the
2213 * schedulability test, it will be performed at commit time
2214 *
2215 * We only support PERF_PMU_TXN_ADD transactions. Save the
2216 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2217 * transactions.
2218 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)2219 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2220 {
2221 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2222
2223 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
2224
2225 cpuc->txn_flags = txn_flags;
2226 if (txn_flags & ~PERF_PMU_TXN_ADD)
2227 return;
2228
2229 perf_pmu_disable(pmu);
2230 __this_cpu_write(cpu_hw_events.n_txn, 0);
2231 __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2232 __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2233 }
2234
2235 /*
2236 * Stop group events scheduling transaction
2237 * Clear the flag and pmu::enable() will perform the
2238 * schedulability test.
2239 */
x86_pmu_cancel_txn(struct pmu * pmu)2240 static void x86_pmu_cancel_txn(struct pmu *pmu)
2241 {
2242 unsigned int txn_flags;
2243 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2244
2245 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2246
2247 txn_flags = cpuc->txn_flags;
2248 cpuc->txn_flags = 0;
2249 if (txn_flags & ~PERF_PMU_TXN_ADD)
2250 return;
2251
2252 /*
2253 * Truncate collected array by the number of events added in this
2254 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2255 */
2256 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2257 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2258 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2259 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2260 perf_pmu_enable(pmu);
2261 }
2262
2263 /*
2264 * Commit group events scheduling transaction
2265 * Perform the group schedulability test as a whole
2266 * Return 0 if success
2267 *
2268 * Does not cancel the transaction on failure; expects the caller to do this.
2269 */
x86_pmu_commit_txn(struct pmu * pmu)2270 static int x86_pmu_commit_txn(struct pmu *pmu)
2271 {
2272 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2273 int assign[X86_PMC_IDX_MAX];
2274 int n, ret;
2275
2276 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2277
2278 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2279 cpuc->txn_flags = 0;
2280 return 0;
2281 }
2282
2283 n = cpuc->n_events;
2284
2285 if (!x86_pmu_initialized())
2286 return -EAGAIN;
2287
2288 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2289 if (ret)
2290 return ret;
2291
2292 /*
2293 * copy new assignment, now we know it is possible
2294 * will be used by hw_perf_enable()
2295 */
2296 memcpy(cpuc->assign, assign, n*sizeof(int));
2297
2298 cpuc->txn_flags = 0;
2299 perf_pmu_enable(pmu);
2300 return 0;
2301 }
2302 /*
2303 * a fake_cpuc is used to validate event groups. Due to
2304 * the extra reg logic, we need to also allocate a fake
2305 * per_core and per_cpu structure. Otherwise, group events
2306 * using extra reg may conflict without the kernel being
2307 * able to catch this when the last event gets added to
2308 * the group.
2309 */
free_fake_cpuc(struct cpu_hw_events * cpuc)2310 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2311 {
2312 intel_cpuc_finish(cpuc);
2313 kfree(cpuc);
2314 }
2315
allocate_fake_cpuc(struct pmu * event_pmu)2316 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2317 {
2318 struct cpu_hw_events *cpuc;
2319 int cpu;
2320
2321 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2322 if (!cpuc)
2323 return ERR_PTR(-ENOMEM);
2324 cpuc->is_fake = 1;
2325
2326 if (is_hybrid()) {
2327 struct x86_hybrid_pmu *h_pmu;
2328
2329 h_pmu = hybrid_pmu(event_pmu);
2330 if (cpumask_empty(&h_pmu->supported_cpus))
2331 goto error;
2332 cpu = cpumask_first(&h_pmu->supported_cpus);
2333 } else
2334 cpu = raw_smp_processor_id();
2335 cpuc->pmu = event_pmu;
2336
2337 if (intel_cpuc_prepare(cpuc, cpu))
2338 goto error;
2339
2340 return cpuc;
2341 error:
2342 free_fake_cpuc(cpuc);
2343 return ERR_PTR(-ENOMEM);
2344 }
2345
2346 /*
2347 * validate that we can schedule this event
2348 */
validate_event(struct perf_event * event)2349 static int validate_event(struct perf_event *event)
2350 {
2351 struct cpu_hw_events *fake_cpuc;
2352 struct event_constraint *c;
2353 int ret = 0;
2354
2355 fake_cpuc = allocate_fake_cpuc(event->pmu);
2356 if (IS_ERR(fake_cpuc))
2357 return PTR_ERR(fake_cpuc);
2358
2359 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2360
2361 if (!c || !c->weight)
2362 ret = -EINVAL;
2363
2364 if (x86_pmu.put_event_constraints)
2365 x86_pmu.put_event_constraints(fake_cpuc, event);
2366
2367 free_fake_cpuc(fake_cpuc);
2368
2369 return ret;
2370 }
2371
2372 /*
2373 * validate a single event group
2374 *
2375 * validation include:
2376 * - check events are compatible which each other
2377 * - events do not compete for the same counter
2378 * - number of events <= number of counters
2379 *
2380 * validation ensures the group can be loaded onto the
2381 * PMU if it was the only group available.
2382 */
validate_group(struct perf_event * event)2383 static int validate_group(struct perf_event *event)
2384 {
2385 struct perf_event *leader = event->group_leader;
2386 struct cpu_hw_events *fake_cpuc;
2387 int ret = -EINVAL, n;
2388
2389 /*
2390 * Reject events from different hybrid PMUs.
2391 */
2392 if (is_hybrid()) {
2393 struct perf_event *sibling;
2394 struct pmu *pmu = NULL;
2395
2396 if (is_x86_event(leader))
2397 pmu = leader->pmu;
2398
2399 for_each_sibling_event(sibling, leader) {
2400 if (!is_x86_event(sibling))
2401 continue;
2402 if (!pmu)
2403 pmu = sibling->pmu;
2404 else if (pmu != sibling->pmu)
2405 return ret;
2406 }
2407 }
2408
2409 fake_cpuc = allocate_fake_cpuc(event->pmu);
2410 if (IS_ERR(fake_cpuc))
2411 return PTR_ERR(fake_cpuc);
2412 /*
2413 * the event is not yet connected with its
2414 * siblings therefore we must first collect
2415 * existing siblings, then add the new event
2416 * before we can simulate the scheduling
2417 */
2418 n = collect_events(fake_cpuc, leader, true);
2419 if (n < 0)
2420 goto out;
2421
2422 fake_cpuc->n_events = n;
2423 n = collect_events(fake_cpuc, event, false);
2424 if (n < 0)
2425 goto out;
2426
2427 fake_cpuc->n_events = 0;
2428 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2429
2430 out:
2431 free_fake_cpuc(fake_cpuc);
2432 return ret;
2433 }
2434
x86_pmu_event_init(struct perf_event * event)2435 static int x86_pmu_event_init(struct perf_event *event)
2436 {
2437 struct x86_hybrid_pmu *pmu = NULL;
2438 int err;
2439
2440 if ((event->attr.type != event->pmu->type) &&
2441 (event->attr.type != PERF_TYPE_HARDWARE) &&
2442 (event->attr.type != PERF_TYPE_HW_CACHE))
2443 return -ENOENT;
2444
2445 if (is_hybrid() && (event->cpu != -1)) {
2446 pmu = hybrid_pmu(event->pmu);
2447 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2448 return -ENOENT;
2449 }
2450
2451 err = __x86_pmu_event_init(event);
2452 if (!err) {
2453 if (event->group_leader != event)
2454 err = validate_group(event);
2455 else
2456 err = validate_event(event);
2457 }
2458 if (err) {
2459 if (event->destroy)
2460 event->destroy(event);
2461 event->destroy = NULL;
2462 }
2463
2464 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2465 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2466 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2467
2468 return err;
2469 }
2470
perf_clear_dirty_counters(void)2471 void perf_clear_dirty_counters(void)
2472 {
2473 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2474 int i;
2475
2476 /* Don't need to clear the assigned counter. */
2477 for (i = 0; i < cpuc->n_events; i++)
2478 __clear_bit(cpuc->assign[i], cpuc->dirty);
2479
2480 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2481 return;
2482
2483 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2484 if (i >= INTEL_PMC_IDX_FIXED) {
2485 /* Metrics and fake events don't have corresponding HW counters. */
2486 if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask)))
2487 continue;
2488
2489 wrmsrl(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0);
2490 } else {
2491 wrmsrl(x86_pmu_event_addr(i), 0);
2492 }
2493 }
2494
2495 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2496 }
2497
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2498 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2499 {
2500 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2501 return;
2502
2503 /*
2504 * This function relies on not being called concurrently in two
2505 * tasks in the same mm. Otherwise one task could observe
2506 * perf_rdpmc_allowed > 1 and return all the way back to
2507 * userspace with CR4.PCE clear while another task is still
2508 * doing on_each_cpu_mask() to propagate CR4.PCE.
2509 *
2510 * For now, this can't happen because all callers hold mmap_lock
2511 * for write. If this changes, we'll need a different solution.
2512 */
2513 mmap_assert_write_locked(mm);
2514
2515 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2516 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2517 }
2518
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2519 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2520 {
2521 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2522 return;
2523
2524 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2525 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2526 }
2527
x86_pmu_event_idx(struct perf_event * event)2528 static int x86_pmu_event_idx(struct perf_event *event)
2529 {
2530 struct hw_perf_event *hwc = &event->hw;
2531
2532 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2533 return 0;
2534
2535 if (is_metric_idx(hwc->idx))
2536 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2537 else
2538 return hwc->event_base_rdpmc + 1;
2539 }
2540
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2541 static ssize_t get_attr_rdpmc(struct device *cdev,
2542 struct device_attribute *attr,
2543 char *buf)
2544 {
2545 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2546 }
2547
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2548 static ssize_t set_attr_rdpmc(struct device *cdev,
2549 struct device_attribute *attr,
2550 const char *buf, size_t count)
2551 {
2552 static DEFINE_MUTEX(rdpmc_mutex);
2553 unsigned long val;
2554 ssize_t ret;
2555
2556 ret = kstrtoul(buf, 0, &val);
2557 if (ret)
2558 return ret;
2559
2560 if (val > 2)
2561 return -EINVAL;
2562
2563 if (x86_pmu.attr_rdpmc_broken)
2564 return -ENOTSUPP;
2565
2566 guard(mutex)(&rdpmc_mutex);
2567
2568 if (val != x86_pmu.attr_rdpmc) {
2569 /*
2570 * Changing into or out of never available or always available,
2571 * aka perf-event-bypassing mode. This path is extremely slow,
2572 * but only root can trigger it, so it's okay.
2573 */
2574 if (val == 0)
2575 static_branch_inc(&rdpmc_never_available_key);
2576 else if (x86_pmu.attr_rdpmc == 0)
2577 static_branch_dec(&rdpmc_never_available_key);
2578
2579 if (val == 2)
2580 static_branch_inc(&rdpmc_always_available_key);
2581 else if (x86_pmu.attr_rdpmc == 2)
2582 static_branch_dec(&rdpmc_always_available_key);
2583
2584 on_each_cpu(cr4_update_pce, NULL, 1);
2585 x86_pmu.attr_rdpmc = val;
2586 }
2587
2588 return count;
2589 }
2590
2591 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2592
2593 static struct attribute *x86_pmu_attrs[] = {
2594 &dev_attr_rdpmc.attr,
2595 NULL,
2596 };
2597
2598 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2599 .attrs = x86_pmu_attrs,
2600 };
2601
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2602 static ssize_t max_precise_show(struct device *cdev,
2603 struct device_attribute *attr,
2604 char *buf)
2605 {
2606 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2607 }
2608
2609 static DEVICE_ATTR_RO(max_precise);
2610
2611 static struct attribute *x86_pmu_caps_attrs[] = {
2612 &dev_attr_max_precise.attr,
2613 NULL
2614 };
2615
2616 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2617 .name = "caps",
2618 .attrs = x86_pmu_caps_attrs,
2619 };
2620
2621 static const struct attribute_group *x86_pmu_attr_groups[] = {
2622 &x86_pmu_attr_group,
2623 &x86_pmu_format_group,
2624 &x86_pmu_events_group,
2625 &x86_pmu_caps_group,
2626 NULL,
2627 };
2628
x86_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)2629 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2630 {
2631 static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2632 }
2633
x86_pmu_swap_task_ctx(struct perf_event_pmu_context * prev_epc,struct perf_event_pmu_context * next_epc)2634 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2635 struct perf_event_pmu_context *next_epc)
2636 {
2637 static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2638 }
2639
perf_check_microcode(void)2640 void perf_check_microcode(void)
2641 {
2642 if (x86_pmu.check_microcode)
2643 x86_pmu.check_microcode();
2644 }
2645
x86_pmu_check_period(struct perf_event * event,u64 value)2646 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2647 {
2648 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2649 return -EINVAL;
2650
2651 if (value && x86_pmu.limit_period) {
2652 s64 left = value;
2653 x86_pmu.limit_period(event, &left);
2654 if (left > value)
2655 return -EINVAL;
2656 }
2657
2658 return 0;
2659 }
2660
x86_pmu_aux_output_match(struct perf_event * event)2661 static int x86_pmu_aux_output_match(struct perf_event *event)
2662 {
2663 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2664 return 0;
2665
2666 if (x86_pmu.aux_output_match)
2667 return x86_pmu.aux_output_match(event);
2668
2669 return 0;
2670 }
2671
x86_pmu_filter(struct pmu * pmu,int cpu)2672 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2673 {
2674 bool ret = false;
2675
2676 static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2677
2678 return ret;
2679 }
2680
2681 static struct pmu pmu = {
2682 .pmu_enable = x86_pmu_enable,
2683 .pmu_disable = x86_pmu_disable,
2684
2685 .attr_groups = x86_pmu_attr_groups,
2686
2687 .event_init = x86_pmu_event_init,
2688
2689 .event_mapped = x86_pmu_event_mapped,
2690 .event_unmapped = x86_pmu_event_unmapped,
2691
2692 .add = x86_pmu_add,
2693 .del = x86_pmu_del,
2694 .start = x86_pmu_start,
2695 .stop = x86_pmu_stop,
2696 .read = x86_pmu_read,
2697
2698 .start_txn = x86_pmu_start_txn,
2699 .cancel_txn = x86_pmu_cancel_txn,
2700 .commit_txn = x86_pmu_commit_txn,
2701
2702 .event_idx = x86_pmu_event_idx,
2703 .sched_task = x86_pmu_sched_task,
2704 .swap_task_ctx = x86_pmu_swap_task_ctx,
2705 .check_period = x86_pmu_check_period,
2706
2707 .aux_output_match = x86_pmu_aux_output_match,
2708
2709 .filter = x86_pmu_filter,
2710 };
2711
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2712 void arch_perf_update_userpage(struct perf_event *event,
2713 struct perf_event_mmap_page *userpg, u64 now)
2714 {
2715 struct cyc2ns_data data;
2716 u64 offset;
2717
2718 userpg->cap_user_time = 0;
2719 userpg->cap_user_time_zero = 0;
2720 userpg->cap_user_rdpmc =
2721 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2722 userpg->pmc_width = x86_pmu.cntval_bits;
2723
2724 if (!using_native_sched_clock() || !sched_clock_stable())
2725 return;
2726
2727 cyc2ns_read_begin(&data);
2728
2729 offset = data.cyc2ns_offset + __sched_clock_offset;
2730
2731 /*
2732 * Internal timekeeping for enabled/running/stopped times
2733 * is always in the local_clock domain.
2734 */
2735 userpg->cap_user_time = 1;
2736 userpg->time_mult = data.cyc2ns_mul;
2737 userpg->time_shift = data.cyc2ns_shift;
2738 userpg->time_offset = offset - now;
2739
2740 /*
2741 * cap_user_time_zero doesn't make sense when we're using a different
2742 * time base for the records.
2743 */
2744 if (!event->attr.use_clockid) {
2745 userpg->cap_user_time_zero = 1;
2746 userpg->time_zero = offset;
2747 }
2748
2749 cyc2ns_read_end();
2750 }
2751
2752 /*
2753 * Determine whether the regs were taken from an irq/exception handler rather
2754 * than from perf_arch_fetch_caller_regs().
2755 */
perf_hw_regs(struct pt_regs * regs)2756 static bool perf_hw_regs(struct pt_regs *regs)
2757 {
2758 return regs->flags & X86_EFLAGS_FIXED;
2759 }
2760
2761 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2762 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2763 {
2764 struct unwind_state state;
2765 unsigned long addr;
2766
2767 if (perf_guest_state()) {
2768 /* TODO: We don't support guest os callchain now */
2769 return;
2770 }
2771
2772 if (perf_callchain_store(entry, regs->ip))
2773 return;
2774
2775 if (perf_hw_regs(regs))
2776 unwind_start(&state, current, regs, NULL);
2777 else
2778 unwind_start(&state, current, NULL, (void *)regs->sp);
2779
2780 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2781 addr = unwind_get_return_address(&state);
2782 if (!addr || perf_callchain_store(entry, addr))
2783 return;
2784 }
2785 }
2786
2787 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2788 valid_user_frame(const void __user *fp, unsigned long size)
2789 {
2790 return __access_ok(fp, size);
2791 }
2792
get_segment_base(unsigned int segment)2793 static unsigned long get_segment_base(unsigned int segment)
2794 {
2795 struct desc_struct *desc;
2796 unsigned int idx = segment >> 3;
2797
2798 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2799 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2800 struct ldt_struct *ldt;
2801
2802 /* IRQs are off, so this synchronizes with smp_store_release */
2803 ldt = READ_ONCE(current->active_mm->context.ldt);
2804 if (!ldt || idx >= ldt->nr_entries)
2805 return 0;
2806
2807 desc = &ldt->entries[idx];
2808 #else
2809 return 0;
2810 #endif
2811 } else {
2812 if (idx >= GDT_ENTRIES)
2813 return 0;
2814
2815 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2816 }
2817
2818 return get_desc_base(desc);
2819 }
2820
2821 #ifdef CONFIG_UPROBES
2822 /*
2823 * Heuristic-based check if uprobe is installed at the function entry.
2824 *
2825 * Under assumption of user code being compiled with frame pointers,
2826 * `push %rbp/%ebp` is a good indicator that we indeed are.
2827 *
2828 * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern.
2829 * If we get this wrong, captured stack trace might have one extra bogus
2830 * entry, but the rest of stack trace will still be meaningful.
2831 */
is_uprobe_at_func_entry(struct pt_regs * regs)2832 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2833 {
2834 struct arch_uprobe *auprobe;
2835
2836 if (!current->utask)
2837 return false;
2838
2839 auprobe = current->utask->auprobe;
2840 if (!auprobe)
2841 return false;
2842
2843 /* push %rbp/%ebp */
2844 if (auprobe->insn[0] == 0x55)
2845 return true;
2846
2847 /* endbr64 (64-bit only) */
2848 if (user_64bit_mode(regs) && is_endbr(*(u32 *)auprobe->insn))
2849 return true;
2850
2851 return false;
2852 }
2853
2854 #else
is_uprobe_at_func_entry(struct pt_regs * regs)2855 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2856 {
2857 return false;
2858 }
2859 #endif /* CONFIG_UPROBES */
2860
2861 #ifdef CONFIG_IA32_EMULATION
2862
2863 #include <linux/compat.h>
2864
2865 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2866 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2867 {
2868 /* 32-bit process in 64-bit kernel. */
2869 unsigned long ss_base, cs_base;
2870 struct stack_frame_ia32 frame;
2871 const struct stack_frame_ia32 __user *fp;
2872 u32 ret_addr;
2873
2874 if (user_64bit_mode(regs))
2875 return 0;
2876
2877 cs_base = get_segment_base(regs->cs);
2878 ss_base = get_segment_base(regs->ss);
2879
2880 fp = compat_ptr(ss_base + regs->bp);
2881 pagefault_disable();
2882
2883 /* see perf_callchain_user() below for why we do this */
2884 if (is_uprobe_at_func_entry(regs) &&
2885 !get_user(ret_addr, (const u32 __user *)regs->sp))
2886 perf_callchain_store(entry, ret_addr);
2887
2888 while (entry->nr < entry->max_stack) {
2889 if (!valid_user_frame(fp, sizeof(frame)))
2890 break;
2891
2892 if (__get_user(frame.next_frame, &fp->next_frame))
2893 break;
2894 if (__get_user(frame.return_address, &fp->return_address))
2895 break;
2896
2897 perf_callchain_store(entry, cs_base + frame.return_address);
2898 fp = compat_ptr(ss_base + frame.next_frame);
2899 }
2900 pagefault_enable();
2901 return 1;
2902 }
2903 #else
2904 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2905 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2906 {
2907 return 0;
2908 }
2909 #endif
2910
2911 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2912 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2913 {
2914 struct stack_frame frame;
2915 const struct stack_frame __user *fp;
2916 unsigned long ret_addr;
2917
2918 if (perf_guest_state()) {
2919 /* TODO: We don't support guest os callchain now */
2920 return;
2921 }
2922
2923 /*
2924 * We don't know what to do with VM86 stacks.. ignore them for now.
2925 */
2926 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2927 return;
2928
2929 fp = (void __user *)regs->bp;
2930
2931 perf_callchain_store(entry, regs->ip);
2932
2933 if (!nmi_uaccess_okay())
2934 return;
2935
2936 if (perf_callchain_user32(regs, entry))
2937 return;
2938
2939 pagefault_disable();
2940
2941 /*
2942 * If we are called from uprobe handler, and we are indeed at the very
2943 * entry to user function (which is normally a `push %rbp` instruction,
2944 * under assumption of application being compiled with frame pointers),
2945 * we should read return address from *regs->sp before proceeding
2946 * to follow frame pointers, otherwise we'll skip immediate caller
2947 * as %rbp is not yet setup.
2948 */
2949 if (is_uprobe_at_func_entry(regs) &&
2950 !get_user(ret_addr, (const unsigned long __user *)regs->sp))
2951 perf_callchain_store(entry, ret_addr);
2952
2953 while (entry->nr < entry->max_stack) {
2954 if (!valid_user_frame(fp, sizeof(frame)))
2955 break;
2956
2957 if (__get_user(frame.next_frame, &fp->next_frame))
2958 break;
2959 if (__get_user(frame.return_address, &fp->return_address))
2960 break;
2961
2962 perf_callchain_store(entry, frame.return_address);
2963 fp = (void __user *)frame.next_frame;
2964 }
2965 pagefault_enable();
2966 }
2967
2968 /*
2969 * Deal with code segment offsets for the various execution modes:
2970 *
2971 * VM86 - the good olde 16 bit days, where the linear address is
2972 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2973 *
2974 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2975 * to figure out what the 32bit base address is.
2976 *
2977 * X32 - has TIF_X32 set, but is running in x86_64
2978 *
2979 * X86_64 - CS,DS,SS,ES are all zero based.
2980 */
code_segment_base(struct pt_regs * regs)2981 static unsigned long code_segment_base(struct pt_regs *regs)
2982 {
2983 /*
2984 * For IA32 we look at the GDT/LDT segment base to convert the
2985 * effective IP to a linear address.
2986 */
2987
2988 #ifdef CONFIG_X86_32
2989 /*
2990 * If we are in VM86 mode, add the segment offset to convert to a
2991 * linear address.
2992 */
2993 if (regs->flags & X86_VM_MASK)
2994 return 0x10 * regs->cs;
2995
2996 if (user_mode(regs) && regs->cs != __USER_CS)
2997 return get_segment_base(regs->cs);
2998 #else
2999 if (user_mode(regs) && !user_64bit_mode(regs) &&
3000 regs->cs != __USER32_CS)
3001 return get_segment_base(regs->cs);
3002 #endif
3003 return 0;
3004 }
3005
perf_arch_instruction_pointer(struct pt_regs * regs)3006 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs)
3007 {
3008 return regs->ip + code_segment_base(regs);
3009 }
3010
common_misc_flags(struct pt_regs * regs)3011 static unsigned long common_misc_flags(struct pt_regs *regs)
3012 {
3013 if (regs->flags & PERF_EFLAGS_EXACT)
3014 return PERF_RECORD_MISC_EXACT_IP;
3015
3016 return 0;
3017 }
3018
guest_misc_flags(struct pt_regs * regs)3019 static unsigned long guest_misc_flags(struct pt_regs *regs)
3020 {
3021 unsigned long guest_state = perf_guest_state();
3022
3023 if (!(guest_state & PERF_GUEST_ACTIVE))
3024 return 0;
3025
3026 if (guest_state & PERF_GUEST_USER)
3027 return PERF_RECORD_MISC_GUEST_USER;
3028 else
3029 return PERF_RECORD_MISC_GUEST_KERNEL;
3030
3031 }
3032
host_misc_flags(struct pt_regs * regs)3033 static unsigned long host_misc_flags(struct pt_regs *regs)
3034 {
3035 if (user_mode(regs))
3036 return PERF_RECORD_MISC_USER;
3037 else
3038 return PERF_RECORD_MISC_KERNEL;
3039 }
3040
perf_arch_guest_misc_flags(struct pt_regs * regs)3041 unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
3042 {
3043 unsigned long flags = common_misc_flags(regs);
3044
3045 flags |= guest_misc_flags(regs);
3046
3047 return flags;
3048 }
3049
perf_arch_misc_flags(struct pt_regs * regs)3050 unsigned long perf_arch_misc_flags(struct pt_regs *regs)
3051 {
3052 unsigned long flags = common_misc_flags(regs);
3053
3054 flags |= host_misc_flags(regs);
3055
3056 return flags;
3057 }
3058
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)3059 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3060 {
3061 /* This API doesn't currently support enumerating hybrid PMUs. */
3062 if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
3063 !x86_pmu_initialized()) {
3064 memset(cap, 0, sizeof(*cap));
3065 return;
3066 }
3067
3068 /*
3069 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
3070 * all E-cores are disabled via BIOS. When E-cores are disabled, the
3071 * base PMU holds the correct number of counters for P-cores.
3072 */
3073 cap->version = x86_pmu.version;
3074 cap->num_counters_gp = x86_pmu_num_counters(NULL);
3075 cap->num_counters_fixed = x86_pmu_num_counters_fixed(NULL);
3076 cap->bit_width_gp = x86_pmu.cntval_bits;
3077 cap->bit_width_fixed = x86_pmu.cntval_bits;
3078 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
3079 cap->events_mask_len = x86_pmu.events_mask_len;
3080 cap->pebs_ept = x86_pmu.pebs_ept;
3081 }
3082 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3083
perf_get_hw_event_config(int hw_event)3084 u64 perf_get_hw_event_config(int hw_event)
3085 {
3086 int max = x86_pmu.max_events;
3087
3088 if (hw_event < max)
3089 return x86_pmu.event_map(array_index_nospec(hw_event, max));
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3094