1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 /*
96 * Note, kvm_caps fields should *never* have default values, all fields must be
97 * recomputed from scratch during vendor module load, e.g. to account for a
98 * vendor module being reloaded with different module parameters.
99 */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105
106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
107
108 #define emul_to_vcpu(ctxt) \
109 ((struct kvm_vcpu *)(ctxt)->vcpu)
110
111 /* EFER defaults:
112 * - enable syscall per default because its emulated by KVM
113 * - enable LME and LMA per default on 64 bit KVM
114 */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121
122 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
123
124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
125
126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
127
128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
129 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
130
131 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
132 static void process_nmi(struct kvm_vcpu *vcpu);
133 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
134 static void store_regs(struct kvm_vcpu *vcpu);
135 static int sync_regs(struct kvm_vcpu *vcpu);
136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
137
138 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
139 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
140
141 static DEFINE_MUTEX(vendor_module_lock);
142 struct kvm_x86_ops kvm_x86_ops __read_mostly;
143
144 #define KVM_X86_OP(func) \
145 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
146 *(((struct kvm_x86_ops *)0)->func));
147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
149 #include <asm/kvm-x86-ops.h>
150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
152
153 static bool __read_mostly ignore_msrs = 0;
154 module_param(ignore_msrs, bool, 0644);
155
156 bool __read_mostly report_ignored_msrs = true;
157 module_param(report_ignored_msrs, bool, 0644);
158 EXPORT_SYMBOL_GPL(report_ignored_msrs);
159
160 unsigned int min_timer_period_us = 200;
161 module_param(min_timer_period_us, uint, 0644);
162
163 static bool __read_mostly kvmclock_periodic_sync = true;
164 module_param(kvmclock_periodic_sync, bool, 0444);
165
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm = 250;
168 module_param(tsc_tolerance_ppm, uint, 0644);
169
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, 0444);
172
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, 0444);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176
177 /*
178 * Flags to manipulate forced emulation behavior (any non-zero value will
179 * enable forced emulation).
180 */
181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, 0644);
187
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195
196 /* Enable/disable SMT_RSB bug mitigation */
197 static bool __read_mostly mitigate_smt_rsb;
198 module_param(mitigate_smt_rsb, bool, 0444);
199
200 /*
201 * Restoring the host value for MSRs that are only consumed when running in
202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
203 * returns to userspace, i.e. the kernel can run with the guest's value.
204 */
205 #define KVM_MAX_NR_USER_RETURN_MSRS 16
206
207 struct kvm_user_return_msrs {
208 struct user_return_notifier urn;
209 bool registered;
210 struct kvm_user_return_msr_values {
211 u64 host;
212 u64 curr;
213 } values[KVM_MAX_NR_USER_RETURN_MSRS];
214 };
215
216 u32 __read_mostly kvm_nr_uret_msrs;
217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
219 static struct kvm_user_return_msrs __percpu *user_return_msrs;
220
221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
225
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
228
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
231
232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233 KVM_GENERIC_VM_STATS(),
234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235 STATS_DESC_COUNTER(VM, mmu_pte_write),
236 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237 STATS_DESC_COUNTER(VM, mmu_flooded),
238 STATS_DESC_COUNTER(VM, mmu_recycled),
239 STATS_DESC_COUNTER(VM, mmu_cache_miss),
240 STATS_DESC_ICOUNTER(VM, mmu_unsync),
241 STATS_DESC_ICOUNTER(VM, pages_4k),
242 STATS_DESC_ICOUNTER(VM, pages_2m),
243 STATS_DESC_ICOUNTER(VM, pages_1g),
244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247 };
248
249 const struct kvm_stats_header kvm_vm_stats_header = {
250 .name_size = KVM_STATS_NAME_SIZE,
251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252 .id_offset = sizeof(struct kvm_stats_header),
253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255 sizeof(kvm_vm_stats_desc),
256 };
257
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259 KVM_GENERIC_VCPU_STATS(),
260 STATS_DESC_COUNTER(VCPU, pf_taken),
261 STATS_DESC_COUNTER(VCPU, pf_fixed),
262 STATS_DESC_COUNTER(VCPU, pf_emulate),
263 STATS_DESC_COUNTER(VCPU, pf_spurious),
264 STATS_DESC_COUNTER(VCPU, pf_fast),
265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266 STATS_DESC_COUNTER(VCPU, pf_guest),
267 STATS_DESC_COUNTER(VCPU, tlb_flush),
268 STATS_DESC_COUNTER(VCPU, invlpg),
269 STATS_DESC_COUNTER(VCPU, exits),
270 STATS_DESC_COUNTER(VCPU, io_exits),
271 STATS_DESC_COUNTER(VCPU, mmio_exits),
272 STATS_DESC_COUNTER(VCPU, signal_exits),
273 STATS_DESC_COUNTER(VCPU, irq_window_exits),
274 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275 STATS_DESC_COUNTER(VCPU, l1d_flush),
276 STATS_DESC_COUNTER(VCPU, halt_exits),
277 STATS_DESC_COUNTER(VCPU, request_irq_exits),
278 STATS_DESC_COUNTER(VCPU, irq_exits),
279 STATS_DESC_COUNTER(VCPU, host_state_reload),
280 STATS_DESC_COUNTER(VCPU, fpu_reload),
281 STATS_DESC_COUNTER(VCPU, insn_emulation),
282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283 STATS_DESC_COUNTER(VCPU, hypercalls),
284 STATS_DESC_COUNTER(VCPU, irq_injections),
285 STATS_DESC_COUNTER(VCPU, nmi_injections),
286 STATS_DESC_COUNTER(VCPU, req_event),
287 STATS_DESC_COUNTER(VCPU, nested_run),
288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290 STATS_DESC_COUNTER(VCPU, preemption_reported),
291 STATS_DESC_COUNTER(VCPU, preemption_other),
292 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293 STATS_DESC_COUNTER(VCPU, notify_window_exits),
294 };
295
296 const struct kvm_stats_header kvm_vcpu_stats_header = {
297 .name_size = KVM_STATS_NAME_SIZE,
298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299 .id_offset = sizeof(struct kvm_stats_header),
300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302 sizeof(kvm_vcpu_stats_desc),
303 };
304
305 static struct kmem_cache *x86_emulator_cache;
306
307 /*
308 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
309 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
310 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
311 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
312 * MSRs that KVM emulates without strictly requiring host support.
313 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
314 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
315 * msrs_to_save and emulated_msrs.
316 */
317
318 static const u32 msrs_to_save_base[] = {
319 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
320 MSR_STAR,
321 #ifdef CONFIG_X86_64
322 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
323 #endif
324 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
325 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
326 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
327 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
328 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
329 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
330 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
331 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
332 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
333 MSR_IA32_UMWAIT_CONTROL,
334
335 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
336 };
337
338 static const u32 msrs_to_save_pmu[] = {
339 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
340 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
341 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
342 MSR_CORE_PERF_GLOBAL_CTRL,
343 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
344
345 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
346 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
347 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
348 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
349 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
350 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
351 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
352 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
353 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
354
355 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
356 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
357
358 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
359 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
360 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
361 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
362 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
363
364 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
365 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
366 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
367 };
368
369 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
370 ARRAY_SIZE(msrs_to_save_pmu)];
371 static unsigned num_msrs_to_save;
372
373 static const u32 emulated_msrs_all[] = {
374 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
375 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
376
377 #ifdef CONFIG_KVM_HYPERV
378 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
379 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
380 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
381 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
382 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
383 HV_X64_MSR_RESET,
384 HV_X64_MSR_VP_INDEX,
385 HV_X64_MSR_VP_RUNTIME,
386 HV_X64_MSR_SCONTROL,
387 HV_X64_MSR_STIMER0_CONFIG,
388 HV_X64_MSR_VP_ASSIST_PAGE,
389 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
390 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
391 HV_X64_MSR_SYNDBG_OPTIONS,
392 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
393 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
394 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
395 #endif
396
397 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
398 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
399
400 MSR_IA32_TSC_ADJUST,
401 MSR_IA32_TSC_DEADLINE,
402 MSR_IA32_ARCH_CAPABILITIES,
403 MSR_IA32_PERF_CAPABILITIES,
404 MSR_IA32_MISC_ENABLE,
405 MSR_IA32_MCG_STATUS,
406 MSR_IA32_MCG_CTL,
407 MSR_IA32_MCG_EXT_CTL,
408 MSR_IA32_SMBASE,
409 MSR_SMI_COUNT,
410 MSR_PLATFORM_INFO,
411 MSR_MISC_FEATURES_ENABLES,
412 MSR_AMD64_VIRT_SPEC_CTRL,
413 MSR_AMD64_TSC_RATIO,
414 MSR_IA32_POWER_CTL,
415 MSR_IA32_UCODE_REV,
416
417 /*
418 * KVM always supports the "true" VMX control MSRs, even if the host
419 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
420 * doesn't strictly require them to exist in the host (ignoring that
421 * KVM would refuse to load in the first place if the core set of MSRs
422 * aren't supported).
423 */
424 MSR_IA32_VMX_BASIC,
425 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
426 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
427 MSR_IA32_VMX_TRUE_EXIT_CTLS,
428 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
429 MSR_IA32_VMX_MISC,
430 MSR_IA32_VMX_CR0_FIXED0,
431 MSR_IA32_VMX_CR4_FIXED0,
432 MSR_IA32_VMX_VMCS_ENUM,
433 MSR_IA32_VMX_PROCBASED_CTLS2,
434 MSR_IA32_VMX_EPT_VPID_CAP,
435 MSR_IA32_VMX_VMFUNC,
436
437 MSR_K7_HWCR,
438 MSR_KVM_POLL_CONTROL,
439 };
440
441 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
442 static unsigned num_emulated_msrs;
443
444 /*
445 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
446 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
447 * feature MSRs, but are handled separately to allow expedited lookups.
448 */
449 static const u32 msr_based_features_all_except_vmx[] = {
450 MSR_AMD64_DE_CFG,
451 MSR_IA32_UCODE_REV,
452 MSR_IA32_ARCH_CAPABILITIES,
453 MSR_IA32_PERF_CAPABILITIES,
454 MSR_PLATFORM_INFO,
455 };
456
457 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
458 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
459 static unsigned int num_msr_based_features;
460
461 /*
462 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
463 * patch, are immutable once the vCPU model is defined.
464 */
kvm_is_immutable_feature_msr(u32 msr)465 static bool kvm_is_immutable_feature_msr(u32 msr)
466 {
467 int i;
468
469 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
470 return true;
471
472 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
473 if (msr == msr_based_features_all_except_vmx[i])
474 return msr != MSR_IA32_UCODE_REV;
475 }
476
477 return false;
478 }
479
kvm_is_advertised_msr(u32 msr_index)480 static bool kvm_is_advertised_msr(u32 msr_index)
481 {
482 unsigned int i;
483
484 for (i = 0; i < num_msrs_to_save; i++) {
485 if (msrs_to_save[i] == msr_index)
486 return true;
487 }
488
489 for (i = 0; i < num_emulated_msrs; i++) {
490 if (emulated_msrs[i] == msr_index)
491 return true;
492 }
493
494 return false;
495 }
496
497 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
498 bool host_initiated);
499
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)500 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
501 u64 *data, bool host_initiated,
502 enum kvm_msr_access rw,
503 msr_access_t msr_access_fn)
504 {
505 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
506 int ret;
507
508 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
509
510 /*
511 * Zero the data on read failures to avoid leaking stack data to the
512 * guest and/or userspace, e.g. if the failure is ignored below.
513 */
514 ret = msr_access_fn(vcpu, msr, data, host_initiated);
515 if (ret && rw == MSR_TYPE_R)
516 *data = 0;
517
518 if (ret != KVM_MSR_RET_UNSUPPORTED)
519 return ret;
520
521 /*
522 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
523 * advertises to userspace, even if an MSR isn't fully supported.
524 * Simply check that @data is '0', which covers both the write '0' case
525 * and all reads (in which case @data is zeroed on failure; see above).
526 */
527 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
528 return 0;
529
530 if (!ignore_msrs) {
531 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
532 op, msr, *data);
533 return ret;
534 }
535
536 if (report_ignored_msrs)
537 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
538
539 return 0;
540 }
541
kvm_alloc_emulator_cache(void)542 static struct kmem_cache *kvm_alloc_emulator_cache(void)
543 {
544 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
545 unsigned int size = sizeof(struct x86_emulate_ctxt);
546
547 return kmem_cache_create_usercopy("x86_emulator", size,
548 __alignof__(struct x86_emulate_ctxt),
549 SLAB_ACCOUNT, useroffset,
550 size - useroffset, NULL);
551 }
552
553 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
554
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)555 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
556 {
557 int i;
558 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
559 vcpu->arch.apf.gfns[i] = ~0;
560 }
561
kvm_on_user_return(struct user_return_notifier * urn)562 static void kvm_on_user_return(struct user_return_notifier *urn)
563 {
564 unsigned slot;
565 struct kvm_user_return_msrs *msrs
566 = container_of(urn, struct kvm_user_return_msrs, urn);
567 struct kvm_user_return_msr_values *values;
568 unsigned long flags;
569
570 /*
571 * Disabling irqs at this point since the following code could be
572 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
573 */
574 local_irq_save(flags);
575 if (msrs->registered) {
576 msrs->registered = false;
577 user_return_notifier_unregister(urn);
578 }
579 local_irq_restore(flags);
580 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
581 values = &msrs->values[slot];
582 if (values->host != values->curr) {
583 wrmsrl(kvm_uret_msrs_list[slot], values->host);
584 values->curr = values->host;
585 }
586 }
587 }
588
kvm_probe_user_return_msr(u32 msr)589 static int kvm_probe_user_return_msr(u32 msr)
590 {
591 u64 val;
592 int ret;
593
594 preempt_disable();
595 ret = rdmsrl_safe(msr, &val);
596 if (ret)
597 goto out;
598 ret = wrmsrl_safe(msr, val);
599 out:
600 preempt_enable();
601 return ret;
602 }
603
kvm_add_user_return_msr(u32 msr)604 int kvm_add_user_return_msr(u32 msr)
605 {
606 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
607
608 if (kvm_probe_user_return_msr(msr))
609 return -1;
610
611 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
612 return kvm_nr_uret_msrs++;
613 }
614 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
615
kvm_find_user_return_msr(u32 msr)616 int kvm_find_user_return_msr(u32 msr)
617 {
618 int i;
619
620 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
621 if (kvm_uret_msrs_list[i] == msr)
622 return i;
623 }
624 return -1;
625 }
626 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
627
kvm_user_return_msr_cpu_online(void)628 static void kvm_user_return_msr_cpu_online(void)
629 {
630 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
631 u64 value;
632 int i;
633
634 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
635 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
636 msrs->values[i].host = value;
637 msrs->values[i].curr = value;
638 }
639 }
640
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)641 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
642 {
643 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
644 int err;
645
646 value = (value & mask) | (msrs->values[slot].host & ~mask);
647 if (value == msrs->values[slot].curr)
648 return 0;
649 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
650 if (err)
651 return 1;
652
653 msrs->values[slot].curr = value;
654 if (!msrs->registered) {
655 msrs->urn.on_user_return = kvm_on_user_return;
656 user_return_notifier_register(&msrs->urn);
657 msrs->registered = true;
658 }
659 return 0;
660 }
661 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
662
drop_user_return_notifiers(void)663 static void drop_user_return_notifiers(void)
664 {
665 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
666
667 if (msrs->registered)
668 kvm_on_user_return(&msrs->urn);
669 }
670
671 /*
672 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
673 *
674 * Hardware virtualization extension instructions may fault if a reboot turns
675 * off virtualization while processes are running. Usually after catching the
676 * fault we just panic; during reboot instead the instruction is ignored.
677 */
kvm_spurious_fault(void)678 noinstr void kvm_spurious_fault(void)
679 {
680 /* Fault while not rebooting. We want the trace. */
681 BUG_ON(!kvm_rebooting);
682 }
683 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
684
685 #define EXCPT_BENIGN 0
686 #define EXCPT_CONTRIBUTORY 1
687 #define EXCPT_PF 2
688
exception_class(int vector)689 static int exception_class(int vector)
690 {
691 switch (vector) {
692 case PF_VECTOR:
693 return EXCPT_PF;
694 case DE_VECTOR:
695 case TS_VECTOR:
696 case NP_VECTOR:
697 case SS_VECTOR:
698 case GP_VECTOR:
699 return EXCPT_CONTRIBUTORY;
700 default:
701 break;
702 }
703 return EXCPT_BENIGN;
704 }
705
706 #define EXCPT_FAULT 0
707 #define EXCPT_TRAP 1
708 #define EXCPT_ABORT 2
709 #define EXCPT_INTERRUPT 3
710 #define EXCPT_DB 4
711
exception_type(int vector)712 static int exception_type(int vector)
713 {
714 unsigned int mask;
715
716 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
717 return EXCPT_INTERRUPT;
718
719 mask = 1 << vector;
720
721 /*
722 * #DBs can be trap-like or fault-like, the caller must check other CPU
723 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
724 */
725 if (mask & (1 << DB_VECTOR))
726 return EXCPT_DB;
727
728 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
729 return EXCPT_TRAP;
730
731 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
732 return EXCPT_ABORT;
733
734 /* Reserved exceptions will result in fault */
735 return EXCPT_FAULT;
736 }
737
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)738 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
739 struct kvm_queued_exception *ex)
740 {
741 if (!ex->has_payload)
742 return;
743
744 switch (ex->vector) {
745 case DB_VECTOR:
746 /*
747 * "Certain debug exceptions may clear bit 0-3. The
748 * remaining contents of the DR6 register are never
749 * cleared by the processor".
750 */
751 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
752 /*
753 * In order to reflect the #DB exception payload in guest
754 * dr6, three components need to be considered: active low
755 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
756 * DR6_BS and DR6_BT)
757 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
758 * In the target guest dr6:
759 * FIXED_1 bits should always be set.
760 * Active low bits should be cleared if 1-setting in payload.
761 * Active high bits should be set if 1-setting in payload.
762 *
763 * Note, the payload is compatible with the pending debug
764 * exceptions/exit qualification under VMX, that active_low bits
765 * are active high in payload.
766 * So they need to be flipped for DR6.
767 */
768 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
769 vcpu->arch.dr6 |= ex->payload;
770 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
771
772 /*
773 * The #DB payload is defined as compatible with the 'pending
774 * debug exceptions' field under VMX, not DR6. While bit 12 is
775 * defined in the 'pending debug exceptions' field (enabled
776 * breakpoint), it is reserved and must be zero in DR6.
777 */
778 vcpu->arch.dr6 &= ~BIT(12);
779 break;
780 case PF_VECTOR:
781 vcpu->arch.cr2 = ex->payload;
782 break;
783 }
784
785 ex->has_payload = false;
786 ex->payload = 0;
787 }
788 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
789
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)790 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
791 bool has_error_code, u32 error_code,
792 bool has_payload, unsigned long payload)
793 {
794 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
795
796 ex->vector = vector;
797 ex->injected = false;
798 ex->pending = true;
799 ex->has_error_code = has_error_code;
800 ex->error_code = error_code;
801 ex->has_payload = has_payload;
802 ex->payload = payload;
803 }
804
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)805 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
806 unsigned nr, bool has_error, u32 error_code,
807 bool has_payload, unsigned long payload, bool reinject)
808 {
809 u32 prev_nr;
810 int class1, class2;
811
812 kvm_make_request(KVM_REQ_EVENT, vcpu);
813
814 /*
815 * If the exception is destined for L2 and isn't being reinjected,
816 * morph it to a VM-Exit if L1 wants to intercept the exception. A
817 * previously injected exception is not checked because it was checked
818 * when it was original queued, and re-checking is incorrect if _L1_
819 * injected the exception, in which case it's exempt from interception.
820 */
821 if (!reinject && is_guest_mode(vcpu) &&
822 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
823 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
824 has_payload, payload);
825 return;
826 }
827
828 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
829 queue:
830 if (reinject) {
831 /*
832 * On VM-Entry, an exception can be pending if and only
833 * if event injection was blocked by nested_run_pending.
834 * In that case, however, vcpu_enter_guest() requests an
835 * immediate exit, and the guest shouldn't proceed far
836 * enough to need reinjection.
837 */
838 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
839 vcpu->arch.exception.injected = true;
840 if (WARN_ON_ONCE(has_payload)) {
841 /*
842 * A reinjected event has already
843 * delivered its payload.
844 */
845 has_payload = false;
846 payload = 0;
847 }
848 } else {
849 vcpu->arch.exception.pending = true;
850 vcpu->arch.exception.injected = false;
851 }
852 vcpu->arch.exception.has_error_code = has_error;
853 vcpu->arch.exception.vector = nr;
854 vcpu->arch.exception.error_code = error_code;
855 vcpu->arch.exception.has_payload = has_payload;
856 vcpu->arch.exception.payload = payload;
857 if (!is_guest_mode(vcpu))
858 kvm_deliver_exception_payload(vcpu,
859 &vcpu->arch.exception);
860 return;
861 }
862
863 /* to check exception */
864 prev_nr = vcpu->arch.exception.vector;
865 if (prev_nr == DF_VECTOR) {
866 /* triple fault -> shutdown */
867 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
868 return;
869 }
870 class1 = exception_class(prev_nr);
871 class2 = exception_class(nr);
872 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
873 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
874 /*
875 * Synthesize #DF. Clear the previously injected or pending
876 * exception so as not to incorrectly trigger shutdown.
877 */
878 vcpu->arch.exception.injected = false;
879 vcpu->arch.exception.pending = false;
880
881 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
882 } else {
883 /* replace previous exception with a new one in a hope
884 that instruction re-execution will regenerate lost
885 exception */
886 goto queue;
887 }
888 }
889
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)890 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
891 {
892 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
893 }
894 EXPORT_SYMBOL_GPL(kvm_queue_exception);
895
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)896 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
897 {
898 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
899 }
900 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
901
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)902 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
903 unsigned long payload)
904 {
905 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
906 }
907 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
908
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)909 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
910 u32 error_code, unsigned long payload)
911 {
912 kvm_multiple_exception(vcpu, nr, true, error_code,
913 true, payload, false);
914 }
915
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)916 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
917 {
918 if (err)
919 kvm_inject_gp(vcpu, 0);
920 else
921 return kvm_skip_emulated_instruction(vcpu);
922
923 return 1;
924 }
925 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
926
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)927 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
928 {
929 if (err) {
930 kvm_inject_gp(vcpu, 0);
931 return 1;
932 }
933
934 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
935 EMULTYPE_COMPLETE_USER_EXIT);
936 }
937
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)938 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
939 {
940 ++vcpu->stat.pf_guest;
941
942 /*
943 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
944 * whether or not L1 wants to intercept "regular" #PF.
945 */
946 if (is_guest_mode(vcpu) && fault->async_page_fault)
947 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
948 true, fault->error_code,
949 true, fault->address);
950 else
951 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
952 fault->address);
953 }
954
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)955 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
956 struct x86_exception *fault)
957 {
958 struct kvm_mmu *fault_mmu;
959 WARN_ON_ONCE(fault->vector != PF_VECTOR);
960
961 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
962 vcpu->arch.walk_mmu;
963
964 /*
965 * Invalidate the TLB entry for the faulting address, if it exists,
966 * else the access will fault indefinitely (and to emulate hardware).
967 */
968 if ((fault->error_code & PFERR_PRESENT_MASK) &&
969 !(fault->error_code & PFERR_RSVD_MASK))
970 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
971 KVM_MMU_ROOT_CURRENT);
972
973 fault_mmu->inject_page_fault(vcpu, fault);
974 }
975 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
976
kvm_inject_nmi(struct kvm_vcpu * vcpu)977 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
978 {
979 atomic_inc(&vcpu->arch.nmi_queued);
980 kvm_make_request(KVM_REQ_NMI, vcpu);
981 }
982
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)983 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
984 {
985 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
986 }
987 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
988
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)989 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
990 {
991 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
992 }
993 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
994
995 /*
996 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
997 * a #GP and return false.
998 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)999 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1000 {
1001 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1002 return true;
1003 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1004 return false;
1005 }
1006
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1007 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1008 {
1009 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1010 return true;
1011
1012 kvm_queue_exception(vcpu, UD_VECTOR);
1013 return false;
1014 }
1015 EXPORT_SYMBOL_GPL(kvm_require_dr);
1016
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1017 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1018 {
1019 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1020 }
1021
1022 /*
1023 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1024 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1025 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1026 {
1027 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1028 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1029 gpa_t real_gpa;
1030 int i;
1031 int ret;
1032 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1033
1034 /*
1035 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1036 * to an L1 GPA.
1037 */
1038 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1039 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1040 if (real_gpa == INVALID_GPA)
1041 return 0;
1042
1043 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1044 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1045 cr3 & GENMASK(11, 5), sizeof(pdpte));
1046 if (ret < 0)
1047 return 0;
1048
1049 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1050 if ((pdpte[i] & PT_PRESENT_MASK) &&
1051 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1052 return 0;
1053 }
1054 }
1055
1056 /*
1057 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1058 * Shadow page roots need to be reconstructed instead.
1059 */
1060 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1061 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1062
1063 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1064 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1065 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1066 vcpu->arch.pdptrs_from_userspace = false;
1067
1068 return 1;
1069 }
1070 EXPORT_SYMBOL_GPL(load_pdptrs);
1071
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1072 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1073 {
1074 #ifdef CONFIG_X86_64
1075 if (cr0 & 0xffffffff00000000UL)
1076 return false;
1077 #endif
1078
1079 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1080 return false;
1081
1082 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1083 return false;
1084
1085 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1086 }
1087
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1088 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1089 {
1090 /*
1091 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1092 * indirect shadow MMUs. If paging is disabled, no updates are needed
1093 * as there are no permission bits to emulate. If TDP is enabled, the
1094 * MMU's metadata needs to be updated, e.g. so that emulating guest
1095 * translations does the right thing, but there's no need to unload the
1096 * root as CR0.WP doesn't affect SPTEs.
1097 */
1098 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1099 if (!(cr0 & X86_CR0_PG))
1100 return;
1101
1102 if (tdp_enabled) {
1103 kvm_init_mmu(vcpu);
1104 return;
1105 }
1106 }
1107
1108 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1109 kvm_clear_async_pf_completion_queue(vcpu);
1110 kvm_async_pf_hash_reset(vcpu);
1111
1112 /*
1113 * Clearing CR0.PG is defined to flush the TLB from the guest's
1114 * perspective.
1115 */
1116 if (!(cr0 & X86_CR0_PG))
1117 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1118 }
1119
1120 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1121 kvm_mmu_reset_context(vcpu);
1122 }
1123 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1124
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1125 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1126 {
1127 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1128
1129 if (!kvm_is_valid_cr0(vcpu, cr0))
1130 return 1;
1131
1132 cr0 |= X86_CR0_ET;
1133
1134 /* Write to CR0 reserved bits are ignored, even on Intel. */
1135 cr0 &= ~CR0_RESERVED_BITS;
1136
1137 #ifdef CONFIG_X86_64
1138 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1139 (cr0 & X86_CR0_PG)) {
1140 int cs_db, cs_l;
1141
1142 if (!is_pae(vcpu))
1143 return 1;
1144 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1145 if (cs_l)
1146 return 1;
1147 }
1148 #endif
1149 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1150 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1151 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1152 return 1;
1153
1154 if (!(cr0 & X86_CR0_PG) &&
1155 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1156 return 1;
1157
1158 kvm_x86_call(set_cr0)(vcpu, cr0);
1159
1160 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1161
1162 return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1165
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1166 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1167 {
1168 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_lmsw);
1171
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1172 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1173 {
1174 if (vcpu->arch.guest_state_protected)
1175 return;
1176
1177 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1178
1179 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1180 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1181
1182 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1183 vcpu->arch.ia32_xss != kvm_host.xss)
1184 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1185 }
1186
1187 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1188 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1189 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1190 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1191 write_pkru(vcpu->arch.pkru);
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1194
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1195 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1196 {
1197 if (vcpu->arch.guest_state_protected)
1198 return;
1199
1200 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1201 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1202 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1203 vcpu->arch.pkru = rdpkru();
1204 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1205 write_pkru(vcpu->arch.host_pkru);
1206 }
1207
1208 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1209
1210 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1211 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1212
1213 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1214 vcpu->arch.ia32_xss != kvm_host.xss)
1215 wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1216 }
1217
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1220
1221 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1222 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1223 {
1224 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1225 }
1226 #endif
1227
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1228 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1229 {
1230 u64 xcr0 = xcr;
1231 u64 old_xcr0 = vcpu->arch.xcr0;
1232 u64 valid_bits;
1233
1234 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1235 if (index != XCR_XFEATURE_ENABLED_MASK)
1236 return 1;
1237 if (!(xcr0 & XFEATURE_MASK_FP))
1238 return 1;
1239 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1240 return 1;
1241
1242 /*
1243 * Do not allow the guest to set bits that we do not support
1244 * saving. However, xcr0 bit 0 is always set, even if the
1245 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1246 */
1247 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1248 if (xcr0 & ~valid_bits)
1249 return 1;
1250
1251 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1252 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1253 return 1;
1254
1255 if (xcr0 & XFEATURE_MASK_AVX512) {
1256 if (!(xcr0 & XFEATURE_MASK_YMM))
1257 return 1;
1258 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1259 return 1;
1260 }
1261
1262 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1263 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1264 return 1;
1265
1266 vcpu->arch.xcr0 = xcr0;
1267
1268 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1269 kvm_update_cpuid_runtime(vcpu);
1270 return 0;
1271 }
1272
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1273 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1274 {
1275 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1276 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1277 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1278 kvm_inject_gp(vcpu, 0);
1279 return 1;
1280 }
1281
1282 return kvm_skip_emulated_instruction(vcpu);
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1285
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1286 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1287 {
1288 if (cr4 & cr4_reserved_bits)
1289 return false;
1290
1291 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1292 return false;
1293
1294 return true;
1295 }
1296 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1297
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1298 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1299 {
1300 return __kvm_is_valid_cr4(vcpu, cr4) &&
1301 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1302 }
1303
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1304 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1305 {
1306 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1307 kvm_mmu_reset_context(vcpu);
1308
1309 /*
1310 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1311 * according to the SDM; however, stale prev_roots could be reused
1312 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1313 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1314 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1315 * so fall through.
1316 */
1317 if (!tdp_enabled &&
1318 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1319 kvm_mmu_unload(vcpu);
1320
1321 /*
1322 * The TLB has to be flushed for all PCIDs if any of the following
1323 * (architecturally required) changes happen:
1324 * - CR4.PCIDE is changed from 1 to 0
1325 * - CR4.PGE is toggled
1326 *
1327 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1328 */
1329 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1330 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1331 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1332
1333 /*
1334 * The TLB has to be flushed for the current PCID if any of the
1335 * following (architecturally required) changes happen:
1336 * - CR4.SMEP is changed from 0 to 1
1337 * - CR4.PAE is toggled
1338 */
1339 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1340 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1341 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1342
1343 }
1344 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1345
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1346 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1347 {
1348 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1349
1350 if (!kvm_is_valid_cr4(vcpu, cr4))
1351 return 1;
1352
1353 if (is_long_mode(vcpu)) {
1354 if (!(cr4 & X86_CR4_PAE))
1355 return 1;
1356 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1357 return 1;
1358 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1359 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1360 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1361 return 1;
1362
1363 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1364 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1365 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1366 return 1;
1367 }
1368
1369 kvm_x86_call(set_cr4)(vcpu, cr4);
1370
1371 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1372
1373 return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1376
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1377 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1378 {
1379 struct kvm_mmu *mmu = vcpu->arch.mmu;
1380 unsigned long roots_to_free = 0;
1381 int i;
1382
1383 /*
1384 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1385 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1386 * also via the emulator. KVM's TDP page tables are not in the scope of
1387 * the invalidation, but the guest's TLB entries need to be flushed as
1388 * the CPU may have cached entries in its TLB for the target PCID.
1389 */
1390 if (unlikely(tdp_enabled)) {
1391 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1392 return;
1393 }
1394
1395 /*
1396 * If neither the current CR3 nor any of the prev_roots use the given
1397 * PCID, then nothing needs to be done here because a resync will
1398 * happen anyway before switching to any other CR3.
1399 */
1400 if (kvm_get_active_pcid(vcpu) == pcid) {
1401 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1402 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1403 }
1404
1405 /*
1406 * If PCID is disabled, there is no need to free prev_roots even if the
1407 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1408 * with PCIDE=0.
1409 */
1410 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1411 return;
1412
1413 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1414 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1415 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1416
1417 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1418 }
1419
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1420 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1421 {
1422 bool skip_tlb_flush = false;
1423 unsigned long pcid = 0;
1424 #ifdef CONFIG_X86_64
1425 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1426 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1427 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1428 pcid = cr3 & X86_CR3_PCID_MASK;
1429 }
1430 #endif
1431
1432 /* PDPTRs are always reloaded for PAE paging. */
1433 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1434 goto handle_tlb_flush;
1435
1436 /*
1437 * Do not condition the GPA check on long mode, this helper is used to
1438 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1439 * the current vCPU mode is accurate.
1440 */
1441 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1442 return 1;
1443
1444 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1445 return 1;
1446
1447 if (cr3 != kvm_read_cr3(vcpu))
1448 kvm_mmu_new_pgd(vcpu, cr3);
1449
1450 vcpu->arch.cr3 = cr3;
1451 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1452 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1453
1454 handle_tlb_flush:
1455 /*
1456 * A load of CR3 that flushes the TLB flushes only the current PCID,
1457 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1458 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1459 * and it's impossible to use a non-zero PCID when PCID is disabled,
1460 * i.e. only PCID=0 can be relevant.
1461 */
1462 if (!skip_tlb_flush)
1463 kvm_invalidate_pcid(vcpu, pcid);
1464
1465 return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1468
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1469 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1470 {
1471 if (cr8 & CR8_RESERVED_BITS)
1472 return 1;
1473 if (lapic_in_kernel(vcpu))
1474 kvm_lapic_set_tpr(vcpu, cr8);
1475 else
1476 vcpu->arch.cr8 = cr8;
1477 return 0;
1478 }
1479 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1480
kvm_get_cr8(struct kvm_vcpu * vcpu)1481 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1482 {
1483 if (lapic_in_kernel(vcpu))
1484 return kvm_lapic_get_cr8(vcpu);
1485 else
1486 return vcpu->arch.cr8;
1487 }
1488 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1489
kvm_update_dr0123(struct kvm_vcpu * vcpu)1490 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1491 {
1492 int i;
1493
1494 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1495 for (i = 0; i < KVM_NR_DB_REGS; i++)
1496 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1497 }
1498 }
1499
kvm_update_dr7(struct kvm_vcpu * vcpu)1500 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1501 {
1502 unsigned long dr7;
1503
1504 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1505 dr7 = vcpu->arch.guest_debug_dr7;
1506 else
1507 dr7 = vcpu->arch.dr7;
1508 kvm_x86_call(set_dr7)(vcpu, dr7);
1509 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1510 if (dr7 & DR7_BP_EN_MASK)
1511 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1512 }
1513 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1514
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1515 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1516 {
1517 u64 fixed = DR6_FIXED_1;
1518
1519 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1520 fixed |= DR6_RTM;
1521
1522 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1523 fixed |= DR6_BUS_LOCK;
1524 return fixed;
1525 }
1526
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1527 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1528 {
1529 size_t size = ARRAY_SIZE(vcpu->arch.db);
1530
1531 switch (dr) {
1532 case 0 ... 3:
1533 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1534 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1535 vcpu->arch.eff_db[dr] = val;
1536 break;
1537 case 4:
1538 case 6:
1539 if (!kvm_dr6_valid(val))
1540 return 1; /* #GP */
1541 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1542 break;
1543 case 5:
1544 default: /* 7 */
1545 if (!kvm_dr7_valid(val))
1546 return 1; /* #GP */
1547 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1548 kvm_update_dr7(vcpu);
1549 break;
1550 }
1551
1552 return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(kvm_set_dr);
1555
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1556 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1557 {
1558 size_t size = ARRAY_SIZE(vcpu->arch.db);
1559
1560 switch (dr) {
1561 case 0 ... 3:
1562 return vcpu->arch.db[array_index_nospec(dr, size)];
1563 case 4:
1564 case 6:
1565 return vcpu->arch.dr6;
1566 case 5:
1567 default: /* 7 */
1568 return vcpu->arch.dr7;
1569 }
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_get_dr);
1572
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1573 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1574 {
1575 u32 ecx = kvm_rcx_read(vcpu);
1576 u64 data;
1577
1578 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1579 kvm_inject_gp(vcpu, 0);
1580 return 1;
1581 }
1582
1583 kvm_rax_write(vcpu, (u32)data);
1584 kvm_rdx_write(vcpu, data >> 32);
1585 return kvm_skip_emulated_instruction(vcpu);
1586 }
1587 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1588
1589 /*
1590 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1591 * does not yet virtualize. These include:
1592 * 10 - MISC_PACKAGE_CTRLS
1593 * 11 - ENERGY_FILTERING_CTL
1594 * 12 - DOITM
1595 * 18 - FB_CLEAR_CTRL
1596 * 21 - XAPIC_DISABLE_STATUS
1597 * 23 - OVERCLOCKING_STATUS
1598 */
1599
1600 #define KVM_SUPPORTED_ARCH_CAP \
1601 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1602 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1603 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1604 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1605 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1606 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1607
kvm_get_arch_capabilities(void)1608 static u64 kvm_get_arch_capabilities(void)
1609 {
1610 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1611
1612 /*
1613 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1614 * the nested hypervisor runs with NX huge pages. If it is not,
1615 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1616 * L1 guests, so it need not worry about its own (L2) guests.
1617 */
1618 data |= ARCH_CAP_PSCHANGE_MC_NO;
1619
1620 /*
1621 * If we're doing cache flushes (either "always" or "cond")
1622 * we will do one whenever the guest does a vmlaunch/vmresume.
1623 * If an outer hypervisor is doing the cache flush for us
1624 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1625 * capability to the guest too, and if EPT is disabled we're not
1626 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1627 * require a nested hypervisor to do a flush of its own.
1628 */
1629 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1630 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1631
1632 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1633 data |= ARCH_CAP_RDCL_NO;
1634 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1635 data |= ARCH_CAP_SSB_NO;
1636 if (!boot_cpu_has_bug(X86_BUG_MDS))
1637 data |= ARCH_CAP_MDS_NO;
1638 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1639 data |= ARCH_CAP_RFDS_NO;
1640
1641 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1642 /*
1643 * If RTM=0 because the kernel has disabled TSX, the host might
1644 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1645 * and therefore knows that there cannot be TAA) but keep
1646 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1647 * and we want to allow migrating those guests to tsx=off hosts.
1648 */
1649 data &= ~ARCH_CAP_TAA_NO;
1650 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1651 data |= ARCH_CAP_TAA_NO;
1652 } else {
1653 /*
1654 * Nothing to do here; we emulate TSX_CTRL if present on the
1655 * host so the guest can choose between disabling TSX or
1656 * using VERW to clear CPU buffers.
1657 */
1658 }
1659
1660 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1661 data |= ARCH_CAP_GDS_NO;
1662
1663 return data;
1664 }
1665
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1666 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1667 bool host_initiated)
1668 {
1669 WARN_ON_ONCE(!host_initiated);
1670
1671 switch (index) {
1672 case MSR_IA32_ARCH_CAPABILITIES:
1673 *data = kvm_get_arch_capabilities();
1674 break;
1675 case MSR_IA32_PERF_CAPABILITIES:
1676 *data = kvm_caps.supported_perf_cap;
1677 break;
1678 case MSR_PLATFORM_INFO:
1679 *data = MSR_PLATFORM_INFO_CPUID_FAULT;
1680 break;
1681 case MSR_IA32_UCODE_REV:
1682 rdmsrl_safe(index, data);
1683 break;
1684 default:
1685 return kvm_x86_call(get_feature_msr)(index, data);
1686 }
1687 return 0;
1688 }
1689
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1690 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1691 {
1692 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1693 kvm_get_feature_msr);
1694 }
1695
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1696 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1697 {
1698 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1699 return false;
1700
1701 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1702 return false;
1703
1704 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1705 return false;
1706
1707 if (efer & (EFER_LME | EFER_LMA) &&
1708 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1709 return false;
1710
1711 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1712 return false;
1713
1714 return true;
1715
1716 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1717 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1718 {
1719 if (efer & efer_reserved_bits)
1720 return false;
1721
1722 return __kvm_valid_efer(vcpu, efer);
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1725
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1726 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1727 {
1728 u64 old_efer = vcpu->arch.efer;
1729 u64 efer = msr_info->data;
1730 int r;
1731
1732 if (efer & efer_reserved_bits)
1733 return 1;
1734
1735 if (!msr_info->host_initiated) {
1736 if (!__kvm_valid_efer(vcpu, efer))
1737 return 1;
1738
1739 if (is_paging(vcpu) &&
1740 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1741 return 1;
1742 }
1743
1744 efer &= ~EFER_LMA;
1745 efer |= vcpu->arch.efer & EFER_LMA;
1746
1747 r = kvm_x86_call(set_efer)(vcpu, efer);
1748 if (r) {
1749 WARN_ON(r > 0);
1750 return r;
1751 }
1752
1753 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1754 kvm_mmu_reset_context(vcpu);
1755
1756 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1757 (efer & EFER_SVME))
1758 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1759
1760 return 0;
1761 }
1762
kvm_enable_efer_bits(u64 mask)1763 void kvm_enable_efer_bits(u64 mask)
1764 {
1765 efer_reserved_bits &= ~mask;
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1768
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1769 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1770 {
1771 struct kvm_x86_msr_filter *msr_filter;
1772 struct msr_bitmap_range *ranges;
1773 struct kvm *kvm = vcpu->kvm;
1774 bool allowed;
1775 int idx;
1776 u32 i;
1777
1778 /* x2APIC MSRs do not support filtering. */
1779 if (index >= 0x800 && index <= 0x8ff)
1780 return true;
1781
1782 idx = srcu_read_lock(&kvm->srcu);
1783
1784 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1785 if (!msr_filter) {
1786 allowed = true;
1787 goto out;
1788 }
1789
1790 allowed = msr_filter->default_allow;
1791 ranges = msr_filter->ranges;
1792
1793 for (i = 0; i < msr_filter->count; i++) {
1794 u32 start = ranges[i].base;
1795 u32 end = start + ranges[i].nmsrs;
1796 u32 flags = ranges[i].flags;
1797 unsigned long *bitmap = ranges[i].bitmap;
1798
1799 if ((index >= start) && (index < end) && (flags & type)) {
1800 allowed = test_bit(index - start, bitmap);
1801 break;
1802 }
1803 }
1804
1805 out:
1806 srcu_read_unlock(&kvm->srcu, idx);
1807
1808 return allowed;
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1811
1812 /*
1813 * Write @data into the MSR specified by @index. Select MSR specific fault
1814 * checks are bypassed if @host_initiated is %true.
1815 * Returns 0 on success, non-0 otherwise.
1816 * Assumes vcpu_load() was already called.
1817 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1818 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1819 bool host_initiated)
1820 {
1821 struct msr_data msr;
1822
1823 switch (index) {
1824 case MSR_FS_BASE:
1825 case MSR_GS_BASE:
1826 case MSR_KERNEL_GS_BASE:
1827 case MSR_CSTAR:
1828 case MSR_LSTAR:
1829 if (is_noncanonical_msr_address(data, vcpu))
1830 return 1;
1831 break;
1832 case MSR_IA32_SYSENTER_EIP:
1833 case MSR_IA32_SYSENTER_ESP:
1834 /*
1835 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1836 * non-canonical address is written on Intel but not on
1837 * AMD (which ignores the top 32-bits, because it does
1838 * not implement 64-bit SYSENTER).
1839 *
1840 * 64-bit code should hence be able to write a non-canonical
1841 * value on AMD. Making the address canonical ensures that
1842 * vmentry does not fail on Intel after writing a non-canonical
1843 * value, and that something deterministic happens if the guest
1844 * invokes 64-bit SYSENTER.
1845 */
1846 data = __canonical_address(data, max_host_virt_addr_bits());
1847 break;
1848 case MSR_TSC_AUX:
1849 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1850 return 1;
1851
1852 if (!host_initiated &&
1853 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1854 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1855 return 1;
1856
1857 /*
1858 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1859 * incomplete and conflicting architectural behavior. Current
1860 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1861 * reserved and always read as zeros. Enforce Intel's reserved
1862 * bits check if the guest CPU is Intel compatible, otherwise
1863 * clear the bits. This ensures cross-vendor migration will
1864 * provide consistent behavior for the guest.
1865 */
1866 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1867 return 1;
1868
1869 data = (u32)data;
1870 break;
1871 }
1872
1873 msr.data = data;
1874 msr.index = index;
1875 msr.host_initiated = host_initiated;
1876
1877 return kvm_x86_call(set_msr)(vcpu, &msr);
1878 }
1879
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1880 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1881 bool host_initiated)
1882 {
1883 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1884 }
1885
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1886 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1887 u32 index, u64 data, bool host_initiated)
1888 {
1889 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1890 _kvm_set_msr);
1891 }
1892
1893 /*
1894 * Read the MSR specified by @index into @data. Select MSR specific fault
1895 * checks are bypassed if @host_initiated is %true.
1896 * Returns 0 on success, non-0 otherwise.
1897 * Assumes vcpu_load() was already called.
1898 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1899 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1900 bool host_initiated)
1901 {
1902 struct msr_data msr;
1903 int ret;
1904
1905 switch (index) {
1906 case MSR_TSC_AUX:
1907 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1908 return 1;
1909
1910 if (!host_initiated &&
1911 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1912 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1913 return 1;
1914 break;
1915 }
1916
1917 msr.index = index;
1918 msr.host_initiated = host_initiated;
1919
1920 ret = kvm_x86_call(get_msr)(vcpu, &msr);
1921 if (!ret)
1922 *data = msr.data;
1923 return ret;
1924 }
1925
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1926 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1927 u32 index, u64 *data, bool host_initiated)
1928 {
1929 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1930 __kvm_get_msr);
1931 }
1932
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1933 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1934 {
1935 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1936 return KVM_MSR_RET_FILTERED;
1937 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1940
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1941 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1942 {
1943 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1944 return KVM_MSR_RET_FILTERED;
1945 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1946 }
1947 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1948
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1949 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1950 {
1951 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_get_msr);
1954
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1955 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1956 {
1957 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_set_msr);
1960
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1961 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1962 {
1963 if (!vcpu->run->msr.error) {
1964 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1965 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1966 }
1967 }
1968
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1969 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1970 {
1971 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1972 }
1973
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1974 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1975 {
1976 complete_userspace_rdmsr(vcpu);
1977 return complete_emulated_msr_access(vcpu);
1978 }
1979
complete_fast_msr_access(struct kvm_vcpu * vcpu)1980 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1981 {
1982 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1983 }
1984
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1985 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1986 {
1987 complete_userspace_rdmsr(vcpu);
1988 return complete_fast_msr_access(vcpu);
1989 }
1990
kvm_msr_reason(int r)1991 static u64 kvm_msr_reason(int r)
1992 {
1993 switch (r) {
1994 case KVM_MSR_RET_UNSUPPORTED:
1995 return KVM_MSR_EXIT_REASON_UNKNOWN;
1996 case KVM_MSR_RET_FILTERED:
1997 return KVM_MSR_EXIT_REASON_FILTER;
1998 default:
1999 return KVM_MSR_EXIT_REASON_INVAL;
2000 }
2001 }
2002
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2003 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2004 u32 exit_reason, u64 data,
2005 int (*completion)(struct kvm_vcpu *vcpu),
2006 int r)
2007 {
2008 u64 msr_reason = kvm_msr_reason(r);
2009
2010 /* Check if the user wanted to know about this MSR fault */
2011 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2012 return 0;
2013
2014 vcpu->run->exit_reason = exit_reason;
2015 vcpu->run->msr.error = 0;
2016 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2017 vcpu->run->msr.reason = msr_reason;
2018 vcpu->run->msr.index = index;
2019 vcpu->run->msr.data = data;
2020 vcpu->arch.complete_userspace_io = completion;
2021
2022 return 1;
2023 }
2024
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2025 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2026 {
2027 u32 ecx = kvm_rcx_read(vcpu);
2028 u64 data;
2029 int r;
2030
2031 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2032
2033 if (!r) {
2034 trace_kvm_msr_read(ecx, data);
2035
2036 kvm_rax_write(vcpu, data & -1u);
2037 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2038 } else {
2039 /* MSR read failed? See if we should ask user space */
2040 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2041 complete_fast_rdmsr, r))
2042 return 0;
2043 trace_kvm_msr_read_ex(ecx);
2044 }
2045
2046 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2049
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2050 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2051 {
2052 u32 ecx = kvm_rcx_read(vcpu);
2053 u64 data = kvm_read_edx_eax(vcpu);
2054 int r;
2055
2056 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2057
2058 if (!r) {
2059 trace_kvm_msr_write(ecx, data);
2060 } else {
2061 /* MSR write failed? See if we should ask user space */
2062 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2063 complete_fast_msr_access, r))
2064 return 0;
2065 /* Signal all other negative errors to userspace */
2066 if (r < 0)
2067 return r;
2068 trace_kvm_msr_write_ex(ecx, data);
2069 }
2070
2071 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2074
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2075 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2076 {
2077 return kvm_skip_emulated_instruction(vcpu);
2078 }
2079
kvm_emulate_invd(struct kvm_vcpu * vcpu)2080 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2081 {
2082 /* Treat an INVD instruction as a NOP and just skip it. */
2083 return kvm_emulate_as_nop(vcpu);
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2086
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2087 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2088 {
2089 kvm_queue_exception(vcpu, UD_VECTOR);
2090 return 1;
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2093
2094
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2095 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2096 {
2097 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2098 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2099 return kvm_handle_invalid_op(vcpu);
2100
2101 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2102 return kvm_emulate_as_nop(vcpu);
2103 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2104 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2105 {
2106 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2109
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2110 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2111 {
2112 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2115
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2116 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2117 {
2118 xfer_to_guest_mode_prepare();
2119
2120 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2121 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2122 }
2123
2124 /*
2125 * The fast path for frequent and performance sensitive wrmsr emulation,
2126 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2127 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2128 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2129 * other cases which must be called after interrupts are enabled on the host.
2130 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2131 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2132 {
2133 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2134 return 1;
2135
2136 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2137 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2138 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2139 ((u32)(data >> 32) != X2APIC_BROADCAST))
2140 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2141
2142 return 1;
2143 }
2144
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2145 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2146 {
2147 if (!kvm_can_use_hv_timer(vcpu))
2148 return 1;
2149
2150 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2151 return 0;
2152 }
2153
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2154 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2155 {
2156 u32 msr = kvm_rcx_read(vcpu);
2157 u64 data;
2158 fastpath_t ret;
2159 bool handled;
2160
2161 kvm_vcpu_srcu_read_lock(vcpu);
2162
2163 switch (msr) {
2164 case APIC_BASE_MSR + (APIC_ICR >> 4):
2165 data = kvm_read_edx_eax(vcpu);
2166 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2167 break;
2168 case MSR_IA32_TSC_DEADLINE:
2169 data = kvm_read_edx_eax(vcpu);
2170 handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2171 break;
2172 default:
2173 handled = false;
2174 break;
2175 }
2176
2177 if (handled) {
2178 if (!kvm_skip_emulated_instruction(vcpu))
2179 ret = EXIT_FASTPATH_EXIT_USERSPACE;
2180 else
2181 ret = EXIT_FASTPATH_REENTER_GUEST;
2182 trace_kvm_msr_write(msr, data);
2183 } else {
2184 ret = EXIT_FASTPATH_NONE;
2185 }
2186
2187 kvm_vcpu_srcu_read_unlock(vcpu);
2188
2189 return ret;
2190 }
2191 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2192
2193 /*
2194 * Adapt set_msr() to msr_io()'s calling convention
2195 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2196 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2197 {
2198 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2199 }
2200
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2201 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2202 {
2203 u64 val;
2204
2205 /*
2206 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2207 * not support modifying the guest vCPU model on the fly, e.g. changing
2208 * the nVMX capabilities while L2 is running is nonsensical. Allow
2209 * writes of the same value, e.g. to allow userspace to blindly stuff
2210 * all MSRs when emulating RESET.
2211 */
2212 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2213 (do_get_msr(vcpu, index, &val) || *data != val))
2214 return -EINVAL;
2215
2216 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2217 }
2218
2219 #ifdef CONFIG_X86_64
2220 struct pvclock_clock {
2221 int vclock_mode;
2222 u64 cycle_last;
2223 u64 mask;
2224 u32 mult;
2225 u32 shift;
2226 u64 base_cycles;
2227 u64 offset;
2228 };
2229
2230 struct pvclock_gtod_data {
2231 seqcount_t seq;
2232
2233 struct pvclock_clock clock; /* extract of a clocksource struct */
2234 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2235
2236 ktime_t offs_boot;
2237 u64 wall_time_sec;
2238 };
2239
2240 static struct pvclock_gtod_data pvclock_gtod_data;
2241
update_pvclock_gtod(struct timekeeper * tk)2242 static void update_pvclock_gtod(struct timekeeper *tk)
2243 {
2244 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2245
2246 write_seqcount_begin(&vdata->seq);
2247
2248 /* copy pvclock gtod data */
2249 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2250 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2251 vdata->clock.mask = tk->tkr_mono.mask;
2252 vdata->clock.mult = tk->tkr_mono.mult;
2253 vdata->clock.shift = tk->tkr_mono.shift;
2254 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2255 vdata->clock.offset = tk->tkr_mono.base;
2256
2257 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2258 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2259 vdata->raw_clock.mask = tk->tkr_raw.mask;
2260 vdata->raw_clock.mult = tk->tkr_raw.mult;
2261 vdata->raw_clock.shift = tk->tkr_raw.shift;
2262 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2263 vdata->raw_clock.offset = tk->tkr_raw.base;
2264
2265 vdata->wall_time_sec = tk->xtime_sec;
2266
2267 vdata->offs_boot = tk->offs_boot;
2268
2269 write_seqcount_end(&vdata->seq);
2270 }
2271
get_kvmclock_base_ns(void)2272 static s64 get_kvmclock_base_ns(void)
2273 {
2274 /* Count up from boot time, but with the frequency of the raw clock. */
2275 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2276 }
2277 #else
get_kvmclock_base_ns(void)2278 static s64 get_kvmclock_base_ns(void)
2279 {
2280 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2281 return ktime_get_boottime_ns();
2282 }
2283 #endif
2284
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2285 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2286 {
2287 int version;
2288 int r;
2289 struct pvclock_wall_clock wc;
2290 u32 wc_sec_hi;
2291 u64 wall_nsec;
2292
2293 if (!wall_clock)
2294 return;
2295
2296 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2297 if (r)
2298 return;
2299
2300 if (version & 1)
2301 ++version; /* first time write, random junk */
2302
2303 ++version;
2304
2305 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2306 return;
2307
2308 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2309
2310 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2311 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2312 wc.version = version;
2313
2314 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2315
2316 if (sec_hi_ofs) {
2317 wc_sec_hi = wall_nsec >> 32;
2318 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2319 &wc_sec_hi, sizeof(wc_sec_hi));
2320 }
2321
2322 version++;
2323 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2324 }
2325
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2326 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2327 bool old_msr, bool host_initiated)
2328 {
2329 struct kvm_arch *ka = &vcpu->kvm->arch;
2330
2331 if (vcpu->vcpu_id == 0 && !host_initiated) {
2332 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2333 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2334
2335 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2336 }
2337
2338 vcpu->arch.time = system_time;
2339 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2340
2341 /* we verify if the enable bit is set... */
2342 if (system_time & 1)
2343 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2344 sizeof(struct pvclock_vcpu_time_info));
2345 else
2346 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2347
2348 return;
2349 }
2350
div_frac(uint32_t dividend,uint32_t divisor)2351 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2352 {
2353 do_shl32_div32(dividend, divisor);
2354 return dividend;
2355 }
2356
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2357 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2358 s8 *pshift, u32 *pmultiplier)
2359 {
2360 uint64_t scaled64;
2361 int32_t shift = 0;
2362 uint64_t tps64;
2363 uint32_t tps32;
2364
2365 tps64 = base_hz;
2366 scaled64 = scaled_hz;
2367 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2368 tps64 >>= 1;
2369 shift--;
2370 }
2371
2372 tps32 = (uint32_t)tps64;
2373 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2374 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2375 scaled64 >>= 1;
2376 else
2377 tps32 <<= 1;
2378 shift++;
2379 }
2380
2381 *pshift = shift;
2382 *pmultiplier = div_frac(scaled64, tps32);
2383 }
2384
2385 #ifdef CONFIG_X86_64
2386 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2387 #endif
2388
2389 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2390 static unsigned long max_tsc_khz;
2391
adjust_tsc_khz(u32 khz,s32 ppm)2392 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2393 {
2394 u64 v = (u64)khz * (1000000 + ppm);
2395 do_div(v, 1000000);
2396 return v;
2397 }
2398
2399 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2400
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2401 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2402 {
2403 u64 ratio;
2404
2405 /* Guest TSC same frequency as host TSC? */
2406 if (!scale) {
2407 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2408 return 0;
2409 }
2410
2411 /* TSC scaling supported? */
2412 if (!kvm_caps.has_tsc_control) {
2413 if (user_tsc_khz > tsc_khz) {
2414 vcpu->arch.tsc_catchup = 1;
2415 vcpu->arch.tsc_always_catchup = 1;
2416 return 0;
2417 } else {
2418 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2419 return -1;
2420 }
2421 }
2422
2423 /* TSC scaling required - calculate ratio */
2424 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2425 user_tsc_khz, tsc_khz);
2426
2427 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2428 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2429 user_tsc_khz);
2430 return -1;
2431 }
2432
2433 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2434 return 0;
2435 }
2436
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2437 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2438 {
2439 u32 thresh_lo, thresh_hi;
2440 int use_scaling = 0;
2441
2442 /* tsc_khz can be zero if TSC calibration fails */
2443 if (user_tsc_khz == 0) {
2444 /* set tsc_scaling_ratio to a safe value */
2445 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2446 return -1;
2447 }
2448
2449 /* Compute a scale to convert nanoseconds in TSC cycles */
2450 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2451 &vcpu->arch.virtual_tsc_shift,
2452 &vcpu->arch.virtual_tsc_mult);
2453 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2454
2455 /*
2456 * Compute the variation in TSC rate which is acceptable
2457 * within the range of tolerance and decide if the
2458 * rate being applied is within that bounds of the hardware
2459 * rate. If so, no scaling or compensation need be done.
2460 */
2461 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2462 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2463 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2464 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2465 user_tsc_khz, thresh_lo, thresh_hi);
2466 use_scaling = 1;
2467 }
2468 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2469 }
2470
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2471 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2472 {
2473 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2474 vcpu->arch.virtual_tsc_mult,
2475 vcpu->arch.virtual_tsc_shift);
2476 tsc += vcpu->arch.this_tsc_write;
2477 return tsc;
2478 }
2479
2480 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2481 static inline bool gtod_is_based_on_tsc(int mode)
2482 {
2483 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2484 }
2485 #endif
2486
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2487 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2488 {
2489 #ifdef CONFIG_X86_64
2490 struct kvm_arch *ka = &vcpu->kvm->arch;
2491 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2492
2493 /*
2494 * To use the masterclock, the host clocksource must be based on TSC
2495 * and all vCPUs must have matching TSCs. Note, the count for matching
2496 * vCPUs doesn't include the reference vCPU, hence "+1".
2497 */
2498 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2499 atomic_read(&vcpu->kvm->online_vcpus)) &&
2500 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2501
2502 /*
2503 * Request a masterclock update if the masterclock needs to be toggled
2504 * on/off, or when starting a new generation and the masterclock is
2505 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2506 * taken _after_ the new generation is created).
2507 */
2508 if ((ka->use_master_clock && new_generation) ||
2509 (ka->use_master_clock != use_master_clock))
2510 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2511
2512 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2513 atomic_read(&vcpu->kvm->online_vcpus),
2514 ka->use_master_clock, gtod->clock.vclock_mode);
2515 #endif
2516 }
2517
2518 /*
2519 * Multiply tsc by a fixed point number represented by ratio.
2520 *
2521 * The most significant 64-N bits (mult) of ratio represent the
2522 * integral part of the fixed point number; the remaining N bits
2523 * (frac) represent the fractional part, ie. ratio represents a fixed
2524 * point number (mult + frac * 2^(-N)).
2525 *
2526 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2527 */
__scale_tsc(u64 ratio,u64 tsc)2528 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2529 {
2530 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2531 }
2532
kvm_scale_tsc(u64 tsc,u64 ratio)2533 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2534 {
2535 u64 _tsc = tsc;
2536
2537 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2538 _tsc = __scale_tsc(ratio, tsc);
2539
2540 return _tsc;
2541 }
2542
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2543 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2544 {
2545 u64 tsc;
2546
2547 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2548
2549 return target_tsc - tsc;
2550 }
2551
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2552 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2553 {
2554 return vcpu->arch.l1_tsc_offset +
2555 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2558
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2559 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2560 {
2561 u64 nested_offset;
2562
2563 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2564 nested_offset = l1_offset;
2565 else
2566 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2567 kvm_caps.tsc_scaling_ratio_frac_bits);
2568
2569 nested_offset += l2_offset;
2570 return nested_offset;
2571 }
2572 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2573
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2574 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2575 {
2576 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2577 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2578 kvm_caps.tsc_scaling_ratio_frac_bits);
2579
2580 return l1_multiplier;
2581 }
2582 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2583
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2584 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2585 {
2586 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2587 vcpu->arch.l1_tsc_offset,
2588 l1_offset);
2589
2590 vcpu->arch.l1_tsc_offset = l1_offset;
2591
2592 /*
2593 * If we are here because L1 chose not to trap WRMSR to TSC then
2594 * according to the spec this should set L1's TSC (as opposed to
2595 * setting L1's offset for L2).
2596 */
2597 if (is_guest_mode(vcpu))
2598 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2599 l1_offset,
2600 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2601 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2602 else
2603 vcpu->arch.tsc_offset = l1_offset;
2604
2605 kvm_x86_call(write_tsc_offset)(vcpu);
2606 }
2607
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2608 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2609 {
2610 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2611
2612 /* Userspace is changing the multiplier while L2 is active */
2613 if (is_guest_mode(vcpu))
2614 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2615 l1_multiplier,
2616 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2617 else
2618 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2619
2620 if (kvm_caps.has_tsc_control)
2621 kvm_x86_call(write_tsc_multiplier)(vcpu);
2622 }
2623
kvm_check_tsc_unstable(void)2624 static inline bool kvm_check_tsc_unstable(void)
2625 {
2626 #ifdef CONFIG_X86_64
2627 /*
2628 * TSC is marked unstable when we're running on Hyper-V,
2629 * 'TSC page' clocksource is good.
2630 */
2631 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2632 return false;
2633 #endif
2634 return check_tsc_unstable();
2635 }
2636
2637 /*
2638 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2639 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2640 * participates in.
2641 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2642 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2643 u64 ns, bool matched)
2644 {
2645 struct kvm *kvm = vcpu->kvm;
2646
2647 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2648
2649 /*
2650 * We also track th most recent recorded KHZ, write and time to
2651 * allow the matching interval to be extended at each write.
2652 */
2653 kvm->arch.last_tsc_nsec = ns;
2654 kvm->arch.last_tsc_write = tsc;
2655 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2656 kvm->arch.last_tsc_offset = offset;
2657
2658 vcpu->arch.last_guest_tsc = tsc;
2659
2660 kvm_vcpu_write_tsc_offset(vcpu, offset);
2661
2662 if (!matched) {
2663 /*
2664 * We split periods of matched TSC writes into generations.
2665 * For each generation, we track the original measured
2666 * nanosecond time, offset, and write, so if TSCs are in
2667 * sync, we can match exact offset, and if not, we can match
2668 * exact software computation in compute_guest_tsc()
2669 *
2670 * These values are tracked in kvm->arch.cur_xxx variables.
2671 */
2672 kvm->arch.cur_tsc_generation++;
2673 kvm->arch.cur_tsc_nsec = ns;
2674 kvm->arch.cur_tsc_write = tsc;
2675 kvm->arch.cur_tsc_offset = offset;
2676 kvm->arch.nr_vcpus_matched_tsc = 0;
2677 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2678 kvm->arch.nr_vcpus_matched_tsc++;
2679 }
2680
2681 /* Keep track of which generation this VCPU has synchronized to */
2682 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2683 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2684 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2685
2686 kvm_track_tsc_matching(vcpu, !matched);
2687 }
2688
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2689 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2690 {
2691 u64 data = user_value ? *user_value : 0;
2692 struct kvm *kvm = vcpu->kvm;
2693 u64 offset, ns, elapsed;
2694 unsigned long flags;
2695 bool matched = false;
2696 bool synchronizing = false;
2697
2698 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2699 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2700 ns = get_kvmclock_base_ns();
2701 elapsed = ns - kvm->arch.last_tsc_nsec;
2702
2703 if (vcpu->arch.virtual_tsc_khz) {
2704 if (data == 0) {
2705 /*
2706 * Force synchronization when creating a vCPU, or when
2707 * userspace explicitly writes a zero value.
2708 */
2709 synchronizing = true;
2710 } else if (kvm->arch.user_set_tsc) {
2711 u64 tsc_exp = kvm->arch.last_tsc_write +
2712 nsec_to_cycles(vcpu, elapsed);
2713 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2714 /*
2715 * Here lies UAPI baggage: when a user-initiated TSC write has
2716 * a small delta (1 second) of virtual cycle time against the
2717 * previously set vCPU, we assume that they were intended to be
2718 * in sync and the delta was only due to the racy nature of the
2719 * legacy API.
2720 *
2721 * This trick falls down when restoring a guest which genuinely
2722 * has been running for less time than the 1 second of imprecision
2723 * which we allow for in the legacy API. In this case, the first
2724 * value written by userspace (on any vCPU) should not be subject
2725 * to this 'correction' to make it sync up with values that only
2726 * come from the kernel's default vCPU creation. Make the 1-second
2727 * slop hack only trigger if the user_set_tsc flag is already set.
2728 */
2729 synchronizing = data < tsc_exp + tsc_hz &&
2730 data + tsc_hz > tsc_exp;
2731 }
2732 }
2733
2734 if (user_value)
2735 kvm->arch.user_set_tsc = true;
2736
2737 /*
2738 * For a reliable TSC, we can match TSC offsets, and for an unstable
2739 * TSC, we add elapsed time in this computation. We could let the
2740 * compensation code attempt to catch up if we fall behind, but
2741 * it's better to try to match offsets from the beginning.
2742 */
2743 if (synchronizing &&
2744 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2745 if (!kvm_check_tsc_unstable()) {
2746 offset = kvm->arch.cur_tsc_offset;
2747 } else {
2748 u64 delta = nsec_to_cycles(vcpu, elapsed);
2749 data += delta;
2750 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2751 }
2752 matched = true;
2753 }
2754
2755 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2756 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2757 }
2758
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2759 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2760 s64 adjustment)
2761 {
2762 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2763 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2764 }
2765
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2766 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2767 {
2768 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2769 WARN_ON(adjustment < 0);
2770 adjustment = kvm_scale_tsc((u64) adjustment,
2771 vcpu->arch.l1_tsc_scaling_ratio);
2772 adjust_tsc_offset_guest(vcpu, adjustment);
2773 }
2774
2775 #ifdef CONFIG_X86_64
2776
read_tsc(void)2777 static u64 read_tsc(void)
2778 {
2779 u64 ret = (u64)rdtsc_ordered();
2780 u64 last = pvclock_gtod_data.clock.cycle_last;
2781
2782 if (likely(ret >= last))
2783 return ret;
2784
2785 /*
2786 * GCC likes to generate cmov here, but this branch is extremely
2787 * predictable (it's just a function of time and the likely is
2788 * very likely) and there's a data dependence, so force GCC
2789 * to generate a branch instead. I don't barrier() because
2790 * we don't actually need a barrier, and if this function
2791 * ever gets inlined it will generate worse code.
2792 */
2793 asm volatile ("");
2794 return last;
2795 }
2796
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2797 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2798 int *mode)
2799 {
2800 u64 tsc_pg_val;
2801 long v;
2802
2803 switch (clock->vclock_mode) {
2804 case VDSO_CLOCKMODE_HVCLOCK:
2805 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2806 tsc_timestamp, &tsc_pg_val)) {
2807 /* TSC page valid */
2808 *mode = VDSO_CLOCKMODE_HVCLOCK;
2809 v = (tsc_pg_val - clock->cycle_last) &
2810 clock->mask;
2811 } else {
2812 /* TSC page invalid */
2813 *mode = VDSO_CLOCKMODE_NONE;
2814 }
2815 break;
2816 case VDSO_CLOCKMODE_TSC:
2817 *mode = VDSO_CLOCKMODE_TSC;
2818 *tsc_timestamp = read_tsc();
2819 v = (*tsc_timestamp - clock->cycle_last) &
2820 clock->mask;
2821 break;
2822 default:
2823 *mode = VDSO_CLOCKMODE_NONE;
2824 }
2825
2826 if (*mode == VDSO_CLOCKMODE_NONE)
2827 *tsc_timestamp = v = 0;
2828
2829 return v * clock->mult;
2830 }
2831
2832 /*
2833 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2834 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2835 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2836 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2837 {
2838 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2839 unsigned long seq;
2840 int mode;
2841 u64 ns;
2842
2843 do {
2844 seq = read_seqcount_begin(>od->seq);
2845 ns = gtod->raw_clock.base_cycles;
2846 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2847 ns >>= gtod->raw_clock.shift;
2848 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2849 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2850 *t = ns;
2851
2852 return mode;
2853 }
2854
2855 /*
2856 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2857 * no boot time offset.
2858 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2859 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2860 {
2861 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2862 unsigned long seq;
2863 int mode;
2864 u64 ns;
2865
2866 do {
2867 seq = read_seqcount_begin(>od->seq);
2868 ns = gtod->clock.base_cycles;
2869 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2870 ns >>= gtod->clock.shift;
2871 ns += ktime_to_ns(gtod->clock.offset);
2872 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2873 *t = ns;
2874
2875 return mode;
2876 }
2877
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2878 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2879 {
2880 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2881 unsigned long seq;
2882 int mode;
2883 u64 ns;
2884
2885 do {
2886 seq = read_seqcount_begin(>od->seq);
2887 ts->tv_sec = gtod->wall_time_sec;
2888 ns = gtod->clock.base_cycles;
2889 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2890 ns >>= gtod->clock.shift;
2891 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2892
2893 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2894 ts->tv_nsec = ns;
2895
2896 return mode;
2897 }
2898
2899 /*
2900 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2901 * reports the TSC value from which it do so. Returns true if host is
2902 * using TSC based clocksource.
2903 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2904 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2905 {
2906 /* checked again under seqlock below */
2907 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908 return false;
2909
2910 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2911 tsc_timestamp));
2912 }
2913
2914 /*
2915 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2916 * so. Returns true if host is using TSC based clocksource.
2917 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2918 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2919 {
2920 /* checked again under seqlock below */
2921 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2922 return false;
2923
2924 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2925 tsc_timestamp));
2926 }
2927
2928 /*
2929 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2930 * so. Returns true if host is using TSC based clocksource.
2931 *
2932 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2933 * for that.
2934 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2935 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2936 u64 *tsc_timestamp)
2937 {
2938 /* checked again under seqlock below */
2939 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2940 return false;
2941
2942 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2943 }
2944 #endif
2945
2946 /*
2947 *
2948 * Assuming a stable TSC across physical CPUS, and a stable TSC
2949 * across virtual CPUs, the following condition is possible.
2950 * Each numbered line represents an event visible to both
2951 * CPUs at the next numbered event.
2952 *
2953 * "timespecX" represents host monotonic time. "tscX" represents
2954 * RDTSC value.
2955 *
2956 * VCPU0 on CPU0 | VCPU1 on CPU1
2957 *
2958 * 1. read timespec0,tsc0
2959 * 2. | timespec1 = timespec0 + N
2960 * | tsc1 = tsc0 + M
2961 * 3. transition to guest | transition to guest
2962 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2963 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2964 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2965 *
2966 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2967 *
2968 * - ret0 < ret1
2969 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2970 * ...
2971 * - 0 < N - M => M < N
2972 *
2973 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2974 * always the case (the difference between two distinct xtime instances
2975 * might be smaller then the difference between corresponding TSC reads,
2976 * when updating guest vcpus pvclock areas).
2977 *
2978 * To avoid that problem, do not allow visibility of distinct
2979 * system_timestamp/tsc_timestamp values simultaneously: use a master
2980 * copy of host monotonic time values. Update that master copy
2981 * in lockstep.
2982 *
2983 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2984 *
2985 */
2986
pvclock_update_vm_gtod_copy(struct kvm * kvm)2987 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2988 {
2989 #ifdef CONFIG_X86_64
2990 struct kvm_arch *ka = &kvm->arch;
2991 int vclock_mode;
2992 bool host_tsc_clocksource, vcpus_matched;
2993
2994 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2995 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2996 atomic_read(&kvm->online_vcpus));
2997
2998 /*
2999 * If the host uses TSC clock, then passthrough TSC as stable
3000 * to the guest.
3001 */
3002 host_tsc_clocksource = kvm_get_time_and_clockread(
3003 &ka->master_kernel_ns,
3004 &ka->master_cycle_now);
3005
3006 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3007 && !ka->backwards_tsc_observed
3008 && !ka->boot_vcpu_runs_old_kvmclock;
3009
3010 if (ka->use_master_clock)
3011 atomic_set(&kvm_guest_has_master_clock, 1);
3012
3013 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3014 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3015 vcpus_matched);
3016 #endif
3017 }
3018
kvm_make_mclock_inprogress_request(struct kvm * kvm)3019 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3020 {
3021 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3022 }
3023
__kvm_start_pvclock_update(struct kvm * kvm)3024 static void __kvm_start_pvclock_update(struct kvm *kvm)
3025 {
3026 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3027 write_seqcount_begin(&kvm->arch.pvclock_sc);
3028 }
3029
kvm_start_pvclock_update(struct kvm * kvm)3030 static void kvm_start_pvclock_update(struct kvm *kvm)
3031 {
3032 kvm_make_mclock_inprogress_request(kvm);
3033
3034 /* no guest entries from this point */
3035 __kvm_start_pvclock_update(kvm);
3036 }
3037
kvm_end_pvclock_update(struct kvm * kvm)3038 static void kvm_end_pvclock_update(struct kvm *kvm)
3039 {
3040 struct kvm_arch *ka = &kvm->arch;
3041 struct kvm_vcpu *vcpu;
3042 unsigned long i;
3043
3044 write_seqcount_end(&ka->pvclock_sc);
3045 raw_spin_unlock_irq(&ka->tsc_write_lock);
3046 kvm_for_each_vcpu(i, vcpu, kvm)
3047 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3048
3049 /* guest entries allowed */
3050 kvm_for_each_vcpu(i, vcpu, kvm)
3051 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3052 }
3053
kvm_update_masterclock(struct kvm * kvm)3054 static void kvm_update_masterclock(struct kvm *kvm)
3055 {
3056 kvm_hv_request_tsc_page_update(kvm);
3057 kvm_start_pvclock_update(kvm);
3058 pvclock_update_vm_gtod_copy(kvm);
3059 kvm_end_pvclock_update(kvm);
3060 }
3061
3062 /*
3063 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3064 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3065 * can change during boot even if the TSC is constant, as it's possible for KVM
3066 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3067 * notification when calibration completes, but practically speaking calibration
3068 * will complete before userspace is alive enough to create VMs.
3069 */
get_cpu_tsc_khz(void)3070 static unsigned long get_cpu_tsc_khz(void)
3071 {
3072 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3073 return tsc_khz;
3074 else
3075 return __this_cpu_read(cpu_tsc_khz);
3076 }
3077
3078 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3079 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3080 {
3081 struct kvm_arch *ka = &kvm->arch;
3082 struct pvclock_vcpu_time_info hv_clock;
3083
3084 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3085 get_cpu();
3086
3087 data->flags = 0;
3088 if (ka->use_master_clock &&
3089 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3090 #ifdef CONFIG_X86_64
3091 struct timespec64 ts;
3092
3093 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3094 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3095 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3096 } else
3097 #endif
3098 data->host_tsc = rdtsc();
3099
3100 data->flags |= KVM_CLOCK_TSC_STABLE;
3101 hv_clock.tsc_timestamp = ka->master_cycle_now;
3102 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3103 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3104 &hv_clock.tsc_shift,
3105 &hv_clock.tsc_to_system_mul);
3106 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3107 } else {
3108 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3109 }
3110
3111 put_cpu();
3112 }
3113
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3114 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3115 {
3116 struct kvm_arch *ka = &kvm->arch;
3117 unsigned seq;
3118
3119 do {
3120 seq = read_seqcount_begin(&ka->pvclock_sc);
3121 __get_kvmclock(kvm, data);
3122 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3123 }
3124
get_kvmclock_ns(struct kvm * kvm)3125 u64 get_kvmclock_ns(struct kvm *kvm)
3126 {
3127 struct kvm_clock_data data;
3128
3129 get_kvmclock(kvm, &data);
3130 return data.clock;
3131 }
3132
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset,bool force_tsc_unstable)3133 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3134 struct gfn_to_pfn_cache *gpc,
3135 unsigned int offset,
3136 bool force_tsc_unstable)
3137 {
3138 struct kvm_vcpu_arch *vcpu = &v->arch;
3139 struct pvclock_vcpu_time_info *guest_hv_clock;
3140 unsigned long flags;
3141
3142 read_lock_irqsave(&gpc->lock, flags);
3143 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3144 read_unlock_irqrestore(&gpc->lock, flags);
3145
3146 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3147 return;
3148
3149 read_lock_irqsave(&gpc->lock, flags);
3150 }
3151
3152 guest_hv_clock = (void *)(gpc->khva + offset);
3153
3154 /*
3155 * This VCPU is paused, but it's legal for a guest to read another
3156 * VCPU's kvmclock, so we really have to follow the specification where
3157 * it says that version is odd if data is being modified, and even after
3158 * it is consistent.
3159 */
3160
3161 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3162 smp_wmb();
3163
3164 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3165 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3166
3167 if (vcpu->pvclock_set_guest_stopped_request) {
3168 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3169 vcpu->pvclock_set_guest_stopped_request = false;
3170 }
3171
3172 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3173
3174 if (force_tsc_unstable)
3175 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3176
3177 smp_wmb();
3178
3179 guest_hv_clock->version = ++vcpu->hv_clock.version;
3180
3181 kvm_gpc_mark_dirty_in_slot(gpc);
3182 read_unlock_irqrestore(&gpc->lock, flags);
3183
3184 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3185 }
3186
kvm_guest_time_update(struct kvm_vcpu * v)3187 static int kvm_guest_time_update(struct kvm_vcpu *v)
3188 {
3189 unsigned long flags, tgt_tsc_khz;
3190 unsigned seq;
3191 struct kvm_vcpu_arch *vcpu = &v->arch;
3192 struct kvm_arch *ka = &v->kvm->arch;
3193 s64 kernel_ns;
3194 u64 tsc_timestamp, host_tsc;
3195 u8 pvclock_flags;
3196 bool use_master_clock;
3197 #ifdef CONFIG_KVM_XEN
3198 /*
3199 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3200 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3201 * This default behaviour led to bugs in some guest kernels which cause
3202 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3203 */
3204 bool xen_pvclock_tsc_unstable =
3205 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3206 #endif
3207
3208 kernel_ns = 0;
3209 host_tsc = 0;
3210
3211 /*
3212 * If the host uses TSC clock, then passthrough TSC as stable
3213 * to the guest.
3214 */
3215 do {
3216 seq = read_seqcount_begin(&ka->pvclock_sc);
3217 use_master_clock = ka->use_master_clock;
3218 if (use_master_clock) {
3219 host_tsc = ka->master_cycle_now;
3220 kernel_ns = ka->master_kernel_ns;
3221 }
3222 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3223
3224 /* Keep irq disabled to prevent changes to the clock */
3225 local_irq_save(flags);
3226 tgt_tsc_khz = get_cpu_tsc_khz();
3227 if (unlikely(tgt_tsc_khz == 0)) {
3228 local_irq_restore(flags);
3229 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3230 return 1;
3231 }
3232 if (!use_master_clock) {
3233 host_tsc = rdtsc();
3234 kernel_ns = get_kvmclock_base_ns();
3235 }
3236
3237 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3238
3239 /*
3240 * We may have to catch up the TSC to match elapsed wall clock
3241 * time for two reasons, even if kvmclock is used.
3242 * 1) CPU could have been running below the maximum TSC rate
3243 * 2) Broken TSC compensation resets the base at each VCPU
3244 * entry to avoid unknown leaps of TSC even when running
3245 * again on the same CPU. This may cause apparent elapsed
3246 * time to disappear, and the guest to stand still or run
3247 * very slowly.
3248 */
3249 if (vcpu->tsc_catchup) {
3250 u64 tsc = compute_guest_tsc(v, kernel_ns);
3251 if (tsc > tsc_timestamp) {
3252 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3253 tsc_timestamp = tsc;
3254 }
3255 }
3256
3257 local_irq_restore(flags);
3258
3259 /* With all the info we got, fill in the values */
3260
3261 if (kvm_caps.has_tsc_control)
3262 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3263 v->arch.l1_tsc_scaling_ratio);
3264
3265 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3266 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3267 &vcpu->hv_clock.tsc_shift,
3268 &vcpu->hv_clock.tsc_to_system_mul);
3269 vcpu->hw_tsc_khz = tgt_tsc_khz;
3270 kvm_xen_update_tsc_info(v);
3271 }
3272
3273 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3274 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3275 vcpu->last_guest_tsc = tsc_timestamp;
3276
3277 /* If the host uses TSC clocksource, then it is stable */
3278 pvclock_flags = 0;
3279 if (use_master_clock)
3280 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3281
3282 vcpu->hv_clock.flags = pvclock_flags;
3283
3284 if (vcpu->pv_time.active)
3285 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3286 #ifdef CONFIG_KVM_XEN
3287 if (vcpu->xen.vcpu_info_cache.active)
3288 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3289 offsetof(struct compat_vcpu_info, time),
3290 xen_pvclock_tsc_unstable);
3291 if (vcpu->xen.vcpu_time_info_cache.active)
3292 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3293 xen_pvclock_tsc_unstable);
3294 #endif
3295 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3296 return 0;
3297 }
3298
3299 /*
3300 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3301 * which it started (i.e. its epoch, when its kvmclock was zero).
3302 *
3303 * In fact those clocks are subtly different; wall clock frequency is
3304 * adjusted by NTP and has leap seconds, while the kvmclock is a
3305 * simple function of the TSC without any such adjustment.
3306 *
3307 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3308 * that and kvmclock, but even that would be subject to change over
3309 * time.
3310 *
3311 * Attempt to calculate the epoch at a given moment using the *same*
3312 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3313 * wallclock and kvmclock times, and subtracting one from the other.
3314 *
3315 * Fall back to using their values at slightly different moments by
3316 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3317 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3318 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3319 {
3320 #ifdef CONFIG_X86_64
3321 struct pvclock_vcpu_time_info hv_clock;
3322 struct kvm_arch *ka = &kvm->arch;
3323 unsigned long seq, local_tsc_khz;
3324 struct timespec64 ts;
3325 uint64_t host_tsc;
3326
3327 do {
3328 seq = read_seqcount_begin(&ka->pvclock_sc);
3329
3330 local_tsc_khz = 0;
3331 if (!ka->use_master_clock)
3332 break;
3333
3334 /*
3335 * The TSC read and the call to get_cpu_tsc_khz() must happen
3336 * on the same CPU.
3337 */
3338 get_cpu();
3339
3340 local_tsc_khz = get_cpu_tsc_khz();
3341
3342 if (local_tsc_khz &&
3343 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3344 local_tsc_khz = 0; /* Fall back to old method */
3345
3346 put_cpu();
3347
3348 /*
3349 * These values must be snapshotted within the seqcount loop.
3350 * After that, it's just mathematics which can happen on any
3351 * CPU at any time.
3352 */
3353 hv_clock.tsc_timestamp = ka->master_cycle_now;
3354 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3355
3356 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3357
3358 /*
3359 * If the conditions were right, and obtaining the wallclock+TSC was
3360 * successful, calculate the KVM clock at the corresponding time and
3361 * subtract one from the other to get the guest's epoch in nanoseconds
3362 * since 1970-01-01.
3363 */
3364 if (local_tsc_khz) {
3365 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3366 &hv_clock.tsc_shift,
3367 &hv_clock.tsc_to_system_mul);
3368 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3369 __pvclock_read_cycles(&hv_clock, host_tsc);
3370 }
3371 #endif
3372 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3373 }
3374
3375 /*
3376 * kvmclock updates which are isolated to a given vcpu, such as
3377 * vcpu->cpu migration, should not allow system_timestamp from
3378 * the rest of the vcpus to remain static. Otherwise ntp frequency
3379 * correction applies to one vcpu's system_timestamp but not
3380 * the others.
3381 *
3382 * So in those cases, request a kvmclock update for all vcpus.
3383 * We need to rate-limit these requests though, as they can
3384 * considerably slow guests that have a large number of vcpus.
3385 * The time for a remote vcpu to update its kvmclock is bound
3386 * by the delay we use to rate-limit the updates.
3387 */
3388
3389 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3390
kvmclock_update_fn(struct work_struct * work)3391 static void kvmclock_update_fn(struct work_struct *work)
3392 {
3393 unsigned long i;
3394 struct delayed_work *dwork = to_delayed_work(work);
3395 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3396 kvmclock_update_work);
3397 struct kvm *kvm = container_of(ka, struct kvm, arch);
3398 struct kvm_vcpu *vcpu;
3399
3400 kvm_for_each_vcpu(i, vcpu, kvm) {
3401 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3402 kvm_vcpu_kick(vcpu);
3403 }
3404 }
3405
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3406 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3407 {
3408 struct kvm *kvm = v->kvm;
3409
3410 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3411 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3412 KVMCLOCK_UPDATE_DELAY);
3413 }
3414
3415 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3416
kvmclock_sync_fn(struct work_struct * work)3417 static void kvmclock_sync_fn(struct work_struct *work)
3418 {
3419 struct delayed_work *dwork = to_delayed_work(work);
3420 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3421 kvmclock_sync_work);
3422 struct kvm *kvm = container_of(ka, struct kvm, arch);
3423
3424 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3425 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3426 KVMCLOCK_SYNC_PERIOD);
3427 }
3428
3429 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3430 static bool is_mci_control_msr(u32 msr)
3431 {
3432 return (msr & 3) == 0;
3433 }
is_mci_status_msr(u32 msr)3434 static bool is_mci_status_msr(u32 msr)
3435 {
3436 return (msr & 3) == 1;
3437 }
3438
3439 /*
3440 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3441 */
can_set_mci_status(struct kvm_vcpu * vcpu)3442 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3443 {
3444 /* McStatusWrEn enabled? */
3445 if (guest_cpuid_is_amd_compatible(vcpu))
3446 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3447
3448 return false;
3449 }
3450
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3451 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3452 {
3453 u64 mcg_cap = vcpu->arch.mcg_cap;
3454 unsigned bank_num = mcg_cap & 0xff;
3455 u32 msr = msr_info->index;
3456 u64 data = msr_info->data;
3457 u32 offset, last_msr;
3458
3459 switch (msr) {
3460 case MSR_IA32_MCG_STATUS:
3461 vcpu->arch.mcg_status = data;
3462 break;
3463 case MSR_IA32_MCG_CTL:
3464 if (!(mcg_cap & MCG_CTL_P) &&
3465 (data || !msr_info->host_initiated))
3466 return 1;
3467 if (data != 0 && data != ~(u64)0)
3468 return 1;
3469 vcpu->arch.mcg_ctl = data;
3470 break;
3471 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3472 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3473 if (msr > last_msr)
3474 return 1;
3475
3476 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3477 return 1;
3478 /* An attempt to write a 1 to a reserved bit raises #GP */
3479 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3480 return 1;
3481 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3482 last_msr + 1 - MSR_IA32_MC0_CTL2);
3483 vcpu->arch.mci_ctl2_banks[offset] = data;
3484 break;
3485 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3486 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3487 if (msr > last_msr)
3488 return 1;
3489
3490 /*
3491 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3492 * values are architecturally undefined. But, some Linux
3493 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3494 * issue on AMD K8s, allow bit 10 to be clear when setting all
3495 * other bits in order to avoid an uncaught #GP in the guest.
3496 *
3497 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3498 * single-bit ECC data errors.
3499 */
3500 if (is_mci_control_msr(msr) &&
3501 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3502 return 1;
3503
3504 /*
3505 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3506 * AMD-based CPUs allow non-zero values, but if and only if
3507 * HWCR[McStatusWrEn] is set.
3508 */
3509 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3510 data != 0 && !can_set_mci_status(vcpu))
3511 return 1;
3512
3513 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3514 last_msr + 1 - MSR_IA32_MC0_CTL);
3515 vcpu->arch.mce_banks[offset] = data;
3516 break;
3517 default:
3518 return 1;
3519 }
3520 return 0;
3521 }
3522
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3523 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3524 {
3525 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3526
3527 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3528 }
3529
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3530 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3531 {
3532 gpa_t gpa = data & ~0x3f;
3533
3534 /* Bits 4:5 are reserved, Should be zero */
3535 if (data & 0x30)
3536 return 1;
3537
3538 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3539 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3540 return 1;
3541
3542 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3543 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3544 return 1;
3545
3546 if (!lapic_in_kernel(vcpu))
3547 return data ? 1 : 0;
3548
3549 vcpu->arch.apf.msr_en_val = data;
3550
3551 if (!kvm_pv_async_pf_enabled(vcpu)) {
3552 kvm_clear_async_pf_completion_queue(vcpu);
3553 kvm_async_pf_hash_reset(vcpu);
3554 return 0;
3555 }
3556
3557 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3558 sizeof(u64)))
3559 return 1;
3560
3561 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3562 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3563
3564 kvm_async_pf_wakeup_all(vcpu);
3565
3566 return 0;
3567 }
3568
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3569 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3570 {
3571 /* Bits 8-63 are reserved */
3572 if (data >> 8)
3573 return 1;
3574
3575 if (!lapic_in_kernel(vcpu))
3576 return 1;
3577
3578 vcpu->arch.apf.msr_int_val = data;
3579
3580 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3581
3582 return 0;
3583 }
3584
kvmclock_reset(struct kvm_vcpu * vcpu)3585 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3586 {
3587 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3588 vcpu->arch.time = 0;
3589 }
3590
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3591 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3592 {
3593 ++vcpu->stat.tlb_flush;
3594 kvm_x86_call(flush_tlb_all)(vcpu);
3595
3596 /* Flushing all ASIDs flushes the current ASID... */
3597 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3598 }
3599
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3600 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3601 {
3602 ++vcpu->stat.tlb_flush;
3603
3604 if (!tdp_enabled) {
3605 /*
3606 * A TLB flush on behalf of the guest is equivalent to
3607 * INVPCID(all), toggling CR4.PGE, etc., which requires
3608 * a forced sync of the shadow page tables. Ensure all the
3609 * roots are synced and the guest TLB in hardware is clean.
3610 */
3611 kvm_mmu_sync_roots(vcpu);
3612 kvm_mmu_sync_prev_roots(vcpu);
3613 }
3614
3615 kvm_x86_call(flush_tlb_guest)(vcpu);
3616
3617 /*
3618 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3619 * grained flushing.
3620 */
3621 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3622 }
3623
3624
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3625 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3626 {
3627 ++vcpu->stat.tlb_flush;
3628 kvm_x86_call(flush_tlb_current)(vcpu);
3629 }
3630
3631 /*
3632 * Service "local" TLB flush requests, which are specific to the current MMU
3633 * context. In addition to the generic event handling in vcpu_enter_guest(),
3634 * TLB flushes that are targeted at an MMU context also need to be serviced
3635 * prior before nested VM-Enter/VM-Exit.
3636 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3637 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3638 {
3639 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3640 kvm_vcpu_flush_tlb_current(vcpu);
3641
3642 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3643 kvm_vcpu_flush_tlb_guest(vcpu);
3644 }
3645 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3646
record_steal_time(struct kvm_vcpu * vcpu)3647 static void record_steal_time(struct kvm_vcpu *vcpu)
3648 {
3649 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3650 struct kvm_steal_time __user *st;
3651 struct kvm_memslots *slots;
3652 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3653 u64 steal;
3654 u32 version;
3655
3656 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3657 kvm_xen_runstate_set_running(vcpu);
3658 return;
3659 }
3660
3661 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3662 return;
3663
3664 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3665 return;
3666
3667 slots = kvm_memslots(vcpu->kvm);
3668
3669 if (unlikely(slots->generation != ghc->generation ||
3670 gpa != ghc->gpa ||
3671 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3672 /* We rely on the fact that it fits in a single page. */
3673 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3674
3675 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3676 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3677 return;
3678 }
3679
3680 st = (struct kvm_steal_time __user *)ghc->hva;
3681 /*
3682 * Doing a TLB flush here, on the guest's behalf, can avoid
3683 * expensive IPIs.
3684 */
3685 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3686 u8 st_preempted = 0;
3687 int err = -EFAULT;
3688
3689 if (!user_access_begin(st, sizeof(*st)))
3690 return;
3691
3692 asm volatile("1: xchgb %0, %2\n"
3693 "xor %1, %1\n"
3694 "2:\n"
3695 _ASM_EXTABLE_UA(1b, 2b)
3696 : "+q" (st_preempted),
3697 "+&r" (err),
3698 "+m" (st->preempted));
3699 if (err)
3700 goto out;
3701
3702 user_access_end();
3703
3704 vcpu->arch.st.preempted = 0;
3705
3706 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3707 st_preempted & KVM_VCPU_FLUSH_TLB);
3708 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3709 kvm_vcpu_flush_tlb_guest(vcpu);
3710
3711 if (!user_access_begin(st, sizeof(*st)))
3712 goto dirty;
3713 } else {
3714 if (!user_access_begin(st, sizeof(*st)))
3715 return;
3716
3717 unsafe_put_user(0, &st->preempted, out);
3718 vcpu->arch.st.preempted = 0;
3719 }
3720
3721 unsafe_get_user(version, &st->version, out);
3722 if (version & 1)
3723 version += 1; /* first time write, random junk */
3724
3725 version += 1;
3726 unsafe_put_user(version, &st->version, out);
3727
3728 smp_wmb();
3729
3730 unsafe_get_user(steal, &st->steal, out);
3731 steal += current->sched_info.run_delay -
3732 vcpu->arch.st.last_steal;
3733 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3734 unsafe_put_user(steal, &st->steal, out);
3735
3736 version += 1;
3737 unsafe_put_user(version, &st->version, out);
3738
3739 out:
3740 user_access_end();
3741 dirty:
3742 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3743 }
3744
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3745 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3746 {
3747 u32 msr = msr_info->index;
3748 u64 data = msr_info->data;
3749
3750 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3751 return kvm_xen_write_hypercall_page(vcpu, data);
3752
3753 switch (msr) {
3754 case MSR_AMD64_NB_CFG:
3755 case MSR_IA32_UCODE_WRITE:
3756 case MSR_VM_HSAVE_PA:
3757 case MSR_AMD64_PATCH_LOADER:
3758 case MSR_AMD64_BU_CFG2:
3759 case MSR_AMD64_DC_CFG:
3760 case MSR_AMD64_TW_CFG:
3761 case MSR_F15H_EX_CFG:
3762 break;
3763
3764 case MSR_IA32_UCODE_REV:
3765 if (msr_info->host_initiated)
3766 vcpu->arch.microcode_version = data;
3767 break;
3768 case MSR_IA32_ARCH_CAPABILITIES:
3769 if (!msr_info->host_initiated ||
3770 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3771 return KVM_MSR_RET_UNSUPPORTED;
3772 vcpu->arch.arch_capabilities = data;
3773 break;
3774 case MSR_IA32_PERF_CAPABILITIES:
3775 if (!msr_info->host_initiated ||
3776 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3777 return KVM_MSR_RET_UNSUPPORTED;
3778
3779 if (data & ~kvm_caps.supported_perf_cap)
3780 return 1;
3781
3782 /*
3783 * Note, this is not just a performance optimization! KVM
3784 * disallows changing feature MSRs after the vCPU has run; PMU
3785 * refresh will bug the VM if called after the vCPU has run.
3786 */
3787 if (vcpu->arch.perf_capabilities == data)
3788 break;
3789
3790 vcpu->arch.perf_capabilities = data;
3791 kvm_pmu_refresh(vcpu);
3792 break;
3793 case MSR_IA32_PRED_CMD: {
3794 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3795
3796 if (!msr_info->host_initiated) {
3797 if ((!guest_has_pred_cmd_msr(vcpu)))
3798 return 1;
3799
3800 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3801 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3802 reserved_bits |= PRED_CMD_IBPB;
3803
3804 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3805 reserved_bits |= PRED_CMD_SBPB;
3806 }
3807
3808 if (!boot_cpu_has(X86_FEATURE_IBPB))
3809 reserved_bits |= PRED_CMD_IBPB;
3810
3811 if (!boot_cpu_has(X86_FEATURE_SBPB))
3812 reserved_bits |= PRED_CMD_SBPB;
3813
3814 if (data & reserved_bits)
3815 return 1;
3816
3817 if (!data)
3818 break;
3819
3820 wrmsrl(MSR_IA32_PRED_CMD, data);
3821 break;
3822 }
3823 case MSR_IA32_FLUSH_CMD:
3824 if (!msr_info->host_initiated &&
3825 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3826 return 1;
3827
3828 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3829 return 1;
3830 if (!data)
3831 break;
3832
3833 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3834 break;
3835 case MSR_EFER:
3836 return set_efer(vcpu, msr_info);
3837 case MSR_K7_HWCR:
3838 data &= ~(u64)0x40; /* ignore flush filter disable */
3839 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3840 data &= ~(u64)0x8; /* ignore TLB cache disable */
3841
3842 /*
3843 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3844 * through at least v6.6 whine if TscFreqSel is clear,
3845 * depending on F/M/S.
3846 */
3847 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3848 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3849 return 1;
3850 }
3851 vcpu->arch.msr_hwcr = data;
3852 break;
3853 case MSR_FAM10H_MMIO_CONF_BASE:
3854 if (data != 0) {
3855 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3856 return 1;
3857 }
3858 break;
3859 case MSR_IA32_CR_PAT:
3860 if (!kvm_pat_valid(data))
3861 return 1;
3862
3863 vcpu->arch.pat = data;
3864 break;
3865 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3866 case MSR_MTRRdefType:
3867 return kvm_mtrr_set_msr(vcpu, msr, data);
3868 case MSR_IA32_APICBASE:
3869 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3870 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3871 return kvm_x2apic_msr_write(vcpu, msr, data);
3872 case MSR_IA32_TSC_DEADLINE:
3873 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3874 break;
3875 case MSR_IA32_TSC_ADJUST:
3876 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3877 if (!msr_info->host_initiated) {
3878 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3879 adjust_tsc_offset_guest(vcpu, adj);
3880 /* Before back to guest, tsc_timestamp must be adjusted
3881 * as well, otherwise guest's percpu pvclock time could jump.
3882 */
3883 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3884 }
3885 vcpu->arch.ia32_tsc_adjust_msr = data;
3886 }
3887 break;
3888 case MSR_IA32_MISC_ENABLE: {
3889 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3890
3891 if (!msr_info->host_initiated) {
3892 /* RO bits */
3893 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3894 return 1;
3895
3896 /* R bits, i.e. writes are ignored, but don't fault. */
3897 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3898 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3899 }
3900
3901 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3902 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3903 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3904 return 1;
3905 vcpu->arch.ia32_misc_enable_msr = data;
3906 kvm_update_cpuid_runtime(vcpu);
3907 } else {
3908 vcpu->arch.ia32_misc_enable_msr = data;
3909 }
3910 break;
3911 }
3912 case MSR_IA32_SMBASE:
3913 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3914 return 1;
3915 vcpu->arch.smbase = data;
3916 break;
3917 case MSR_IA32_POWER_CTL:
3918 vcpu->arch.msr_ia32_power_ctl = data;
3919 break;
3920 case MSR_IA32_TSC:
3921 if (msr_info->host_initiated) {
3922 kvm_synchronize_tsc(vcpu, &data);
3923 } else {
3924 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3925 adjust_tsc_offset_guest(vcpu, adj);
3926 vcpu->arch.ia32_tsc_adjust_msr += adj;
3927 }
3928 break;
3929 case MSR_IA32_XSS:
3930 if (!msr_info->host_initiated &&
3931 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3932 return 1;
3933 /*
3934 * KVM supports exposing PT to the guest, but does not support
3935 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3936 * XSAVES/XRSTORS to save/restore PT MSRs.
3937 */
3938 if (data & ~kvm_caps.supported_xss)
3939 return 1;
3940 vcpu->arch.ia32_xss = data;
3941 kvm_update_cpuid_runtime(vcpu);
3942 break;
3943 case MSR_SMI_COUNT:
3944 if (!msr_info->host_initiated)
3945 return 1;
3946 vcpu->arch.smi_count = data;
3947 break;
3948 case MSR_KVM_WALL_CLOCK_NEW:
3949 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3950 return 1;
3951
3952 vcpu->kvm->arch.wall_clock = data;
3953 kvm_write_wall_clock(vcpu->kvm, data, 0);
3954 break;
3955 case MSR_KVM_WALL_CLOCK:
3956 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3957 return 1;
3958
3959 vcpu->kvm->arch.wall_clock = data;
3960 kvm_write_wall_clock(vcpu->kvm, data, 0);
3961 break;
3962 case MSR_KVM_SYSTEM_TIME_NEW:
3963 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3964 return 1;
3965
3966 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3967 break;
3968 case MSR_KVM_SYSTEM_TIME:
3969 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3970 return 1;
3971
3972 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3973 break;
3974 case MSR_KVM_ASYNC_PF_EN:
3975 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3976 return 1;
3977
3978 if (kvm_pv_enable_async_pf(vcpu, data))
3979 return 1;
3980 break;
3981 case MSR_KVM_ASYNC_PF_INT:
3982 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3983 return 1;
3984
3985 if (kvm_pv_enable_async_pf_int(vcpu, data))
3986 return 1;
3987 break;
3988 case MSR_KVM_ASYNC_PF_ACK:
3989 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3990 return 1;
3991 if (data & 0x1) {
3992 vcpu->arch.apf.pageready_pending = false;
3993 kvm_check_async_pf_completion(vcpu);
3994 }
3995 break;
3996 case MSR_KVM_STEAL_TIME:
3997 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3998 return 1;
3999
4000 if (unlikely(!sched_info_on()))
4001 return 1;
4002
4003 if (data & KVM_STEAL_RESERVED_MASK)
4004 return 1;
4005
4006 vcpu->arch.st.msr_val = data;
4007
4008 if (!(data & KVM_MSR_ENABLED))
4009 break;
4010
4011 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4012
4013 break;
4014 case MSR_KVM_PV_EOI_EN:
4015 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4016 return 1;
4017
4018 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4019 return 1;
4020 break;
4021
4022 case MSR_KVM_POLL_CONTROL:
4023 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4024 return 1;
4025
4026 /* only enable bit supported */
4027 if (data & (-1ULL << 1))
4028 return 1;
4029
4030 vcpu->arch.msr_kvm_poll_control = data;
4031 break;
4032
4033 case MSR_IA32_MCG_CTL:
4034 case MSR_IA32_MCG_STATUS:
4035 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4036 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4037 return set_msr_mce(vcpu, msr_info);
4038
4039 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4040 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4041 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4042 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4043 if (kvm_pmu_is_valid_msr(vcpu, msr))
4044 return kvm_pmu_set_msr(vcpu, msr_info);
4045
4046 if (data)
4047 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4048 break;
4049 case MSR_K7_CLK_CTL:
4050 /*
4051 * Ignore all writes to this no longer documented MSR.
4052 * Writes are only relevant for old K7 processors,
4053 * all pre-dating SVM, but a recommended workaround from
4054 * AMD for these chips. It is possible to specify the
4055 * affected processor models on the command line, hence
4056 * the need to ignore the workaround.
4057 */
4058 break;
4059 #ifdef CONFIG_KVM_HYPERV
4060 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4061 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4062 case HV_X64_MSR_SYNDBG_OPTIONS:
4063 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4064 case HV_X64_MSR_CRASH_CTL:
4065 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4066 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4067 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4068 case HV_X64_MSR_TSC_EMULATION_STATUS:
4069 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4070 return kvm_hv_set_msr_common(vcpu, msr, data,
4071 msr_info->host_initiated);
4072 #endif
4073 case MSR_IA32_BBL_CR_CTL3:
4074 /* Drop writes to this legacy MSR -- see rdmsr
4075 * counterpart for further detail.
4076 */
4077 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4078 break;
4079 case MSR_AMD64_OSVW_ID_LENGTH:
4080 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4081 return 1;
4082 vcpu->arch.osvw.length = data;
4083 break;
4084 case MSR_AMD64_OSVW_STATUS:
4085 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4086 return 1;
4087 vcpu->arch.osvw.status = data;
4088 break;
4089 case MSR_PLATFORM_INFO:
4090 if (!msr_info->host_initiated)
4091 return 1;
4092 vcpu->arch.msr_platform_info = data;
4093 break;
4094 case MSR_MISC_FEATURES_ENABLES:
4095 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4096 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4097 !supports_cpuid_fault(vcpu)))
4098 return 1;
4099 vcpu->arch.msr_misc_features_enables = data;
4100 break;
4101 #ifdef CONFIG_X86_64
4102 case MSR_IA32_XFD:
4103 if (!msr_info->host_initiated &&
4104 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4105 return 1;
4106
4107 if (data & ~kvm_guest_supported_xfd(vcpu))
4108 return 1;
4109
4110 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4111 break;
4112 case MSR_IA32_XFD_ERR:
4113 if (!msr_info->host_initiated &&
4114 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4115 return 1;
4116
4117 if (data & ~kvm_guest_supported_xfd(vcpu))
4118 return 1;
4119
4120 vcpu->arch.guest_fpu.xfd_err = data;
4121 break;
4122 #endif
4123 default:
4124 if (kvm_pmu_is_valid_msr(vcpu, msr))
4125 return kvm_pmu_set_msr(vcpu, msr_info);
4126
4127 return KVM_MSR_RET_UNSUPPORTED;
4128 }
4129 return 0;
4130 }
4131 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4132
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4133 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4134 {
4135 u64 data;
4136 u64 mcg_cap = vcpu->arch.mcg_cap;
4137 unsigned bank_num = mcg_cap & 0xff;
4138 u32 offset, last_msr;
4139
4140 switch (msr) {
4141 case MSR_IA32_P5_MC_ADDR:
4142 case MSR_IA32_P5_MC_TYPE:
4143 data = 0;
4144 break;
4145 case MSR_IA32_MCG_CAP:
4146 data = vcpu->arch.mcg_cap;
4147 break;
4148 case MSR_IA32_MCG_CTL:
4149 if (!(mcg_cap & MCG_CTL_P) && !host)
4150 return 1;
4151 data = vcpu->arch.mcg_ctl;
4152 break;
4153 case MSR_IA32_MCG_STATUS:
4154 data = vcpu->arch.mcg_status;
4155 break;
4156 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4157 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4158 if (msr > last_msr)
4159 return 1;
4160
4161 if (!(mcg_cap & MCG_CMCI_P) && !host)
4162 return 1;
4163 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4164 last_msr + 1 - MSR_IA32_MC0_CTL2);
4165 data = vcpu->arch.mci_ctl2_banks[offset];
4166 break;
4167 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4168 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4169 if (msr > last_msr)
4170 return 1;
4171
4172 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4173 last_msr + 1 - MSR_IA32_MC0_CTL);
4174 data = vcpu->arch.mce_banks[offset];
4175 break;
4176 default:
4177 return 1;
4178 }
4179 *pdata = data;
4180 return 0;
4181 }
4182
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4183 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4184 {
4185 switch (msr_info->index) {
4186 case MSR_IA32_PLATFORM_ID:
4187 case MSR_IA32_EBL_CR_POWERON:
4188 case MSR_IA32_LASTBRANCHFROMIP:
4189 case MSR_IA32_LASTBRANCHTOIP:
4190 case MSR_IA32_LASTINTFROMIP:
4191 case MSR_IA32_LASTINTTOIP:
4192 case MSR_AMD64_SYSCFG:
4193 case MSR_K8_TSEG_ADDR:
4194 case MSR_K8_TSEG_MASK:
4195 case MSR_VM_HSAVE_PA:
4196 case MSR_K8_INT_PENDING_MSG:
4197 case MSR_AMD64_NB_CFG:
4198 case MSR_FAM10H_MMIO_CONF_BASE:
4199 case MSR_AMD64_BU_CFG2:
4200 case MSR_IA32_PERF_CTL:
4201 case MSR_AMD64_DC_CFG:
4202 case MSR_AMD64_TW_CFG:
4203 case MSR_F15H_EX_CFG:
4204 /*
4205 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4206 * limit) MSRs. Just return 0, as we do not want to expose the host
4207 * data here. Do not conditionalize this on CPUID, as KVM does not do
4208 * so for existing CPU-specific MSRs.
4209 */
4210 case MSR_RAPL_POWER_UNIT:
4211 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4212 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4213 case MSR_PKG_ENERGY_STATUS: /* Total package */
4214 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4215 msr_info->data = 0;
4216 break;
4217 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4218 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4219 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4220 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4221 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4222 return kvm_pmu_get_msr(vcpu, msr_info);
4223 msr_info->data = 0;
4224 break;
4225 case MSR_IA32_UCODE_REV:
4226 msr_info->data = vcpu->arch.microcode_version;
4227 break;
4228 case MSR_IA32_ARCH_CAPABILITIES:
4229 if (!guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4230 return KVM_MSR_RET_UNSUPPORTED;
4231 msr_info->data = vcpu->arch.arch_capabilities;
4232 break;
4233 case MSR_IA32_PERF_CAPABILITIES:
4234 if (!guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4235 return KVM_MSR_RET_UNSUPPORTED;
4236 msr_info->data = vcpu->arch.perf_capabilities;
4237 break;
4238 case MSR_IA32_POWER_CTL:
4239 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4240 break;
4241 case MSR_IA32_TSC: {
4242 /*
4243 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4244 * even when not intercepted. AMD manual doesn't explicitly
4245 * state this but appears to behave the same.
4246 *
4247 * On userspace reads and writes, however, we unconditionally
4248 * return L1's TSC value to ensure backwards-compatible
4249 * behavior for migration.
4250 */
4251 u64 offset, ratio;
4252
4253 if (msr_info->host_initiated) {
4254 offset = vcpu->arch.l1_tsc_offset;
4255 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4256 } else {
4257 offset = vcpu->arch.tsc_offset;
4258 ratio = vcpu->arch.tsc_scaling_ratio;
4259 }
4260
4261 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4262 break;
4263 }
4264 case MSR_IA32_CR_PAT:
4265 msr_info->data = vcpu->arch.pat;
4266 break;
4267 case MSR_MTRRcap:
4268 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4269 case MSR_MTRRdefType:
4270 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4271 case 0xcd: /* fsb frequency */
4272 msr_info->data = 3;
4273 break;
4274 /*
4275 * MSR_EBC_FREQUENCY_ID
4276 * Conservative value valid for even the basic CPU models.
4277 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4278 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4279 * and 266MHz for model 3, or 4. Set Core Clock
4280 * Frequency to System Bus Frequency Ratio to 1 (bits
4281 * 31:24) even though these are only valid for CPU
4282 * models > 2, however guests may end up dividing or
4283 * multiplying by zero otherwise.
4284 */
4285 case MSR_EBC_FREQUENCY_ID:
4286 msr_info->data = 1 << 24;
4287 break;
4288 case MSR_IA32_APICBASE:
4289 msr_info->data = vcpu->arch.apic_base;
4290 break;
4291 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4292 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4293 case MSR_IA32_TSC_DEADLINE:
4294 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4295 break;
4296 case MSR_IA32_TSC_ADJUST:
4297 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4298 break;
4299 case MSR_IA32_MISC_ENABLE:
4300 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4301 break;
4302 case MSR_IA32_SMBASE:
4303 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4304 return 1;
4305 msr_info->data = vcpu->arch.smbase;
4306 break;
4307 case MSR_SMI_COUNT:
4308 msr_info->data = vcpu->arch.smi_count;
4309 break;
4310 case MSR_IA32_PERF_STATUS:
4311 /* TSC increment by tick */
4312 msr_info->data = 1000ULL;
4313 /* CPU multiplier */
4314 msr_info->data |= (((uint64_t)4ULL) << 40);
4315 break;
4316 case MSR_EFER:
4317 msr_info->data = vcpu->arch.efer;
4318 break;
4319 case MSR_KVM_WALL_CLOCK:
4320 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4321 return 1;
4322
4323 msr_info->data = vcpu->kvm->arch.wall_clock;
4324 break;
4325 case MSR_KVM_WALL_CLOCK_NEW:
4326 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4327 return 1;
4328
4329 msr_info->data = vcpu->kvm->arch.wall_clock;
4330 break;
4331 case MSR_KVM_SYSTEM_TIME:
4332 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4333 return 1;
4334
4335 msr_info->data = vcpu->arch.time;
4336 break;
4337 case MSR_KVM_SYSTEM_TIME_NEW:
4338 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4339 return 1;
4340
4341 msr_info->data = vcpu->arch.time;
4342 break;
4343 case MSR_KVM_ASYNC_PF_EN:
4344 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4345 return 1;
4346
4347 msr_info->data = vcpu->arch.apf.msr_en_val;
4348 break;
4349 case MSR_KVM_ASYNC_PF_INT:
4350 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4351 return 1;
4352
4353 msr_info->data = vcpu->arch.apf.msr_int_val;
4354 break;
4355 case MSR_KVM_ASYNC_PF_ACK:
4356 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4357 return 1;
4358
4359 msr_info->data = 0;
4360 break;
4361 case MSR_KVM_STEAL_TIME:
4362 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4363 return 1;
4364
4365 msr_info->data = vcpu->arch.st.msr_val;
4366 break;
4367 case MSR_KVM_PV_EOI_EN:
4368 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4369 return 1;
4370
4371 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4372 break;
4373 case MSR_KVM_POLL_CONTROL:
4374 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4375 return 1;
4376
4377 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4378 break;
4379 case MSR_IA32_P5_MC_ADDR:
4380 case MSR_IA32_P5_MC_TYPE:
4381 case MSR_IA32_MCG_CAP:
4382 case MSR_IA32_MCG_CTL:
4383 case MSR_IA32_MCG_STATUS:
4384 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4385 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4386 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4387 msr_info->host_initiated);
4388 case MSR_IA32_XSS:
4389 if (!msr_info->host_initiated &&
4390 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4391 return 1;
4392 msr_info->data = vcpu->arch.ia32_xss;
4393 break;
4394 case MSR_K7_CLK_CTL:
4395 /*
4396 * Provide expected ramp-up count for K7. All other
4397 * are set to zero, indicating minimum divisors for
4398 * every field.
4399 *
4400 * This prevents guest kernels on AMD host with CPU
4401 * type 6, model 8 and higher from exploding due to
4402 * the rdmsr failing.
4403 */
4404 msr_info->data = 0x20000000;
4405 break;
4406 #ifdef CONFIG_KVM_HYPERV
4407 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4408 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4409 case HV_X64_MSR_SYNDBG_OPTIONS:
4410 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4411 case HV_X64_MSR_CRASH_CTL:
4412 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4413 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4414 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4415 case HV_X64_MSR_TSC_EMULATION_STATUS:
4416 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4417 return kvm_hv_get_msr_common(vcpu,
4418 msr_info->index, &msr_info->data,
4419 msr_info->host_initiated);
4420 #endif
4421 case MSR_IA32_BBL_CR_CTL3:
4422 /* This legacy MSR exists but isn't fully documented in current
4423 * silicon. It is however accessed by winxp in very narrow
4424 * scenarios where it sets bit #19, itself documented as
4425 * a "reserved" bit. Best effort attempt to source coherent
4426 * read data here should the balance of the register be
4427 * interpreted by the guest:
4428 *
4429 * L2 cache control register 3: 64GB range, 256KB size,
4430 * enabled, latency 0x1, configured
4431 */
4432 msr_info->data = 0xbe702111;
4433 break;
4434 case MSR_AMD64_OSVW_ID_LENGTH:
4435 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4436 return 1;
4437 msr_info->data = vcpu->arch.osvw.length;
4438 break;
4439 case MSR_AMD64_OSVW_STATUS:
4440 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4441 return 1;
4442 msr_info->data = vcpu->arch.osvw.status;
4443 break;
4444 case MSR_PLATFORM_INFO:
4445 if (!msr_info->host_initiated &&
4446 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4447 return 1;
4448 msr_info->data = vcpu->arch.msr_platform_info;
4449 break;
4450 case MSR_MISC_FEATURES_ENABLES:
4451 msr_info->data = vcpu->arch.msr_misc_features_enables;
4452 break;
4453 case MSR_K7_HWCR:
4454 msr_info->data = vcpu->arch.msr_hwcr;
4455 break;
4456 #ifdef CONFIG_X86_64
4457 case MSR_IA32_XFD:
4458 if (!msr_info->host_initiated &&
4459 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4460 return 1;
4461
4462 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4463 break;
4464 case MSR_IA32_XFD_ERR:
4465 if (!msr_info->host_initiated &&
4466 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4467 return 1;
4468
4469 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4470 break;
4471 #endif
4472 default:
4473 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4474 return kvm_pmu_get_msr(vcpu, msr_info);
4475
4476 return KVM_MSR_RET_UNSUPPORTED;
4477 }
4478 return 0;
4479 }
4480 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4481
4482 /*
4483 * Read or write a bunch of msrs. All parameters are kernel addresses.
4484 *
4485 * @return number of msrs set successfully.
4486 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4487 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4488 struct kvm_msr_entry *entries,
4489 int (*do_msr)(struct kvm_vcpu *vcpu,
4490 unsigned index, u64 *data))
4491 {
4492 int i;
4493
4494 for (i = 0; i < msrs->nmsrs; ++i)
4495 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4496 break;
4497
4498 return i;
4499 }
4500
4501 /*
4502 * Read or write a bunch of msrs. Parameters are user addresses.
4503 *
4504 * @return number of msrs set successfully.
4505 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4506 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4507 int (*do_msr)(struct kvm_vcpu *vcpu,
4508 unsigned index, u64 *data),
4509 int writeback)
4510 {
4511 struct kvm_msrs msrs;
4512 struct kvm_msr_entry *entries;
4513 unsigned size;
4514 int r;
4515
4516 r = -EFAULT;
4517 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4518 goto out;
4519
4520 r = -E2BIG;
4521 if (msrs.nmsrs >= MAX_IO_MSRS)
4522 goto out;
4523
4524 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4525 entries = memdup_user(user_msrs->entries, size);
4526 if (IS_ERR(entries)) {
4527 r = PTR_ERR(entries);
4528 goto out;
4529 }
4530
4531 r = __msr_io(vcpu, &msrs, entries, do_msr);
4532
4533 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4534 r = -EFAULT;
4535
4536 kfree(entries);
4537 out:
4538 return r;
4539 }
4540
kvm_can_mwait_in_guest(void)4541 static inline bool kvm_can_mwait_in_guest(void)
4542 {
4543 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4544 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4545 boot_cpu_has(X86_FEATURE_ARAT);
4546 }
4547
4548 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4549 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4550 struct kvm_cpuid2 __user *cpuid_arg)
4551 {
4552 struct kvm_cpuid2 cpuid;
4553 int r;
4554
4555 r = -EFAULT;
4556 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4557 return r;
4558
4559 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4560 if (r)
4561 return r;
4562
4563 r = -EFAULT;
4564 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4565 return r;
4566
4567 return 0;
4568 }
4569 #endif
4570
kvm_is_vm_type_supported(unsigned long type)4571 static bool kvm_is_vm_type_supported(unsigned long type)
4572 {
4573 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4574 }
4575
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4576 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4577 {
4578 int r = 0;
4579
4580 switch (ext) {
4581 case KVM_CAP_IRQCHIP:
4582 case KVM_CAP_HLT:
4583 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4584 case KVM_CAP_SET_TSS_ADDR:
4585 case KVM_CAP_EXT_CPUID:
4586 case KVM_CAP_EXT_EMUL_CPUID:
4587 case KVM_CAP_CLOCKSOURCE:
4588 case KVM_CAP_PIT:
4589 case KVM_CAP_NOP_IO_DELAY:
4590 case KVM_CAP_MP_STATE:
4591 case KVM_CAP_SYNC_MMU:
4592 case KVM_CAP_USER_NMI:
4593 case KVM_CAP_REINJECT_CONTROL:
4594 case KVM_CAP_IRQ_INJECT_STATUS:
4595 case KVM_CAP_IOEVENTFD:
4596 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4597 case KVM_CAP_PIT2:
4598 case KVM_CAP_PIT_STATE2:
4599 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4600 case KVM_CAP_VCPU_EVENTS:
4601 #ifdef CONFIG_KVM_HYPERV
4602 case KVM_CAP_HYPERV:
4603 case KVM_CAP_HYPERV_VAPIC:
4604 case KVM_CAP_HYPERV_SPIN:
4605 case KVM_CAP_HYPERV_TIME:
4606 case KVM_CAP_HYPERV_SYNIC:
4607 case KVM_CAP_HYPERV_SYNIC2:
4608 case KVM_CAP_HYPERV_VP_INDEX:
4609 case KVM_CAP_HYPERV_EVENTFD:
4610 case KVM_CAP_HYPERV_TLBFLUSH:
4611 case KVM_CAP_HYPERV_SEND_IPI:
4612 case KVM_CAP_HYPERV_CPUID:
4613 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4614 case KVM_CAP_SYS_HYPERV_CPUID:
4615 #endif
4616 case KVM_CAP_PCI_SEGMENT:
4617 case KVM_CAP_DEBUGREGS:
4618 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4619 case KVM_CAP_XSAVE:
4620 case KVM_CAP_ASYNC_PF:
4621 case KVM_CAP_ASYNC_PF_INT:
4622 case KVM_CAP_GET_TSC_KHZ:
4623 case KVM_CAP_KVMCLOCK_CTRL:
4624 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4625 case KVM_CAP_TSC_DEADLINE_TIMER:
4626 case KVM_CAP_DISABLE_QUIRKS:
4627 case KVM_CAP_SET_BOOT_CPU_ID:
4628 case KVM_CAP_SPLIT_IRQCHIP:
4629 case KVM_CAP_IMMEDIATE_EXIT:
4630 case KVM_CAP_PMU_EVENT_FILTER:
4631 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4632 case KVM_CAP_GET_MSR_FEATURES:
4633 case KVM_CAP_MSR_PLATFORM_INFO:
4634 case KVM_CAP_EXCEPTION_PAYLOAD:
4635 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4636 case KVM_CAP_SET_GUEST_DEBUG:
4637 case KVM_CAP_LAST_CPU:
4638 case KVM_CAP_X86_USER_SPACE_MSR:
4639 case KVM_CAP_X86_MSR_FILTER:
4640 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4641 #ifdef CONFIG_X86_SGX_KVM
4642 case KVM_CAP_SGX_ATTRIBUTE:
4643 #endif
4644 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4645 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4646 case KVM_CAP_SREGS2:
4647 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4648 case KVM_CAP_VCPU_ATTRIBUTES:
4649 case KVM_CAP_SYS_ATTRIBUTES:
4650 case KVM_CAP_VAPIC:
4651 case KVM_CAP_ENABLE_CAP:
4652 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4653 case KVM_CAP_IRQFD_RESAMPLE:
4654 case KVM_CAP_MEMORY_FAULT_INFO:
4655 case KVM_CAP_X86_GUEST_MODE:
4656 r = 1;
4657 break;
4658 case KVM_CAP_PRE_FAULT_MEMORY:
4659 r = tdp_enabled;
4660 break;
4661 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4662 r = APIC_BUS_CYCLE_NS_DEFAULT;
4663 break;
4664 case KVM_CAP_EXIT_HYPERCALL:
4665 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4666 break;
4667 case KVM_CAP_SET_GUEST_DEBUG2:
4668 return KVM_GUESTDBG_VALID_MASK;
4669 #ifdef CONFIG_KVM_XEN
4670 case KVM_CAP_XEN_HVM:
4671 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4672 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4673 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4674 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4675 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4676 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4677 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4678 if (sched_info_on())
4679 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4680 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4681 break;
4682 #endif
4683 case KVM_CAP_SYNC_REGS:
4684 r = KVM_SYNC_X86_VALID_FIELDS;
4685 break;
4686 case KVM_CAP_ADJUST_CLOCK:
4687 r = KVM_CLOCK_VALID_FLAGS;
4688 break;
4689 case KVM_CAP_X86_DISABLE_EXITS:
4690 r = KVM_X86_DISABLE_EXITS_PAUSE;
4691
4692 if (!mitigate_smt_rsb) {
4693 r |= KVM_X86_DISABLE_EXITS_HLT |
4694 KVM_X86_DISABLE_EXITS_CSTATE;
4695
4696 if (kvm_can_mwait_in_guest())
4697 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4698 }
4699 break;
4700 case KVM_CAP_X86_SMM:
4701 if (!IS_ENABLED(CONFIG_KVM_SMM))
4702 break;
4703
4704 /* SMBASE is usually relocated above 1M on modern chipsets,
4705 * and SMM handlers might indeed rely on 4G segment limits,
4706 * so do not report SMM to be available if real mode is
4707 * emulated via vm86 mode. Still, do not go to great lengths
4708 * to avoid userspace's usage of the feature, because it is a
4709 * fringe case that is not enabled except via specific settings
4710 * of the module parameters.
4711 */
4712 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4713 break;
4714 case KVM_CAP_NR_VCPUS:
4715 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4716 break;
4717 case KVM_CAP_MAX_VCPUS:
4718 r = KVM_MAX_VCPUS;
4719 break;
4720 case KVM_CAP_MAX_VCPU_ID:
4721 r = KVM_MAX_VCPU_IDS;
4722 break;
4723 case KVM_CAP_PV_MMU: /* obsolete */
4724 r = 0;
4725 break;
4726 case KVM_CAP_MCE:
4727 r = KVM_MAX_MCE_BANKS;
4728 break;
4729 case KVM_CAP_XCRS:
4730 r = boot_cpu_has(X86_FEATURE_XSAVE);
4731 break;
4732 case KVM_CAP_TSC_CONTROL:
4733 case KVM_CAP_VM_TSC_CONTROL:
4734 r = kvm_caps.has_tsc_control;
4735 break;
4736 case KVM_CAP_X2APIC_API:
4737 r = KVM_X2APIC_API_VALID_FLAGS;
4738 break;
4739 case KVM_CAP_NESTED_STATE:
4740 r = kvm_x86_ops.nested_ops->get_state ?
4741 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4742 break;
4743 #ifdef CONFIG_KVM_HYPERV
4744 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4745 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4746 break;
4747 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4748 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4749 break;
4750 #endif
4751 case KVM_CAP_SMALLER_MAXPHYADDR:
4752 r = (int) allow_smaller_maxphyaddr;
4753 break;
4754 case KVM_CAP_STEAL_TIME:
4755 r = sched_info_on();
4756 break;
4757 case KVM_CAP_X86_BUS_LOCK_EXIT:
4758 if (kvm_caps.has_bus_lock_exit)
4759 r = KVM_BUS_LOCK_DETECTION_OFF |
4760 KVM_BUS_LOCK_DETECTION_EXIT;
4761 else
4762 r = 0;
4763 break;
4764 case KVM_CAP_XSAVE2: {
4765 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4766 if (r < sizeof(struct kvm_xsave))
4767 r = sizeof(struct kvm_xsave);
4768 break;
4769 }
4770 case KVM_CAP_PMU_CAPABILITY:
4771 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4772 break;
4773 case KVM_CAP_DISABLE_QUIRKS2:
4774 r = KVM_X86_VALID_QUIRKS;
4775 break;
4776 case KVM_CAP_X86_NOTIFY_VMEXIT:
4777 r = kvm_caps.has_notify_vmexit;
4778 break;
4779 case KVM_CAP_VM_TYPES:
4780 r = kvm_caps.supported_vm_types;
4781 break;
4782 case KVM_CAP_READONLY_MEM:
4783 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4784 break;
4785 default:
4786 break;
4787 }
4788 return r;
4789 }
4790
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4791 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4792 {
4793 if (attr->group) {
4794 if (kvm_x86_ops.dev_get_attr)
4795 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4796 return -ENXIO;
4797 }
4798
4799 switch (attr->attr) {
4800 case KVM_X86_XCOMP_GUEST_SUPP:
4801 *val = kvm_caps.supported_xcr0;
4802 return 0;
4803 default:
4804 return -ENXIO;
4805 }
4806 }
4807
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4808 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4809 {
4810 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4811 int r;
4812 u64 val;
4813
4814 r = __kvm_x86_dev_get_attr(attr, &val);
4815 if (r < 0)
4816 return r;
4817
4818 if (put_user(val, uaddr))
4819 return -EFAULT;
4820
4821 return 0;
4822 }
4823
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4824 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4825 {
4826 u64 val;
4827
4828 return __kvm_x86_dev_get_attr(attr, &val);
4829 }
4830
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4831 long kvm_arch_dev_ioctl(struct file *filp,
4832 unsigned int ioctl, unsigned long arg)
4833 {
4834 void __user *argp = (void __user *)arg;
4835 long r;
4836
4837 switch (ioctl) {
4838 case KVM_GET_MSR_INDEX_LIST: {
4839 struct kvm_msr_list __user *user_msr_list = argp;
4840 struct kvm_msr_list msr_list;
4841 unsigned n;
4842
4843 r = -EFAULT;
4844 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4845 goto out;
4846 n = msr_list.nmsrs;
4847 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4848 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4849 goto out;
4850 r = -E2BIG;
4851 if (n < msr_list.nmsrs)
4852 goto out;
4853 r = -EFAULT;
4854 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4855 num_msrs_to_save * sizeof(u32)))
4856 goto out;
4857 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4858 &emulated_msrs,
4859 num_emulated_msrs * sizeof(u32)))
4860 goto out;
4861 r = 0;
4862 break;
4863 }
4864 case KVM_GET_SUPPORTED_CPUID:
4865 case KVM_GET_EMULATED_CPUID: {
4866 struct kvm_cpuid2 __user *cpuid_arg = argp;
4867 struct kvm_cpuid2 cpuid;
4868
4869 r = -EFAULT;
4870 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4871 goto out;
4872
4873 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4874 ioctl);
4875 if (r)
4876 goto out;
4877
4878 r = -EFAULT;
4879 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4880 goto out;
4881 r = 0;
4882 break;
4883 }
4884 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4885 r = -EFAULT;
4886 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4887 sizeof(kvm_caps.supported_mce_cap)))
4888 goto out;
4889 r = 0;
4890 break;
4891 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4892 struct kvm_msr_list __user *user_msr_list = argp;
4893 struct kvm_msr_list msr_list;
4894 unsigned int n;
4895
4896 r = -EFAULT;
4897 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4898 goto out;
4899 n = msr_list.nmsrs;
4900 msr_list.nmsrs = num_msr_based_features;
4901 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4902 goto out;
4903 r = -E2BIG;
4904 if (n < msr_list.nmsrs)
4905 goto out;
4906 r = -EFAULT;
4907 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4908 num_msr_based_features * sizeof(u32)))
4909 goto out;
4910 r = 0;
4911 break;
4912 }
4913 case KVM_GET_MSRS:
4914 r = msr_io(NULL, argp, do_get_feature_msr, 1);
4915 break;
4916 #ifdef CONFIG_KVM_HYPERV
4917 case KVM_GET_SUPPORTED_HV_CPUID:
4918 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4919 break;
4920 #endif
4921 case KVM_GET_DEVICE_ATTR: {
4922 struct kvm_device_attr attr;
4923 r = -EFAULT;
4924 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4925 break;
4926 r = kvm_x86_dev_get_attr(&attr);
4927 break;
4928 }
4929 case KVM_HAS_DEVICE_ATTR: {
4930 struct kvm_device_attr attr;
4931 r = -EFAULT;
4932 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4933 break;
4934 r = kvm_x86_dev_has_attr(&attr);
4935 break;
4936 }
4937 default:
4938 r = -EINVAL;
4939 break;
4940 }
4941 out:
4942 return r;
4943 }
4944
wbinvd_ipi(void * garbage)4945 static void wbinvd_ipi(void *garbage)
4946 {
4947 wbinvd();
4948 }
4949
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4950 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4951 {
4952 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4953 }
4954
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4955 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4956 {
4957 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4958
4959 vcpu->arch.l1tf_flush_l1d = true;
4960
4961 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4962 pmu->need_cleanup = true;
4963 kvm_make_request(KVM_REQ_PMU, vcpu);
4964 }
4965
4966 /* Address WBINVD may be executed by guest */
4967 if (need_emulate_wbinvd(vcpu)) {
4968 if (kvm_x86_call(has_wbinvd_exit)())
4969 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4970 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4971 smp_call_function_single(vcpu->cpu,
4972 wbinvd_ipi, NULL, 1);
4973 }
4974
4975 kvm_x86_call(vcpu_load)(vcpu, cpu);
4976
4977 /* Save host pkru register if supported */
4978 vcpu->arch.host_pkru = read_pkru();
4979
4980 /* Apply any externally detected TSC adjustments (due to suspend) */
4981 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4982 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4983 vcpu->arch.tsc_offset_adjustment = 0;
4984 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4985 }
4986
4987 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4988 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4989 rdtsc() - vcpu->arch.last_host_tsc;
4990 if (tsc_delta < 0)
4991 mark_tsc_unstable("KVM discovered backwards TSC");
4992
4993 if (kvm_check_tsc_unstable()) {
4994 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4995 vcpu->arch.last_guest_tsc);
4996 kvm_vcpu_write_tsc_offset(vcpu, offset);
4997 vcpu->arch.tsc_catchup = 1;
4998 }
4999
5000 if (kvm_lapic_hv_timer_in_use(vcpu))
5001 kvm_lapic_restart_hv_timer(vcpu);
5002
5003 /*
5004 * On a host with synchronized TSC, there is no need to update
5005 * kvmclock on vcpu->cpu migration
5006 */
5007 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5008 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5009 if (vcpu->cpu != cpu)
5010 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5011 vcpu->cpu = cpu;
5012 }
5013
5014 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5015 }
5016
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5017 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5018 {
5019 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5020 struct kvm_steal_time __user *st;
5021 struct kvm_memslots *slots;
5022 static const u8 preempted = KVM_VCPU_PREEMPTED;
5023 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5024
5025 /*
5026 * The vCPU can be marked preempted if and only if the VM-Exit was on
5027 * an instruction boundary and will not trigger guest emulation of any
5028 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5029 * when this is true, for example allowing the vCPU to be marked
5030 * preempted if and only if the VM-Exit was due to a host interrupt.
5031 */
5032 if (!vcpu->arch.at_instruction_boundary) {
5033 vcpu->stat.preemption_other++;
5034 return;
5035 }
5036
5037 vcpu->stat.preemption_reported++;
5038 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5039 return;
5040
5041 if (vcpu->arch.st.preempted)
5042 return;
5043
5044 /* This happens on process exit */
5045 if (unlikely(current->mm != vcpu->kvm->mm))
5046 return;
5047
5048 slots = kvm_memslots(vcpu->kvm);
5049
5050 if (unlikely(slots->generation != ghc->generation ||
5051 gpa != ghc->gpa ||
5052 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5053 return;
5054
5055 st = (struct kvm_steal_time __user *)ghc->hva;
5056 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5057
5058 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5059 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5060
5061 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5062 }
5063
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5064 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5065 {
5066 int idx;
5067
5068 if (vcpu->preempted) {
5069 /*
5070 * Assume protected guests are in-kernel. Inefficient yielding
5071 * due to false positives is preferable to never yielding due
5072 * to false negatives.
5073 */
5074 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5075 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5076
5077 /*
5078 * Take the srcu lock as memslots will be accessed to check the gfn
5079 * cache generation against the memslots generation.
5080 */
5081 idx = srcu_read_lock(&vcpu->kvm->srcu);
5082 if (kvm_xen_msr_enabled(vcpu->kvm))
5083 kvm_xen_runstate_set_preempted(vcpu);
5084 else
5085 kvm_steal_time_set_preempted(vcpu);
5086 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5087 }
5088
5089 kvm_x86_call(vcpu_put)(vcpu);
5090 vcpu->arch.last_host_tsc = rdtsc();
5091 }
5092
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5093 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5094 struct kvm_lapic_state *s)
5095 {
5096 kvm_x86_call(sync_pir_to_irr)(vcpu);
5097
5098 return kvm_apic_get_state(vcpu, s);
5099 }
5100
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5101 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5102 struct kvm_lapic_state *s)
5103 {
5104 int r;
5105
5106 r = kvm_apic_set_state(vcpu, s);
5107 if (r)
5108 return r;
5109 update_cr8_intercept(vcpu);
5110
5111 return 0;
5112 }
5113
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5114 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5115 {
5116 /*
5117 * We can accept userspace's request for interrupt injection
5118 * as long as we have a place to store the interrupt number.
5119 * The actual injection will happen when the CPU is able to
5120 * deliver the interrupt.
5121 */
5122 if (kvm_cpu_has_extint(vcpu))
5123 return false;
5124
5125 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5126 return (!lapic_in_kernel(vcpu) ||
5127 kvm_apic_accept_pic_intr(vcpu));
5128 }
5129
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5130 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5131 {
5132 /*
5133 * Do not cause an interrupt window exit if an exception
5134 * is pending or an event needs reinjection; userspace
5135 * might want to inject the interrupt manually using KVM_SET_REGS
5136 * or KVM_SET_SREGS. For that to work, we must be at an
5137 * instruction boundary and with no events half-injected.
5138 */
5139 return (kvm_arch_interrupt_allowed(vcpu) &&
5140 kvm_cpu_accept_dm_intr(vcpu) &&
5141 !kvm_event_needs_reinjection(vcpu) &&
5142 !kvm_is_exception_pending(vcpu));
5143 }
5144
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5145 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5146 struct kvm_interrupt *irq)
5147 {
5148 if (irq->irq >= KVM_NR_INTERRUPTS)
5149 return -EINVAL;
5150
5151 if (!irqchip_in_kernel(vcpu->kvm)) {
5152 kvm_queue_interrupt(vcpu, irq->irq, false);
5153 kvm_make_request(KVM_REQ_EVENT, vcpu);
5154 return 0;
5155 }
5156
5157 /*
5158 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5159 * fail for in-kernel 8259.
5160 */
5161 if (pic_in_kernel(vcpu->kvm))
5162 return -ENXIO;
5163
5164 if (vcpu->arch.pending_external_vector != -1)
5165 return -EEXIST;
5166
5167 vcpu->arch.pending_external_vector = irq->irq;
5168 kvm_make_request(KVM_REQ_EVENT, vcpu);
5169 return 0;
5170 }
5171
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5172 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5173 {
5174 kvm_inject_nmi(vcpu);
5175
5176 return 0;
5177 }
5178
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5179 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5180 struct kvm_tpr_access_ctl *tac)
5181 {
5182 if (tac->flags)
5183 return -EINVAL;
5184 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5185 return 0;
5186 }
5187
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5188 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5189 u64 mcg_cap)
5190 {
5191 int r;
5192 unsigned bank_num = mcg_cap & 0xff, bank;
5193
5194 r = -EINVAL;
5195 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5196 goto out;
5197 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5198 goto out;
5199 r = 0;
5200 vcpu->arch.mcg_cap = mcg_cap;
5201 /* Init IA32_MCG_CTL to all 1s */
5202 if (mcg_cap & MCG_CTL_P)
5203 vcpu->arch.mcg_ctl = ~(u64)0;
5204 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5205 for (bank = 0; bank < bank_num; bank++) {
5206 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5207 if (mcg_cap & MCG_CMCI_P)
5208 vcpu->arch.mci_ctl2_banks[bank] = 0;
5209 }
5210
5211 kvm_apic_after_set_mcg_cap(vcpu);
5212
5213 kvm_x86_call(setup_mce)(vcpu);
5214 out:
5215 return r;
5216 }
5217
5218 /*
5219 * Validate this is an UCNA (uncorrectable no action) error by checking the
5220 * MCG_STATUS and MCi_STATUS registers:
5221 * - none of the bits for Machine Check Exceptions are set
5222 * - both the VAL (valid) and UC (uncorrectable) bits are set
5223 * MCI_STATUS_PCC - Processor Context Corrupted
5224 * MCI_STATUS_S - Signaled as a Machine Check Exception
5225 * MCI_STATUS_AR - Software recoverable Action Required
5226 */
is_ucna(struct kvm_x86_mce * mce)5227 static bool is_ucna(struct kvm_x86_mce *mce)
5228 {
5229 return !mce->mcg_status &&
5230 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5231 (mce->status & MCI_STATUS_VAL) &&
5232 (mce->status & MCI_STATUS_UC);
5233 }
5234
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5235 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5236 {
5237 u64 mcg_cap = vcpu->arch.mcg_cap;
5238
5239 banks[1] = mce->status;
5240 banks[2] = mce->addr;
5241 banks[3] = mce->misc;
5242 vcpu->arch.mcg_status = mce->mcg_status;
5243
5244 if (!(mcg_cap & MCG_CMCI_P) ||
5245 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5246 return 0;
5247
5248 if (lapic_in_kernel(vcpu))
5249 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5250
5251 return 0;
5252 }
5253
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5254 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5255 struct kvm_x86_mce *mce)
5256 {
5257 u64 mcg_cap = vcpu->arch.mcg_cap;
5258 unsigned bank_num = mcg_cap & 0xff;
5259 u64 *banks = vcpu->arch.mce_banks;
5260
5261 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5262 return -EINVAL;
5263
5264 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5265
5266 if (is_ucna(mce))
5267 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5268
5269 /*
5270 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5271 * reporting is disabled
5272 */
5273 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5274 vcpu->arch.mcg_ctl != ~(u64)0)
5275 return 0;
5276 /*
5277 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5278 * reporting is disabled for the bank
5279 */
5280 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5281 return 0;
5282 if (mce->status & MCI_STATUS_UC) {
5283 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5284 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5285 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5286 return 0;
5287 }
5288 if (banks[1] & MCI_STATUS_VAL)
5289 mce->status |= MCI_STATUS_OVER;
5290 banks[2] = mce->addr;
5291 banks[3] = mce->misc;
5292 vcpu->arch.mcg_status = mce->mcg_status;
5293 banks[1] = mce->status;
5294 kvm_queue_exception(vcpu, MC_VECTOR);
5295 } else if (!(banks[1] & MCI_STATUS_VAL)
5296 || !(banks[1] & MCI_STATUS_UC)) {
5297 if (banks[1] & MCI_STATUS_VAL)
5298 mce->status |= MCI_STATUS_OVER;
5299 banks[2] = mce->addr;
5300 banks[3] = mce->misc;
5301 banks[1] = mce->status;
5302 } else
5303 banks[1] |= MCI_STATUS_OVER;
5304 return 0;
5305 }
5306
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5307 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5308 struct kvm_vcpu_events *events)
5309 {
5310 struct kvm_queued_exception *ex;
5311
5312 process_nmi(vcpu);
5313
5314 #ifdef CONFIG_KVM_SMM
5315 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5316 process_smi(vcpu);
5317 #endif
5318
5319 /*
5320 * KVM's ABI only allows for one exception to be migrated. Luckily,
5321 * the only time there can be two queued exceptions is if there's a
5322 * non-exiting _injected_ exception, and a pending exiting exception.
5323 * In that case, ignore the VM-Exiting exception as it's an extension
5324 * of the injected exception.
5325 */
5326 if (vcpu->arch.exception_vmexit.pending &&
5327 !vcpu->arch.exception.pending &&
5328 !vcpu->arch.exception.injected)
5329 ex = &vcpu->arch.exception_vmexit;
5330 else
5331 ex = &vcpu->arch.exception;
5332
5333 /*
5334 * In guest mode, payload delivery should be deferred if the exception
5335 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5336 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5337 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5338 * propagate the payload and so it cannot be safely deferred. Deliver
5339 * the payload if the capability hasn't been requested.
5340 */
5341 if (!vcpu->kvm->arch.exception_payload_enabled &&
5342 ex->pending && ex->has_payload)
5343 kvm_deliver_exception_payload(vcpu, ex);
5344
5345 memset(events, 0, sizeof(*events));
5346
5347 /*
5348 * The API doesn't provide the instruction length for software
5349 * exceptions, so don't report them. As long as the guest RIP
5350 * isn't advanced, we should expect to encounter the exception
5351 * again.
5352 */
5353 if (!kvm_exception_is_soft(ex->vector)) {
5354 events->exception.injected = ex->injected;
5355 events->exception.pending = ex->pending;
5356 /*
5357 * For ABI compatibility, deliberately conflate
5358 * pending and injected exceptions when
5359 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5360 */
5361 if (!vcpu->kvm->arch.exception_payload_enabled)
5362 events->exception.injected |= ex->pending;
5363 }
5364 events->exception.nr = ex->vector;
5365 events->exception.has_error_code = ex->has_error_code;
5366 events->exception.error_code = ex->error_code;
5367 events->exception_has_payload = ex->has_payload;
5368 events->exception_payload = ex->payload;
5369
5370 events->interrupt.injected =
5371 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5372 events->interrupt.nr = vcpu->arch.interrupt.nr;
5373 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5374
5375 events->nmi.injected = vcpu->arch.nmi_injected;
5376 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5377 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5378
5379 /* events->sipi_vector is never valid when reporting to user space */
5380
5381 #ifdef CONFIG_KVM_SMM
5382 events->smi.smm = is_smm(vcpu);
5383 events->smi.pending = vcpu->arch.smi_pending;
5384 events->smi.smm_inside_nmi =
5385 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5386 #endif
5387 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5388
5389 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5390 | KVM_VCPUEVENT_VALID_SHADOW
5391 | KVM_VCPUEVENT_VALID_SMM);
5392 if (vcpu->kvm->arch.exception_payload_enabled)
5393 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5394 if (vcpu->kvm->arch.triple_fault_event) {
5395 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5396 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5397 }
5398 }
5399
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5400 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5401 struct kvm_vcpu_events *events)
5402 {
5403 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5404 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5405 | KVM_VCPUEVENT_VALID_SHADOW
5406 | KVM_VCPUEVENT_VALID_SMM
5407 | KVM_VCPUEVENT_VALID_PAYLOAD
5408 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5409 return -EINVAL;
5410
5411 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5412 if (!vcpu->kvm->arch.exception_payload_enabled)
5413 return -EINVAL;
5414 if (events->exception.pending)
5415 events->exception.injected = 0;
5416 else
5417 events->exception_has_payload = 0;
5418 } else {
5419 events->exception.pending = 0;
5420 events->exception_has_payload = 0;
5421 }
5422
5423 if ((events->exception.injected || events->exception.pending) &&
5424 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5425 return -EINVAL;
5426
5427 /* INITs are latched while in SMM */
5428 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5429 (events->smi.smm || events->smi.pending) &&
5430 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5431 return -EINVAL;
5432
5433 process_nmi(vcpu);
5434
5435 /*
5436 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5437 * morph the exception to a VM-Exit if appropriate. Do this only for
5438 * pending exceptions, already-injected exceptions are not subject to
5439 * intercpetion. Note, userspace that conflates pending and injected
5440 * is hosed, and will incorrectly convert an injected exception into a
5441 * pending exception, which in turn may cause a spurious VM-Exit.
5442 */
5443 vcpu->arch.exception_from_userspace = events->exception.pending;
5444
5445 vcpu->arch.exception_vmexit.pending = false;
5446
5447 vcpu->arch.exception.injected = events->exception.injected;
5448 vcpu->arch.exception.pending = events->exception.pending;
5449 vcpu->arch.exception.vector = events->exception.nr;
5450 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5451 vcpu->arch.exception.error_code = events->exception.error_code;
5452 vcpu->arch.exception.has_payload = events->exception_has_payload;
5453 vcpu->arch.exception.payload = events->exception_payload;
5454
5455 vcpu->arch.interrupt.injected = events->interrupt.injected;
5456 vcpu->arch.interrupt.nr = events->interrupt.nr;
5457 vcpu->arch.interrupt.soft = events->interrupt.soft;
5458 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5459 kvm_x86_call(set_interrupt_shadow)(vcpu,
5460 events->interrupt.shadow);
5461
5462 vcpu->arch.nmi_injected = events->nmi.injected;
5463 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5464 vcpu->arch.nmi_pending = 0;
5465 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5466 if (events->nmi.pending)
5467 kvm_make_request(KVM_REQ_NMI, vcpu);
5468 }
5469 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5470
5471 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5472 lapic_in_kernel(vcpu))
5473 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5474
5475 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5476 #ifdef CONFIG_KVM_SMM
5477 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5478 kvm_leave_nested(vcpu);
5479 kvm_smm_changed(vcpu, events->smi.smm);
5480 }
5481
5482 vcpu->arch.smi_pending = events->smi.pending;
5483
5484 if (events->smi.smm) {
5485 if (events->smi.smm_inside_nmi)
5486 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5487 else
5488 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5489 }
5490
5491 #else
5492 if (events->smi.smm || events->smi.pending ||
5493 events->smi.smm_inside_nmi)
5494 return -EINVAL;
5495 #endif
5496
5497 if (lapic_in_kernel(vcpu)) {
5498 if (events->smi.latched_init)
5499 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5500 else
5501 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5502 }
5503 }
5504
5505 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5506 if (!vcpu->kvm->arch.triple_fault_event)
5507 return -EINVAL;
5508 if (events->triple_fault.pending)
5509 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5510 else
5511 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5512 }
5513
5514 kvm_make_request(KVM_REQ_EVENT, vcpu);
5515
5516 return 0;
5517 }
5518
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5519 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5520 struct kvm_debugregs *dbgregs)
5521 {
5522 unsigned int i;
5523
5524 if (vcpu->kvm->arch.has_protected_state &&
5525 vcpu->arch.guest_state_protected)
5526 return -EINVAL;
5527
5528 memset(dbgregs, 0, sizeof(*dbgregs));
5529
5530 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5531 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5532 dbgregs->db[i] = vcpu->arch.db[i];
5533
5534 dbgregs->dr6 = vcpu->arch.dr6;
5535 dbgregs->dr7 = vcpu->arch.dr7;
5536 return 0;
5537 }
5538
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5539 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5540 struct kvm_debugregs *dbgregs)
5541 {
5542 unsigned int i;
5543
5544 if (vcpu->kvm->arch.has_protected_state &&
5545 vcpu->arch.guest_state_protected)
5546 return -EINVAL;
5547
5548 if (dbgregs->flags)
5549 return -EINVAL;
5550
5551 if (!kvm_dr6_valid(dbgregs->dr6))
5552 return -EINVAL;
5553 if (!kvm_dr7_valid(dbgregs->dr7))
5554 return -EINVAL;
5555
5556 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5557 vcpu->arch.db[i] = dbgregs->db[i];
5558
5559 kvm_update_dr0123(vcpu);
5560 vcpu->arch.dr6 = dbgregs->dr6;
5561 vcpu->arch.dr7 = dbgregs->dr7;
5562 kvm_update_dr7(vcpu);
5563
5564 return 0;
5565 }
5566
5567
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5568 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5569 u8 *state, unsigned int size)
5570 {
5571 /*
5572 * Only copy state for features that are enabled for the guest. The
5573 * state itself isn't problematic, but setting bits in the header for
5574 * features that are supported in *this* host but not exposed to the
5575 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5576 * compatible host without the features that are NOT exposed to the
5577 * guest.
5578 *
5579 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5580 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5581 * supported by the host.
5582 */
5583 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5584 XFEATURE_MASK_FPSSE;
5585
5586 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5587 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5588
5589 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5590 supported_xcr0, vcpu->arch.pkru);
5591 return 0;
5592 }
5593
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5594 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5595 struct kvm_xsave *guest_xsave)
5596 {
5597 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5598 sizeof(guest_xsave->region));
5599 }
5600
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5601 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5602 struct kvm_xsave *guest_xsave)
5603 {
5604 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5605 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5606
5607 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5608 guest_xsave->region,
5609 kvm_caps.supported_xcr0,
5610 &vcpu->arch.pkru);
5611 }
5612
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5613 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5614 struct kvm_xcrs *guest_xcrs)
5615 {
5616 if (vcpu->kvm->arch.has_protected_state &&
5617 vcpu->arch.guest_state_protected)
5618 return -EINVAL;
5619
5620 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5621 guest_xcrs->nr_xcrs = 0;
5622 return 0;
5623 }
5624
5625 guest_xcrs->nr_xcrs = 1;
5626 guest_xcrs->flags = 0;
5627 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5628 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5629 return 0;
5630 }
5631
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5632 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5633 struct kvm_xcrs *guest_xcrs)
5634 {
5635 int i, r = 0;
5636
5637 if (vcpu->kvm->arch.has_protected_state &&
5638 vcpu->arch.guest_state_protected)
5639 return -EINVAL;
5640
5641 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5642 return -EINVAL;
5643
5644 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5645 return -EINVAL;
5646
5647 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5648 /* Only support XCR0 currently */
5649 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5650 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5651 guest_xcrs->xcrs[i].value);
5652 break;
5653 }
5654 if (r)
5655 r = -EINVAL;
5656 return r;
5657 }
5658
5659 /*
5660 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5661 * stopped by the hypervisor. This function will be called from the host only.
5662 * EINVAL is returned when the host attempts to set the flag for a guest that
5663 * does not support pv clocks.
5664 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5665 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5666 {
5667 if (!vcpu->arch.pv_time.active)
5668 return -EINVAL;
5669 vcpu->arch.pvclock_set_guest_stopped_request = true;
5670 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5671 return 0;
5672 }
5673
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5674 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5675 struct kvm_device_attr *attr)
5676 {
5677 int r;
5678
5679 switch (attr->attr) {
5680 case KVM_VCPU_TSC_OFFSET:
5681 r = 0;
5682 break;
5683 default:
5684 r = -ENXIO;
5685 }
5686
5687 return r;
5688 }
5689
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5690 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5691 struct kvm_device_attr *attr)
5692 {
5693 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5694 int r;
5695
5696 switch (attr->attr) {
5697 case KVM_VCPU_TSC_OFFSET:
5698 r = -EFAULT;
5699 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5700 break;
5701 r = 0;
5702 break;
5703 default:
5704 r = -ENXIO;
5705 }
5706
5707 return r;
5708 }
5709
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5710 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5711 struct kvm_device_attr *attr)
5712 {
5713 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5714 struct kvm *kvm = vcpu->kvm;
5715 int r;
5716
5717 switch (attr->attr) {
5718 case KVM_VCPU_TSC_OFFSET: {
5719 u64 offset, tsc, ns;
5720 unsigned long flags;
5721 bool matched;
5722
5723 r = -EFAULT;
5724 if (get_user(offset, uaddr))
5725 break;
5726
5727 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5728
5729 matched = (vcpu->arch.virtual_tsc_khz &&
5730 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5731 kvm->arch.last_tsc_offset == offset);
5732
5733 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5734 ns = get_kvmclock_base_ns();
5735
5736 kvm->arch.user_set_tsc = true;
5737 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5738 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5739
5740 r = 0;
5741 break;
5742 }
5743 default:
5744 r = -ENXIO;
5745 }
5746
5747 return r;
5748 }
5749
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5750 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5751 unsigned int ioctl,
5752 void __user *argp)
5753 {
5754 struct kvm_device_attr attr;
5755 int r;
5756
5757 if (copy_from_user(&attr, argp, sizeof(attr)))
5758 return -EFAULT;
5759
5760 if (attr.group != KVM_VCPU_TSC_CTRL)
5761 return -ENXIO;
5762
5763 switch (ioctl) {
5764 case KVM_HAS_DEVICE_ATTR:
5765 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5766 break;
5767 case KVM_GET_DEVICE_ATTR:
5768 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5769 break;
5770 case KVM_SET_DEVICE_ATTR:
5771 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5772 break;
5773 }
5774
5775 return r;
5776 }
5777
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5778 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5779 struct kvm_enable_cap *cap)
5780 {
5781 if (cap->flags)
5782 return -EINVAL;
5783
5784 switch (cap->cap) {
5785 #ifdef CONFIG_KVM_HYPERV
5786 case KVM_CAP_HYPERV_SYNIC2:
5787 if (cap->args[0])
5788 return -EINVAL;
5789 fallthrough;
5790
5791 case KVM_CAP_HYPERV_SYNIC:
5792 if (!irqchip_in_kernel(vcpu->kvm))
5793 return -EINVAL;
5794 return kvm_hv_activate_synic(vcpu, cap->cap ==
5795 KVM_CAP_HYPERV_SYNIC2);
5796 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5797 {
5798 int r;
5799 uint16_t vmcs_version;
5800 void __user *user_ptr;
5801
5802 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5803 return -ENOTTY;
5804 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5805 if (!r) {
5806 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5807 if (copy_to_user(user_ptr, &vmcs_version,
5808 sizeof(vmcs_version)))
5809 r = -EFAULT;
5810 }
5811 return r;
5812 }
5813 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5814 if (!kvm_x86_ops.enable_l2_tlb_flush)
5815 return -ENOTTY;
5816
5817 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5818
5819 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5820 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5821 #endif
5822
5823 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5824 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5825 if (vcpu->arch.pv_cpuid.enforce)
5826 kvm_update_pv_runtime(vcpu);
5827
5828 return 0;
5829 default:
5830 return -EINVAL;
5831 }
5832 }
5833
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5834 long kvm_arch_vcpu_ioctl(struct file *filp,
5835 unsigned int ioctl, unsigned long arg)
5836 {
5837 struct kvm_vcpu *vcpu = filp->private_data;
5838 void __user *argp = (void __user *)arg;
5839 int r;
5840 union {
5841 struct kvm_sregs2 *sregs2;
5842 struct kvm_lapic_state *lapic;
5843 struct kvm_xsave *xsave;
5844 struct kvm_xcrs *xcrs;
5845 void *buffer;
5846 } u;
5847
5848 vcpu_load(vcpu);
5849
5850 u.buffer = NULL;
5851 switch (ioctl) {
5852 case KVM_GET_LAPIC: {
5853 r = -EINVAL;
5854 if (!lapic_in_kernel(vcpu))
5855 goto out;
5856 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5857
5858 r = -ENOMEM;
5859 if (!u.lapic)
5860 goto out;
5861 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5862 if (r)
5863 goto out;
5864 r = -EFAULT;
5865 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5866 goto out;
5867 r = 0;
5868 break;
5869 }
5870 case KVM_SET_LAPIC: {
5871 r = -EINVAL;
5872 if (!lapic_in_kernel(vcpu))
5873 goto out;
5874 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5875 if (IS_ERR(u.lapic)) {
5876 r = PTR_ERR(u.lapic);
5877 goto out_nofree;
5878 }
5879
5880 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5881 break;
5882 }
5883 case KVM_INTERRUPT: {
5884 struct kvm_interrupt irq;
5885
5886 r = -EFAULT;
5887 if (copy_from_user(&irq, argp, sizeof(irq)))
5888 goto out;
5889 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5890 break;
5891 }
5892 case KVM_NMI: {
5893 r = kvm_vcpu_ioctl_nmi(vcpu);
5894 break;
5895 }
5896 case KVM_SMI: {
5897 r = kvm_inject_smi(vcpu);
5898 break;
5899 }
5900 case KVM_SET_CPUID: {
5901 struct kvm_cpuid __user *cpuid_arg = argp;
5902 struct kvm_cpuid cpuid;
5903
5904 r = -EFAULT;
5905 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5906 goto out;
5907 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5908 break;
5909 }
5910 case KVM_SET_CPUID2: {
5911 struct kvm_cpuid2 __user *cpuid_arg = argp;
5912 struct kvm_cpuid2 cpuid;
5913
5914 r = -EFAULT;
5915 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5916 goto out;
5917 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5918 cpuid_arg->entries);
5919 break;
5920 }
5921 case KVM_GET_CPUID2: {
5922 struct kvm_cpuid2 __user *cpuid_arg = argp;
5923 struct kvm_cpuid2 cpuid;
5924
5925 r = -EFAULT;
5926 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5927 goto out;
5928 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5929 cpuid_arg->entries);
5930 if (r)
5931 goto out;
5932 r = -EFAULT;
5933 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5934 goto out;
5935 r = 0;
5936 break;
5937 }
5938 case KVM_GET_MSRS: {
5939 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5940 r = msr_io(vcpu, argp, do_get_msr, 1);
5941 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5942 break;
5943 }
5944 case KVM_SET_MSRS: {
5945 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5946 r = msr_io(vcpu, argp, do_set_msr, 0);
5947 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5948 break;
5949 }
5950 case KVM_TPR_ACCESS_REPORTING: {
5951 struct kvm_tpr_access_ctl tac;
5952
5953 r = -EFAULT;
5954 if (copy_from_user(&tac, argp, sizeof(tac)))
5955 goto out;
5956 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5957 if (r)
5958 goto out;
5959 r = -EFAULT;
5960 if (copy_to_user(argp, &tac, sizeof(tac)))
5961 goto out;
5962 r = 0;
5963 break;
5964 };
5965 case KVM_SET_VAPIC_ADDR: {
5966 struct kvm_vapic_addr va;
5967 int idx;
5968
5969 r = -EINVAL;
5970 if (!lapic_in_kernel(vcpu))
5971 goto out;
5972 r = -EFAULT;
5973 if (copy_from_user(&va, argp, sizeof(va)))
5974 goto out;
5975 idx = srcu_read_lock(&vcpu->kvm->srcu);
5976 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5977 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5978 break;
5979 }
5980 case KVM_X86_SETUP_MCE: {
5981 u64 mcg_cap;
5982
5983 r = -EFAULT;
5984 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5985 goto out;
5986 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5987 break;
5988 }
5989 case KVM_X86_SET_MCE: {
5990 struct kvm_x86_mce mce;
5991
5992 r = -EFAULT;
5993 if (copy_from_user(&mce, argp, sizeof(mce)))
5994 goto out;
5995 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5996 break;
5997 }
5998 case KVM_GET_VCPU_EVENTS: {
5999 struct kvm_vcpu_events events;
6000
6001 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6002
6003 r = -EFAULT;
6004 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6005 break;
6006 r = 0;
6007 break;
6008 }
6009 case KVM_SET_VCPU_EVENTS: {
6010 struct kvm_vcpu_events events;
6011
6012 r = -EFAULT;
6013 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6014 break;
6015
6016 kvm_vcpu_srcu_read_lock(vcpu);
6017 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6018 kvm_vcpu_srcu_read_unlock(vcpu);
6019 break;
6020 }
6021 case KVM_GET_DEBUGREGS: {
6022 struct kvm_debugregs dbgregs;
6023
6024 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6025 if (r < 0)
6026 break;
6027
6028 r = -EFAULT;
6029 if (copy_to_user(argp, &dbgregs,
6030 sizeof(struct kvm_debugregs)))
6031 break;
6032 r = 0;
6033 break;
6034 }
6035 case KVM_SET_DEBUGREGS: {
6036 struct kvm_debugregs dbgregs;
6037
6038 r = -EFAULT;
6039 if (copy_from_user(&dbgregs, argp,
6040 sizeof(struct kvm_debugregs)))
6041 break;
6042
6043 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6044 break;
6045 }
6046 case KVM_GET_XSAVE: {
6047 r = -EINVAL;
6048 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6049 break;
6050
6051 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6052 r = -ENOMEM;
6053 if (!u.xsave)
6054 break;
6055
6056 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6057 if (r < 0)
6058 break;
6059
6060 r = -EFAULT;
6061 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6062 break;
6063 r = 0;
6064 break;
6065 }
6066 case KVM_SET_XSAVE: {
6067 int size = vcpu->arch.guest_fpu.uabi_size;
6068
6069 u.xsave = memdup_user(argp, size);
6070 if (IS_ERR(u.xsave)) {
6071 r = PTR_ERR(u.xsave);
6072 goto out_nofree;
6073 }
6074
6075 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6076 break;
6077 }
6078
6079 case KVM_GET_XSAVE2: {
6080 int size = vcpu->arch.guest_fpu.uabi_size;
6081
6082 u.xsave = kzalloc(size, GFP_KERNEL);
6083 r = -ENOMEM;
6084 if (!u.xsave)
6085 break;
6086
6087 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6088 if (r < 0)
6089 break;
6090
6091 r = -EFAULT;
6092 if (copy_to_user(argp, u.xsave, size))
6093 break;
6094
6095 r = 0;
6096 break;
6097 }
6098
6099 case KVM_GET_XCRS: {
6100 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6101 r = -ENOMEM;
6102 if (!u.xcrs)
6103 break;
6104
6105 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6106 if (r < 0)
6107 break;
6108
6109 r = -EFAULT;
6110 if (copy_to_user(argp, u.xcrs,
6111 sizeof(struct kvm_xcrs)))
6112 break;
6113 r = 0;
6114 break;
6115 }
6116 case KVM_SET_XCRS: {
6117 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6118 if (IS_ERR(u.xcrs)) {
6119 r = PTR_ERR(u.xcrs);
6120 goto out_nofree;
6121 }
6122
6123 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6124 break;
6125 }
6126 case KVM_SET_TSC_KHZ: {
6127 u32 user_tsc_khz;
6128
6129 r = -EINVAL;
6130 user_tsc_khz = (u32)arg;
6131
6132 if (kvm_caps.has_tsc_control &&
6133 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6134 goto out;
6135
6136 if (user_tsc_khz == 0)
6137 user_tsc_khz = tsc_khz;
6138
6139 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6140 r = 0;
6141
6142 goto out;
6143 }
6144 case KVM_GET_TSC_KHZ: {
6145 r = vcpu->arch.virtual_tsc_khz;
6146 goto out;
6147 }
6148 case KVM_KVMCLOCK_CTRL: {
6149 r = kvm_set_guest_paused(vcpu);
6150 goto out;
6151 }
6152 case KVM_ENABLE_CAP: {
6153 struct kvm_enable_cap cap;
6154
6155 r = -EFAULT;
6156 if (copy_from_user(&cap, argp, sizeof(cap)))
6157 goto out;
6158 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6159 break;
6160 }
6161 case KVM_GET_NESTED_STATE: {
6162 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6163 u32 user_data_size;
6164
6165 r = -EINVAL;
6166 if (!kvm_x86_ops.nested_ops->get_state)
6167 break;
6168
6169 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6170 r = -EFAULT;
6171 if (get_user(user_data_size, &user_kvm_nested_state->size))
6172 break;
6173
6174 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6175 user_data_size);
6176 if (r < 0)
6177 break;
6178
6179 if (r > user_data_size) {
6180 if (put_user(r, &user_kvm_nested_state->size))
6181 r = -EFAULT;
6182 else
6183 r = -E2BIG;
6184 break;
6185 }
6186
6187 r = 0;
6188 break;
6189 }
6190 case KVM_SET_NESTED_STATE: {
6191 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6192 struct kvm_nested_state kvm_state;
6193 int idx;
6194
6195 r = -EINVAL;
6196 if (!kvm_x86_ops.nested_ops->set_state)
6197 break;
6198
6199 r = -EFAULT;
6200 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6201 break;
6202
6203 r = -EINVAL;
6204 if (kvm_state.size < sizeof(kvm_state))
6205 break;
6206
6207 if (kvm_state.flags &
6208 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6209 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6210 | KVM_STATE_NESTED_GIF_SET))
6211 break;
6212
6213 /* nested_run_pending implies guest_mode. */
6214 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6215 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6216 break;
6217
6218 idx = srcu_read_lock(&vcpu->kvm->srcu);
6219 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6220 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6221 break;
6222 }
6223 #ifdef CONFIG_KVM_HYPERV
6224 case KVM_GET_SUPPORTED_HV_CPUID:
6225 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6226 break;
6227 #endif
6228 #ifdef CONFIG_KVM_XEN
6229 case KVM_XEN_VCPU_GET_ATTR: {
6230 struct kvm_xen_vcpu_attr xva;
6231
6232 r = -EFAULT;
6233 if (copy_from_user(&xva, argp, sizeof(xva)))
6234 goto out;
6235 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6236 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6237 r = -EFAULT;
6238 break;
6239 }
6240 case KVM_XEN_VCPU_SET_ATTR: {
6241 struct kvm_xen_vcpu_attr xva;
6242
6243 r = -EFAULT;
6244 if (copy_from_user(&xva, argp, sizeof(xva)))
6245 goto out;
6246 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6247 break;
6248 }
6249 #endif
6250 case KVM_GET_SREGS2: {
6251 r = -EINVAL;
6252 if (vcpu->kvm->arch.has_protected_state &&
6253 vcpu->arch.guest_state_protected)
6254 goto out;
6255
6256 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6257 r = -ENOMEM;
6258 if (!u.sregs2)
6259 goto out;
6260 __get_sregs2(vcpu, u.sregs2);
6261 r = -EFAULT;
6262 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6263 goto out;
6264 r = 0;
6265 break;
6266 }
6267 case KVM_SET_SREGS2: {
6268 r = -EINVAL;
6269 if (vcpu->kvm->arch.has_protected_state &&
6270 vcpu->arch.guest_state_protected)
6271 goto out;
6272
6273 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6274 if (IS_ERR(u.sregs2)) {
6275 r = PTR_ERR(u.sregs2);
6276 u.sregs2 = NULL;
6277 goto out;
6278 }
6279 r = __set_sregs2(vcpu, u.sregs2);
6280 break;
6281 }
6282 case KVM_HAS_DEVICE_ATTR:
6283 case KVM_GET_DEVICE_ATTR:
6284 case KVM_SET_DEVICE_ATTR:
6285 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6286 break;
6287 default:
6288 r = -EINVAL;
6289 }
6290 out:
6291 kfree(u.buffer);
6292 out_nofree:
6293 vcpu_put(vcpu);
6294 return r;
6295 }
6296
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6297 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6298 {
6299 return VM_FAULT_SIGBUS;
6300 }
6301
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6302 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6303 {
6304 int ret;
6305
6306 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6307 return -EINVAL;
6308 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6309 return ret;
6310 }
6311
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6312 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6313 u64 ident_addr)
6314 {
6315 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6316 }
6317
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6318 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6319 unsigned long kvm_nr_mmu_pages)
6320 {
6321 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6322 return -EINVAL;
6323
6324 mutex_lock(&kvm->slots_lock);
6325
6326 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6327 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6328
6329 mutex_unlock(&kvm->slots_lock);
6330 return 0;
6331 }
6332
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6333 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6334 {
6335 struct kvm_pic *pic = kvm->arch.vpic;
6336 int r;
6337
6338 r = 0;
6339 switch (chip->chip_id) {
6340 case KVM_IRQCHIP_PIC_MASTER:
6341 memcpy(&chip->chip.pic, &pic->pics[0],
6342 sizeof(struct kvm_pic_state));
6343 break;
6344 case KVM_IRQCHIP_PIC_SLAVE:
6345 memcpy(&chip->chip.pic, &pic->pics[1],
6346 sizeof(struct kvm_pic_state));
6347 break;
6348 case KVM_IRQCHIP_IOAPIC:
6349 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6350 break;
6351 default:
6352 r = -EINVAL;
6353 break;
6354 }
6355 return r;
6356 }
6357
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6358 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6359 {
6360 struct kvm_pic *pic = kvm->arch.vpic;
6361 int r;
6362
6363 r = 0;
6364 switch (chip->chip_id) {
6365 case KVM_IRQCHIP_PIC_MASTER:
6366 spin_lock(&pic->lock);
6367 memcpy(&pic->pics[0], &chip->chip.pic,
6368 sizeof(struct kvm_pic_state));
6369 spin_unlock(&pic->lock);
6370 break;
6371 case KVM_IRQCHIP_PIC_SLAVE:
6372 spin_lock(&pic->lock);
6373 memcpy(&pic->pics[1], &chip->chip.pic,
6374 sizeof(struct kvm_pic_state));
6375 spin_unlock(&pic->lock);
6376 break;
6377 case KVM_IRQCHIP_IOAPIC:
6378 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6379 break;
6380 default:
6381 r = -EINVAL;
6382 break;
6383 }
6384 kvm_pic_update_irq(pic);
6385 return r;
6386 }
6387
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6388 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6389 {
6390 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6391
6392 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6393
6394 mutex_lock(&kps->lock);
6395 memcpy(ps, &kps->channels, sizeof(*ps));
6396 mutex_unlock(&kps->lock);
6397 return 0;
6398 }
6399
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6400 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6401 {
6402 int i;
6403 struct kvm_pit *pit = kvm->arch.vpit;
6404
6405 mutex_lock(&pit->pit_state.lock);
6406 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6407 for (i = 0; i < 3; i++)
6408 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6409 mutex_unlock(&pit->pit_state.lock);
6410 return 0;
6411 }
6412
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6413 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6414 {
6415 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6416 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6417 sizeof(ps->channels));
6418 ps->flags = kvm->arch.vpit->pit_state.flags;
6419 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6420 memset(&ps->reserved, 0, sizeof(ps->reserved));
6421 return 0;
6422 }
6423
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6424 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6425 {
6426 int start = 0;
6427 int i;
6428 u32 prev_legacy, cur_legacy;
6429 struct kvm_pit *pit = kvm->arch.vpit;
6430
6431 mutex_lock(&pit->pit_state.lock);
6432 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6433 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6434 if (!prev_legacy && cur_legacy)
6435 start = 1;
6436 memcpy(&pit->pit_state.channels, &ps->channels,
6437 sizeof(pit->pit_state.channels));
6438 pit->pit_state.flags = ps->flags;
6439 for (i = 0; i < 3; i++)
6440 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6441 start && i == 0);
6442 mutex_unlock(&pit->pit_state.lock);
6443 return 0;
6444 }
6445
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6446 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6447 struct kvm_reinject_control *control)
6448 {
6449 struct kvm_pit *pit = kvm->arch.vpit;
6450
6451 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6452 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6453 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6454 */
6455 mutex_lock(&pit->pit_state.lock);
6456 kvm_pit_set_reinject(pit, control->pit_reinject);
6457 mutex_unlock(&pit->pit_state.lock);
6458
6459 return 0;
6460 }
6461
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6462 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6463 {
6464
6465 /*
6466 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6467 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6468 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6469 * VM-Exit.
6470 */
6471 struct kvm_vcpu *vcpu;
6472 unsigned long i;
6473
6474 if (!kvm_x86_ops.cpu_dirty_log_size)
6475 return;
6476
6477 kvm_for_each_vcpu(i, vcpu, kvm)
6478 kvm_vcpu_kick(vcpu);
6479 }
6480
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6481 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6482 bool line_status)
6483 {
6484 if (!irqchip_in_kernel(kvm))
6485 return -ENXIO;
6486
6487 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6488 irq_event->irq, irq_event->level,
6489 line_status);
6490 return 0;
6491 }
6492
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6493 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6494 struct kvm_enable_cap *cap)
6495 {
6496 int r;
6497
6498 if (cap->flags)
6499 return -EINVAL;
6500
6501 switch (cap->cap) {
6502 case KVM_CAP_DISABLE_QUIRKS2:
6503 r = -EINVAL;
6504 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6505 break;
6506 fallthrough;
6507 case KVM_CAP_DISABLE_QUIRKS:
6508 kvm->arch.disabled_quirks = cap->args[0];
6509 r = 0;
6510 break;
6511 case KVM_CAP_SPLIT_IRQCHIP: {
6512 mutex_lock(&kvm->lock);
6513 r = -EINVAL;
6514 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6515 goto split_irqchip_unlock;
6516 r = -EEXIST;
6517 if (irqchip_in_kernel(kvm))
6518 goto split_irqchip_unlock;
6519 if (kvm->created_vcpus)
6520 goto split_irqchip_unlock;
6521 /* Pairs with irqchip_in_kernel. */
6522 smp_wmb();
6523 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6524 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6525 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6526 r = 0;
6527 split_irqchip_unlock:
6528 mutex_unlock(&kvm->lock);
6529 break;
6530 }
6531 case KVM_CAP_X2APIC_API:
6532 r = -EINVAL;
6533 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6534 break;
6535
6536 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6537 kvm->arch.x2apic_format = true;
6538 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6539 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6540
6541 r = 0;
6542 break;
6543 case KVM_CAP_X86_DISABLE_EXITS:
6544 r = -EINVAL;
6545 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6546 break;
6547
6548 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6549 kvm->arch.pause_in_guest = true;
6550
6551 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6552 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6553
6554 if (!mitigate_smt_rsb) {
6555 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6556 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6557 pr_warn_once(SMT_RSB_MSG);
6558
6559 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6560 kvm_can_mwait_in_guest())
6561 kvm->arch.mwait_in_guest = true;
6562 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6563 kvm->arch.hlt_in_guest = true;
6564 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6565 kvm->arch.cstate_in_guest = true;
6566 }
6567
6568 r = 0;
6569 break;
6570 case KVM_CAP_MSR_PLATFORM_INFO:
6571 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6572 r = 0;
6573 break;
6574 case KVM_CAP_EXCEPTION_PAYLOAD:
6575 kvm->arch.exception_payload_enabled = cap->args[0];
6576 r = 0;
6577 break;
6578 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6579 kvm->arch.triple_fault_event = cap->args[0];
6580 r = 0;
6581 break;
6582 case KVM_CAP_X86_USER_SPACE_MSR:
6583 r = -EINVAL;
6584 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6585 break;
6586 kvm->arch.user_space_msr_mask = cap->args[0];
6587 r = 0;
6588 break;
6589 case KVM_CAP_X86_BUS_LOCK_EXIT:
6590 r = -EINVAL;
6591 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6592 break;
6593
6594 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6595 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6596 break;
6597
6598 if (kvm_caps.has_bus_lock_exit &&
6599 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6600 kvm->arch.bus_lock_detection_enabled = true;
6601 r = 0;
6602 break;
6603 #ifdef CONFIG_X86_SGX_KVM
6604 case KVM_CAP_SGX_ATTRIBUTE: {
6605 unsigned long allowed_attributes = 0;
6606
6607 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6608 if (r)
6609 break;
6610
6611 /* KVM only supports the PROVISIONKEY privileged attribute. */
6612 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6613 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6614 kvm->arch.sgx_provisioning_allowed = true;
6615 else
6616 r = -EINVAL;
6617 break;
6618 }
6619 #endif
6620 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6621 r = -EINVAL;
6622 if (!kvm_x86_ops.vm_copy_enc_context_from)
6623 break;
6624
6625 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6626 break;
6627 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6628 r = -EINVAL;
6629 if (!kvm_x86_ops.vm_move_enc_context_from)
6630 break;
6631
6632 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6633 break;
6634 case KVM_CAP_EXIT_HYPERCALL:
6635 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6636 r = -EINVAL;
6637 break;
6638 }
6639 kvm->arch.hypercall_exit_enabled = cap->args[0];
6640 r = 0;
6641 break;
6642 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6643 r = -EINVAL;
6644 if (cap->args[0] & ~1)
6645 break;
6646 kvm->arch.exit_on_emulation_error = cap->args[0];
6647 r = 0;
6648 break;
6649 case KVM_CAP_PMU_CAPABILITY:
6650 r = -EINVAL;
6651 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6652 break;
6653
6654 mutex_lock(&kvm->lock);
6655 if (!kvm->created_vcpus) {
6656 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6657 r = 0;
6658 }
6659 mutex_unlock(&kvm->lock);
6660 break;
6661 case KVM_CAP_MAX_VCPU_ID:
6662 r = -EINVAL;
6663 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6664 break;
6665
6666 mutex_lock(&kvm->lock);
6667 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6668 ;
6669 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6670 r = 0;
6671 } else if (!kvm->arch.max_vcpu_ids) {
6672 kvm->arch.max_vcpu_ids = cap->args[0];
6673 r = 0;
6674 }
6675 mutex_unlock(&kvm->lock);
6676 break;
6677 case KVM_CAP_X86_NOTIFY_VMEXIT:
6678 r = -EINVAL;
6679 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6680 break;
6681 if (!kvm_caps.has_notify_vmexit)
6682 break;
6683 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6684 break;
6685 mutex_lock(&kvm->lock);
6686 if (!kvm->created_vcpus) {
6687 kvm->arch.notify_window = cap->args[0] >> 32;
6688 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6689 r = 0;
6690 }
6691 mutex_unlock(&kvm->lock);
6692 break;
6693 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6694 r = -EINVAL;
6695
6696 /*
6697 * Since the risk of disabling NX hugepages is a guest crashing
6698 * the system, ensure the userspace process has permission to
6699 * reboot the system.
6700 *
6701 * Note that unlike the reboot() syscall, the process must have
6702 * this capability in the root namespace because exposing
6703 * /dev/kvm into a container does not limit the scope of the
6704 * iTLB multihit bug to that container. In other words,
6705 * this must use capable(), not ns_capable().
6706 */
6707 if (!capable(CAP_SYS_BOOT)) {
6708 r = -EPERM;
6709 break;
6710 }
6711
6712 if (cap->args[0])
6713 break;
6714
6715 mutex_lock(&kvm->lock);
6716 if (!kvm->created_vcpus) {
6717 kvm->arch.disable_nx_huge_pages = true;
6718 r = 0;
6719 }
6720 mutex_unlock(&kvm->lock);
6721 break;
6722 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6723 u64 bus_cycle_ns = cap->args[0];
6724 u64 unused;
6725
6726 /*
6727 * Guard against overflow in tmict_to_ns(). 128 is the highest
6728 * divide value that can be programmed in APIC_TDCR.
6729 */
6730 r = -EINVAL;
6731 if (!bus_cycle_ns ||
6732 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6733 break;
6734
6735 r = 0;
6736 mutex_lock(&kvm->lock);
6737 if (!irqchip_in_kernel(kvm))
6738 r = -ENXIO;
6739 else if (kvm->created_vcpus)
6740 r = -EINVAL;
6741 else
6742 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6743 mutex_unlock(&kvm->lock);
6744 break;
6745 }
6746 default:
6747 r = -EINVAL;
6748 break;
6749 }
6750 return r;
6751 }
6752
kvm_alloc_msr_filter(bool default_allow)6753 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6754 {
6755 struct kvm_x86_msr_filter *msr_filter;
6756
6757 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6758 if (!msr_filter)
6759 return NULL;
6760
6761 msr_filter->default_allow = default_allow;
6762 return msr_filter;
6763 }
6764
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6765 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6766 {
6767 u32 i;
6768
6769 if (!msr_filter)
6770 return;
6771
6772 for (i = 0; i < msr_filter->count; i++)
6773 kfree(msr_filter->ranges[i].bitmap);
6774
6775 kfree(msr_filter);
6776 }
6777
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6778 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6779 struct kvm_msr_filter_range *user_range)
6780 {
6781 unsigned long *bitmap;
6782 size_t bitmap_size;
6783
6784 if (!user_range->nmsrs)
6785 return 0;
6786
6787 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6788 return -EINVAL;
6789
6790 if (!user_range->flags)
6791 return -EINVAL;
6792
6793 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6794 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6795 return -EINVAL;
6796
6797 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6798 if (IS_ERR(bitmap))
6799 return PTR_ERR(bitmap);
6800
6801 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6802 .flags = user_range->flags,
6803 .base = user_range->base,
6804 .nmsrs = user_range->nmsrs,
6805 .bitmap = bitmap,
6806 };
6807
6808 msr_filter->count++;
6809 return 0;
6810 }
6811
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6812 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6813 struct kvm_msr_filter *filter)
6814 {
6815 struct kvm_x86_msr_filter *new_filter, *old_filter;
6816 bool default_allow;
6817 bool empty = true;
6818 int r;
6819 u32 i;
6820
6821 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6822 return -EINVAL;
6823
6824 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6825 empty &= !filter->ranges[i].nmsrs;
6826
6827 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6828 if (empty && !default_allow)
6829 return -EINVAL;
6830
6831 new_filter = kvm_alloc_msr_filter(default_allow);
6832 if (!new_filter)
6833 return -ENOMEM;
6834
6835 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6836 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6837 if (r) {
6838 kvm_free_msr_filter(new_filter);
6839 return r;
6840 }
6841 }
6842
6843 mutex_lock(&kvm->lock);
6844 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6845 mutex_is_locked(&kvm->lock));
6846 mutex_unlock(&kvm->lock);
6847 synchronize_srcu(&kvm->srcu);
6848
6849 kvm_free_msr_filter(old_filter);
6850
6851 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6852
6853 return 0;
6854 }
6855
6856 #ifdef CONFIG_KVM_COMPAT
6857 /* for KVM_X86_SET_MSR_FILTER */
6858 struct kvm_msr_filter_range_compat {
6859 __u32 flags;
6860 __u32 nmsrs;
6861 __u32 base;
6862 __u32 bitmap;
6863 };
6864
6865 struct kvm_msr_filter_compat {
6866 __u32 flags;
6867 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6868 };
6869
6870 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6871
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6872 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6873 unsigned long arg)
6874 {
6875 void __user *argp = (void __user *)arg;
6876 struct kvm *kvm = filp->private_data;
6877 long r = -ENOTTY;
6878
6879 switch (ioctl) {
6880 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6881 struct kvm_msr_filter __user *user_msr_filter = argp;
6882 struct kvm_msr_filter_compat filter_compat;
6883 struct kvm_msr_filter filter;
6884 int i;
6885
6886 if (copy_from_user(&filter_compat, user_msr_filter,
6887 sizeof(filter_compat)))
6888 return -EFAULT;
6889
6890 filter.flags = filter_compat.flags;
6891 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6892 struct kvm_msr_filter_range_compat *cr;
6893
6894 cr = &filter_compat.ranges[i];
6895 filter.ranges[i] = (struct kvm_msr_filter_range) {
6896 .flags = cr->flags,
6897 .nmsrs = cr->nmsrs,
6898 .base = cr->base,
6899 .bitmap = (__u8 *)(ulong)cr->bitmap,
6900 };
6901 }
6902
6903 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6904 break;
6905 }
6906 }
6907
6908 return r;
6909 }
6910 #endif
6911
6912 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6913 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6914 {
6915 struct kvm_vcpu *vcpu;
6916 unsigned long i;
6917 int ret = 0;
6918
6919 mutex_lock(&kvm->lock);
6920 kvm_for_each_vcpu(i, vcpu, kvm) {
6921 if (!vcpu->arch.pv_time.active)
6922 continue;
6923
6924 ret = kvm_set_guest_paused(vcpu);
6925 if (ret) {
6926 kvm_err("Failed to pause guest VCPU%d: %d\n",
6927 vcpu->vcpu_id, ret);
6928 break;
6929 }
6930 }
6931 mutex_unlock(&kvm->lock);
6932
6933 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6934 }
6935
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6936 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6937 {
6938 switch (state) {
6939 case PM_HIBERNATION_PREPARE:
6940 case PM_SUSPEND_PREPARE:
6941 return kvm_arch_suspend_notifier(kvm);
6942 }
6943
6944 return NOTIFY_DONE;
6945 }
6946 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6947
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6948 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6949 {
6950 struct kvm_clock_data data = { 0 };
6951
6952 get_kvmclock(kvm, &data);
6953 if (copy_to_user(argp, &data, sizeof(data)))
6954 return -EFAULT;
6955
6956 return 0;
6957 }
6958
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6959 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6960 {
6961 struct kvm_arch *ka = &kvm->arch;
6962 struct kvm_clock_data data;
6963 u64 now_raw_ns;
6964
6965 if (copy_from_user(&data, argp, sizeof(data)))
6966 return -EFAULT;
6967
6968 /*
6969 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6970 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6971 */
6972 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6973 return -EINVAL;
6974
6975 kvm_hv_request_tsc_page_update(kvm);
6976 kvm_start_pvclock_update(kvm);
6977 pvclock_update_vm_gtod_copy(kvm);
6978
6979 /*
6980 * This pairs with kvm_guest_time_update(): when masterclock is
6981 * in use, we use master_kernel_ns + kvmclock_offset to set
6982 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6983 * is slightly ahead) here we risk going negative on unsigned
6984 * 'system_time' when 'data.clock' is very small.
6985 */
6986 if (data.flags & KVM_CLOCK_REALTIME) {
6987 u64 now_real_ns = ktime_get_real_ns();
6988
6989 /*
6990 * Avoid stepping the kvmclock backwards.
6991 */
6992 if (now_real_ns > data.realtime)
6993 data.clock += now_real_ns - data.realtime;
6994 }
6995
6996 if (ka->use_master_clock)
6997 now_raw_ns = ka->master_kernel_ns;
6998 else
6999 now_raw_ns = get_kvmclock_base_ns();
7000 ka->kvmclock_offset = data.clock - now_raw_ns;
7001 kvm_end_pvclock_update(kvm);
7002 return 0;
7003 }
7004
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7005 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7006 {
7007 struct kvm *kvm = filp->private_data;
7008 void __user *argp = (void __user *)arg;
7009 int r = -ENOTTY;
7010 /*
7011 * This union makes it completely explicit to gcc-3.x
7012 * that these two variables' stack usage should be
7013 * combined, not added together.
7014 */
7015 union {
7016 struct kvm_pit_state ps;
7017 struct kvm_pit_state2 ps2;
7018 struct kvm_pit_config pit_config;
7019 } u;
7020
7021 switch (ioctl) {
7022 case KVM_SET_TSS_ADDR:
7023 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7024 break;
7025 case KVM_SET_IDENTITY_MAP_ADDR: {
7026 u64 ident_addr;
7027
7028 mutex_lock(&kvm->lock);
7029 r = -EINVAL;
7030 if (kvm->created_vcpus)
7031 goto set_identity_unlock;
7032 r = -EFAULT;
7033 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7034 goto set_identity_unlock;
7035 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7036 set_identity_unlock:
7037 mutex_unlock(&kvm->lock);
7038 break;
7039 }
7040 case KVM_SET_NR_MMU_PAGES:
7041 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7042 break;
7043 case KVM_CREATE_IRQCHIP: {
7044 mutex_lock(&kvm->lock);
7045
7046 r = -EEXIST;
7047 if (irqchip_in_kernel(kvm))
7048 goto create_irqchip_unlock;
7049
7050 r = -EINVAL;
7051 if (kvm->created_vcpus)
7052 goto create_irqchip_unlock;
7053
7054 r = kvm_pic_init(kvm);
7055 if (r)
7056 goto create_irqchip_unlock;
7057
7058 r = kvm_ioapic_init(kvm);
7059 if (r) {
7060 kvm_pic_destroy(kvm);
7061 goto create_irqchip_unlock;
7062 }
7063
7064 r = kvm_setup_default_irq_routing(kvm);
7065 if (r) {
7066 kvm_ioapic_destroy(kvm);
7067 kvm_pic_destroy(kvm);
7068 goto create_irqchip_unlock;
7069 }
7070 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7071 smp_wmb();
7072 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7073 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7074 create_irqchip_unlock:
7075 mutex_unlock(&kvm->lock);
7076 break;
7077 }
7078 case KVM_CREATE_PIT:
7079 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7080 goto create_pit;
7081 case KVM_CREATE_PIT2:
7082 r = -EFAULT;
7083 if (copy_from_user(&u.pit_config, argp,
7084 sizeof(struct kvm_pit_config)))
7085 goto out;
7086 create_pit:
7087 mutex_lock(&kvm->lock);
7088 r = -EEXIST;
7089 if (kvm->arch.vpit)
7090 goto create_pit_unlock;
7091 r = -ENOENT;
7092 if (!pic_in_kernel(kvm))
7093 goto create_pit_unlock;
7094 r = -ENOMEM;
7095 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7096 if (kvm->arch.vpit)
7097 r = 0;
7098 create_pit_unlock:
7099 mutex_unlock(&kvm->lock);
7100 break;
7101 case KVM_GET_IRQCHIP: {
7102 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7103 struct kvm_irqchip *chip;
7104
7105 chip = memdup_user(argp, sizeof(*chip));
7106 if (IS_ERR(chip)) {
7107 r = PTR_ERR(chip);
7108 goto out;
7109 }
7110
7111 r = -ENXIO;
7112 if (!irqchip_kernel(kvm))
7113 goto get_irqchip_out;
7114 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7115 if (r)
7116 goto get_irqchip_out;
7117 r = -EFAULT;
7118 if (copy_to_user(argp, chip, sizeof(*chip)))
7119 goto get_irqchip_out;
7120 r = 0;
7121 get_irqchip_out:
7122 kfree(chip);
7123 break;
7124 }
7125 case KVM_SET_IRQCHIP: {
7126 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7127 struct kvm_irqchip *chip;
7128
7129 chip = memdup_user(argp, sizeof(*chip));
7130 if (IS_ERR(chip)) {
7131 r = PTR_ERR(chip);
7132 goto out;
7133 }
7134
7135 r = -ENXIO;
7136 if (!irqchip_kernel(kvm))
7137 goto set_irqchip_out;
7138 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7139 set_irqchip_out:
7140 kfree(chip);
7141 break;
7142 }
7143 case KVM_GET_PIT: {
7144 r = -EFAULT;
7145 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7146 goto out;
7147 r = -ENXIO;
7148 if (!kvm->arch.vpit)
7149 goto out;
7150 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7151 if (r)
7152 goto out;
7153 r = -EFAULT;
7154 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7155 goto out;
7156 r = 0;
7157 break;
7158 }
7159 case KVM_SET_PIT: {
7160 r = -EFAULT;
7161 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7162 goto out;
7163 mutex_lock(&kvm->lock);
7164 r = -ENXIO;
7165 if (!kvm->arch.vpit)
7166 goto set_pit_out;
7167 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7168 set_pit_out:
7169 mutex_unlock(&kvm->lock);
7170 break;
7171 }
7172 case KVM_GET_PIT2: {
7173 r = -ENXIO;
7174 if (!kvm->arch.vpit)
7175 goto out;
7176 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7177 if (r)
7178 goto out;
7179 r = -EFAULT;
7180 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7181 goto out;
7182 r = 0;
7183 break;
7184 }
7185 case KVM_SET_PIT2: {
7186 r = -EFAULT;
7187 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7188 goto out;
7189 mutex_lock(&kvm->lock);
7190 r = -ENXIO;
7191 if (!kvm->arch.vpit)
7192 goto set_pit2_out;
7193 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7194 set_pit2_out:
7195 mutex_unlock(&kvm->lock);
7196 break;
7197 }
7198 case KVM_REINJECT_CONTROL: {
7199 struct kvm_reinject_control control;
7200 r = -EFAULT;
7201 if (copy_from_user(&control, argp, sizeof(control)))
7202 goto out;
7203 r = -ENXIO;
7204 if (!kvm->arch.vpit)
7205 goto out;
7206 r = kvm_vm_ioctl_reinject(kvm, &control);
7207 break;
7208 }
7209 case KVM_SET_BOOT_CPU_ID:
7210 r = 0;
7211 mutex_lock(&kvm->lock);
7212 if (kvm->created_vcpus)
7213 r = -EBUSY;
7214 else if (arg > KVM_MAX_VCPU_IDS ||
7215 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7216 r = -EINVAL;
7217 else
7218 kvm->arch.bsp_vcpu_id = arg;
7219 mutex_unlock(&kvm->lock);
7220 break;
7221 #ifdef CONFIG_KVM_XEN
7222 case KVM_XEN_HVM_CONFIG: {
7223 struct kvm_xen_hvm_config xhc;
7224 r = -EFAULT;
7225 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7226 goto out;
7227 r = kvm_xen_hvm_config(kvm, &xhc);
7228 break;
7229 }
7230 case KVM_XEN_HVM_GET_ATTR: {
7231 struct kvm_xen_hvm_attr xha;
7232
7233 r = -EFAULT;
7234 if (copy_from_user(&xha, argp, sizeof(xha)))
7235 goto out;
7236 r = kvm_xen_hvm_get_attr(kvm, &xha);
7237 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7238 r = -EFAULT;
7239 break;
7240 }
7241 case KVM_XEN_HVM_SET_ATTR: {
7242 struct kvm_xen_hvm_attr xha;
7243
7244 r = -EFAULT;
7245 if (copy_from_user(&xha, argp, sizeof(xha)))
7246 goto out;
7247 r = kvm_xen_hvm_set_attr(kvm, &xha);
7248 break;
7249 }
7250 case KVM_XEN_HVM_EVTCHN_SEND: {
7251 struct kvm_irq_routing_xen_evtchn uxe;
7252
7253 r = -EFAULT;
7254 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7255 goto out;
7256 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7257 break;
7258 }
7259 #endif
7260 case KVM_SET_CLOCK:
7261 r = kvm_vm_ioctl_set_clock(kvm, argp);
7262 break;
7263 case KVM_GET_CLOCK:
7264 r = kvm_vm_ioctl_get_clock(kvm, argp);
7265 break;
7266 case KVM_SET_TSC_KHZ: {
7267 u32 user_tsc_khz;
7268
7269 r = -EINVAL;
7270 user_tsc_khz = (u32)arg;
7271
7272 if (kvm_caps.has_tsc_control &&
7273 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7274 goto out;
7275
7276 if (user_tsc_khz == 0)
7277 user_tsc_khz = tsc_khz;
7278
7279 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7280 r = 0;
7281
7282 goto out;
7283 }
7284 case KVM_GET_TSC_KHZ: {
7285 r = READ_ONCE(kvm->arch.default_tsc_khz);
7286 goto out;
7287 }
7288 case KVM_MEMORY_ENCRYPT_OP: {
7289 r = -ENOTTY;
7290 if (!kvm_x86_ops.mem_enc_ioctl)
7291 goto out;
7292
7293 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7294 break;
7295 }
7296 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7297 struct kvm_enc_region region;
7298
7299 r = -EFAULT;
7300 if (copy_from_user(®ion, argp, sizeof(region)))
7301 goto out;
7302
7303 r = -ENOTTY;
7304 if (!kvm_x86_ops.mem_enc_register_region)
7305 goto out;
7306
7307 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7308 break;
7309 }
7310 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7311 struct kvm_enc_region region;
7312
7313 r = -EFAULT;
7314 if (copy_from_user(®ion, argp, sizeof(region)))
7315 goto out;
7316
7317 r = -ENOTTY;
7318 if (!kvm_x86_ops.mem_enc_unregister_region)
7319 goto out;
7320
7321 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7322 break;
7323 }
7324 #ifdef CONFIG_KVM_HYPERV
7325 case KVM_HYPERV_EVENTFD: {
7326 struct kvm_hyperv_eventfd hvevfd;
7327
7328 r = -EFAULT;
7329 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7330 goto out;
7331 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7332 break;
7333 }
7334 #endif
7335 case KVM_SET_PMU_EVENT_FILTER:
7336 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7337 break;
7338 case KVM_X86_SET_MSR_FILTER: {
7339 struct kvm_msr_filter __user *user_msr_filter = argp;
7340 struct kvm_msr_filter filter;
7341
7342 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7343 return -EFAULT;
7344
7345 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7346 break;
7347 }
7348 default:
7349 r = -ENOTTY;
7350 }
7351 out:
7352 return r;
7353 }
7354
kvm_probe_feature_msr(u32 msr_index)7355 static void kvm_probe_feature_msr(u32 msr_index)
7356 {
7357 u64 data;
7358
7359 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7360 return;
7361
7362 msr_based_features[num_msr_based_features++] = msr_index;
7363 }
7364
kvm_probe_msr_to_save(u32 msr_index)7365 static void kvm_probe_msr_to_save(u32 msr_index)
7366 {
7367 u32 dummy[2];
7368
7369 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7370 return;
7371
7372 /*
7373 * Even MSRs that are valid in the host may not be exposed to guests in
7374 * some cases.
7375 */
7376 switch (msr_index) {
7377 case MSR_IA32_BNDCFGS:
7378 if (!kvm_mpx_supported())
7379 return;
7380 break;
7381 case MSR_TSC_AUX:
7382 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7383 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7384 return;
7385 break;
7386 case MSR_IA32_UMWAIT_CONTROL:
7387 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7388 return;
7389 break;
7390 case MSR_IA32_RTIT_CTL:
7391 case MSR_IA32_RTIT_STATUS:
7392 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7393 return;
7394 break;
7395 case MSR_IA32_RTIT_CR3_MATCH:
7396 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7397 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7398 return;
7399 break;
7400 case MSR_IA32_RTIT_OUTPUT_BASE:
7401 case MSR_IA32_RTIT_OUTPUT_MASK:
7402 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7403 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7404 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7405 return;
7406 break;
7407 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7408 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7409 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7410 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7411 return;
7412 break;
7413 case MSR_ARCH_PERFMON_PERFCTR0 ...
7414 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7415 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7416 kvm_pmu_cap.num_counters_gp)
7417 return;
7418 break;
7419 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7420 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7421 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7422 kvm_pmu_cap.num_counters_gp)
7423 return;
7424 break;
7425 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7426 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7427 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7428 kvm_pmu_cap.num_counters_fixed)
7429 return;
7430 break;
7431 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7432 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7433 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7434 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7435 return;
7436 break;
7437 case MSR_IA32_XFD:
7438 case MSR_IA32_XFD_ERR:
7439 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7440 return;
7441 break;
7442 case MSR_IA32_TSX_CTRL:
7443 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7444 return;
7445 break;
7446 default:
7447 break;
7448 }
7449
7450 msrs_to_save[num_msrs_to_save++] = msr_index;
7451 }
7452
kvm_init_msr_lists(void)7453 static void kvm_init_msr_lists(void)
7454 {
7455 unsigned i;
7456
7457 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7458 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7459
7460 num_msrs_to_save = 0;
7461 num_emulated_msrs = 0;
7462 num_msr_based_features = 0;
7463
7464 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7465 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7466
7467 if (enable_pmu) {
7468 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7469 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7470 }
7471
7472 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7473 if (!kvm_x86_call(has_emulated_msr)(NULL,
7474 emulated_msrs_all[i]))
7475 continue;
7476
7477 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7478 }
7479
7480 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7481 kvm_probe_feature_msr(i);
7482
7483 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7484 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7485 }
7486
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7487 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7488 const void *v)
7489 {
7490 int handled = 0;
7491 int n;
7492
7493 do {
7494 n = min(len, 8);
7495 if (!(lapic_in_kernel(vcpu) &&
7496 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7497 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7498 break;
7499 handled += n;
7500 addr += n;
7501 len -= n;
7502 v += n;
7503 } while (len);
7504
7505 return handled;
7506 }
7507
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7508 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7509 {
7510 int handled = 0;
7511 int n;
7512
7513 do {
7514 n = min(len, 8);
7515 if (!(lapic_in_kernel(vcpu) &&
7516 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7517 addr, n, v))
7518 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7519 break;
7520 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7521 handled += n;
7522 addr += n;
7523 len -= n;
7524 v += n;
7525 } while (len);
7526
7527 return handled;
7528 }
7529
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7530 void kvm_set_segment(struct kvm_vcpu *vcpu,
7531 struct kvm_segment *var, int seg)
7532 {
7533 kvm_x86_call(set_segment)(vcpu, var, seg);
7534 }
7535
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7536 void kvm_get_segment(struct kvm_vcpu *vcpu,
7537 struct kvm_segment *var, int seg)
7538 {
7539 kvm_x86_call(get_segment)(vcpu, var, seg);
7540 }
7541
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7542 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7543 struct x86_exception *exception)
7544 {
7545 struct kvm_mmu *mmu = vcpu->arch.mmu;
7546 gpa_t t_gpa;
7547
7548 BUG_ON(!mmu_is_nested(vcpu));
7549
7550 /* NPT walks are always user-walks */
7551 access |= PFERR_USER_MASK;
7552 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7553
7554 return t_gpa;
7555 }
7556
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7557 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7558 struct x86_exception *exception)
7559 {
7560 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7561
7562 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7563 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7564 }
7565 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7566
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7567 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7568 struct x86_exception *exception)
7569 {
7570 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7571
7572 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7573 access |= PFERR_WRITE_MASK;
7574 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7575 }
7576 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7577
7578 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7579 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7580 struct x86_exception *exception)
7581 {
7582 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7583
7584 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7585 }
7586
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7587 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7588 struct kvm_vcpu *vcpu, u64 access,
7589 struct x86_exception *exception)
7590 {
7591 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7592 void *data = val;
7593 int r = X86EMUL_CONTINUE;
7594
7595 while (bytes) {
7596 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7597 unsigned offset = addr & (PAGE_SIZE-1);
7598 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7599 int ret;
7600
7601 if (gpa == INVALID_GPA)
7602 return X86EMUL_PROPAGATE_FAULT;
7603 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7604 offset, toread);
7605 if (ret < 0) {
7606 r = X86EMUL_IO_NEEDED;
7607 goto out;
7608 }
7609
7610 bytes -= toread;
7611 data += toread;
7612 addr += toread;
7613 }
7614 out:
7615 return r;
7616 }
7617
7618 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7619 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7620 gva_t addr, void *val, unsigned int bytes,
7621 struct x86_exception *exception)
7622 {
7623 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7624 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7625 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7626 unsigned offset;
7627 int ret;
7628
7629 /* Inline kvm_read_guest_virt_helper for speed. */
7630 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7631 exception);
7632 if (unlikely(gpa == INVALID_GPA))
7633 return X86EMUL_PROPAGATE_FAULT;
7634
7635 offset = addr & (PAGE_SIZE-1);
7636 if (WARN_ON(offset + bytes > PAGE_SIZE))
7637 bytes = (unsigned)PAGE_SIZE - offset;
7638 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7639 offset, bytes);
7640 if (unlikely(ret < 0))
7641 return X86EMUL_IO_NEEDED;
7642
7643 return X86EMUL_CONTINUE;
7644 }
7645
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7646 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7647 gva_t addr, void *val, unsigned int bytes,
7648 struct x86_exception *exception)
7649 {
7650 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7651
7652 /*
7653 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7654 * is returned, but our callers are not ready for that and they blindly
7655 * call kvm_inject_page_fault. Ensure that they at least do not leak
7656 * uninitialized kernel stack memory into cr2 and error code.
7657 */
7658 memset(exception, 0, sizeof(*exception));
7659 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7660 exception);
7661 }
7662 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7663
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7664 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7665 gva_t addr, void *val, unsigned int bytes,
7666 struct x86_exception *exception, bool system)
7667 {
7668 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7669 u64 access = 0;
7670
7671 if (system)
7672 access |= PFERR_IMPLICIT_ACCESS;
7673 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7674 access |= PFERR_USER_MASK;
7675
7676 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7677 }
7678
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7679 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7680 struct kvm_vcpu *vcpu, u64 access,
7681 struct x86_exception *exception)
7682 {
7683 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7684 void *data = val;
7685 int r = X86EMUL_CONTINUE;
7686
7687 while (bytes) {
7688 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7689 unsigned offset = addr & (PAGE_SIZE-1);
7690 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7691 int ret;
7692
7693 if (gpa == INVALID_GPA)
7694 return X86EMUL_PROPAGATE_FAULT;
7695 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7696 if (ret < 0) {
7697 r = X86EMUL_IO_NEEDED;
7698 goto out;
7699 }
7700
7701 bytes -= towrite;
7702 data += towrite;
7703 addr += towrite;
7704 }
7705 out:
7706 return r;
7707 }
7708
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7709 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7710 unsigned int bytes, struct x86_exception *exception,
7711 bool system)
7712 {
7713 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7714 u64 access = PFERR_WRITE_MASK;
7715
7716 if (system)
7717 access |= PFERR_IMPLICIT_ACCESS;
7718 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7719 access |= PFERR_USER_MASK;
7720
7721 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7722 access, exception);
7723 }
7724
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7725 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7726 unsigned int bytes, struct x86_exception *exception)
7727 {
7728 /* kvm_write_guest_virt_system can pull in tons of pages. */
7729 vcpu->arch.l1tf_flush_l1d = true;
7730
7731 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7732 PFERR_WRITE_MASK, exception);
7733 }
7734 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7735
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7736 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7737 void *insn, int insn_len)
7738 {
7739 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7740 insn, insn_len);
7741 }
7742
handle_ud(struct kvm_vcpu * vcpu)7743 int handle_ud(struct kvm_vcpu *vcpu)
7744 {
7745 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7746 int fep_flags = READ_ONCE(force_emulation_prefix);
7747 int emul_type = EMULTYPE_TRAP_UD;
7748 char sig[5]; /* ud2; .ascii "kvm" */
7749 struct x86_exception e;
7750 int r;
7751
7752 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7753 if (r != X86EMUL_CONTINUE)
7754 return 1;
7755
7756 if (fep_flags &&
7757 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7758 sig, sizeof(sig), &e) == 0 &&
7759 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7760 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7761 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7762 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7763 emul_type = EMULTYPE_TRAP_UD_FORCED;
7764 }
7765
7766 return kvm_emulate_instruction(vcpu, emul_type);
7767 }
7768 EXPORT_SYMBOL_GPL(handle_ud);
7769
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7770 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7771 gpa_t gpa, bool write)
7772 {
7773 /* For APIC access vmexit */
7774 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7775 return 1;
7776
7777 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7778 trace_vcpu_match_mmio(gva, gpa, write, true);
7779 return 1;
7780 }
7781
7782 return 0;
7783 }
7784
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7785 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7786 gpa_t *gpa, struct x86_exception *exception,
7787 bool write)
7788 {
7789 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7790 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7791 | (write ? PFERR_WRITE_MASK : 0);
7792
7793 /*
7794 * currently PKRU is only applied to ept enabled guest so
7795 * there is no pkey in EPT page table for L1 guest or EPT
7796 * shadow page table for L2 guest.
7797 */
7798 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7799 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7800 vcpu->arch.mmio_access, 0, access))) {
7801 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7802 (gva & (PAGE_SIZE - 1));
7803 trace_vcpu_match_mmio(gva, *gpa, write, false);
7804 return 1;
7805 }
7806
7807 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7808
7809 if (*gpa == INVALID_GPA)
7810 return -1;
7811
7812 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7813 }
7814
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7815 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7816 const void *val, int bytes)
7817 {
7818 int ret;
7819
7820 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7821 if (ret < 0)
7822 return 0;
7823 kvm_page_track_write(vcpu, gpa, val, bytes);
7824 return 1;
7825 }
7826
7827 struct read_write_emulator_ops {
7828 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7829 int bytes);
7830 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7831 void *val, int bytes);
7832 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7833 int bytes, void *val);
7834 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7835 void *val, int bytes);
7836 bool write;
7837 };
7838
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7839 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7840 {
7841 if (vcpu->mmio_read_completed) {
7842 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7843 vcpu->mmio_fragments[0].gpa, val);
7844 vcpu->mmio_read_completed = 0;
7845 return 1;
7846 }
7847
7848 return 0;
7849 }
7850
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7851 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7852 void *val, int bytes)
7853 {
7854 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7855 }
7856
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7857 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7858 void *val, int bytes)
7859 {
7860 return emulator_write_phys(vcpu, gpa, val, bytes);
7861 }
7862
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7863 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7864 {
7865 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7866 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7867 }
7868
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7869 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7870 void *val, int bytes)
7871 {
7872 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7873 return X86EMUL_IO_NEEDED;
7874 }
7875
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7876 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7877 void *val, int bytes)
7878 {
7879 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7880
7881 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7882 return X86EMUL_CONTINUE;
7883 }
7884
7885 static const struct read_write_emulator_ops read_emultor = {
7886 .read_write_prepare = read_prepare,
7887 .read_write_emulate = read_emulate,
7888 .read_write_mmio = vcpu_mmio_read,
7889 .read_write_exit_mmio = read_exit_mmio,
7890 };
7891
7892 static const struct read_write_emulator_ops write_emultor = {
7893 .read_write_emulate = write_emulate,
7894 .read_write_mmio = write_mmio,
7895 .read_write_exit_mmio = write_exit_mmio,
7896 .write = true,
7897 };
7898
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7899 static int emulator_read_write_onepage(unsigned long addr, void *val,
7900 unsigned int bytes,
7901 struct x86_exception *exception,
7902 struct kvm_vcpu *vcpu,
7903 const struct read_write_emulator_ops *ops)
7904 {
7905 gpa_t gpa;
7906 int handled, ret;
7907 bool write = ops->write;
7908 struct kvm_mmio_fragment *frag;
7909 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7910
7911 /*
7912 * If the exit was due to a NPF we may already have a GPA.
7913 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7914 * Note, this cannot be used on string operations since string
7915 * operation using rep will only have the initial GPA from the NPF
7916 * occurred.
7917 */
7918 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7919 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7920 gpa = ctxt->gpa_val;
7921 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7922 } else {
7923 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7924 if (ret < 0)
7925 return X86EMUL_PROPAGATE_FAULT;
7926 }
7927
7928 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7929 return X86EMUL_CONTINUE;
7930
7931 /*
7932 * Is this MMIO handled locally?
7933 */
7934 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7935 if (handled == bytes)
7936 return X86EMUL_CONTINUE;
7937
7938 gpa += handled;
7939 bytes -= handled;
7940 val += handled;
7941
7942 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7943 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7944 frag->gpa = gpa;
7945 frag->data = val;
7946 frag->len = bytes;
7947 return X86EMUL_CONTINUE;
7948 }
7949
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7950 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7951 unsigned long addr,
7952 void *val, unsigned int bytes,
7953 struct x86_exception *exception,
7954 const struct read_write_emulator_ops *ops)
7955 {
7956 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7957 gpa_t gpa;
7958 int rc;
7959
7960 if (ops->read_write_prepare &&
7961 ops->read_write_prepare(vcpu, val, bytes))
7962 return X86EMUL_CONTINUE;
7963
7964 vcpu->mmio_nr_fragments = 0;
7965
7966 /* Crossing a page boundary? */
7967 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7968 int now;
7969
7970 now = -addr & ~PAGE_MASK;
7971 rc = emulator_read_write_onepage(addr, val, now, exception,
7972 vcpu, ops);
7973
7974 if (rc != X86EMUL_CONTINUE)
7975 return rc;
7976 addr += now;
7977 if (ctxt->mode != X86EMUL_MODE_PROT64)
7978 addr = (u32)addr;
7979 val += now;
7980 bytes -= now;
7981 }
7982
7983 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7984 vcpu, ops);
7985 if (rc != X86EMUL_CONTINUE)
7986 return rc;
7987
7988 if (!vcpu->mmio_nr_fragments)
7989 return rc;
7990
7991 gpa = vcpu->mmio_fragments[0].gpa;
7992
7993 vcpu->mmio_needed = 1;
7994 vcpu->mmio_cur_fragment = 0;
7995
7996 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7997 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7998 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7999 vcpu->run->mmio.phys_addr = gpa;
8000
8001 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8002 }
8003
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8004 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8005 unsigned long addr,
8006 void *val,
8007 unsigned int bytes,
8008 struct x86_exception *exception)
8009 {
8010 return emulator_read_write(ctxt, addr, val, bytes,
8011 exception, &read_emultor);
8012 }
8013
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8014 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8015 unsigned long addr,
8016 const void *val,
8017 unsigned int bytes,
8018 struct x86_exception *exception)
8019 {
8020 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8021 exception, &write_emultor);
8022 }
8023
8024 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8025 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8026
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8027 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8028 unsigned long addr,
8029 const void *old,
8030 const void *new,
8031 unsigned int bytes,
8032 struct x86_exception *exception)
8033 {
8034 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8035 u64 page_line_mask;
8036 unsigned long hva;
8037 gpa_t gpa;
8038 int r;
8039
8040 /* guests cmpxchg8b have to be emulated atomically */
8041 if (bytes > 8 || (bytes & (bytes - 1)))
8042 goto emul_write;
8043
8044 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8045
8046 if (gpa == INVALID_GPA ||
8047 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8048 goto emul_write;
8049
8050 /*
8051 * Emulate the atomic as a straight write to avoid #AC if SLD is
8052 * enabled in the host and the access splits a cache line.
8053 */
8054 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8055 page_line_mask = ~(cache_line_size() - 1);
8056 else
8057 page_line_mask = PAGE_MASK;
8058
8059 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8060 goto emul_write;
8061
8062 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8063 if (kvm_is_error_hva(hva))
8064 goto emul_write;
8065
8066 hva += offset_in_page(gpa);
8067
8068 switch (bytes) {
8069 case 1:
8070 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8071 break;
8072 case 2:
8073 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8074 break;
8075 case 4:
8076 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8077 break;
8078 case 8:
8079 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8080 break;
8081 default:
8082 BUG();
8083 }
8084
8085 if (r < 0)
8086 return X86EMUL_UNHANDLEABLE;
8087
8088 /*
8089 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8090 * successful, as the old value is written back on failure. Note, for
8091 * live migration, this is unnecessarily conservative as CMPXCHG writes
8092 * back the original value and the access is atomic, but KVM's ABI is
8093 * that all writes are dirty logged, regardless of the value written.
8094 */
8095 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8096
8097 if (r)
8098 return X86EMUL_CMPXCHG_FAILED;
8099
8100 kvm_page_track_write(vcpu, gpa, new, bytes);
8101
8102 return X86EMUL_CONTINUE;
8103
8104 emul_write:
8105 pr_warn_once("emulating exchange as write\n");
8106
8107 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8108 }
8109
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8110 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8111 unsigned short port, void *data,
8112 unsigned int count, bool in)
8113 {
8114 unsigned i;
8115 int r;
8116
8117 WARN_ON_ONCE(vcpu->arch.pio.count);
8118 for (i = 0; i < count; i++) {
8119 if (in)
8120 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8121 else
8122 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8123
8124 if (r) {
8125 if (i == 0)
8126 goto userspace_io;
8127
8128 /*
8129 * Userspace must have unregistered the device while PIO
8130 * was running. Drop writes / read as 0.
8131 */
8132 if (in)
8133 memset(data, 0, size * (count - i));
8134 break;
8135 }
8136
8137 data += size;
8138 }
8139 return 1;
8140
8141 userspace_io:
8142 vcpu->arch.pio.port = port;
8143 vcpu->arch.pio.in = in;
8144 vcpu->arch.pio.count = count;
8145 vcpu->arch.pio.size = size;
8146
8147 if (in)
8148 memset(vcpu->arch.pio_data, 0, size * count);
8149 else
8150 memcpy(vcpu->arch.pio_data, data, size * count);
8151
8152 vcpu->run->exit_reason = KVM_EXIT_IO;
8153 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8154 vcpu->run->io.size = size;
8155 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8156 vcpu->run->io.count = count;
8157 vcpu->run->io.port = port;
8158 return 0;
8159 }
8160
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8161 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8162 unsigned short port, void *val, unsigned int count)
8163 {
8164 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8165 if (r)
8166 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8167
8168 return r;
8169 }
8170
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8171 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8172 {
8173 int size = vcpu->arch.pio.size;
8174 unsigned int count = vcpu->arch.pio.count;
8175 memcpy(val, vcpu->arch.pio_data, size * count);
8176 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8177 vcpu->arch.pio.count = 0;
8178 }
8179
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8180 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8181 int size, unsigned short port, void *val,
8182 unsigned int count)
8183 {
8184 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8185 if (vcpu->arch.pio.count) {
8186 /*
8187 * Complete a previous iteration that required userspace I/O.
8188 * Note, @count isn't guaranteed to match pio.count as userspace
8189 * can modify ECX before rerunning the vCPU. Ignore any such
8190 * shenanigans as KVM doesn't support modifying the rep count,
8191 * and the emulator ensures @count doesn't overflow the buffer.
8192 */
8193 complete_emulator_pio_in(vcpu, val);
8194 return 1;
8195 }
8196
8197 return emulator_pio_in(vcpu, size, port, val, count);
8198 }
8199
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8200 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8201 unsigned short port, const void *val,
8202 unsigned int count)
8203 {
8204 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8205 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8206 }
8207
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8208 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8209 int size, unsigned short port,
8210 const void *val, unsigned int count)
8211 {
8212 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8213 }
8214
get_segment_base(struct kvm_vcpu * vcpu,int seg)8215 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8216 {
8217 return kvm_x86_call(get_segment_base)(vcpu, seg);
8218 }
8219
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8220 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8221 {
8222 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8223 }
8224
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8225 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8226 {
8227 if (!need_emulate_wbinvd(vcpu))
8228 return X86EMUL_CONTINUE;
8229
8230 if (kvm_x86_call(has_wbinvd_exit)()) {
8231 int cpu = get_cpu();
8232
8233 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8234 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8235 wbinvd_ipi, NULL, 1);
8236 put_cpu();
8237 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8238 } else
8239 wbinvd();
8240 return X86EMUL_CONTINUE;
8241 }
8242
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8243 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8244 {
8245 kvm_emulate_wbinvd_noskip(vcpu);
8246 return kvm_skip_emulated_instruction(vcpu);
8247 }
8248 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8249
8250
8251
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8252 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8253 {
8254 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8255 }
8256
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8257 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8258 {
8259 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8260 }
8261
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8262 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8263 unsigned long value)
8264 {
8265
8266 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8267 }
8268
mk_cr_64(u64 curr_cr,u32 new_val)8269 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8270 {
8271 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8272 }
8273
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8274 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8275 {
8276 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8277 unsigned long value;
8278
8279 switch (cr) {
8280 case 0:
8281 value = kvm_read_cr0(vcpu);
8282 break;
8283 case 2:
8284 value = vcpu->arch.cr2;
8285 break;
8286 case 3:
8287 value = kvm_read_cr3(vcpu);
8288 break;
8289 case 4:
8290 value = kvm_read_cr4(vcpu);
8291 break;
8292 case 8:
8293 value = kvm_get_cr8(vcpu);
8294 break;
8295 default:
8296 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8297 return 0;
8298 }
8299
8300 return value;
8301 }
8302
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8303 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8304 {
8305 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8306 int res = 0;
8307
8308 switch (cr) {
8309 case 0:
8310 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8311 break;
8312 case 2:
8313 vcpu->arch.cr2 = val;
8314 break;
8315 case 3:
8316 res = kvm_set_cr3(vcpu, val);
8317 break;
8318 case 4:
8319 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8320 break;
8321 case 8:
8322 res = kvm_set_cr8(vcpu, val);
8323 break;
8324 default:
8325 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8326 res = -1;
8327 }
8328
8329 return res;
8330 }
8331
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8332 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8333 {
8334 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8335 }
8336
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8337 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8338 {
8339 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8340 }
8341
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8342 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8343 {
8344 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8345 }
8346
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8347 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8348 {
8349 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8350 }
8351
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8352 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8353 {
8354 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8355 }
8356
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8357 static unsigned long emulator_get_cached_segment_base(
8358 struct x86_emulate_ctxt *ctxt, int seg)
8359 {
8360 return get_segment_base(emul_to_vcpu(ctxt), seg);
8361 }
8362
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8363 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8364 struct desc_struct *desc, u32 *base3,
8365 int seg)
8366 {
8367 struct kvm_segment var;
8368
8369 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8370 *selector = var.selector;
8371
8372 if (var.unusable) {
8373 memset(desc, 0, sizeof(*desc));
8374 if (base3)
8375 *base3 = 0;
8376 return false;
8377 }
8378
8379 if (var.g)
8380 var.limit >>= 12;
8381 set_desc_limit(desc, var.limit);
8382 set_desc_base(desc, (unsigned long)var.base);
8383 #ifdef CONFIG_X86_64
8384 if (base3)
8385 *base3 = var.base >> 32;
8386 #endif
8387 desc->type = var.type;
8388 desc->s = var.s;
8389 desc->dpl = var.dpl;
8390 desc->p = var.present;
8391 desc->avl = var.avl;
8392 desc->l = var.l;
8393 desc->d = var.db;
8394 desc->g = var.g;
8395
8396 return true;
8397 }
8398
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8399 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8400 struct desc_struct *desc, u32 base3,
8401 int seg)
8402 {
8403 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8404 struct kvm_segment var;
8405
8406 var.selector = selector;
8407 var.base = get_desc_base(desc);
8408 #ifdef CONFIG_X86_64
8409 var.base |= ((u64)base3) << 32;
8410 #endif
8411 var.limit = get_desc_limit(desc);
8412 if (desc->g)
8413 var.limit = (var.limit << 12) | 0xfff;
8414 var.type = desc->type;
8415 var.dpl = desc->dpl;
8416 var.db = desc->d;
8417 var.s = desc->s;
8418 var.l = desc->l;
8419 var.g = desc->g;
8420 var.avl = desc->avl;
8421 var.present = desc->p;
8422 var.unusable = !var.present;
8423 var.padding = 0;
8424
8425 kvm_set_segment(vcpu, &var, seg);
8426 return;
8427 }
8428
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8429 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8430 u32 msr_index, u64 *pdata)
8431 {
8432 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8433 int r;
8434
8435 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8436 if (r < 0)
8437 return X86EMUL_UNHANDLEABLE;
8438
8439 if (r) {
8440 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8441 complete_emulated_rdmsr, r))
8442 return X86EMUL_IO_NEEDED;
8443
8444 trace_kvm_msr_read_ex(msr_index);
8445 return X86EMUL_PROPAGATE_FAULT;
8446 }
8447
8448 trace_kvm_msr_read(msr_index, *pdata);
8449 return X86EMUL_CONTINUE;
8450 }
8451
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8452 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8453 u32 msr_index, u64 data)
8454 {
8455 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8456 int r;
8457
8458 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8459 if (r < 0)
8460 return X86EMUL_UNHANDLEABLE;
8461
8462 if (r) {
8463 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8464 complete_emulated_msr_access, r))
8465 return X86EMUL_IO_NEEDED;
8466
8467 trace_kvm_msr_write_ex(msr_index, data);
8468 return X86EMUL_PROPAGATE_FAULT;
8469 }
8470
8471 trace_kvm_msr_write(msr_index, data);
8472 return X86EMUL_CONTINUE;
8473 }
8474
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8475 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8476 u32 msr_index, u64 *pdata)
8477 {
8478 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8479 }
8480
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8481 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8482 {
8483 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8484 }
8485
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8486 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8487 u32 pmc, u64 *pdata)
8488 {
8489 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8490 }
8491
emulator_halt(struct x86_emulate_ctxt * ctxt)8492 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8493 {
8494 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8495 }
8496
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8497 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8498 struct x86_instruction_info *info,
8499 enum x86_intercept_stage stage)
8500 {
8501 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8502 &ctxt->exception);
8503 }
8504
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8505 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8506 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8507 bool exact_only)
8508 {
8509 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8510 }
8511
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8512 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8513 {
8514 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8515 }
8516
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8517 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8518 {
8519 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8520 }
8521
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8522 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8523 {
8524 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8525 }
8526
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8527 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8528 {
8529 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8530 }
8531
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8532 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8533 {
8534 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8535 }
8536
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8537 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8538 {
8539 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8540 }
8541
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8542 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8543 {
8544 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8545 }
8546
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8547 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8548 {
8549 return is_smm(emul_to_vcpu(ctxt));
8550 }
8551
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8552 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8553 {
8554 return is_guest_mode(emul_to_vcpu(ctxt));
8555 }
8556
8557 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8558 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8559 {
8560 WARN_ON_ONCE(1);
8561 return X86EMUL_UNHANDLEABLE;
8562 }
8563 #endif
8564
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8565 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8566 {
8567 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8568 }
8569
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8570 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8571 {
8572 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8573 }
8574
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8575 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8576 {
8577 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8578
8579 if (!kvm->vm_bugged)
8580 kvm_vm_bugged(kvm);
8581 }
8582
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8583 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8584 gva_t addr, unsigned int flags)
8585 {
8586 if (!kvm_x86_ops.get_untagged_addr)
8587 return addr;
8588
8589 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8590 addr, flags);
8591 }
8592
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8593 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8594 gva_t addr, unsigned int flags)
8595 {
8596 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8597 }
8598
8599 static const struct x86_emulate_ops emulate_ops = {
8600 .vm_bugged = emulator_vm_bugged,
8601 .read_gpr = emulator_read_gpr,
8602 .write_gpr = emulator_write_gpr,
8603 .read_std = emulator_read_std,
8604 .write_std = emulator_write_std,
8605 .fetch = kvm_fetch_guest_virt,
8606 .read_emulated = emulator_read_emulated,
8607 .write_emulated = emulator_write_emulated,
8608 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8609 .invlpg = emulator_invlpg,
8610 .pio_in_emulated = emulator_pio_in_emulated,
8611 .pio_out_emulated = emulator_pio_out_emulated,
8612 .get_segment = emulator_get_segment,
8613 .set_segment = emulator_set_segment,
8614 .get_cached_segment_base = emulator_get_cached_segment_base,
8615 .get_gdt = emulator_get_gdt,
8616 .get_idt = emulator_get_idt,
8617 .set_gdt = emulator_set_gdt,
8618 .set_idt = emulator_set_idt,
8619 .get_cr = emulator_get_cr,
8620 .set_cr = emulator_set_cr,
8621 .cpl = emulator_get_cpl,
8622 .get_dr = emulator_get_dr,
8623 .set_dr = emulator_set_dr,
8624 .set_msr_with_filter = emulator_set_msr_with_filter,
8625 .get_msr_with_filter = emulator_get_msr_with_filter,
8626 .get_msr = emulator_get_msr,
8627 .check_rdpmc_early = emulator_check_rdpmc_early,
8628 .read_pmc = emulator_read_pmc,
8629 .halt = emulator_halt,
8630 .wbinvd = emulator_wbinvd,
8631 .fix_hypercall = emulator_fix_hypercall,
8632 .intercept = emulator_intercept,
8633 .get_cpuid = emulator_get_cpuid,
8634 .guest_has_movbe = emulator_guest_has_movbe,
8635 .guest_has_fxsr = emulator_guest_has_fxsr,
8636 .guest_has_rdpid = emulator_guest_has_rdpid,
8637 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8638 .set_nmi_mask = emulator_set_nmi_mask,
8639 .is_smm = emulator_is_smm,
8640 .is_guest_mode = emulator_is_guest_mode,
8641 .leave_smm = emulator_leave_smm,
8642 .triple_fault = emulator_triple_fault,
8643 .set_xcr = emulator_set_xcr,
8644 .get_untagged_addr = emulator_get_untagged_addr,
8645 .is_canonical_addr = emulator_is_canonical_addr,
8646 };
8647
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8648 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8649 {
8650 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8651 /*
8652 * an sti; sti; sequence only disable interrupts for the first
8653 * instruction. So, if the last instruction, be it emulated or
8654 * not, left the system with the INT_STI flag enabled, it
8655 * means that the last instruction is an sti. We should not
8656 * leave the flag on in this case. The same goes for mov ss
8657 */
8658 if (int_shadow & mask)
8659 mask = 0;
8660 if (unlikely(int_shadow || mask)) {
8661 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8662 if (!mask)
8663 kvm_make_request(KVM_REQ_EVENT, vcpu);
8664 }
8665 }
8666
inject_emulated_exception(struct kvm_vcpu * vcpu)8667 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8668 {
8669 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8670
8671 if (ctxt->exception.vector == PF_VECTOR)
8672 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8673 else if (ctxt->exception.error_code_valid)
8674 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8675 ctxt->exception.error_code);
8676 else
8677 kvm_queue_exception(vcpu, ctxt->exception.vector);
8678 }
8679
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8680 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8681 {
8682 struct x86_emulate_ctxt *ctxt;
8683
8684 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8685 if (!ctxt) {
8686 pr_err("failed to allocate vcpu's emulator\n");
8687 return NULL;
8688 }
8689
8690 ctxt->vcpu = vcpu;
8691 ctxt->ops = &emulate_ops;
8692 vcpu->arch.emulate_ctxt = ctxt;
8693
8694 return ctxt;
8695 }
8696
init_emulate_ctxt(struct kvm_vcpu * vcpu)8697 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8698 {
8699 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8700 int cs_db, cs_l;
8701
8702 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8703
8704 ctxt->gpa_available = false;
8705 ctxt->eflags = kvm_get_rflags(vcpu);
8706 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8707
8708 ctxt->eip = kvm_rip_read(vcpu);
8709 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8710 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8711 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8712 cs_db ? X86EMUL_MODE_PROT32 :
8713 X86EMUL_MODE_PROT16;
8714 ctxt->interruptibility = 0;
8715 ctxt->have_exception = false;
8716 ctxt->exception.vector = -1;
8717 ctxt->perm_ok = false;
8718
8719 init_decode_cache(ctxt);
8720 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8721 }
8722
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8723 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8724 {
8725 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8726 int ret;
8727
8728 init_emulate_ctxt(vcpu);
8729
8730 ctxt->op_bytes = 2;
8731 ctxt->ad_bytes = 2;
8732 ctxt->_eip = ctxt->eip + inc_eip;
8733 ret = emulate_int_real(ctxt, irq);
8734
8735 if (ret != X86EMUL_CONTINUE) {
8736 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8737 } else {
8738 ctxt->eip = ctxt->_eip;
8739 kvm_rip_write(vcpu, ctxt->eip);
8740 kvm_set_rflags(vcpu, ctxt->eflags);
8741 }
8742 }
8743 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8744
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8745 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8746 u8 ndata, u8 *insn_bytes, u8 insn_size)
8747 {
8748 struct kvm_run *run = vcpu->run;
8749 u64 info[5];
8750 u8 info_start;
8751
8752 /*
8753 * Zero the whole array used to retrieve the exit info, as casting to
8754 * u32 for select entries will leave some chunks uninitialized.
8755 */
8756 memset(&info, 0, sizeof(info));
8757
8758 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8759 (u32 *)&info[3], (u32 *)&info[4]);
8760
8761 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8762 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8763
8764 /*
8765 * There's currently space for 13 entries, but 5 are used for the exit
8766 * reason and info. Restrict to 4 to reduce the maintenance burden
8767 * when expanding kvm_run.emulation_failure in the future.
8768 */
8769 if (WARN_ON_ONCE(ndata > 4))
8770 ndata = 4;
8771
8772 /* Always include the flags as a 'data' entry. */
8773 info_start = 1;
8774 run->emulation_failure.flags = 0;
8775
8776 if (insn_size) {
8777 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8778 sizeof(run->emulation_failure.insn_bytes) != 16));
8779 info_start += 2;
8780 run->emulation_failure.flags |=
8781 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8782 run->emulation_failure.insn_size = insn_size;
8783 memset(run->emulation_failure.insn_bytes, 0x90,
8784 sizeof(run->emulation_failure.insn_bytes));
8785 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8786 }
8787
8788 memcpy(&run->internal.data[info_start], info, sizeof(info));
8789 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8790 ndata * sizeof(data[0]));
8791
8792 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8793 }
8794
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8795 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8796 {
8797 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8798
8799 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8800 ctxt->fetch.end - ctxt->fetch.data);
8801 }
8802
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8803 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8804 u8 ndata)
8805 {
8806 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8807 }
8808 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8809
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8810 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8811 {
8812 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8813 }
8814 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8815
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8816 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8817 {
8818 struct kvm *kvm = vcpu->kvm;
8819
8820 ++vcpu->stat.insn_emulation_fail;
8821 trace_kvm_emulate_insn_failed(vcpu);
8822
8823 if (emulation_type & EMULTYPE_VMWARE_GP) {
8824 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8825 return 1;
8826 }
8827
8828 if (kvm->arch.exit_on_emulation_error ||
8829 (emulation_type & EMULTYPE_SKIP)) {
8830 prepare_emulation_ctxt_failure_exit(vcpu);
8831 return 0;
8832 }
8833
8834 kvm_queue_exception(vcpu, UD_VECTOR);
8835
8836 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8837 prepare_emulation_ctxt_failure_exit(vcpu);
8838 return 0;
8839 }
8840
8841 return 1;
8842 }
8843
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8844 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8845 gpa_t cr2_or_gpa,
8846 int emulation_type)
8847 {
8848 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8849 return false;
8850
8851 /*
8852 * If the failed instruction faulted on an access to page tables that
8853 * are used to translate any part of the instruction, KVM can't resolve
8854 * the issue by unprotecting the gfn, as zapping the shadow page will
8855 * result in the instruction taking a !PRESENT page fault and thus put
8856 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8857 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8858 * then zap the SPTE to unprotect the gfn, and then do it all over
8859 * again. Report the error to userspace.
8860 */
8861 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8862 return false;
8863
8864 /*
8865 * If emulation may have been triggered by a write to a shadowed page
8866 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8867 * guest to let the CPU re-execute the instruction in the hope that the
8868 * CPU can cleanly execute the instruction that KVM failed to emulate.
8869 */
8870 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8871
8872 /*
8873 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8874 * all SPTEs were already zapped by a different task. The alternative
8875 * is to report the error to userspace and likely terminate the guest,
8876 * and the last_retry_{eip,addr} checks will prevent retrying the page
8877 * fault indefinitely, i.e. there's nothing to lose by retrying.
8878 */
8879 return true;
8880 }
8881
8882 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8883 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8884
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8885 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8886 unsigned long *db)
8887 {
8888 u32 dr6 = 0;
8889 int i;
8890 u32 enable, rwlen;
8891
8892 enable = dr7;
8893 rwlen = dr7 >> 16;
8894 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8895 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8896 dr6 |= (1 << i);
8897 return dr6;
8898 }
8899
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8900 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8901 {
8902 struct kvm_run *kvm_run = vcpu->run;
8903
8904 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8905 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8906 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8907 kvm_run->debug.arch.exception = DB_VECTOR;
8908 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8909 return 0;
8910 }
8911 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8912 return 1;
8913 }
8914
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8915 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8916 {
8917 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8918 int r;
8919
8920 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8921 if (unlikely(!r))
8922 return 0;
8923
8924 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8925
8926 /*
8927 * rflags is the old, "raw" value of the flags. The new value has
8928 * not been saved yet.
8929 *
8930 * This is correct even for TF set by the guest, because "the
8931 * processor will not generate this exception after the instruction
8932 * that sets the TF flag".
8933 */
8934 if (unlikely(rflags & X86_EFLAGS_TF))
8935 r = kvm_vcpu_do_singlestep(vcpu);
8936 return r;
8937 }
8938 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8939
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8940 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8941 {
8942 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8943 return true;
8944
8945 /*
8946 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8947 * active, but AMD compatible CPUs do not.
8948 */
8949 if (!guest_cpuid_is_intel_compatible(vcpu))
8950 return false;
8951
8952 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8953 }
8954
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8955 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8956 int emulation_type, int *r)
8957 {
8958 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8959
8960 /*
8961 * Do not check for code breakpoints if hardware has already done the
8962 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8963 * the instruction has passed all exception checks, and all intercepted
8964 * exceptions that trigger emulation have lower priority than code
8965 * breakpoints, i.e. the fact that the intercepted exception occurred
8966 * means any code breakpoints have already been serviced.
8967 *
8968 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8969 * hardware has checked the RIP of the magic prefix, but not the RIP of
8970 * the instruction being emulated. The intent of forced emulation is
8971 * to behave as if KVM intercepted the instruction without an exception
8972 * and without a prefix.
8973 */
8974 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8975 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8976 return false;
8977
8978 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8979 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8980 struct kvm_run *kvm_run = vcpu->run;
8981 unsigned long eip = kvm_get_linear_rip(vcpu);
8982 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8983 vcpu->arch.guest_debug_dr7,
8984 vcpu->arch.eff_db);
8985
8986 if (dr6 != 0) {
8987 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8988 kvm_run->debug.arch.pc = eip;
8989 kvm_run->debug.arch.exception = DB_VECTOR;
8990 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8991 *r = 0;
8992 return true;
8993 }
8994 }
8995
8996 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8997 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8998 unsigned long eip = kvm_get_linear_rip(vcpu);
8999 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9000 vcpu->arch.dr7,
9001 vcpu->arch.db);
9002
9003 if (dr6 != 0) {
9004 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9005 *r = 1;
9006 return true;
9007 }
9008 }
9009
9010 return false;
9011 }
9012
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9013 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9014 {
9015 switch (ctxt->opcode_len) {
9016 case 1:
9017 switch (ctxt->b) {
9018 case 0xe4: /* IN */
9019 case 0xe5:
9020 case 0xec:
9021 case 0xed:
9022 case 0xe6: /* OUT */
9023 case 0xe7:
9024 case 0xee:
9025 case 0xef:
9026 case 0x6c: /* INS */
9027 case 0x6d:
9028 case 0x6e: /* OUTS */
9029 case 0x6f:
9030 return true;
9031 }
9032 break;
9033 case 2:
9034 switch (ctxt->b) {
9035 case 0x33: /* RDPMC */
9036 return true;
9037 }
9038 break;
9039 }
9040
9041 return false;
9042 }
9043
9044 /*
9045 * Decode an instruction for emulation. The caller is responsible for handling
9046 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9047 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9048 * code breakpoints have higher priority and thus have already been done by
9049 * hardware.
9050 *
9051 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9052 * response to a machine check.
9053 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9054 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9055 void *insn, int insn_len)
9056 {
9057 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9058 int r;
9059
9060 init_emulate_ctxt(vcpu);
9061
9062 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9063
9064 trace_kvm_emulate_insn_start(vcpu);
9065 ++vcpu->stat.insn_emulation;
9066
9067 return r;
9068 }
9069 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9070
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9071 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9072 int emulation_type, void *insn, int insn_len)
9073 {
9074 int r;
9075 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9076 bool writeback = true;
9077
9078 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9079 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9080 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9081 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9082
9083 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9084 if (r != X86EMUL_CONTINUE) {
9085 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9086 return 1;
9087
9088 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9089 return handle_emulation_failure(vcpu, emulation_type);
9090 }
9091
9092 vcpu->arch.l1tf_flush_l1d = true;
9093
9094 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9095 kvm_clear_exception_queue(vcpu);
9096
9097 /*
9098 * Return immediately if RIP hits a code breakpoint, such #DBs
9099 * are fault-like and are higher priority than any faults on
9100 * the code fetch itself.
9101 */
9102 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9103 return r;
9104
9105 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9106 insn, insn_len);
9107 if (r != EMULATION_OK) {
9108 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9109 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9110 kvm_queue_exception(vcpu, UD_VECTOR);
9111 return 1;
9112 }
9113 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9114 emulation_type))
9115 return 1;
9116
9117 if (ctxt->have_exception &&
9118 !(emulation_type & EMULTYPE_SKIP)) {
9119 /*
9120 * #UD should result in just EMULATION_FAILED, and trap-like
9121 * exception should not be encountered during decode.
9122 */
9123 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9124 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9125 inject_emulated_exception(vcpu);
9126 return 1;
9127 }
9128 return handle_emulation_failure(vcpu, emulation_type);
9129 }
9130 }
9131
9132 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9133 !is_vmware_backdoor_opcode(ctxt)) {
9134 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9135 return 1;
9136 }
9137
9138 /*
9139 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9140 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9141 * The caller is responsible for updating interruptibility state and
9142 * injecting single-step #DBs.
9143 */
9144 if (emulation_type & EMULTYPE_SKIP) {
9145 if (ctxt->mode != X86EMUL_MODE_PROT64)
9146 ctxt->eip = (u32)ctxt->_eip;
9147 else
9148 ctxt->eip = ctxt->_eip;
9149
9150 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9151 r = 1;
9152 goto writeback;
9153 }
9154
9155 kvm_rip_write(vcpu, ctxt->eip);
9156 if (ctxt->eflags & X86_EFLAGS_RF)
9157 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9158 return 1;
9159 }
9160
9161 /*
9162 * If emulation was caused by a write-protection #PF on a non-page_table
9163 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9164 * and retry the instruction, as the vCPU is likely no longer using the
9165 * gfn as a page table.
9166 */
9167 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9168 !x86_page_table_writing_insn(ctxt) &&
9169 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9170 return 1;
9171
9172 /* this is needed for vmware backdoor interface to work since it
9173 changes registers values during IO operation */
9174 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9175 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9176 emulator_invalidate_register_cache(ctxt);
9177 }
9178
9179 restart:
9180 if (emulation_type & EMULTYPE_PF) {
9181 /* Save the faulting GPA (cr2) in the address field */
9182 ctxt->exception.address = cr2_or_gpa;
9183
9184 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9185 if (vcpu->arch.mmu->root_role.direct) {
9186 ctxt->gpa_available = true;
9187 ctxt->gpa_val = cr2_or_gpa;
9188 }
9189 } else {
9190 /* Sanitize the address out of an abundance of paranoia. */
9191 ctxt->exception.address = 0;
9192 }
9193
9194 r = x86_emulate_insn(ctxt);
9195
9196 if (r == EMULATION_INTERCEPTED)
9197 return 1;
9198
9199 if (r == EMULATION_FAILED) {
9200 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9201 emulation_type))
9202 return 1;
9203
9204 return handle_emulation_failure(vcpu, emulation_type);
9205 }
9206
9207 if (ctxt->have_exception) {
9208 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9209 vcpu->mmio_needed = false;
9210 r = 1;
9211 inject_emulated_exception(vcpu);
9212 } else if (vcpu->arch.pio.count) {
9213 if (!vcpu->arch.pio.in) {
9214 /* FIXME: return into emulator if single-stepping. */
9215 vcpu->arch.pio.count = 0;
9216 } else {
9217 writeback = false;
9218 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9219 }
9220 r = 0;
9221 } else if (vcpu->mmio_needed) {
9222 ++vcpu->stat.mmio_exits;
9223
9224 if (!vcpu->mmio_is_write)
9225 writeback = false;
9226 r = 0;
9227 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9228 } else if (vcpu->arch.complete_userspace_io) {
9229 writeback = false;
9230 r = 0;
9231 } else if (r == EMULATION_RESTART)
9232 goto restart;
9233 else
9234 r = 1;
9235
9236 writeback:
9237 if (writeback) {
9238 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9239 toggle_interruptibility(vcpu, ctxt->interruptibility);
9240 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9241
9242 /*
9243 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9244 * only supports code breakpoints and general detect #DB, both
9245 * of which are fault-like.
9246 */
9247 if (!ctxt->have_exception ||
9248 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9249 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9250 if (ctxt->is_branch)
9251 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9252 kvm_rip_write(vcpu, ctxt->eip);
9253 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9254 r = kvm_vcpu_do_singlestep(vcpu);
9255 kvm_x86_call(update_emulated_instruction)(vcpu);
9256 __kvm_set_rflags(vcpu, ctxt->eflags);
9257 }
9258
9259 /*
9260 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9261 * do nothing, and it will be requested again as soon as
9262 * the shadow expires. But we still need to check here,
9263 * because POPF has no interrupt shadow.
9264 */
9265 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9266 kvm_make_request(KVM_REQ_EVENT, vcpu);
9267 } else
9268 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9269
9270 return r;
9271 }
9272
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9273 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9274 {
9275 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9276 }
9277 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9278
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9279 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9280 void *insn, int insn_len)
9281 {
9282 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9283 }
9284 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9285
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9286 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9287 {
9288 vcpu->arch.pio.count = 0;
9289 return 1;
9290 }
9291
complete_fast_pio_out(struct kvm_vcpu * vcpu)9292 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9293 {
9294 vcpu->arch.pio.count = 0;
9295
9296 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9297 return 1;
9298
9299 return kvm_skip_emulated_instruction(vcpu);
9300 }
9301
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9302 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9303 unsigned short port)
9304 {
9305 unsigned long val = kvm_rax_read(vcpu);
9306 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9307
9308 if (ret)
9309 return ret;
9310
9311 /*
9312 * Workaround userspace that relies on old KVM behavior of %rip being
9313 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9314 */
9315 if (port == 0x7e &&
9316 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9317 vcpu->arch.complete_userspace_io =
9318 complete_fast_pio_out_port_0x7e;
9319 kvm_skip_emulated_instruction(vcpu);
9320 } else {
9321 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9322 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9323 }
9324 return 0;
9325 }
9326
complete_fast_pio_in(struct kvm_vcpu * vcpu)9327 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9328 {
9329 unsigned long val;
9330
9331 /* We should only ever be called with arch.pio.count equal to 1 */
9332 BUG_ON(vcpu->arch.pio.count != 1);
9333
9334 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9335 vcpu->arch.pio.count = 0;
9336 return 1;
9337 }
9338
9339 /* For size less than 4 we merge, else we zero extend */
9340 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9341
9342 complete_emulator_pio_in(vcpu, &val);
9343 kvm_rax_write(vcpu, val);
9344
9345 return kvm_skip_emulated_instruction(vcpu);
9346 }
9347
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9348 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9349 unsigned short port)
9350 {
9351 unsigned long val;
9352 int ret;
9353
9354 /* For size less than 4 we merge, else we zero extend */
9355 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9356
9357 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9358 if (ret) {
9359 kvm_rax_write(vcpu, val);
9360 return ret;
9361 }
9362
9363 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9364 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9365
9366 return 0;
9367 }
9368
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9369 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9370 {
9371 int ret;
9372
9373 if (in)
9374 ret = kvm_fast_pio_in(vcpu, size, port);
9375 else
9376 ret = kvm_fast_pio_out(vcpu, size, port);
9377 return ret && kvm_skip_emulated_instruction(vcpu);
9378 }
9379 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9380
kvmclock_cpu_down_prep(unsigned int cpu)9381 static int kvmclock_cpu_down_prep(unsigned int cpu)
9382 {
9383 __this_cpu_write(cpu_tsc_khz, 0);
9384 return 0;
9385 }
9386
tsc_khz_changed(void * data)9387 static void tsc_khz_changed(void *data)
9388 {
9389 struct cpufreq_freqs *freq = data;
9390 unsigned long khz;
9391
9392 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9393
9394 if (data)
9395 khz = freq->new;
9396 else
9397 khz = cpufreq_quick_get(raw_smp_processor_id());
9398 if (!khz)
9399 khz = tsc_khz;
9400 __this_cpu_write(cpu_tsc_khz, khz);
9401 }
9402
9403 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9404 static void kvm_hyperv_tsc_notifier(void)
9405 {
9406 struct kvm *kvm;
9407 int cpu;
9408
9409 mutex_lock(&kvm_lock);
9410 list_for_each_entry(kvm, &vm_list, vm_list)
9411 kvm_make_mclock_inprogress_request(kvm);
9412
9413 /* no guest entries from this point */
9414 hyperv_stop_tsc_emulation();
9415
9416 /* TSC frequency always matches when on Hyper-V */
9417 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9418 for_each_present_cpu(cpu)
9419 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9420 }
9421 kvm_caps.max_guest_tsc_khz = tsc_khz;
9422
9423 list_for_each_entry(kvm, &vm_list, vm_list) {
9424 __kvm_start_pvclock_update(kvm);
9425 pvclock_update_vm_gtod_copy(kvm);
9426 kvm_end_pvclock_update(kvm);
9427 }
9428
9429 mutex_unlock(&kvm_lock);
9430 }
9431 #endif
9432
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9433 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9434 {
9435 struct kvm *kvm;
9436 struct kvm_vcpu *vcpu;
9437 int send_ipi = 0;
9438 unsigned long i;
9439
9440 /*
9441 * We allow guests to temporarily run on slowing clocks,
9442 * provided we notify them after, or to run on accelerating
9443 * clocks, provided we notify them before. Thus time never
9444 * goes backwards.
9445 *
9446 * However, we have a problem. We can't atomically update
9447 * the frequency of a given CPU from this function; it is
9448 * merely a notifier, which can be called from any CPU.
9449 * Changing the TSC frequency at arbitrary points in time
9450 * requires a recomputation of local variables related to
9451 * the TSC for each VCPU. We must flag these local variables
9452 * to be updated and be sure the update takes place with the
9453 * new frequency before any guests proceed.
9454 *
9455 * Unfortunately, the combination of hotplug CPU and frequency
9456 * change creates an intractable locking scenario; the order
9457 * of when these callouts happen is undefined with respect to
9458 * CPU hotplug, and they can race with each other. As such,
9459 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9460 * undefined; you can actually have a CPU frequency change take
9461 * place in between the computation of X and the setting of the
9462 * variable. To protect against this problem, all updates of
9463 * the per_cpu tsc_khz variable are done in an interrupt
9464 * protected IPI, and all callers wishing to update the value
9465 * must wait for a synchronous IPI to complete (which is trivial
9466 * if the caller is on the CPU already). This establishes the
9467 * necessary total order on variable updates.
9468 *
9469 * Note that because a guest time update may take place
9470 * anytime after the setting of the VCPU's request bit, the
9471 * correct TSC value must be set before the request. However,
9472 * to ensure the update actually makes it to any guest which
9473 * starts running in hardware virtualization between the set
9474 * and the acquisition of the spinlock, we must also ping the
9475 * CPU after setting the request bit.
9476 *
9477 */
9478
9479 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9480
9481 mutex_lock(&kvm_lock);
9482 list_for_each_entry(kvm, &vm_list, vm_list) {
9483 kvm_for_each_vcpu(i, vcpu, kvm) {
9484 if (vcpu->cpu != cpu)
9485 continue;
9486 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9487 if (vcpu->cpu != raw_smp_processor_id())
9488 send_ipi = 1;
9489 }
9490 }
9491 mutex_unlock(&kvm_lock);
9492
9493 if (freq->old < freq->new && send_ipi) {
9494 /*
9495 * We upscale the frequency. Must make the guest
9496 * doesn't see old kvmclock values while running with
9497 * the new frequency, otherwise we risk the guest sees
9498 * time go backwards.
9499 *
9500 * In case we update the frequency for another cpu
9501 * (which might be in guest context) send an interrupt
9502 * to kick the cpu out of guest context. Next time
9503 * guest context is entered kvmclock will be updated,
9504 * so the guest will not see stale values.
9505 */
9506 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9507 }
9508 }
9509
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9510 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9511 void *data)
9512 {
9513 struct cpufreq_freqs *freq = data;
9514 int cpu;
9515
9516 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9517 return 0;
9518 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9519 return 0;
9520
9521 for_each_cpu(cpu, freq->policy->cpus)
9522 __kvmclock_cpufreq_notifier(freq, cpu);
9523
9524 return 0;
9525 }
9526
9527 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9528 .notifier_call = kvmclock_cpufreq_notifier
9529 };
9530
kvmclock_cpu_online(unsigned int cpu)9531 static int kvmclock_cpu_online(unsigned int cpu)
9532 {
9533 tsc_khz_changed(NULL);
9534 return 0;
9535 }
9536
kvm_timer_init(void)9537 static void kvm_timer_init(void)
9538 {
9539 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9540 max_tsc_khz = tsc_khz;
9541
9542 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9543 struct cpufreq_policy *policy;
9544 int cpu;
9545
9546 cpu = get_cpu();
9547 policy = cpufreq_cpu_get(cpu);
9548 if (policy) {
9549 if (policy->cpuinfo.max_freq)
9550 max_tsc_khz = policy->cpuinfo.max_freq;
9551 cpufreq_cpu_put(policy);
9552 }
9553 put_cpu();
9554 }
9555 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9556 CPUFREQ_TRANSITION_NOTIFIER);
9557
9558 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9559 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9560 }
9561 }
9562
9563 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9564 static void pvclock_gtod_update_fn(struct work_struct *work)
9565 {
9566 struct kvm *kvm;
9567 struct kvm_vcpu *vcpu;
9568 unsigned long i;
9569
9570 mutex_lock(&kvm_lock);
9571 list_for_each_entry(kvm, &vm_list, vm_list)
9572 kvm_for_each_vcpu(i, vcpu, kvm)
9573 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9574 atomic_set(&kvm_guest_has_master_clock, 0);
9575 mutex_unlock(&kvm_lock);
9576 }
9577
9578 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9579
9580 /*
9581 * Indirection to move queue_work() out of the tk_core.seq write held
9582 * region to prevent possible deadlocks against time accessors which
9583 * are invoked with work related locks held.
9584 */
pvclock_irq_work_fn(struct irq_work * w)9585 static void pvclock_irq_work_fn(struct irq_work *w)
9586 {
9587 queue_work(system_long_wq, &pvclock_gtod_work);
9588 }
9589
9590 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9591
9592 /*
9593 * Notification about pvclock gtod data update.
9594 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9595 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9596 void *priv)
9597 {
9598 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9599 struct timekeeper *tk = priv;
9600
9601 update_pvclock_gtod(tk);
9602
9603 /*
9604 * Disable master clock if host does not trust, or does not use,
9605 * TSC based clocksource. Delegate queue_work() to irq_work as
9606 * this is invoked with tk_core.seq write held.
9607 */
9608 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9609 atomic_read(&kvm_guest_has_master_clock) != 0)
9610 irq_work_queue(&pvclock_irq_work);
9611 return 0;
9612 }
9613
9614 static struct notifier_block pvclock_gtod_notifier = {
9615 .notifier_call = pvclock_gtod_notify,
9616 };
9617 #endif
9618
kvm_ops_update(struct kvm_x86_init_ops * ops)9619 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9620 {
9621 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9622
9623 #define __KVM_X86_OP(func) \
9624 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9625 #define KVM_X86_OP(func) \
9626 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9627 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9628 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9629 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9630 (void *)__static_call_return0);
9631 #include <asm/kvm-x86-ops.h>
9632 #undef __KVM_X86_OP
9633
9634 kvm_pmu_ops_update(ops->pmu_ops);
9635 }
9636
kvm_x86_check_processor_compatibility(void)9637 static int kvm_x86_check_processor_compatibility(void)
9638 {
9639 int cpu = smp_processor_id();
9640 struct cpuinfo_x86 *c = &cpu_data(cpu);
9641
9642 /*
9643 * Compatibility checks are done when loading KVM and when enabling
9644 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9645 * compatible, i.e. KVM should never perform a compatibility check on
9646 * an offline CPU.
9647 */
9648 WARN_ON(!cpu_online(cpu));
9649
9650 if (__cr4_reserved_bits(cpu_has, c) !=
9651 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9652 return -EIO;
9653
9654 return kvm_x86_call(check_processor_compatibility)();
9655 }
9656
kvm_x86_check_cpu_compat(void * ret)9657 static void kvm_x86_check_cpu_compat(void *ret)
9658 {
9659 *(int *)ret = kvm_x86_check_processor_compatibility();
9660 }
9661
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9662 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9663 {
9664 u64 host_pat;
9665 int r, cpu;
9666
9667 guard(mutex)(&vendor_module_lock);
9668
9669 if (kvm_x86_ops.enable_virtualization_cpu) {
9670 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9671 return -EEXIST;
9672 }
9673
9674 /*
9675 * KVM explicitly assumes that the guest has an FPU and
9676 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9677 * vCPU's FPU state as a fxregs_state struct.
9678 */
9679 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9680 pr_err("inadequate fpu\n");
9681 return -EOPNOTSUPP;
9682 }
9683
9684 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9685 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9686 return -EOPNOTSUPP;
9687 }
9688
9689 /*
9690 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9691 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9692 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9693 * with an exception. PAT[0] is set to WB on RESET and also by the
9694 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9695 */
9696 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9697 (host_pat & GENMASK(2, 0)) != 6) {
9698 pr_err("host PAT[0] is not WB\n");
9699 return -EIO;
9700 }
9701
9702 memset(&kvm_caps, 0, sizeof(kvm_caps));
9703
9704 x86_emulator_cache = kvm_alloc_emulator_cache();
9705 if (!x86_emulator_cache) {
9706 pr_err("failed to allocate cache for x86 emulator\n");
9707 return -ENOMEM;
9708 }
9709
9710 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9711 if (!user_return_msrs) {
9712 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9713 r = -ENOMEM;
9714 goto out_free_x86_emulator_cache;
9715 }
9716 kvm_nr_uret_msrs = 0;
9717
9718 r = kvm_mmu_vendor_module_init();
9719 if (r)
9720 goto out_free_percpu;
9721
9722 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9723 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9724
9725 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9726 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9727 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9728 }
9729
9730 rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9731
9732 if (boot_cpu_has(X86_FEATURE_XSAVES))
9733 rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9734
9735 kvm_init_pmu_capability(ops->pmu_ops);
9736
9737 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9738 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9739
9740 r = ops->hardware_setup();
9741 if (r != 0)
9742 goto out_mmu_exit;
9743
9744 kvm_ops_update(ops);
9745
9746 for_each_online_cpu(cpu) {
9747 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9748 if (r < 0)
9749 goto out_unwind_ops;
9750 }
9751
9752 /*
9753 * Point of no return! DO NOT add error paths below this point unless
9754 * absolutely necessary, as most operations from this point forward
9755 * require unwinding.
9756 */
9757 kvm_timer_init();
9758
9759 if (pi_inject_timer == -1)
9760 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9761 #ifdef CONFIG_X86_64
9762 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9763
9764 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9765 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9766 #endif
9767
9768 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9769
9770 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9771 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9772
9773 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9774 kvm_caps.supported_xss = 0;
9775
9776 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9777 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9778 #undef __kvm_cpu_cap_has
9779
9780 if (kvm_caps.has_tsc_control) {
9781 /*
9782 * Make sure the user can only configure tsc_khz values that
9783 * fit into a signed integer.
9784 * A min value is not calculated because it will always
9785 * be 1 on all machines.
9786 */
9787 u64 max = min(0x7fffffffULL,
9788 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9789 kvm_caps.max_guest_tsc_khz = max;
9790 }
9791 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9792 kvm_init_msr_lists();
9793 return 0;
9794
9795 out_unwind_ops:
9796 kvm_x86_ops.enable_virtualization_cpu = NULL;
9797 kvm_x86_call(hardware_unsetup)();
9798 out_mmu_exit:
9799 kvm_mmu_vendor_module_exit();
9800 out_free_percpu:
9801 free_percpu(user_return_msrs);
9802 out_free_x86_emulator_cache:
9803 kmem_cache_destroy(x86_emulator_cache);
9804 return r;
9805 }
9806 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9807
kvm_x86_vendor_exit(void)9808 void kvm_x86_vendor_exit(void)
9809 {
9810 kvm_unregister_perf_callbacks();
9811
9812 #ifdef CONFIG_X86_64
9813 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9814 clear_hv_tscchange_cb();
9815 #endif
9816 kvm_lapic_exit();
9817
9818 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9819 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9820 CPUFREQ_TRANSITION_NOTIFIER);
9821 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9822 }
9823 #ifdef CONFIG_X86_64
9824 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9825 irq_work_sync(&pvclock_irq_work);
9826 cancel_work_sync(&pvclock_gtod_work);
9827 #endif
9828 kvm_x86_call(hardware_unsetup)();
9829 kvm_mmu_vendor_module_exit();
9830 free_percpu(user_return_msrs);
9831 kmem_cache_destroy(x86_emulator_cache);
9832 #ifdef CONFIG_KVM_XEN
9833 static_key_deferred_flush(&kvm_xen_enabled);
9834 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9835 #endif
9836 mutex_lock(&vendor_module_lock);
9837 kvm_x86_ops.enable_virtualization_cpu = NULL;
9838 mutex_unlock(&vendor_module_lock);
9839 }
9840 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9841
9842 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9843 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9844 unsigned long clock_type)
9845 {
9846 struct kvm_clock_pairing clock_pairing;
9847 struct timespec64 ts;
9848 u64 cycle;
9849 int ret;
9850
9851 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9852 return -KVM_EOPNOTSUPP;
9853
9854 /*
9855 * When tsc is in permanent catchup mode guests won't be able to use
9856 * pvclock_read_retry loop to get consistent view of pvclock
9857 */
9858 if (vcpu->arch.tsc_always_catchup)
9859 return -KVM_EOPNOTSUPP;
9860
9861 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9862 return -KVM_EOPNOTSUPP;
9863
9864 clock_pairing.sec = ts.tv_sec;
9865 clock_pairing.nsec = ts.tv_nsec;
9866 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9867 clock_pairing.flags = 0;
9868 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9869
9870 ret = 0;
9871 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9872 sizeof(struct kvm_clock_pairing)))
9873 ret = -KVM_EFAULT;
9874
9875 return ret;
9876 }
9877 #endif
9878
9879 /*
9880 * kvm_pv_kick_cpu_op: Kick a vcpu.
9881 *
9882 * @apicid - apicid of vcpu to be kicked.
9883 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9884 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9885 {
9886 /*
9887 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9888 * common code, e.g. for tracing. Defer initialization to the compiler.
9889 */
9890 struct kvm_lapic_irq lapic_irq = {
9891 .delivery_mode = APIC_DM_REMRD,
9892 .dest_mode = APIC_DEST_PHYSICAL,
9893 .shorthand = APIC_DEST_NOSHORT,
9894 .dest_id = apicid,
9895 };
9896
9897 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9898 }
9899
kvm_apicv_activated(struct kvm * kvm)9900 bool kvm_apicv_activated(struct kvm *kvm)
9901 {
9902 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9903 }
9904 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9905
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9906 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9907 {
9908 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9909 ulong vcpu_reasons =
9910 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9911
9912 return (vm_reasons | vcpu_reasons) == 0;
9913 }
9914 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9915
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9916 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9917 enum kvm_apicv_inhibit reason, bool set)
9918 {
9919 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9920
9921 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9922
9923 if (set)
9924 __set_bit(reason, inhibits);
9925 else
9926 __clear_bit(reason, inhibits);
9927
9928 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9929 }
9930
kvm_apicv_init(struct kvm * kvm)9931 static void kvm_apicv_init(struct kvm *kvm)
9932 {
9933 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9934 APICV_INHIBIT_REASON_DISABLED;
9935
9936 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9937
9938 init_rwsem(&kvm->arch.apicv_update_lock);
9939 }
9940
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9941 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9942 {
9943 struct kvm_vcpu *target = NULL;
9944 struct kvm_apic_map *map;
9945
9946 vcpu->stat.directed_yield_attempted++;
9947
9948 if (single_task_running())
9949 goto no_yield;
9950
9951 rcu_read_lock();
9952 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9953
9954 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9955 target = map->phys_map[dest_id]->vcpu;
9956
9957 rcu_read_unlock();
9958
9959 if (!target || !READ_ONCE(target->ready))
9960 goto no_yield;
9961
9962 /* Ignore requests to yield to self */
9963 if (vcpu == target)
9964 goto no_yield;
9965
9966 if (kvm_vcpu_yield_to(target) <= 0)
9967 goto no_yield;
9968
9969 vcpu->stat.directed_yield_successful++;
9970
9971 no_yield:
9972 return;
9973 }
9974
complete_hypercall_exit(struct kvm_vcpu * vcpu)9975 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9976 {
9977 u64 ret = vcpu->run->hypercall.ret;
9978
9979 if (!is_64_bit_hypercall(vcpu))
9980 ret = (u32)ret;
9981 kvm_rax_write(vcpu, ret);
9982 ++vcpu->stat.hypercalls;
9983 return kvm_skip_emulated_instruction(vcpu);
9984 }
9985
__kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl)9986 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
9987 unsigned long a0, unsigned long a1,
9988 unsigned long a2, unsigned long a3,
9989 int op_64_bit, int cpl)
9990 {
9991 unsigned long ret;
9992
9993 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9994
9995 if (!op_64_bit) {
9996 nr &= 0xFFFFFFFF;
9997 a0 &= 0xFFFFFFFF;
9998 a1 &= 0xFFFFFFFF;
9999 a2 &= 0xFFFFFFFF;
10000 a3 &= 0xFFFFFFFF;
10001 }
10002
10003 if (cpl) {
10004 ret = -KVM_EPERM;
10005 goto out;
10006 }
10007
10008 ret = -KVM_ENOSYS;
10009
10010 switch (nr) {
10011 case KVM_HC_VAPIC_POLL_IRQ:
10012 ret = 0;
10013 break;
10014 case KVM_HC_KICK_CPU:
10015 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10016 break;
10017
10018 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10019 kvm_sched_yield(vcpu, a1);
10020 ret = 0;
10021 break;
10022 #ifdef CONFIG_X86_64
10023 case KVM_HC_CLOCK_PAIRING:
10024 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10025 break;
10026 #endif
10027 case KVM_HC_SEND_IPI:
10028 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10029 break;
10030
10031 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10032 break;
10033 case KVM_HC_SCHED_YIELD:
10034 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10035 break;
10036
10037 kvm_sched_yield(vcpu, a0);
10038 ret = 0;
10039 break;
10040 case KVM_HC_MAP_GPA_RANGE: {
10041 u64 gpa = a0, npages = a1, attrs = a2;
10042
10043 ret = -KVM_ENOSYS;
10044 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10045 break;
10046
10047 if (!PAGE_ALIGNED(gpa) || !npages ||
10048 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10049 ret = -KVM_EINVAL;
10050 break;
10051 }
10052
10053 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10054 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10055 vcpu->run->hypercall.args[0] = gpa;
10056 vcpu->run->hypercall.args[1] = npages;
10057 vcpu->run->hypercall.args[2] = attrs;
10058 vcpu->run->hypercall.flags = 0;
10059 if (op_64_bit)
10060 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10061
10062 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10063 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10064 /* stat is incremented on completion. */
10065 return 0;
10066 }
10067 default:
10068 ret = -KVM_ENOSYS;
10069 break;
10070 }
10071
10072 out:
10073 ++vcpu->stat.hypercalls;
10074 return ret;
10075 }
10076 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
10077
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10078 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10079 {
10080 unsigned long nr, a0, a1, a2, a3, ret;
10081 int op_64_bit;
10082 int cpl;
10083
10084 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10085 return kvm_xen_hypercall(vcpu);
10086
10087 if (kvm_hv_hypercall_enabled(vcpu))
10088 return kvm_hv_hypercall(vcpu);
10089
10090 nr = kvm_rax_read(vcpu);
10091 a0 = kvm_rbx_read(vcpu);
10092 a1 = kvm_rcx_read(vcpu);
10093 a2 = kvm_rdx_read(vcpu);
10094 a3 = kvm_rsi_read(vcpu);
10095 op_64_bit = is_64_bit_hypercall(vcpu);
10096 cpl = kvm_x86_call(get_cpl)(vcpu);
10097
10098 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
10099 if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
10100 /* MAP_GPA tosses the request to the user space. */
10101 return 0;
10102
10103 if (!op_64_bit)
10104 ret = (u32)ret;
10105 kvm_rax_write(vcpu, ret);
10106
10107 return kvm_skip_emulated_instruction(vcpu);
10108 }
10109 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10110
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10111 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10112 {
10113 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10114 char instruction[3];
10115 unsigned long rip = kvm_rip_read(vcpu);
10116
10117 /*
10118 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10119 * the pieces.
10120 */
10121 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10122 ctxt->exception.error_code_valid = false;
10123 ctxt->exception.vector = UD_VECTOR;
10124 ctxt->have_exception = true;
10125 return X86EMUL_PROPAGATE_FAULT;
10126 }
10127
10128 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10129
10130 return emulator_write_emulated(ctxt, rip, instruction, 3,
10131 &ctxt->exception);
10132 }
10133
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10134 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10135 {
10136 return vcpu->run->request_interrupt_window &&
10137 likely(!pic_in_kernel(vcpu->kvm));
10138 }
10139
10140 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10141 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10142 {
10143 struct kvm_run *kvm_run = vcpu->run;
10144
10145 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10146 kvm_run->cr8 = kvm_get_cr8(vcpu);
10147 kvm_run->apic_base = vcpu->arch.apic_base;
10148
10149 kvm_run->ready_for_interrupt_injection =
10150 pic_in_kernel(vcpu->kvm) ||
10151 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10152
10153 if (is_smm(vcpu))
10154 kvm_run->flags |= KVM_RUN_X86_SMM;
10155 if (is_guest_mode(vcpu))
10156 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10157 }
10158
update_cr8_intercept(struct kvm_vcpu * vcpu)10159 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10160 {
10161 int max_irr, tpr;
10162
10163 if (!kvm_x86_ops.update_cr8_intercept)
10164 return;
10165
10166 if (!lapic_in_kernel(vcpu))
10167 return;
10168
10169 if (vcpu->arch.apic->apicv_active)
10170 return;
10171
10172 if (!vcpu->arch.apic->vapic_addr)
10173 max_irr = kvm_lapic_find_highest_irr(vcpu);
10174 else
10175 max_irr = -1;
10176
10177 if (max_irr != -1)
10178 max_irr >>= 4;
10179
10180 tpr = kvm_lapic_get_cr8(vcpu);
10181
10182 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10183 }
10184
10185
kvm_check_nested_events(struct kvm_vcpu * vcpu)10186 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10187 {
10188 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10189 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10190 return 1;
10191 }
10192
10193 return kvm_x86_ops.nested_ops->check_events(vcpu);
10194 }
10195
kvm_inject_exception(struct kvm_vcpu * vcpu)10196 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10197 {
10198 /*
10199 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10200 * exceptions don't report error codes. The presence of an error code
10201 * is carried with the exception and only stripped when the exception
10202 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10203 * report an error code despite the CPU being in Real Mode.
10204 */
10205 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10206
10207 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10208 vcpu->arch.exception.has_error_code,
10209 vcpu->arch.exception.error_code,
10210 vcpu->arch.exception.injected);
10211
10212 kvm_x86_call(inject_exception)(vcpu);
10213 }
10214
10215 /*
10216 * Check for any event (interrupt or exception) that is ready to be injected,
10217 * and if there is at least one event, inject the event with the highest
10218 * priority. This handles both "pending" events, i.e. events that have never
10219 * been injected into the guest, and "injected" events, i.e. events that were
10220 * injected as part of a previous VM-Enter, but weren't successfully delivered
10221 * and need to be re-injected.
10222 *
10223 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10224 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10225 * be able to inject exceptions in the "middle" of an instruction, and so must
10226 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10227 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10228 * boundaries is necessary and correct.
10229 *
10230 * For simplicity, KVM uses a single path to inject all events (except events
10231 * that are injected directly from L1 to L2) and doesn't explicitly track
10232 * instruction boundaries for asynchronous events. However, because VM-Exits
10233 * that can occur during instruction execution typically result in KVM skipping
10234 * the instruction or injecting an exception, e.g. instruction and exception
10235 * intercepts, and because pending exceptions have higher priority than pending
10236 * interrupts, KVM still honors instruction boundaries in most scenarios.
10237 *
10238 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10239 * the instruction or inject an exception, then KVM can incorrecty inject a new
10240 * asynchronous event if the event became pending after the CPU fetched the
10241 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10242 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10243 * injected on the restarted instruction instead of being deferred until the
10244 * instruction completes.
10245 *
10246 * In practice, this virtualization hole is unlikely to be observed by the
10247 * guest, and even less likely to cause functional problems. To detect the
10248 * hole, the guest would have to trigger an event on a side effect of an early
10249 * phase of instruction execution, e.g. on the instruction fetch from memory.
10250 * And for it to be a functional problem, the guest would need to depend on the
10251 * ordering between that side effect, the instruction completing, _and_ the
10252 * delivery of the asynchronous event.
10253 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10254 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10255 bool *req_immediate_exit)
10256 {
10257 bool can_inject;
10258 int r;
10259
10260 /*
10261 * Process nested events first, as nested VM-Exit supersedes event
10262 * re-injection. If there's an event queued for re-injection, it will
10263 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10264 */
10265 if (is_guest_mode(vcpu))
10266 r = kvm_check_nested_events(vcpu);
10267 else
10268 r = 0;
10269
10270 /*
10271 * Re-inject exceptions and events *especially* if immediate entry+exit
10272 * to/from L2 is needed, as any event that has already been injected
10273 * into L2 needs to complete its lifecycle before injecting a new event.
10274 *
10275 * Don't re-inject an NMI or interrupt if there is a pending exception.
10276 * This collision arises if an exception occurred while vectoring the
10277 * injected event, KVM intercepted said exception, and KVM ultimately
10278 * determined the fault belongs to the guest and queues the exception
10279 * for injection back into the guest.
10280 *
10281 * "Injected" interrupts can also collide with pending exceptions if
10282 * userspace ignores the "ready for injection" flag and blindly queues
10283 * an interrupt. In that case, prioritizing the exception is correct,
10284 * as the exception "occurred" before the exit to userspace. Trap-like
10285 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10286 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10287 * priority, they're only generated (pended) during instruction
10288 * execution, and interrupts are recognized at instruction boundaries.
10289 * Thus a pending fault-like exception means the fault occurred on the
10290 * *previous* instruction and must be serviced prior to recognizing any
10291 * new events in order to fully complete the previous instruction.
10292 */
10293 if (vcpu->arch.exception.injected)
10294 kvm_inject_exception(vcpu);
10295 else if (kvm_is_exception_pending(vcpu))
10296 ; /* see above */
10297 else if (vcpu->arch.nmi_injected)
10298 kvm_x86_call(inject_nmi)(vcpu);
10299 else if (vcpu->arch.interrupt.injected)
10300 kvm_x86_call(inject_irq)(vcpu, true);
10301
10302 /*
10303 * Exceptions that morph to VM-Exits are handled above, and pending
10304 * exceptions on top of injected exceptions that do not VM-Exit should
10305 * either morph to #DF or, sadly, override the injected exception.
10306 */
10307 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10308 vcpu->arch.exception.pending);
10309
10310 /*
10311 * Bail if immediate entry+exit to/from the guest is needed to complete
10312 * nested VM-Enter or event re-injection so that a different pending
10313 * event can be serviced (or if KVM needs to exit to userspace).
10314 *
10315 * Otherwise, continue processing events even if VM-Exit occurred. The
10316 * VM-Exit will have cleared exceptions that were meant for L2, but
10317 * there may now be events that can be injected into L1.
10318 */
10319 if (r < 0)
10320 goto out;
10321
10322 /*
10323 * A pending exception VM-Exit should either result in nested VM-Exit
10324 * or force an immediate re-entry and exit to/from L2, and exception
10325 * VM-Exits cannot be injected (flag should _never_ be set).
10326 */
10327 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10328 vcpu->arch.exception_vmexit.pending);
10329
10330 /*
10331 * New events, other than exceptions, cannot be injected if KVM needs
10332 * to re-inject a previous event. See above comments on re-injecting
10333 * for why pending exceptions get priority.
10334 */
10335 can_inject = !kvm_event_needs_reinjection(vcpu);
10336
10337 if (vcpu->arch.exception.pending) {
10338 /*
10339 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10340 * value pushed on the stack. Trap-like exception and all #DBs
10341 * leave RF as-is (KVM follows Intel's behavior in this regard;
10342 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10343 *
10344 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10345 * describe the behavior of General Detect #DBs, which are
10346 * fault-like. They do _not_ set RF, a la code breakpoints.
10347 */
10348 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10349 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10350 X86_EFLAGS_RF);
10351
10352 if (vcpu->arch.exception.vector == DB_VECTOR) {
10353 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10354 if (vcpu->arch.dr7 & DR7_GD) {
10355 vcpu->arch.dr7 &= ~DR7_GD;
10356 kvm_update_dr7(vcpu);
10357 }
10358 }
10359
10360 kvm_inject_exception(vcpu);
10361
10362 vcpu->arch.exception.pending = false;
10363 vcpu->arch.exception.injected = true;
10364
10365 can_inject = false;
10366 }
10367
10368 /* Don't inject interrupts if the user asked to avoid doing so */
10369 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10370 return 0;
10371
10372 /*
10373 * Finally, inject interrupt events. If an event cannot be injected
10374 * due to architectural conditions (e.g. IF=0) a window-open exit
10375 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10376 * and can architecturally be injected, but we cannot do it right now:
10377 * an interrupt could have arrived just now and we have to inject it
10378 * as a vmexit, or there could already an event in the queue, which is
10379 * indicated by can_inject. In that case we request an immediate exit
10380 * in order to make progress and get back here for another iteration.
10381 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10382 */
10383 #ifdef CONFIG_KVM_SMM
10384 if (vcpu->arch.smi_pending) {
10385 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10386 -EBUSY;
10387 if (r < 0)
10388 goto out;
10389 if (r) {
10390 vcpu->arch.smi_pending = false;
10391 ++vcpu->arch.smi_count;
10392 enter_smm(vcpu);
10393 can_inject = false;
10394 } else
10395 kvm_x86_call(enable_smi_window)(vcpu);
10396 }
10397 #endif
10398
10399 if (vcpu->arch.nmi_pending) {
10400 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10401 -EBUSY;
10402 if (r < 0)
10403 goto out;
10404 if (r) {
10405 --vcpu->arch.nmi_pending;
10406 vcpu->arch.nmi_injected = true;
10407 kvm_x86_call(inject_nmi)(vcpu);
10408 can_inject = false;
10409 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10410 }
10411 if (vcpu->arch.nmi_pending)
10412 kvm_x86_call(enable_nmi_window)(vcpu);
10413 }
10414
10415 if (kvm_cpu_has_injectable_intr(vcpu)) {
10416 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10417 -EBUSY;
10418 if (r < 0)
10419 goto out;
10420 if (r) {
10421 int irq = kvm_cpu_get_interrupt(vcpu);
10422
10423 if (!WARN_ON_ONCE(irq == -1)) {
10424 kvm_queue_interrupt(vcpu, irq, false);
10425 kvm_x86_call(inject_irq)(vcpu, false);
10426 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10427 }
10428 }
10429 if (kvm_cpu_has_injectable_intr(vcpu))
10430 kvm_x86_call(enable_irq_window)(vcpu);
10431 }
10432
10433 if (is_guest_mode(vcpu) &&
10434 kvm_x86_ops.nested_ops->has_events &&
10435 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10436 *req_immediate_exit = true;
10437
10438 /*
10439 * KVM must never queue a new exception while injecting an event; KVM
10440 * is done emulating and should only propagate the to-be-injected event
10441 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10442 * infinite loop as KVM will bail from VM-Enter to inject the pending
10443 * exception and start the cycle all over.
10444 *
10445 * Exempt triple faults as they have special handling and won't put the
10446 * vCPU into an infinite loop. Triple fault can be queued when running
10447 * VMX without unrestricted guest, as that requires KVM to emulate Real
10448 * Mode events (see kvm_inject_realmode_interrupt()).
10449 */
10450 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10451 vcpu->arch.exception_vmexit.pending);
10452 return 0;
10453
10454 out:
10455 if (r == -EBUSY) {
10456 *req_immediate_exit = true;
10457 r = 0;
10458 }
10459 return r;
10460 }
10461
process_nmi(struct kvm_vcpu * vcpu)10462 static void process_nmi(struct kvm_vcpu *vcpu)
10463 {
10464 unsigned int limit;
10465
10466 /*
10467 * x86 is limited to one NMI pending, but because KVM can't react to
10468 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10469 * scheduled out, KVM needs to play nice with two queued NMIs showing
10470 * up at the same time. To handle this scenario, allow two NMIs to be
10471 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10472 * waiting for a previous NMI injection to complete (which effectively
10473 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10474 * will request an NMI window to handle the second NMI.
10475 */
10476 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10477 limit = 1;
10478 else
10479 limit = 2;
10480
10481 /*
10482 * Adjust the limit to account for pending virtual NMIs, which aren't
10483 * tracked in vcpu->arch.nmi_pending.
10484 */
10485 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10486 limit--;
10487
10488 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10489 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10490
10491 if (vcpu->arch.nmi_pending &&
10492 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10493 vcpu->arch.nmi_pending--;
10494
10495 if (vcpu->arch.nmi_pending)
10496 kvm_make_request(KVM_REQ_EVENT, vcpu);
10497 }
10498
10499 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10500 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10501 {
10502 return vcpu->arch.nmi_pending +
10503 kvm_x86_call(is_vnmi_pending)(vcpu);
10504 }
10505
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10506 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10507 unsigned long *vcpu_bitmap)
10508 {
10509 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10510 }
10511
kvm_make_scan_ioapic_request(struct kvm * kvm)10512 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10513 {
10514 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10515 }
10516
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10517 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10518 {
10519 struct kvm_lapic *apic = vcpu->arch.apic;
10520 bool activate;
10521
10522 if (!lapic_in_kernel(vcpu))
10523 return;
10524
10525 down_read(&vcpu->kvm->arch.apicv_update_lock);
10526 preempt_disable();
10527
10528 /* Do not activate APICV when APIC is disabled */
10529 activate = kvm_vcpu_apicv_activated(vcpu) &&
10530 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10531
10532 if (apic->apicv_active == activate)
10533 goto out;
10534
10535 apic->apicv_active = activate;
10536 kvm_apic_update_apicv(vcpu);
10537 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10538
10539 /*
10540 * When APICv gets disabled, we may still have injected interrupts
10541 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10542 * still active when the interrupt got accepted. Make sure
10543 * kvm_check_and_inject_events() is called to check for that.
10544 */
10545 if (!apic->apicv_active)
10546 kvm_make_request(KVM_REQ_EVENT, vcpu);
10547
10548 out:
10549 preempt_enable();
10550 up_read(&vcpu->kvm->arch.apicv_update_lock);
10551 }
10552 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10553
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10554 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10555 {
10556 if (!lapic_in_kernel(vcpu))
10557 return;
10558
10559 /*
10560 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10561 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10562 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10563 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10564 * this case so that KVM can use the AVIC doorbell to inject interrupts
10565 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10566 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10567 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10568 * access page is sticky.
10569 */
10570 if (apic_x2apic_mode(vcpu->arch.apic) &&
10571 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10572 kvm_inhibit_apic_access_page(vcpu);
10573
10574 __kvm_vcpu_update_apicv(vcpu);
10575 }
10576
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10577 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10578 enum kvm_apicv_inhibit reason, bool set)
10579 {
10580 unsigned long old, new;
10581
10582 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10583
10584 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10585 return;
10586
10587 old = new = kvm->arch.apicv_inhibit_reasons;
10588
10589 set_or_clear_apicv_inhibit(&new, reason, set);
10590
10591 if (!!old != !!new) {
10592 /*
10593 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10594 * false positives in the sanity check WARN in vcpu_enter_guest().
10595 * This task will wait for all vCPUs to ack the kick IRQ before
10596 * updating apicv_inhibit_reasons, and all other vCPUs will
10597 * block on acquiring apicv_update_lock so that vCPUs can't
10598 * redo vcpu_enter_guest() without seeing the new inhibit state.
10599 *
10600 * Note, holding apicv_update_lock and taking it in the read
10601 * side (handling the request) also prevents other vCPUs from
10602 * servicing the request with a stale apicv_inhibit_reasons.
10603 */
10604 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10605 kvm->arch.apicv_inhibit_reasons = new;
10606 if (new) {
10607 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10608 int idx = srcu_read_lock(&kvm->srcu);
10609
10610 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10611 srcu_read_unlock(&kvm->srcu, idx);
10612 }
10613 } else {
10614 kvm->arch.apicv_inhibit_reasons = new;
10615 }
10616 }
10617
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10618 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10619 enum kvm_apicv_inhibit reason, bool set)
10620 {
10621 if (!enable_apicv)
10622 return;
10623
10624 down_write(&kvm->arch.apicv_update_lock);
10625 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10626 up_write(&kvm->arch.apicv_update_lock);
10627 }
10628 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10629
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10630 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10631 {
10632 if (!kvm_apic_present(vcpu))
10633 return;
10634
10635 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10636
10637 kvm_x86_call(sync_pir_to_irr)(vcpu);
10638
10639 if (irqchip_split(vcpu->kvm))
10640 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10641 else if (ioapic_in_kernel(vcpu->kvm))
10642 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10643
10644 if (is_guest_mode(vcpu))
10645 vcpu->arch.load_eoi_exitmap_pending = true;
10646 else
10647 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10648 }
10649
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10650 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10651 {
10652 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10653 return;
10654
10655 #ifdef CONFIG_KVM_HYPERV
10656 if (to_hv_vcpu(vcpu)) {
10657 u64 eoi_exit_bitmap[4];
10658
10659 bitmap_or((ulong *)eoi_exit_bitmap,
10660 vcpu->arch.ioapic_handled_vectors,
10661 to_hv_synic(vcpu)->vec_bitmap, 256);
10662 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10663 return;
10664 }
10665 #endif
10666 kvm_x86_call(load_eoi_exitmap)(
10667 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10668 }
10669
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10670 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10671 {
10672 kvm_x86_call(guest_memory_reclaimed)(kvm);
10673 }
10674
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10675 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10676 {
10677 if (!lapic_in_kernel(vcpu))
10678 return;
10679
10680 kvm_x86_call(set_apic_access_page_addr)(vcpu);
10681 }
10682
10683 /*
10684 * Called within kvm->srcu read side.
10685 * Returns 1 to let vcpu_run() continue the guest execution loop without
10686 * exiting to the userspace. Otherwise, the value will be returned to the
10687 * userspace.
10688 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10689 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10690 {
10691 int r;
10692 bool req_int_win =
10693 dm_request_for_irq_injection(vcpu) &&
10694 kvm_cpu_accept_dm_intr(vcpu);
10695 fastpath_t exit_fastpath;
10696
10697 bool req_immediate_exit = false;
10698
10699 if (kvm_request_pending(vcpu)) {
10700 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10701 r = -EIO;
10702 goto out;
10703 }
10704
10705 if (kvm_dirty_ring_check_request(vcpu)) {
10706 r = 0;
10707 goto out;
10708 }
10709
10710 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10711 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10712 r = 0;
10713 goto out;
10714 }
10715 }
10716 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10717 kvm_mmu_free_obsolete_roots(vcpu);
10718 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10719 __kvm_migrate_timers(vcpu);
10720 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10721 kvm_update_masterclock(vcpu->kvm);
10722 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10723 kvm_gen_kvmclock_update(vcpu);
10724 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10725 r = kvm_guest_time_update(vcpu);
10726 if (unlikely(r))
10727 goto out;
10728 }
10729 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10730 kvm_mmu_sync_roots(vcpu);
10731 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10732 kvm_mmu_load_pgd(vcpu);
10733
10734 /*
10735 * Note, the order matters here, as flushing "all" TLB entries
10736 * also flushes the "current" TLB entries, i.e. servicing the
10737 * flush "all" will clear any request to flush "current".
10738 */
10739 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10740 kvm_vcpu_flush_tlb_all(vcpu);
10741
10742 kvm_service_local_tlb_flush_requests(vcpu);
10743
10744 /*
10745 * Fall back to a "full" guest flush if Hyper-V's precise
10746 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10747 * the flushes are considered "remote" and not "local" because
10748 * the requests can be initiated from other vCPUs.
10749 */
10750 #ifdef CONFIG_KVM_HYPERV
10751 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10752 kvm_hv_vcpu_flush_tlb(vcpu))
10753 kvm_vcpu_flush_tlb_guest(vcpu);
10754 #endif
10755
10756 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10757 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10758 r = 0;
10759 goto out;
10760 }
10761 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10762 if (is_guest_mode(vcpu))
10763 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10764
10765 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10766 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10767 vcpu->mmio_needed = 0;
10768 r = 0;
10769 goto out;
10770 }
10771 }
10772 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10773 /* Page is swapped out. Do synthetic halt */
10774 vcpu->arch.apf.halted = true;
10775 r = 1;
10776 goto out;
10777 }
10778 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10779 record_steal_time(vcpu);
10780 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10781 kvm_pmu_handle_event(vcpu);
10782 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10783 kvm_pmu_deliver_pmi(vcpu);
10784 #ifdef CONFIG_KVM_SMM
10785 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10786 process_smi(vcpu);
10787 #endif
10788 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10789 process_nmi(vcpu);
10790 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10791 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10792 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10793 vcpu->arch.ioapic_handled_vectors)) {
10794 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10795 vcpu->run->eoi.vector =
10796 vcpu->arch.pending_ioapic_eoi;
10797 r = 0;
10798 goto out;
10799 }
10800 }
10801 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10802 vcpu_scan_ioapic(vcpu);
10803 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10804 vcpu_load_eoi_exitmap(vcpu);
10805 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10806 kvm_vcpu_reload_apic_access_page(vcpu);
10807 #ifdef CONFIG_KVM_HYPERV
10808 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10809 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10810 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10811 vcpu->run->system_event.ndata = 0;
10812 r = 0;
10813 goto out;
10814 }
10815 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10816 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10817 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10818 vcpu->run->system_event.ndata = 0;
10819 r = 0;
10820 goto out;
10821 }
10822 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10823 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10824
10825 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10826 vcpu->run->hyperv = hv_vcpu->exit;
10827 r = 0;
10828 goto out;
10829 }
10830
10831 /*
10832 * KVM_REQ_HV_STIMER has to be processed after
10833 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10834 * depend on the guest clock being up-to-date
10835 */
10836 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10837 kvm_hv_process_stimers(vcpu);
10838 #endif
10839 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10840 kvm_vcpu_update_apicv(vcpu);
10841 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10842 kvm_check_async_pf_completion(vcpu);
10843 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10844 kvm_x86_call(msr_filter_changed)(vcpu);
10845
10846 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10847 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10848
10849 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10850 kvm_vcpu_reset(vcpu, true);
10851 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10852 r = 1;
10853 goto out;
10854 }
10855 }
10856 }
10857
10858 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10859 kvm_xen_has_interrupt(vcpu)) {
10860 ++vcpu->stat.req_event;
10861 r = kvm_apic_accept_events(vcpu);
10862 if (r < 0) {
10863 r = 0;
10864 goto out;
10865 }
10866 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10867 r = 1;
10868 goto out;
10869 }
10870
10871 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10872 if (r < 0) {
10873 r = 0;
10874 goto out;
10875 }
10876 if (req_int_win)
10877 kvm_x86_call(enable_irq_window)(vcpu);
10878
10879 if (kvm_lapic_enabled(vcpu)) {
10880 update_cr8_intercept(vcpu);
10881 kvm_lapic_sync_to_vapic(vcpu);
10882 }
10883 }
10884
10885 r = kvm_mmu_reload(vcpu);
10886 if (unlikely(r)) {
10887 goto cancel_injection;
10888 }
10889
10890 preempt_disable();
10891
10892 kvm_x86_call(prepare_switch_to_guest)(vcpu);
10893
10894 /*
10895 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10896 * IPI are then delayed after guest entry, which ensures that they
10897 * result in virtual interrupt delivery.
10898 */
10899 local_irq_disable();
10900
10901 /* Store vcpu->apicv_active before vcpu->mode. */
10902 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10903
10904 kvm_vcpu_srcu_read_unlock(vcpu);
10905
10906 /*
10907 * 1) We should set ->mode before checking ->requests. Please see
10908 * the comment in kvm_vcpu_exiting_guest_mode().
10909 *
10910 * 2) For APICv, we should set ->mode before checking PID.ON. This
10911 * pairs with the memory barrier implicit in pi_test_and_set_on
10912 * (see vmx_deliver_posted_interrupt).
10913 *
10914 * 3) This also orders the write to mode from any reads to the page
10915 * tables done while the VCPU is running. Please see the comment
10916 * in kvm_flush_remote_tlbs.
10917 */
10918 smp_mb__after_srcu_read_unlock();
10919
10920 /*
10921 * Process pending posted interrupts to handle the case where the
10922 * notification IRQ arrived in the host, or was never sent (because the
10923 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10924 * status, KVM doesn't update assigned devices when APICv is inhibited,
10925 * i.e. they can post interrupts even if APICv is temporarily disabled.
10926 */
10927 if (kvm_lapic_enabled(vcpu))
10928 kvm_x86_call(sync_pir_to_irr)(vcpu);
10929
10930 if (kvm_vcpu_exit_request(vcpu)) {
10931 vcpu->mode = OUTSIDE_GUEST_MODE;
10932 smp_wmb();
10933 local_irq_enable();
10934 preempt_enable();
10935 kvm_vcpu_srcu_read_lock(vcpu);
10936 r = 1;
10937 goto cancel_injection;
10938 }
10939
10940 if (req_immediate_exit)
10941 kvm_make_request(KVM_REQ_EVENT, vcpu);
10942
10943 fpregs_assert_state_consistent();
10944 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10945 switch_fpu_return();
10946
10947 if (vcpu->arch.guest_fpu.xfd_err)
10948 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10949
10950 if (unlikely(vcpu->arch.switch_db_regs)) {
10951 set_debugreg(0, 7);
10952 set_debugreg(vcpu->arch.eff_db[0], 0);
10953 set_debugreg(vcpu->arch.eff_db[1], 1);
10954 set_debugreg(vcpu->arch.eff_db[2], 2);
10955 set_debugreg(vcpu->arch.eff_db[3], 3);
10956 } else if (unlikely(hw_breakpoint_active())) {
10957 set_debugreg(0, 7);
10958 }
10959
10960 guest_timing_enter_irqoff();
10961
10962 for (;;) {
10963 /*
10964 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10965 * update must kick and wait for all vCPUs before toggling the
10966 * per-VM state, and responding vCPUs must wait for the update
10967 * to complete before servicing KVM_REQ_APICV_UPDATE.
10968 */
10969 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10970 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10971
10972 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
10973 req_immediate_exit);
10974 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10975 break;
10976
10977 if (kvm_lapic_enabled(vcpu))
10978 kvm_x86_call(sync_pir_to_irr)(vcpu);
10979
10980 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10981 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10982 break;
10983 }
10984
10985 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10986 ++vcpu->stat.exits;
10987 }
10988
10989 /*
10990 * Do this here before restoring debug registers on the host. And
10991 * since we do this before handling the vmexit, a DR access vmexit
10992 * can (a) read the correct value of the debug registers, (b) set
10993 * KVM_DEBUGREG_WONT_EXIT again.
10994 */
10995 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10996 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10997 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
10998 kvm_update_dr0123(vcpu);
10999 kvm_update_dr7(vcpu);
11000 }
11001
11002 /*
11003 * If the guest has used debug registers, at least dr7
11004 * will be disabled while returning to the host.
11005 * If we don't have active breakpoints in the host, we don't
11006 * care about the messed up debug address registers. But if
11007 * we have some of them active, restore the old state.
11008 */
11009 if (hw_breakpoint_active())
11010 hw_breakpoint_restore();
11011
11012 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11013 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11014
11015 vcpu->mode = OUTSIDE_GUEST_MODE;
11016 smp_wmb();
11017
11018 /*
11019 * Sync xfd before calling handle_exit_irqoff() which may
11020 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11021 * in #NM irqoff handler).
11022 */
11023 if (vcpu->arch.xfd_no_write_intercept)
11024 fpu_sync_guest_vmexit_xfd_state();
11025
11026 kvm_x86_call(handle_exit_irqoff)(vcpu);
11027
11028 if (vcpu->arch.guest_fpu.xfd_err)
11029 wrmsrl(MSR_IA32_XFD_ERR, 0);
11030
11031 /*
11032 * Consume any pending interrupts, including the possible source of
11033 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11034 * An instruction is required after local_irq_enable() to fully unblock
11035 * interrupts on processors that implement an interrupt shadow, the
11036 * stat.exits increment will do nicely.
11037 */
11038 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11039 local_irq_enable();
11040 ++vcpu->stat.exits;
11041 local_irq_disable();
11042 kvm_after_interrupt(vcpu);
11043
11044 /*
11045 * Wait until after servicing IRQs to account guest time so that any
11046 * ticks that occurred while running the guest are properly accounted
11047 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11048 * of accounting via context tracking, but the loss of accuracy is
11049 * acceptable for all known use cases.
11050 */
11051 guest_timing_exit_irqoff();
11052
11053 local_irq_enable();
11054 preempt_enable();
11055
11056 kvm_vcpu_srcu_read_lock(vcpu);
11057
11058 /*
11059 * Call this to ensure WC buffers in guest are evicted after each VM
11060 * Exit, so that the evicted WC writes can be snooped across all cpus
11061 */
11062 smp_mb__after_srcu_read_lock();
11063
11064 /*
11065 * Profile KVM exit RIPs:
11066 */
11067 if (unlikely(prof_on == KVM_PROFILING)) {
11068 unsigned long rip = kvm_rip_read(vcpu);
11069 profile_hit(KVM_PROFILING, (void *)rip);
11070 }
11071
11072 if (unlikely(vcpu->arch.tsc_always_catchup))
11073 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11074
11075 if (vcpu->arch.apic_attention)
11076 kvm_lapic_sync_from_vapic(vcpu);
11077
11078 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11079 return 0;
11080
11081 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11082 return r;
11083
11084 cancel_injection:
11085 if (req_immediate_exit)
11086 kvm_make_request(KVM_REQ_EVENT, vcpu);
11087 kvm_x86_call(cancel_injection)(vcpu);
11088 if (unlikely(vcpu->arch.apic_attention))
11089 kvm_lapic_sync_from_vapic(vcpu);
11090 out:
11091 return r;
11092 }
11093
kvm_vcpu_running(struct kvm_vcpu * vcpu)11094 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11095 {
11096 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11097 !vcpu->arch.apf.halted);
11098 }
11099
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11100 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11101 {
11102 if (!list_empty_careful(&vcpu->async_pf.done))
11103 return true;
11104
11105 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11106 kvm_apic_init_sipi_allowed(vcpu))
11107 return true;
11108
11109 if (vcpu->arch.pv.pv_unhalted)
11110 return true;
11111
11112 if (kvm_is_exception_pending(vcpu))
11113 return true;
11114
11115 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11116 (vcpu->arch.nmi_pending &&
11117 kvm_x86_call(nmi_allowed)(vcpu, false)))
11118 return true;
11119
11120 #ifdef CONFIG_KVM_SMM
11121 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11122 (vcpu->arch.smi_pending &&
11123 kvm_x86_call(smi_allowed)(vcpu, false)))
11124 return true;
11125 #endif
11126
11127 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11128 return true;
11129
11130 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11131 return true;
11132
11133 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11134 return true;
11135
11136 if (kvm_hv_has_stimer_pending(vcpu))
11137 return true;
11138
11139 if (is_guest_mode(vcpu) &&
11140 kvm_x86_ops.nested_ops->has_events &&
11141 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11142 return true;
11143
11144 if (kvm_xen_has_pending_events(vcpu))
11145 return true;
11146
11147 return false;
11148 }
11149
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11150 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11151 {
11152 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11153 }
11154
11155 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11156 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11157 {
11158 bool hv_timer;
11159
11160 if (!kvm_arch_vcpu_runnable(vcpu)) {
11161 /*
11162 * Switch to the software timer before halt-polling/blocking as
11163 * the guest's timer may be a break event for the vCPU, and the
11164 * hypervisor timer runs only when the CPU is in guest mode.
11165 * Switch before halt-polling so that KVM recognizes an expired
11166 * timer before blocking.
11167 */
11168 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11169 if (hv_timer)
11170 kvm_lapic_switch_to_sw_timer(vcpu);
11171
11172 kvm_vcpu_srcu_read_unlock(vcpu);
11173 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11174 kvm_vcpu_halt(vcpu);
11175 else
11176 kvm_vcpu_block(vcpu);
11177 kvm_vcpu_srcu_read_lock(vcpu);
11178
11179 if (hv_timer)
11180 kvm_lapic_switch_to_hv_timer(vcpu);
11181
11182 /*
11183 * If the vCPU is not runnable, a signal or another host event
11184 * of some kind is pending; service it without changing the
11185 * vCPU's activity state.
11186 */
11187 if (!kvm_arch_vcpu_runnable(vcpu))
11188 return 1;
11189 }
11190
11191 /*
11192 * Evaluate nested events before exiting the halted state. This allows
11193 * the halt state to be recorded properly in the VMCS12's activity
11194 * state field (AMD does not have a similar field and a VM-Exit always
11195 * causes a spurious wakeup from HLT).
11196 */
11197 if (is_guest_mode(vcpu)) {
11198 int r = kvm_check_nested_events(vcpu);
11199
11200 WARN_ON_ONCE(r == -EBUSY);
11201 if (r < 0)
11202 return 0;
11203 }
11204
11205 if (kvm_apic_accept_events(vcpu) < 0)
11206 return 0;
11207 switch(vcpu->arch.mp_state) {
11208 case KVM_MP_STATE_HALTED:
11209 case KVM_MP_STATE_AP_RESET_HOLD:
11210 vcpu->arch.pv.pv_unhalted = false;
11211 vcpu->arch.mp_state =
11212 KVM_MP_STATE_RUNNABLE;
11213 fallthrough;
11214 case KVM_MP_STATE_RUNNABLE:
11215 vcpu->arch.apf.halted = false;
11216 break;
11217 case KVM_MP_STATE_INIT_RECEIVED:
11218 break;
11219 default:
11220 WARN_ON_ONCE(1);
11221 break;
11222 }
11223 return 1;
11224 }
11225
11226 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11227 static int vcpu_run(struct kvm_vcpu *vcpu)
11228 {
11229 int r;
11230
11231 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11232
11233 for (;;) {
11234 /*
11235 * If another guest vCPU requests a PV TLB flush in the middle
11236 * of instruction emulation, the rest of the emulation could
11237 * use a stale page translation. Assume that any code after
11238 * this point can start executing an instruction.
11239 */
11240 vcpu->arch.at_instruction_boundary = false;
11241 if (kvm_vcpu_running(vcpu)) {
11242 r = vcpu_enter_guest(vcpu);
11243 } else {
11244 r = vcpu_block(vcpu);
11245 }
11246
11247 if (r <= 0)
11248 break;
11249
11250 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11251 if (kvm_xen_has_pending_events(vcpu))
11252 kvm_xen_inject_pending_events(vcpu);
11253
11254 if (kvm_cpu_has_pending_timer(vcpu))
11255 kvm_inject_pending_timer_irqs(vcpu);
11256
11257 if (dm_request_for_irq_injection(vcpu) &&
11258 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11259 r = 0;
11260 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11261 ++vcpu->stat.request_irq_exits;
11262 break;
11263 }
11264
11265 if (__xfer_to_guest_mode_work_pending()) {
11266 kvm_vcpu_srcu_read_unlock(vcpu);
11267 r = xfer_to_guest_mode_handle_work(vcpu);
11268 kvm_vcpu_srcu_read_lock(vcpu);
11269 if (r)
11270 return r;
11271 }
11272 }
11273
11274 return r;
11275 }
11276
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11277 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11278 {
11279 /*
11280 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11281 * local APIC is in-kernel, the run loop will detect the non-runnable
11282 * state and halt the vCPU. Exit to userspace if the local APIC is
11283 * managed by userspace, in which case userspace is responsible for
11284 * handling wake events.
11285 */
11286 ++vcpu->stat.halt_exits;
11287 if (lapic_in_kernel(vcpu)) {
11288 if (kvm_vcpu_has_events(vcpu))
11289 vcpu->arch.pv.pv_unhalted = false;
11290 else
11291 vcpu->arch.mp_state = state;
11292 return 1;
11293 } else {
11294 vcpu->run->exit_reason = reason;
11295 return 0;
11296 }
11297 }
11298
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11299 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11300 {
11301 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11302 }
11303 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11304
kvm_emulate_halt(struct kvm_vcpu * vcpu)11305 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11306 {
11307 int ret = kvm_skip_emulated_instruction(vcpu);
11308 /*
11309 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11310 * KVM_EXIT_DEBUG here.
11311 */
11312 return kvm_emulate_halt_noskip(vcpu) && ret;
11313 }
11314 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11315
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11316 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11317 {
11318 int ret;
11319
11320 kvm_vcpu_srcu_read_lock(vcpu);
11321 ret = kvm_emulate_halt(vcpu);
11322 kvm_vcpu_srcu_read_unlock(vcpu);
11323
11324 if (!ret)
11325 return EXIT_FASTPATH_EXIT_USERSPACE;
11326
11327 if (kvm_vcpu_running(vcpu))
11328 return EXIT_FASTPATH_REENTER_GUEST;
11329
11330 return EXIT_FASTPATH_EXIT_HANDLED;
11331 }
11332 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11333
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11334 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11335 {
11336 int ret = kvm_skip_emulated_instruction(vcpu);
11337
11338 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11339 KVM_EXIT_AP_RESET_HOLD) && ret;
11340 }
11341 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11342
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11343 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11344 {
11345 return kvm_vcpu_apicv_active(vcpu) &&
11346 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11347 }
11348
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11349 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11350 {
11351 return vcpu->arch.preempted_in_kernel;
11352 }
11353
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11354 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11355 {
11356 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11357 return true;
11358
11359 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11360 #ifdef CONFIG_KVM_SMM
11361 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11362 #endif
11363 kvm_test_request(KVM_REQ_EVENT, vcpu))
11364 return true;
11365
11366 return kvm_arch_dy_has_pending_interrupt(vcpu);
11367 }
11368
complete_emulated_io(struct kvm_vcpu * vcpu)11369 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11370 {
11371 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11372 }
11373
complete_emulated_pio(struct kvm_vcpu * vcpu)11374 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11375 {
11376 BUG_ON(!vcpu->arch.pio.count);
11377
11378 return complete_emulated_io(vcpu);
11379 }
11380
11381 /*
11382 * Implements the following, as a state machine:
11383 *
11384 * read:
11385 * for each fragment
11386 * for each mmio piece in the fragment
11387 * write gpa, len
11388 * exit
11389 * copy data
11390 * execute insn
11391 *
11392 * write:
11393 * for each fragment
11394 * for each mmio piece in the fragment
11395 * write gpa, len
11396 * copy data
11397 * exit
11398 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11399 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11400 {
11401 struct kvm_run *run = vcpu->run;
11402 struct kvm_mmio_fragment *frag;
11403 unsigned len;
11404
11405 BUG_ON(!vcpu->mmio_needed);
11406
11407 /* Complete previous fragment */
11408 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11409 len = min(8u, frag->len);
11410 if (!vcpu->mmio_is_write)
11411 memcpy(frag->data, run->mmio.data, len);
11412
11413 if (frag->len <= 8) {
11414 /* Switch to the next fragment. */
11415 frag++;
11416 vcpu->mmio_cur_fragment++;
11417 } else {
11418 /* Go forward to the next mmio piece. */
11419 frag->data += len;
11420 frag->gpa += len;
11421 frag->len -= len;
11422 }
11423
11424 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11425 vcpu->mmio_needed = 0;
11426
11427 /* FIXME: return into emulator if single-stepping. */
11428 if (vcpu->mmio_is_write)
11429 return 1;
11430 vcpu->mmio_read_completed = 1;
11431 return complete_emulated_io(vcpu);
11432 }
11433
11434 run->exit_reason = KVM_EXIT_MMIO;
11435 run->mmio.phys_addr = frag->gpa;
11436 if (vcpu->mmio_is_write)
11437 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11438 run->mmio.len = min(8u, frag->len);
11439 run->mmio.is_write = vcpu->mmio_is_write;
11440 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11441 return 0;
11442 }
11443
11444 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11445 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11446 {
11447 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11448 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11449 trace_kvm_fpu(1);
11450 }
11451
11452 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11453 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11454 {
11455 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11456 ++vcpu->stat.fpu_reload;
11457 trace_kvm_fpu(0);
11458 }
11459
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11460 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11461 {
11462 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11463 struct kvm_run *kvm_run = vcpu->run;
11464 int r;
11465
11466 vcpu_load(vcpu);
11467 kvm_sigset_activate(vcpu);
11468 kvm_run->flags = 0;
11469 kvm_load_guest_fpu(vcpu);
11470
11471 kvm_vcpu_srcu_read_lock(vcpu);
11472 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11473 if (!vcpu->wants_to_run) {
11474 r = -EINTR;
11475 goto out;
11476 }
11477
11478 /*
11479 * Don't bother switching APIC timer emulation from the
11480 * hypervisor timer to the software timer, the only way for the
11481 * APIC timer to be active is if userspace stuffed vCPU state,
11482 * i.e. put the vCPU into a nonsensical state. Only an INIT
11483 * will transition the vCPU out of UNINITIALIZED (without more
11484 * state stuffing from userspace), which will reset the local
11485 * APIC and thus cancel the timer or drop the IRQ (if the timer
11486 * already expired).
11487 */
11488 kvm_vcpu_srcu_read_unlock(vcpu);
11489 kvm_vcpu_block(vcpu);
11490 kvm_vcpu_srcu_read_lock(vcpu);
11491
11492 if (kvm_apic_accept_events(vcpu) < 0) {
11493 r = 0;
11494 goto out;
11495 }
11496 r = -EAGAIN;
11497 if (signal_pending(current)) {
11498 r = -EINTR;
11499 kvm_run->exit_reason = KVM_EXIT_INTR;
11500 ++vcpu->stat.signal_exits;
11501 }
11502 goto out;
11503 }
11504
11505 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11506 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11507 r = -EINVAL;
11508 goto out;
11509 }
11510
11511 if (kvm_run->kvm_dirty_regs) {
11512 r = sync_regs(vcpu);
11513 if (r != 0)
11514 goto out;
11515 }
11516
11517 /* re-sync apic's tpr */
11518 if (!lapic_in_kernel(vcpu)) {
11519 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11520 r = -EINVAL;
11521 goto out;
11522 }
11523 }
11524
11525 /*
11526 * If userspace set a pending exception and L2 is active, convert it to
11527 * a pending VM-Exit if L1 wants to intercept the exception.
11528 */
11529 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11530 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11531 ex->error_code)) {
11532 kvm_queue_exception_vmexit(vcpu, ex->vector,
11533 ex->has_error_code, ex->error_code,
11534 ex->has_payload, ex->payload);
11535 ex->injected = false;
11536 ex->pending = false;
11537 }
11538 vcpu->arch.exception_from_userspace = false;
11539
11540 if (unlikely(vcpu->arch.complete_userspace_io)) {
11541 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11542 vcpu->arch.complete_userspace_io = NULL;
11543 r = cui(vcpu);
11544 if (r <= 0)
11545 goto out;
11546 } else {
11547 WARN_ON_ONCE(vcpu->arch.pio.count);
11548 WARN_ON_ONCE(vcpu->mmio_needed);
11549 }
11550
11551 if (!vcpu->wants_to_run) {
11552 r = -EINTR;
11553 goto out;
11554 }
11555
11556 r = kvm_x86_call(vcpu_pre_run)(vcpu);
11557 if (r <= 0)
11558 goto out;
11559
11560 r = vcpu_run(vcpu);
11561
11562 out:
11563 kvm_put_guest_fpu(vcpu);
11564 if (kvm_run->kvm_valid_regs)
11565 store_regs(vcpu);
11566 post_kvm_run_save(vcpu);
11567 kvm_vcpu_srcu_read_unlock(vcpu);
11568
11569 kvm_sigset_deactivate(vcpu);
11570 vcpu_put(vcpu);
11571 return r;
11572 }
11573
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11574 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11575 {
11576 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11577 /*
11578 * We are here if userspace calls get_regs() in the middle of
11579 * instruction emulation. Registers state needs to be copied
11580 * back from emulation context to vcpu. Userspace shouldn't do
11581 * that usually, but some bad designed PV devices (vmware
11582 * backdoor interface) need this to work
11583 */
11584 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11585 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11586 }
11587 regs->rax = kvm_rax_read(vcpu);
11588 regs->rbx = kvm_rbx_read(vcpu);
11589 regs->rcx = kvm_rcx_read(vcpu);
11590 regs->rdx = kvm_rdx_read(vcpu);
11591 regs->rsi = kvm_rsi_read(vcpu);
11592 regs->rdi = kvm_rdi_read(vcpu);
11593 regs->rsp = kvm_rsp_read(vcpu);
11594 regs->rbp = kvm_rbp_read(vcpu);
11595 #ifdef CONFIG_X86_64
11596 regs->r8 = kvm_r8_read(vcpu);
11597 regs->r9 = kvm_r9_read(vcpu);
11598 regs->r10 = kvm_r10_read(vcpu);
11599 regs->r11 = kvm_r11_read(vcpu);
11600 regs->r12 = kvm_r12_read(vcpu);
11601 regs->r13 = kvm_r13_read(vcpu);
11602 regs->r14 = kvm_r14_read(vcpu);
11603 regs->r15 = kvm_r15_read(vcpu);
11604 #endif
11605
11606 regs->rip = kvm_rip_read(vcpu);
11607 regs->rflags = kvm_get_rflags(vcpu);
11608 }
11609
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11610 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11611 {
11612 if (vcpu->kvm->arch.has_protected_state &&
11613 vcpu->arch.guest_state_protected)
11614 return -EINVAL;
11615
11616 vcpu_load(vcpu);
11617 __get_regs(vcpu, regs);
11618 vcpu_put(vcpu);
11619 return 0;
11620 }
11621
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11622 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11623 {
11624 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11625 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11626
11627 kvm_rax_write(vcpu, regs->rax);
11628 kvm_rbx_write(vcpu, regs->rbx);
11629 kvm_rcx_write(vcpu, regs->rcx);
11630 kvm_rdx_write(vcpu, regs->rdx);
11631 kvm_rsi_write(vcpu, regs->rsi);
11632 kvm_rdi_write(vcpu, regs->rdi);
11633 kvm_rsp_write(vcpu, regs->rsp);
11634 kvm_rbp_write(vcpu, regs->rbp);
11635 #ifdef CONFIG_X86_64
11636 kvm_r8_write(vcpu, regs->r8);
11637 kvm_r9_write(vcpu, regs->r9);
11638 kvm_r10_write(vcpu, regs->r10);
11639 kvm_r11_write(vcpu, regs->r11);
11640 kvm_r12_write(vcpu, regs->r12);
11641 kvm_r13_write(vcpu, regs->r13);
11642 kvm_r14_write(vcpu, regs->r14);
11643 kvm_r15_write(vcpu, regs->r15);
11644 #endif
11645
11646 kvm_rip_write(vcpu, regs->rip);
11647 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11648
11649 vcpu->arch.exception.pending = false;
11650 vcpu->arch.exception_vmexit.pending = false;
11651
11652 kvm_make_request(KVM_REQ_EVENT, vcpu);
11653 }
11654
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11655 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11656 {
11657 if (vcpu->kvm->arch.has_protected_state &&
11658 vcpu->arch.guest_state_protected)
11659 return -EINVAL;
11660
11661 vcpu_load(vcpu);
11662 __set_regs(vcpu, regs);
11663 vcpu_put(vcpu);
11664 return 0;
11665 }
11666
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11667 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11668 {
11669 struct desc_ptr dt;
11670
11671 if (vcpu->arch.guest_state_protected)
11672 goto skip_protected_regs;
11673
11674 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11675 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11676 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11677 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11678 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11679 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11680
11681 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11682 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11683
11684 kvm_x86_call(get_idt)(vcpu, &dt);
11685 sregs->idt.limit = dt.size;
11686 sregs->idt.base = dt.address;
11687 kvm_x86_call(get_gdt)(vcpu, &dt);
11688 sregs->gdt.limit = dt.size;
11689 sregs->gdt.base = dt.address;
11690
11691 sregs->cr2 = vcpu->arch.cr2;
11692 sregs->cr3 = kvm_read_cr3(vcpu);
11693
11694 skip_protected_regs:
11695 sregs->cr0 = kvm_read_cr0(vcpu);
11696 sregs->cr4 = kvm_read_cr4(vcpu);
11697 sregs->cr8 = kvm_get_cr8(vcpu);
11698 sregs->efer = vcpu->arch.efer;
11699 sregs->apic_base = vcpu->arch.apic_base;
11700 }
11701
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11702 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11703 {
11704 __get_sregs_common(vcpu, sregs);
11705
11706 if (vcpu->arch.guest_state_protected)
11707 return;
11708
11709 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11710 set_bit(vcpu->arch.interrupt.nr,
11711 (unsigned long *)sregs->interrupt_bitmap);
11712 }
11713
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11714 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11715 {
11716 int i;
11717
11718 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11719
11720 if (vcpu->arch.guest_state_protected)
11721 return;
11722
11723 if (is_pae_paging(vcpu)) {
11724 for (i = 0 ; i < 4 ; i++)
11725 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11726 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11727 }
11728 }
11729
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11730 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11731 struct kvm_sregs *sregs)
11732 {
11733 if (vcpu->kvm->arch.has_protected_state &&
11734 vcpu->arch.guest_state_protected)
11735 return -EINVAL;
11736
11737 vcpu_load(vcpu);
11738 __get_sregs(vcpu, sregs);
11739 vcpu_put(vcpu);
11740 return 0;
11741 }
11742
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11743 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11744 struct kvm_mp_state *mp_state)
11745 {
11746 int r;
11747
11748 vcpu_load(vcpu);
11749 if (kvm_mpx_supported())
11750 kvm_load_guest_fpu(vcpu);
11751
11752 r = kvm_apic_accept_events(vcpu);
11753 if (r < 0)
11754 goto out;
11755 r = 0;
11756
11757 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11758 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11759 vcpu->arch.pv.pv_unhalted)
11760 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11761 else
11762 mp_state->mp_state = vcpu->arch.mp_state;
11763
11764 out:
11765 if (kvm_mpx_supported())
11766 kvm_put_guest_fpu(vcpu);
11767 vcpu_put(vcpu);
11768 return r;
11769 }
11770
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11771 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11772 struct kvm_mp_state *mp_state)
11773 {
11774 int ret = -EINVAL;
11775
11776 vcpu_load(vcpu);
11777
11778 switch (mp_state->mp_state) {
11779 case KVM_MP_STATE_UNINITIALIZED:
11780 case KVM_MP_STATE_HALTED:
11781 case KVM_MP_STATE_AP_RESET_HOLD:
11782 case KVM_MP_STATE_INIT_RECEIVED:
11783 case KVM_MP_STATE_SIPI_RECEIVED:
11784 if (!lapic_in_kernel(vcpu))
11785 goto out;
11786 break;
11787
11788 case KVM_MP_STATE_RUNNABLE:
11789 break;
11790
11791 default:
11792 goto out;
11793 }
11794
11795 /*
11796 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11797 * forcing the guest into INIT/SIPI if those events are supposed to be
11798 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11799 * if an SMI is pending as well.
11800 */
11801 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11802 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11803 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11804 goto out;
11805
11806 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11807 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11808 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11809 } else
11810 vcpu->arch.mp_state = mp_state->mp_state;
11811 kvm_make_request(KVM_REQ_EVENT, vcpu);
11812
11813 ret = 0;
11814 out:
11815 vcpu_put(vcpu);
11816 return ret;
11817 }
11818
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11819 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11820 int reason, bool has_error_code, u32 error_code)
11821 {
11822 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11823 int ret;
11824
11825 init_emulate_ctxt(vcpu);
11826
11827 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11828 has_error_code, error_code);
11829
11830 /*
11831 * Report an error userspace if MMIO is needed, as KVM doesn't support
11832 * MMIO during a task switch (or any other complex operation).
11833 */
11834 if (ret || vcpu->mmio_needed) {
11835 vcpu->mmio_needed = false;
11836 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11837 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11838 vcpu->run->internal.ndata = 0;
11839 return 0;
11840 }
11841
11842 kvm_rip_write(vcpu, ctxt->eip);
11843 kvm_set_rflags(vcpu, ctxt->eflags);
11844 return 1;
11845 }
11846 EXPORT_SYMBOL_GPL(kvm_task_switch);
11847
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11848 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11849 {
11850 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11851 /*
11852 * When EFER.LME and CR0.PG are set, the processor is in
11853 * 64-bit mode (though maybe in a 32-bit code segment).
11854 * CR4.PAE and EFER.LMA must be set.
11855 */
11856 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11857 return false;
11858 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11859 return false;
11860 } else {
11861 /*
11862 * Not in 64-bit mode: EFER.LMA is clear and the code
11863 * segment cannot be 64-bit.
11864 */
11865 if (sregs->efer & EFER_LMA || sregs->cs.l)
11866 return false;
11867 }
11868
11869 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11870 kvm_is_valid_cr0(vcpu, sregs->cr0);
11871 }
11872
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11873 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11874 int *mmu_reset_needed, bool update_pdptrs)
11875 {
11876 int idx;
11877 struct desc_ptr dt;
11878
11879 if (!kvm_is_valid_sregs(vcpu, sregs))
11880 return -EINVAL;
11881
11882 if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11883 return -EINVAL;
11884
11885 if (vcpu->arch.guest_state_protected)
11886 return 0;
11887
11888 dt.size = sregs->idt.limit;
11889 dt.address = sregs->idt.base;
11890 kvm_x86_call(set_idt)(vcpu, &dt);
11891 dt.size = sregs->gdt.limit;
11892 dt.address = sregs->gdt.base;
11893 kvm_x86_call(set_gdt)(vcpu, &dt);
11894
11895 vcpu->arch.cr2 = sregs->cr2;
11896 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11897 vcpu->arch.cr3 = sregs->cr3;
11898 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11899 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11900
11901 kvm_set_cr8(vcpu, sregs->cr8);
11902
11903 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11904 kvm_x86_call(set_efer)(vcpu, sregs->efer);
11905
11906 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11907 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11908
11909 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11910 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11911
11912 if (update_pdptrs) {
11913 idx = srcu_read_lock(&vcpu->kvm->srcu);
11914 if (is_pae_paging(vcpu)) {
11915 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11916 *mmu_reset_needed = 1;
11917 }
11918 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11919 }
11920
11921 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11922 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11923 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11924 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11925 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11926 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11927
11928 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11929 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11930
11931 update_cr8_intercept(vcpu);
11932
11933 /* Older userspace won't unhalt the vcpu on reset. */
11934 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11935 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11936 !is_protmode(vcpu))
11937 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11938
11939 return 0;
11940 }
11941
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11942 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11943 {
11944 int pending_vec, max_bits;
11945 int mmu_reset_needed = 0;
11946 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11947
11948 if (ret)
11949 return ret;
11950
11951 if (mmu_reset_needed) {
11952 kvm_mmu_reset_context(vcpu);
11953 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11954 }
11955
11956 max_bits = KVM_NR_INTERRUPTS;
11957 pending_vec = find_first_bit(
11958 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11959
11960 if (pending_vec < max_bits) {
11961 kvm_queue_interrupt(vcpu, pending_vec, false);
11962 pr_debug("Set back pending irq %d\n", pending_vec);
11963 kvm_make_request(KVM_REQ_EVENT, vcpu);
11964 }
11965 return 0;
11966 }
11967
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11968 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11969 {
11970 int mmu_reset_needed = 0;
11971 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11972 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11973 !(sregs2->efer & EFER_LMA);
11974 int i, ret;
11975
11976 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11977 return -EINVAL;
11978
11979 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11980 return -EINVAL;
11981
11982 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11983 &mmu_reset_needed, !valid_pdptrs);
11984 if (ret)
11985 return ret;
11986
11987 if (valid_pdptrs) {
11988 for (i = 0; i < 4 ; i++)
11989 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11990
11991 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11992 mmu_reset_needed = 1;
11993 vcpu->arch.pdptrs_from_userspace = true;
11994 }
11995 if (mmu_reset_needed) {
11996 kvm_mmu_reset_context(vcpu);
11997 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11998 }
11999 return 0;
12000 }
12001
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12002 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12003 struct kvm_sregs *sregs)
12004 {
12005 int ret;
12006
12007 if (vcpu->kvm->arch.has_protected_state &&
12008 vcpu->arch.guest_state_protected)
12009 return -EINVAL;
12010
12011 vcpu_load(vcpu);
12012 ret = __set_sregs(vcpu, sregs);
12013 vcpu_put(vcpu);
12014 return ret;
12015 }
12016
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12017 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12018 {
12019 bool set = false;
12020 struct kvm_vcpu *vcpu;
12021 unsigned long i;
12022
12023 if (!enable_apicv)
12024 return;
12025
12026 down_write(&kvm->arch.apicv_update_lock);
12027
12028 kvm_for_each_vcpu(i, vcpu, kvm) {
12029 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12030 set = true;
12031 break;
12032 }
12033 }
12034 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12035 up_write(&kvm->arch.apicv_update_lock);
12036 }
12037
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12038 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12039 struct kvm_guest_debug *dbg)
12040 {
12041 unsigned long rflags;
12042 int i, r;
12043
12044 if (vcpu->arch.guest_state_protected)
12045 return -EINVAL;
12046
12047 vcpu_load(vcpu);
12048
12049 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12050 r = -EBUSY;
12051 if (kvm_is_exception_pending(vcpu))
12052 goto out;
12053 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12054 kvm_queue_exception(vcpu, DB_VECTOR);
12055 else
12056 kvm_queue_exception(vcpu, BP_VECTOR);
12057 }
12058
12059 /*
12060 * Read rflags as long as potentially injected trace flags are still
12061 * filtered out.
12062 */
12063 rflags = kvm_get_rflags(vcpu);
12064
12065 vcpu->guest_debug = dbg->control;
12066 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12067 vcpu->guest_debug = 0;
12068
12069 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12070 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12071 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12072 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12073 } else {
12074 for (i = 0; i < KVM_NR_DB_REGS; i++)
12075 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12076 }
12077 kvm_update_dr7(vcpu);
12078
12079 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12080 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12081
12082 /*
12083 * Trigger an rflags update that will inject or remove the trace
12084 * flags.
12085 */
12086 kvm_set_rflags(vcpu, rflags);
12087
12088 kvm_x86_call(update_exception_bitmap)(vcpu);
12089
12090 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12091
12092 r = 0;
12093
12094 out:
12095 vcpu_put(vcpu);
12096 return r;
12097 }
12098
12099 /*
12100 * Translate a guest virtual address to a guest physical address.
12101 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12102 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12103 struct kvm_translation *tr)
12104 {
12105 unsigned long vaddr = tr->linear_address;
12106 gpa_t gpa;
12107 int idx;
12108
12109 vcpu_load(vcpu);
12110
12111 idx = srcu_read_lock(&vcpu->kvm->srcu);
12112 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12113 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12114 tr->physical_address = gpa;
12115 tr->valid = gpa != INVALID_GPA;
12116 tr->writeable = 1;
12117 tr->usermode = 0;
12118
12119 vcpu_put(vcpu);
12120 return 0;
12121 }
12122
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12123 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12124 {
12125 struct fxregs_state *fxsave;
12126
12127 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12128 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12129
12130 vcpu_load(vcpu);
12131
12132 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12133 memcpy(fpu->fpr, fxsave->st_space, 128);
12134 fpu->fcw = fxsave->cwd;
12135 fpu->fsw = fxsave->swd;
12136 fpu->ftwx = fxsave->twd;
12137 fpu->last_opcode = fxsave->fop;
12138 fpu->last_ip = fxsave->rip;
12139 fpu->last_dp = fxsave->rdp;
12140 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12141
12142 vcpu_put(vcpu);
12143 return 0;
12144 }
12145
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12146 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12147 {
12148 struct fxregs_state *fxsave;
12149
12150 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12151 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12152
12153 vcpu_load(vcpu);
12154
12155 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12156
12157 memcpy(fxsave->st_space, fpu->fpr, 128);
12158 fxsave->cwd = fpu->fcw;
12159 fxsave->swd = fpu->fsw;
12160 fxsave->twd = fpu->ftwx;
12161 fxsave->fop = fpu->last_opcode;
12162 fxsave->rip = fpu->last_ip;
12163 fxsave->rdp = fpu->last_dp;
12164 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12165
12166 vcpu_put(vcpu);
12167 return 0;
12168 }
12169
store_regs(struct kvm_vcpu * vcpu)12170 static void store_regs(struct kvm_vcpu *vcpu)
12171 {
12172 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12173
12174 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12175 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12176
12177 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12178 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12179
12180 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12181 kvm_vcpu_ioctl_x86_get_vcpu_events(
12182 vcpu, &vcpu->run->s.regs.events);
12183 }
12184
sync_regs(struct kvm_vcpu * vcpu)12185 static int sync_regs(struct kvm_vcpu *vcpu)
12186 {
12187 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12188 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12189 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12190 }
12191
12192 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12193 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12194
12195 if (__set_sregs(vcpu, &sregs))
12196 return -EINVAL;
12197
12198 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12199 }
12200
12201 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12202 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12203
12204 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12205 return -EINVAL;
12206
12207 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12208 }
12209
12210 return 0;
12211 }
12212
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12213 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12214 {
12215 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12216 pr_warn_once("SMP vm created on host with unstable TSC; "
12217 "guest TSC will not be reliable\n");
12218
12219 if (!kvm->arch.max_vcpu_ids)
12220 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12221
12222 if (id >= kvm->arch.max_vcpu_ids)
12223 return -EINVAL;
12224
12225 return kvm_x86_call(vcpu_precreate)(kvm);
12226 }
12227
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12228 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12229 {
12230 struct page *page;
12231 int r;
12232
12233 vcpu->arch.last_vmentry_cpu = -1;
12234 vcpu->arch.regs_avail = ~0;
12235 vcpu->arch.regs_dirty = ~0;
12236
12237 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12238
12239 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12240 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12241 else
12242 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12243
12244 r = kvm_mmu_create(vcpu);
12245 if (r < 0)
12246 return r;
12247
12248 r = kvm_create_lapic(vcpu);
12249 if (r < 0)
12250 goto fail_mmu_destroy;
12251
12252 r = -ENOMEM;
12253
12254 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12255 if (!page)
12256 goto fail_free_lapic;
12257 vcpu->arch.pio_data = page_address(page);
12258
12259 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12260 GFP_KERNEL_ACCOUNT);
12261 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12262 GFP_KERNEL_ACCOUNT);
12263 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12264 goto fail_free_mce_banks;
12265 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12266
12267 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12268 GFP_KERNEL_ACCOUNT))
12269 goto fail_free_mce_banks;
12270
12271 if (!alloc_emulate_ctxt(vcpu))
12272 goto free_wbinvd_dirty_mask;
12273
12274 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12275 pr_err("failed to allocate vcpu's fpu\n");
12276 goto free_emulate_ctxt;
12277 }
12278
12279 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12280 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12281
12282 kvm_async_pf_hash_reset(vcpu);
12283
12284 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12285 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12286 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12287 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12288 }
12289 kvm_pmu_init(vcpu);
12290
12291 vcpu->arch.pending_external_vector = -1;
12292 vcpu->arch.preempted_in_kernel = false;
12293
12294 #if IS_ENABLED(CONFIG_HYPERV)
12295 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12296 #endif
12297
12298 r = kvm_x86_call(vcpu_create)(vcpu);
12299 if (r)
12300 goto free_guest_fpu;
12301
12302 kvm_xen_init_vcpu(vcpu);
12303 vcpu_load(vcpu);
12304 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12305 kvm_vcpu_reset(vcpu, false);
12306 kvm_init_mmu(vcpu);
12307 vcpu_put(vcpu);
12308 return 0;
12309
12310 free_guest_fpu:
12311 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12312 free_emulate_ctxt:
12313 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12314 free_wbinvd_dirty_mask:
12315 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12316 fail_free_mce_banks:
12317 kfree(vcpu->arch.mce_banks);
12318 kfree(vcpu->arch.mci_ctl2_banks);
12319 free_page((unsigned long)vcpu->arch.pio_data);
12320 fail_free_lapic:
12321 kvm_free_lapic(vcpu);
12322 fail_mmu_destroy:
12323 kvm_mmu_destroy(vcpu);
12324 return r;
12325 }
12326
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12327 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12328 {
12329 struct kvm *kvm = vcpu->kvm;
12330
12331 if (mutex_lock_killable(&vcpu->mutex))
12332 return;
12333 vcpu_load(vcpu);
12334 kvm_synchronize_tsc(vcpu, NULL);
12335 vcpu_put(vcpu);
12336
12337 /* poll control enabled by default */
12338 vcpu->arch.msr_kvm_poll_control = 1;
12339
12340 mutex_unlock(&vcpu->mutex);
12341
12342 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12343 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12344 KVMCLOCK_SYNC_PERIOD);
12345 }
12346
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12347 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12348 {
12349 int idx;
12350
12351 kvmclock_reset(vcpu);
12352
12353 kvm_x86_call(vcpu_free)(vcpu);
12354
12355 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12356 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12357 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12358
12359 kvm_xen_destroy_vcpu(vcpu);
12360 kvm_hv_vcpu_uninit(vcpu);
12361 kvm_pmu_destroy(vcpu);
12362 kfree(vcpu->arch.mce_banks);
12363 kfree(vcpu->arch.mci_ctl2_banks);
12364 kvm_free_lapic(vcpu);
12365 idx = srcu_read_lock(&vcpu->kvm->srcu);
12366 kvm_mmu_destroy(vcpu);
12367 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12368 free_page((unsigned long)vcpu->arch.pio_data);
12369 kvfree(vcpu->arch.cpuid_entries);
12370 }
12371
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12372 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12373 {
12374 struct kvm_cpuid_entry2 *cpuid_0x1;
12375 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12376 unsigned long new_cr0;
12377
12378 /*
12379 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12380 * to handle side effects. RESET emulation hits those flows and relies
12381 * on emulated/virtualized registers, including those that are loaded
12382 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12383 * to detect improper or missing initialization.
12384 */
12385 WARN_ON_ONCE(!init_event &&
12386 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12387
12388 /*
12389 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12390 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12391 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12392 * bits), i.e. virtualization is disabled.
12393 */
12394 if (is_guest_mode(vcpu))
12395 kvm_leave_nested(vcpu);
12396
12397 kvm_lapic_reset(vcpu, init_event);
12398
12399 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12400 vcpu->arch.hflags = 0;
12401
12402 vcpu->arch.smi_pending = 0;
12403 vcpu->arch.smi_count = 0;
12404 atomic_set(&vcpu->arch.nmi_queued, 0);
12405 vcpu->arch.nmi_pending = 0;
12406 vcpu->arch.nmi_injected = false;
12407 kvm_clear_interrupt_queue(vcpu);
12408 kvm_clear_exception_queue(vcpu);
12409
12410 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12411 kvm_update_dr0123(vcpu);
12412 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12413 vcpu->arch.dr7 = DR7_FIXED_1;
12414 kvm_update_dr7(vcpu);
12415
12416 vcpu->arch.cr2 = 0;
12417
12418 kvm_make_request(KVM_REQ_EVENT, vcpu);
12419 vcpu->arch.apf.msr_en_val = 0;
12420 vcpu->arch.apf.msr_int_val = 0;
12421 vcpu->arch.st.msr_val = 0;
12422
12423 kvmclock_reset(vcpu);
12424
12425 kvm_clear_async_pf_completion_queue(vcpu);
12426 kvm_async_pf_hash_reset(vcpu);
12427 vcpu->arch.apf.halted = false;
12428
12429 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12430 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12431
12432 /*
12433 * All paths that lead to INIT are required to load the guest's
12434 * FPU state (because most paths are buried in KVM_RUN).
12435 */
12436 if (init_event)
12437 kvm_put_guest_fpu(vcpu);
12438
12439 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12440 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12441
12442 if (init_event)
12443 kvm_load_guest_fpu(vcpu);
12444 }
12445
12446 if (!init_event) {
12447 vcpu->arch.smbase = 0x30000;
12448
12449 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12450
12451 vcpu->arch.msr_misc_features_enables = 0;
12452 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12453 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12454
12455 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12456 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12457 }
12458
12459 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12460 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12461 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12462
12463 /*
12464 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12465 * if no CPUID match is found. Note, it's impossible to get a match at
12466 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12467 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12468 * on RESET. But, go through the motions in case that's ever remedied.
12469 */
12470 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12471 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12472
12473 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12474
12475 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12476 kvm_rip_write(vcpu, 0xfff0);
12477
12478 vcpu->arch.cr3 = 0;
12479 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12480
12481 /*
12482 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12483 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12484 * (or qualify) that with a footnote stating that CD/NW are preserved.
12485 */
12486 new_cr0 = X86_CR0_ET;
12487 if (init_event)
12488 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12489 else
12490 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12491
12492 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12493 kvm_x86_call(set_cr4)(vcpu, 0);
12494 kvm_x86_call(set_efer)(vcpu, 0);
12495 kvm_x86_call(update_exception_bitmap)(vcpu);
12496
12497 /*
12498 * On the standard CR0/CR4/EFER modification paths, there are several
12499 * complex conditions determining whether the MMU has to be reset and/or
12500 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12501 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12502 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12503 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12504 */
12505 if (old_cr0 & X86_CR0_PG) {
12506 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12507 kvm_mmu_reset_context(vcpu);
12508 }
12509
12510 /*
12511 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12512 * APM states the TLBs are untouched by INIT, but it also states that
12513 * the TLBs are flushed on "External initialization of the processor."
12514 * Flush the guest TLB regardless of vendor, there is no meaningful
12515 * benefit in relying on the guest to flush the TLB immediately after
12516 * INIT. A spurious TLB flush is benign and likely negligible from a
12517 * performance perspective.
12518 */
12519 if (init_event)
12520 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12521 }
12522 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12523
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12524 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12525 {
12526 struct kvm_segment cs;
12527
12528 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12529 cs.selector = vector << 8;
12530 cs.base = vector << 12;
12531 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12532 kvm_rip_write(vcpu, 0);
12533 }
12534 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12535
kvm_arch_enable_virtualization(void)12536 void kvm_arch_enable_virtualization(void)
12537 {
12538 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12539 }
12540
kvm_arch_disable_virtualization(void)12541 void kvm_arch_disable_virtualization(void)
12542 {
12543 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12544 }
12545
kvm_arch_enable_virtualization_cpu(void)12546 int kvm_arch_enable_virtualization_cpu(void)
12547 {
12548 struct kvm *kvm;
12549 struct kvm_vcpu *vcpu;
12550 unsigned long i;
12551 int ret;
12552 u64 local_tsc;
12553 u64 max_tsc = 0;
12554 bool stable, backwards_tsc = false;
12555
12556 kvm_user_return_msr_cpu_online();
12557
12558 ret = kvm_x86_check_processor_compatibility();
12559 if (ret)
12560 return ret;
12561
12562 ret = kvm_x86_call(enable_virtualization_cpu)();
12563 if (ret != 0)
12564 return ret;
12565
12566 local_tsc = rdtsc();
12567 stable = !kvm_check_tsc_unstable();
12568 list_for_each_entry(kvm, &vm_list, vm_list) {
12569 kvm_for_each_vcpu(i, vcpu, kvm) {
12570 if (!stable && vcpu->cpu == smp_processor_id())
12571 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12572 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12573 backwards_tsc = true;
12574 if (vcpu->arch.last_host_tsc > max_tsc)
12575 max_tsc = vcpu->arch.last_host_tsc;
12576 }
12577 }
12578 }
12579
12580 /*
12581 * Sometimes, even reliable TSCs go backwards. This happens on
12582 * platforms that reset TSC during suspend or hibernate actions, but
12583 * maintain synchronization. We must compensate. Fortunately, we can
12584 * detect that condition here, which happens early in CPU bringup,
12585 * before any KVM threads can be running. Unfortunately, we can't
12586 * bring the TSCs fully up to date with real time, as we aren't yet far
12587 * enough into CPU bringup that we know how much real time has actually
12588 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12589 * variables that haven't been updated yet.
12590 *
12591 * So we simply find the maximum observed TSC above, then record the
12592 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12593 * the adjustment will be applied. Note that we accumulate
12594 * adjustments, in case multiple suspend cycles happen before some VCPU
12595 * gets a chance to run again. In the event that no KVM threads get a
12596 * chance to run, we will miss the entire elapsed period, as we'll have
12597 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12598 * loose cycle time. This isn't too big a deal, since the loss will be
12599 * uniform across all VCPUs (not to mention the scenario is extremely
12600 * unlikely). It is possible that a second hibernate recovery happens
12601 * much faster than a first, causing the observed TSC here to be
12602 * smaller; this would require additional padding adjustment, which is
12603 * why we set last_host_tsc to the local tsc observed here.
12604 *
12605 * N.B. - this code below runs only on platforms with reliable TSC,
12606 * as that is the only way backwards_tsc is set above. Also note
12607 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12608 * have the same delta_cyc adjustment applied if backwards_tsc
12609 * is detected. Note further, this adjustment is only done once,
12610 * as we reset last_host_tsc on all VCPUs to stop this from being
12611 * called multiple times (one for each physical CPU bringup).
12612 *
12613 * Platforms with unreliable TSCs don't have to deal with this, they
12614 * will be compensated by the logic in vcpu_load, which sets the TSC to
12615 * catchup mode. This will catchup all VCPUs to real time, but cannot
12616 * guarantee that they stay in perfect synchronization.
12617 */
12618 if (backwards_tsc) {
12619 u64 delta_cyc = max_tsc - local_tsc;
12620 list_for_each_entry(kvm, &vm_list, vm_list) {
12621 kvm->arch.backwards_tsc_observed = true;
12622 kvm_for_each_vcpu(i, vcpu, kvm) {
12623 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12624 vcpu->arch.last_host_tsc = local_tsc;
12625 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12626 }
12627
12628 /*
12629 * We have to disable TSC offset matching.. if you were
12630 * booting a VM while issuing an S4 host suspend....
12631 * you may have some problem. Solving this issue is
12632 * left as an exercise to the reader.
12633 */
12634 kvm->arch.last_tsc_nsec = 0;
12635 kvm->arch.last_tsc_write = 0;
12636 }
12637
12638 }
12639 return 0;
12640 }
12641
kvm_arch_disable_virtualization_cpu(void)12642 void kvm_arch_disable_virtualization_cpu(void)
12643 {
12644 kvm_x86_call(disable_virtualization_cpu)();
12645 drop_user_return_notifiers();
12646 }
12647
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12648 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12649 {
12650 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12651 }
12652
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12653 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12654 {
12655 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12656 }
12657
kvm_arch_free_vm(struct kvm * kvm)12658 void kvm_arch_free_vm(struct kvm *kvm)
12659 {
12660 #if IS_ENABLED(CONFIG_HYPERV)
12661 kfree(kvm->arch.hv_pa_pg);
12662 #endif
12663 __kvm_arch_free_vm(kvm);
12664 }
12665
12666
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12667 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12668 {
12669 int ret;
12670 unsigned long flags;
12671
12672 if (!kvm_is_vm_type_supported(type))
12673 return -EINVAL;
12674
12675 kvm->arch.vm_type = type;
12676 kvm->arch.has_private_mem =
12677 (type == KVM_X86_SW_PROTECTED_VM);
12678 /* Decided by the vendor code for other VM types. */
12679 kvm->arch.pre_fault_allowed =
12680 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12681
12682 ret = kvm_page_track_init(kvm);
12683 if (ret)
12684 goto out;
12685
12686 kvm_mmu_init_vm(kvm);
12687
12688 ret = kvm_x86_call(vm_init)(kvm);
12689 if (ret)
12690 goto out_uninit_mmu;
12691
12692 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12693 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12694
12695 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12696 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12697 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12698 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12699 &kvm->arch.irq_sources_bitmap);
12700
12701 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12702 mutex_init(&kvm->arch.apic_map_lock);
12703 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12704 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12705
12706 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12707 pvclock_update_vm_gtod_copy(kvm);
12708 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12709
12710 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12711 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12712 kvm->arch.guest_can_read_msr_platform_info = true;
12713 kvm->arch.enable_pmu = enable_pmu;
12714
12715 #if IS_ENABLED(CONFIG_HYPERV)
12716 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12717 kvm->arch.hv_root_tdp = INVALID_PAGE;
12718 #endif
12719
12720 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12721 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12722
12723 kvm_apicv_init(kvm);
12724 kvm_hv_init_vm(kvm);
12725 kvm_xen_init_vm(kvm);
12726
12727 if (ignore_msrs && !report_ignored_msrs) {
12728 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12729 "a supported configuration. Lying to the guest about the existence of MSRs\n"
12730 "may cause the guest operating system to hang or produce errors. If a guest\n"
12731 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
12732 }
12733
12734 return 0;
12735
12736 out_uninit_mmu:
12737 kvm_mmu_uninit_vm(kvm);
12738 kvm_page_track_cleanup(kvm);
12739 out:
12740 return ret;
12741 }
12742
kvm_arch_post_init_vm(struct kvm * kvm)12743 int kvm_arch_post_init_vm(struct kvm *kvm)
12744 {
12745 return kvm_mmu_post_init_vm(kvm);
12746 }
12747
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12748 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12749 {
12750 vcpu_load(vcpu);
12751 kvm_mmu_unload(vcpu);
12752 vcpu_put(vcpu);
12753 }
12754
kvm_unload_vcpu_mmus(struct kvm * kvm)12755 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12756 {
12757 unsigned long i;
12758 struct kvm_vcpu *vcpu;
12759
12760 kvm_for_each_vcpu(i, vcpu, kvm) {
12761 kvm_clear_async_pf_completion_queue(vcpu);
12762 kvm_unload_vcpu_mmu(vcpu);
12763 }
12764 }
12765
kvm_arch_sync_events(struct kvm * kvm)12766 void kvm_arch_sync_events(struct kvm *kvm)
12767 {
12768 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12769 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12770 kvm_free_pit(kvm);
12771 }
12772
12773 /**
12774 * __x86_set_memory_region: Setup KVM internal memory slot
12775 *
12776 * @kvm: the kvm pointer to the VM.
12777 * @id: the slot ID to setup.
12778 * @gpa: the GPA to install the slot (unused when @size == 0).
12779 * @size: the size of the slot. Set to zero to uninstall a slot.
12780 *
12781 * This function helps to setup a KVM internal memory slot. Specify
12782 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12783 * slot. The return code can be one of the following:
12784 *
12785 * HVA: on success (uninstall will return a bogus HVA)
12786 * -errno: on error
12787 *
12788 * The caller should always use IS_ERR() to check the return value
12789 * before use. Note, the KVM internal memory slots are guaranteed to
12790 * remain valid and unchanged until the VM is destroyed, i.e., the
12791 * GPA->HVA translation will not change. However, the HVA is a user
12792 * address, i.e. its accessibility is not guaranteed, and must be
12793 * accessed via __copy_{to,from}_user().
12794 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12795 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12796 u32 size)
12797 {
12798 int i, r;
12799 unsigned long hva, old_npages;
12800 struct kvm_memslots *slots = kvm_memslots(kvm);
12801 struct kvm_memory_slot *slot;
12802
12803 /* Called with kvm->slots_lock held. */
12804 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12805 return ERR_PTR_USR(-EINVAL);
12806
12807 slot = id_to_memslot(slots, id);
12808 if (size) {
12809 if (slot && slot->npages)
12810 return ERR_PTR_USR(-EEXIST);
12811
12812 /*
12813 * MAP_SHARED to prevent internal slot pages from being moved
12814 * by fork()/COW.
12815 */
12816 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12817 MAP_SHARED | MAP_ANONYMOUS, 0);
12818 if (IS_ERR_VALUE(hva))
12819 return (void __user *)hva;
12820 } else {
12821 if (!slot || !slot->npages)
12822 return NULL;
12823
12824 old_npages = slot->npages;
12825 hva = slot->userspace_addr;
12826 }
12827
12828 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12829 struct kvm_userspace_memory_region2 m;
12830
12831 m.slot = id | (i << 16);
12832 m.flags = 0;
12833 m.guest_phys_addr = gpa;
12834 m.userspace_addr = hva;
12835 m.memory_size = size;
12836 r = __kvm_set_memory_region(kvm, &m);
12837 if (r < 0)
12838 return ERR_PTR_USR(r);
12839 }
12840
12841 if (!size)
12842 vm_munmap(hva, old_npages * PAGE_SIZE);
12843
12844 return (void __user *)hva;
12845 }
12846 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12847
kvm_arch_pre_destroy_vm(struct kvm * kvm)12848 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12849 {
12850 kvm_mmu_pre_destroy_vm(kvm);
12851 }
12852
kvm_arch_destroy_vm(struct kvm * kvm)12853 void kvm_arch_destroy_vm(struct kvm *kvm)
12854 {
12855 if (current->mm == kvm->mm) {
12856 /*
12857 * Free memory regions allocated on behalf of userspace,
12858 * unless the memory map has changed due to process exit
12859 * or fd copying.
12860 */
12861 mutex_lock(&kvm->slots_lock);
12862 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12863 0, 0);
12864 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12865 0, 0);
12866 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12867 mutex_unlock(&kvm->slots_lock);
12868 }
12869 kvm_unload_vcpu_mmus(kvm);
12870 kvm_x86_call(vm_destroy)(kvm);
12871 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12872 kvm_pic_destroy(kvm);
12873 kvm_ioapic_destroy(kvm);
12874 kvm_destroy_vcpus(kvm);
12875 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12876 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12877 kvm_mmu_uninit_vm(kvm);
12878 kvm_page_track_cleanup(kvm);
12879 kvm_xen_destroy_vm(kvm);
12880 kvm_hv_destroy_vm(kvm);
12881 }
12882
memslot_rmap_free(struct kvm_memory_slot * slot)12883 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12884 {
12885 int i;
12886
12887 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12888 vfree(slot->arch.rmap[i]);
12889 slot->arch.rmap[i] = NULL;
12890 }
12891 }
12892
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12893 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12894 {
12895 int i;
12896
12897 memslot_rmap_free(slot);
12898
12899 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12900 vfree(slot->arch.lpage_info[i - 1]);
12901 slot->arch.lpage_info[i - 1] = NULL;
12902 }
12903
12904 kvm_page_track_free_memslot(slot);
12905 }
12906
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12907 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12908 {
12909 const int sz = sizeof(*slot->arch.rmap[0]);
12910 int i;
12911
12912 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12913 int level = i + 1;
12914 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12915
12916 if (slot->arch.rmap[i])
12917 continue;
12918
12919 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12920 if (!slot->arch.rmap[i]) {
12921 memslot_rmap_free(slot);
12922 return -ENOMEM;
12923 }
12924 }
12925
12926 return 0;
12927 }
12928
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12929 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12930 struct kvm_memory_slot *slot)
12931 {
12932 unsigned long npages = slot->npages;
12933 int i, r;
12934
12935 /*
12936 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12937 * old arrays will be freed by __kvm_set_memory_region() if installing
12938 * the new memslot is successful.
12939 */
12940 memset(&slot->arch, 0, sizeof(slot->arch));
12941
12942 if (kvm_memslots_have_rmaps(kvm)) {
12943 r = memslot_rmap_alloc(slot, npages);
12944 if (r)
12945 return r;
12946 }
12947
12948 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12949 struct kvm_lpage_info *linfo;
12950 unsigned long ugfn;
12951 int lpages;
12952 int level = i + 1;
12953
12954 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12955
12956 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12957 if (!linfo)
12958 goto out_free;
12959
12960 slot->arch.lpage_info[i - 1] = linfo;
12961
12962 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12963 linfo[0].disallow_lpage = 1;
12964 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12965 linfo[lpages - 1].disallow_lpage = 1;
12966 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12967 /*
12968 * If the gfn and userspace address are not aligned wrt each
12969 * other, disable large page support for this slot.
12970 */
12971 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12972 unsigned long j;
12973
12974 for (j = 0; j < lpages; ++j)
12975 linfo[j].disallow_lpage = 1;
12976 }
12977 }
12978
12979 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12980 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12981 #endif
12982
12983 if (kvm_page_track_create_memslot(kvm, slot, npages))
12984 goto out_free;
12985
12986 return 0;
12987
12988 out_free:
12989 memslot_rmap_free(slot);
12990
12991 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12992 vfree(slot->arch.lpage_info[i - 1]);
12993 slot->arch.lpage_info[i - 1] = NULL;
12994 }
12995 return -ENOMEM;
12996 }
12997
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)12998 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12999 {
13000 struct kvm_vcpu *vcpu;
13001 unsigned long i;
13002
13003 /*
13004 * memslots->generation has been incremented.
13005 * mmio generation may have reached its maximum value.
13006 */
13007 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13008
13009 /* Force re-initialization of steal_time cache */
13010 kvm_for_each_vcpu(i, vcpu, kvm)
13011 kvm_vcpu_kick(vcpu);
13012 }
13013
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13014 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13015 const struct kvm_memory_slot *old,
13016 struct kvm_memory_slot *new,
13017 enum kvm_mr_change change)
13018 {
13019 /*
13020 * KVM doesn't support moving memslots when there are external page
13021 * trackers attached to the VM, i.e. if KVMGT is in use.
13022 */
13023 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13024 return -EINVAL;
13025
13026 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13027 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13028 return -EINVAL;
13029
13030 return kvm_alloc_memslot_metadata(kvm, new);
13031 }
13032
13033 if (change == KVM_MR_FLAGS_ONLY)
13034 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13035 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13036 return -EIO;
13037
13038 return 0;
13039 }
13040
13041
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13042 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13043 {
13044 int nr_slots;
13045
13046 if (!kvm_x86_ops.cpu_dirty_log_size)
13047 return;
13048
13049 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13050 if ((enable && nr_slots == 1) || !nr_slots)
13051 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13052 }
13053
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13054 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13055 struct kvm_memory_slot *old,
13056 const struct kvm_memory_slot *new,
13057 enum kvm_mr_change change)
13058 {
13059 u32 old_flags = old ? old->flags : 0;
13060 u32 new_flags = new ? new->flags : 0;
13061 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13062
13063 /*
13064 * Update CPU dirty logging if dirty logging is being toggled. This
13065 * applies to all operations.
13066 */
13067 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13068 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13069
13070 /*
13071 * Nothing more to do for RO slots (which can't be dirtied and can't be
13072 * made writable) or CREATE/MOVE/DELETE of a slot.
13073 *
13074 * For a memslot with dirty logging disabled:
13075 * CREATE: No dirty mappings will already exist.
13076 * MOVE/DELETE: The old mappings will already have been cleaned up by
13077 * kvm_arch_flush_shadow_memslot()
13078 *
13079 * For a memslot with dirty logging enabled:
13080 * CREATE: No shadow pages exist, thus nothing to write-protect
13081 * and no dirty bits to clear.
13082 * MOVE/DELETE: The old mappings will already have been cleaned up by
13083 * kvm_arch_flush_shadow_memslot().
13084 */
13085 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13086 return;
13087
13088 /*
13089 * READONLY and non-flags changes were filtered out above, and the only
13090 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13091 * logging isn't being toggled on or off.
13092 */
13093 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13094 return;
13095
13096 if (!log_dirty_pages) {
13097 /*
13098 * Recover huge page mappings in the slot now that dirty logging
13099 * is disabled, i.e. now that KVM does not have to track guest
13100 * writes at 4KiB granularity.
13101 *
13102 * Dirty logging might be disabled by userspace if an ongoing VM
13103 * live migration is cancelled and the VM must continue running
13104 * on the source.
13105 */
13106 kvm_mmu_recover_huge_pages(kvm, new);
13107 } else {
13108 /*
13109 * Initially-all-set does not require write protecting any page,
13110 * because they're all assumed to be dirty.
13111 */
13112 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13113 return;
13114
13115 if (READ_ONCE(eager_page_split))
13116 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13117
13118 if (kvm_x86_ops.cpu_dirty_log_size) {
13119 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13120 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13121 } else {
13122 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13123 }
13124
13125 /*
13126 * Unconditionally flush the TLBs after enabling dirty logging.
13127 * A flush is almost always going to be necessary (see below),
13128 * and unconditionally flushing allows the helpers to omit
13129 * the subtly complex checks when removing write access.
13130 *
13131 * Do the flush outside of mmu_lock to reduce the amount of
13132 * time mmu_lock is held. Flushing after dropping mmu_lock is
13133 * safe as KVM only needs to guarantee the slot is fully
13134 * write-protected before returning to userspace, i.e. before
13135 * userspace can consume the dirty status.
13136 *
13137 * Flushing outside of mmu_lock requires KVM to be careful when
13138 * making decisions based on writable status of an SPTE, e.g. a
13139 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13140 *
13141 * Specifically, KVM also write-protects guest page tables to
13142 * monitor changes when using shadow paging, and must guarantee
13143 * no CPUs can write to those page before mmu_lock is dropped.
13144 * Because CPUs may have stale TLB entries at this point, a
13145 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13146 *
13147 * KVM also allows making SPTES writable outside of mmu_lock,
13148 * e.g. to allow dirty logging without taking mmu_lock.
13149 *
13150 * To handle these scenarios, KVM uses a separate software-only
13151 * bit (MMU-writable) to track if a SPTE is !writable due to
13152 * a guest page table being write-protected (KVM clears the
13153 * MMU-writable flag when write-protecting for shadow paging).
13154 *
13155 * The use of MMU-writable is also the primary motivation for
13156 * the unconditional flush. Because KVM must guarantee that a
13157 * CPU doesn't contain stale, writable TLB entries for a
13158 * !MMU-writable SPTE, KVM must flush if it encounters any
13159 * MMU-writable SPTE regardless of whether the actual hardware
13160 * writable bit was set. I.e. KVM is almost guaranteed to need
13161 * to flush, while unconditionally flushing allows the "remove
13162 * write access" helpers to ignore MMU-writable entirely.
13163 *
13164 * See is_writable_pte() for more details (the case involving
13165 * access-tracked SPTEs is particularly relevant).
13166 */
13167 kvm_flush_remote_tlbs_memslot(kvm, new);
13168 }
13169 }
13170
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13171 void kvm_arch_commit_memory_region(struct kvm *kvm,
13172 struct kvm_memory_slot *old,
13173 const struct kvm_memory_slot *new,
13174 enum kvm_mr_change change)
13175 {
13176 if (change == KVM_MR_DELETE)
13177 kvm_page_track_delete_slot(kvm, old);
13178
13179 if (!kvm->arch.n_requested_mmu_pages &&
13180 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13181 unsigned long nr_mmu_pages;
13182
13183 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13184 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13185 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13186 }
13187
13188 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13189
13190 /* Free the arrays associated with the old memslot. */
13191 if (change == KVM_MR_MOVE)
13192 kvm_arch_free_memslot(kvm, old);
13193 }
13194
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13195 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13196 {
13197 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13198
13199 if (vcpu->arch.guest_state_protected)
13200 return true;
13201
13202 return kvm_x86_call(get_cpl)(vcpu) == 0;
13203 }
13204
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13205 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13206 {
13207 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13208
13209 if (vcpu->arch.guest_state_protected)
13210 return 0;
13211
13212 return kvm_rip_read(vcpu);
13213 }
13214
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13215 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13216 {
13217 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13218 }
13219
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13220 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13221 {
13222 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13223 }
13224
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13225 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13226 {
13227 /* Can't read the RIP when guest state is protected, just return 0 */
13228 if (vcpu->arch.guest_state_protected)
13229 return 0;
13230
13231 if (is_64_bit_mode(vcpu))
13232 return kvm_rip_read(vcpu);
13233 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13234 kvm_rip_read(vcpu));
13235 }
13236 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13237
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13238 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13239 {
13240 return kvm_get_linear_rip(vcpu) == linear_rip;
13241 }
13242 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13243
kvm_get_rflags(struct kvm_vcpu * vcpu)13244 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13245 {
13246 unsigned long rflags;
13247
13248 rflags = kvm_x86_call(get_rflags)(vcpu);
13249 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13250 rflags &= ~X86_EFLAGS_TF;
13251 return rflags;
13252 }
13253 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13254
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13255 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13256 {
13257 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13258 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13259 rflags |= X86_EFLAGS_TF;
13260 kvm_x86_call(set_rflags)(vcpu, rflags);
13261 }
13262
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13263 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13264 {
13265 __kvm_set_rflags(vcpu, rflags);
13266 kvm_make_request(KVM_REQ_EVENT, vcpu);
13267 }
13268 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13269
kvm_async_pf_hash_fn(gfn_t gfn)13270 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13271 {
13272 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13273
13274 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13275 }
13276
kvm_async_pf_next_probe(u32 key)13277 static inline u32 kvm_async_pf_next_probe(u32 key)
13278 {
13279 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13280 }
13281
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13282 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13283 {
13284 u32 key = kvm_async_pf_hash_fn(gfn);
13285
13286 while (vcpu->arch.apf.gfns[key] != ~0)
13287 key = kvm_async_pf_next_probe(key);
13288
13289 vcpu->arch.apf.gfns[key] = gfn;
13290 }
13291
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13292 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13293 {
13294 int i;
13295 u32 key = kvm_async_pf_hash_fn(gfn);
13296
13297 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13298 (vcpu->arch.apf.gfns[key] != gfn &&
13299 vcpu->arch.apf.gfns[key] != ~0); i++)
13300 key = kvm_async_pf_next_probe(key);
13301
13302 return key;
13303 }
13304
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13305 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13306 {
13307 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13308 }
13309
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13310 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13311 {
13312 u32 i, j, k;
13313
13314 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13315
13316 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13317 return;
13318
13319 while (true) {
13320 vcpu->arch.apf.gfns[i] = ~0;
13321 do {
13322 j = kvm_async_pf_next_probe(j);
13323 if (vcpu->arch.apf.gfns[j] == ~0)
13324 return;
13325 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13326 /*
13327 * k lies cyclically in ]i,j]
13328 * | i.k.j |
13329 * |....j i.k.| or |.k..j i...|
13330 */
13331 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13332 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13333 i = j;
13334 }
13335 }
13336
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13337 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13338 {
13339 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13340
13341 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13342 sizeof(reason));
13343 }
13344
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13345 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13346 {
13347 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13348
13349 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13350 &token, offset, sizeof(token));
13351 }
13352
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13353 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13354 {
13355 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13356 u32 val;
13357
13358 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13359 &val, offset, sizeof(val)))
13360 return false;
13361
13362 return !val;
13363 }
13364
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13365 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13366 {
13367
13368 if (!kvm_pv_async_pf_enabled(vcpu))
13369 return false;
13370
13371 if (vcpu->arch.apf.send_user_only &&
13372 kvm_x86_call(get_cpl)(vcpu) == 0)
13373 return false;
13374
13375 if (is_guest_mode(vcpu)) {
13376 /*
13377 * L1 needs to opt into the special #PF vmexits that are
13378 * used to deliver async page faults.
13379 */
13380 return vcpu->arch.apf.delivery_as_pf_vmexit;
13381 } else {
13382 /*
13383 * Play it safe in case the guest temporarily disables paging.
13384 * The real mode IDT in particular is unlikely to have a #PF
13385 * exception setup.
13386 */
13387 return is_paging(vcpu);
13388 }
13389 }
13390
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13391 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13392 {
13393 if (unlikely(!lapic_in_kernel(vcpu) ||
13394 kvm_event_needs_reinjection(vcpu) ||
13395 kvm_is_exception_pending(vcpu)))
13396 return false;
13397
13398 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13399 return false;
13400
13401 /*
13402 * If interrupts are off we cannot even use an artificial
13403 * halt state.
13404 */
13405 return kvm_arch_interrupt_allowed(vcpu);
13406 }
13407
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13408 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13409 struct kvm_async_pf *work)
13410 {
13411 struct x86_exception fault;
13412
13413 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13414 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13415
13416 if (kvm_can_deliver_async_pf(vcpu) &&
13417 !apf_put_user_notpresent(vcpu)) {
13418 fault.vector = PF_VECTOR;
13419 fault.error_code_valid = true;
13420 fault.error_code = 0;
13421 fault.nested_page_fault = false;
13422 fault.address = work->arch.token;
13423 fault.async_page_fault = true;
13424 kvm_inject_page_fault(vcpu, &fault);
13425 return true;
13426 } else {
13427 /*
13428 * It is not possible to deliver a paravirtualized asynchronous
13429 * page fault, but putting the guest in an artificial halt state
13430 * can be beneficial nevertheless: if an interrupt arrives, we
13431 * can deliver it timely and perhaps the guest will schedule
13432 * another process. When the instruction that triggered a page
13433 * fault is retried, hopefully the page will be ready in the host.
13434 */
13435 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13436 return false;
13437 }
13438 }
13439
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13440 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13441 struct kvm_async_pf *work)
13442 {
13443 struct kvm_lapic_irq irq = {
13444 .delivery_mode = APIC_DM_FIXED,
13445 .vector = vcpu->arch.apf.vec
13446 };
13447
13448 if (work->wakeup_all)
13449 work->arch.token = ~0; /* broadcast wakeup */
13450 else
13451 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13452 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13453
13454 if ((work->wakeup_all || work->notpresent_injected) &&
13455 kvm_pv_async_pf_enabled(vcpu) &&
13456 !apf_put_user_ready(vcpu, work->arch.token)) {
13457 vcpu->arch.apf.pageready_pending = true;
13458 kvm_apic_set_irq(vcpu, &irq, NULL);
13459 }
13460
13461 vcpu->arch.apf.halted = false;
13462 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13463 }
13464
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13465 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13466 {
13467 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13468 if (!vcpu->arch.apf.pageready_pending)
13469 kvm_vcpu_kick(vcpu);
13470 }
13471
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13472 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13473 {
13474 if (!kvm_pv_async_pf_enabled(vcpu))
13475 return true;
13476 else
13477 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13478 }
13479
kvm_arch_start_assignment(struct kvm * kvm)13480 void kvm_arch_start_assignment(struct kvm *kvm)
13481 {
13482 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13483 kvm_x86_call(pi_start_assignment)(kvm);
13484 }
13485 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13486
kvm_arch_end_assignment(struct kvm * kvm)13487 void kvm_arch_end_assignment(struct kvm *kvm)
13488 {
13489 atomic_dec(&kvm->arch.assigned_device_count);
13490 }
13491 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13492
kvm_arch_has_assigned_device(struct kvm * kvm)13493 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13494 {
13495 return raw_atomic_read(&kvm->arch.assigned_device_count);
13496 }
13497 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13498
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13499 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13500 {
13501 /*
13502 * Non-coherent DMA assignment and de-assignment may affect whether or
13503 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13504 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13505 * (or last) non-coherent device is (un)registered to so that new SPTEs
13506 * with the correct "ignore guest PAT" setting are created.
13507 */
13508 if (kvm_mmu_may_ignore_guest_pat())
13509 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13510 }
13511
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13512 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13513 {
13514 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13515 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13516 }
13517 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13518
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13519 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13520 {
13521 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13522 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13523 }
13524 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13525
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13526 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13527 {
13528 return atomic_read(&kvm->arch.noncoherent_dma_count);
13529 }
13530 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13531
kvm_arch_has_irq_bypass(void)13532 bool kvm_arch_has_irq_bypass(void)
13533 {
13534 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13535 }
13536
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13537 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13538 struct irq_bypass_producer *prod)
13539 {
13540 struct kvm_kernel_irqfd *irqfd =
13541 container_of(cons, struct kvm_kernel_irqfd, consumer);
13542 int ret;
13543
13544 irqfd->producer = prod;
13545 kvm_arch_start_assignment(irqfd->kvm);
13546 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13547 prod->irq, irqfd->gsi, 1);
13548 if (ret)
13549 kvm_arch_end_assignment(irqfd->kvm);
13550
13551 return ret;
13552 }
13553
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13554 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13555 struct irq_bypass_producer *prod)
13556 {
13557 int ret;
13558 struct kvm_kernel_irqfd *irqfd =
13559 container_of(cons, struct kvm_kernel_irqfd, consumer);
13560
13561 WARN_ON(irqfd->producer != prod);
13562 irqfd->producer = NULL;
13563
13564 /*
13565 * When producer of consumer is unregistered, we change back to
13566 * remapped mode, so we can re-use the current implementation
13567 * when the irq is masked/disabled or the consumer side (KVM
13568 * int this case doesn't want to receive the interrupts.
13569 */
13570 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13571 prod->irq, irqfd->gsi, 0);
13572 if (ret)
13573 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13574 " fails: %d\n", irqfd->consumer.token, ret);
13575
13576 kvm_arch_end_assignment(irqfd->kvm);
13577 }
13578
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13579 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13580 uint32_t guest_irq, bool set)
13581 {
13582 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13583 }
13584
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13585 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13586 struct kvm_kernel_irq_routing_entry *new)
13587 {
13588 if (new->type != KVM_IRQ_ROUTING_MSI)
13589 return true;
13590
13591 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13592 }
13593
kvm_vector_hashing_enabled(void)13594 bool kvm_vector_hashing_enabled(void)
13595 {
13596 return vector_hashing;
13597 }
13598
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13599 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13600 {
13601 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13602 }
13603 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13604
13605 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13606 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13607 {
13608 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13609 }
13610 #endif
13611
13612 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13613 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13614 {
13615 kvm_x86_call(gmem_invalidate)(start, end);
13616 }
13617 #endif
13618
kvm_spec_ctrl_test_value(u64 value)13619 int kvm_spec_ctrl_test_value(u64 value)
13620 {
13621 /*
13622 * test that setting IA32_SPEC_CTRL to given value
13623 * is allowed by the host processor
13624 */
13625
13626 u64 saved_value;
13627 unsigned long flags;
13628 int ret = 0;
13629
13630 local_irq_save(flags);
13631
13632 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13633 ret = 1;
13634 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13635 ret = 1;
13636 else
13637 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13638
13639 local_irq_restore(flags);
13640
13641 return ret;
13642 }
13643 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13644
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13645 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13646 {
13647 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13648 struct x86_exception fault;
13649 u64 access = error_code &
13650 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13651
13652 if (!(error_code & PFERR_PRESENT_MASK) ||
13653 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13654 /*
13655 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13656 * tables probably do not match the TLB. Just proceed
13657 * with the error code that the processor gave.
13658 */
13659 fault.vector = PF_VECTOR;
13660 fault.error_code_valid = true;
13661 fault.error_code = error_code;
13662 fault.nested_page_fault = false;
13663 fault.address = gva;
13664 fault.async_page_fault = false;
13665 }
13666 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13667 }
13668 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13669
13670 /*
13671 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13672 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13673 * indicates whether exit to userspace is needed.
13674 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13675 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13676 struct x86_exception *e)
13677 {
13678 if (r == X86EMUL_PROPAGATE_FAULT) {
13679 if (KVM_BUG_ON(!e, vcpu->kvm))
13680 return -EIO;
13681
13682 kvm_inject_emulated_page_fault(vcpu, e);
13683 return 1;
13684 }
13685
13686 /*
13687 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13688 * while handling a VMX instruction KVM could've handled the request
13689 * correctly by exiting to userspace and performing I/O but there
13690 * doesn't seem to be a real use-case behind such requests, just return
13691 * KVM_EXIT_INTERNAL_ERROR for now.
13692 */
13693 kvm_prepare_emulation_failure_exit(vcpu);
13694
13695 return 0;
13696 }
13697 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13698
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13699 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13700 {
13701 bool pcid_enabled;
13702 struct x86_exception e;
13703 struct {
13704 u64 pcid;
13705 u64 gla;
13706 } operand;
13707 int r;
13708
13709 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13710 if (r != X86EMUL_CONTINUE)
13711 return kvm_handle_memory_failure(vcpu, r, &e);
13712
13713 if (operand.pcid >> 12 != 0) {
13714 kvm_inject_gp(vcpu, 0);
13715 return 1;
13716 }
13717
13718 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13719
13720 switch (type) {
13721 case INVPCID_TYPE_INDIV_ADDR:
13722 /*
13723 * LAM doesn't apply to addresses that are inputs to TLB
13724 * invalidation.
13725 */
13726 if ((!pcid_enabled && (operand.pcid != 0)) ||
13727 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13728 kvm_inject_gp(vcpu, 0);
13729 return 1;
13730 }
13731 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13732 return kvm_skip_emulated_instruction(vcpu);
13733
13734 case INVPCID_TYPE_SINGLE_CTXT:
13735 if (!pcid_enabled && (operand.pcid != 0)) {
13736 kvm_inject_gp(vcpu, 0);
13737 return 1;
13738 }
13739
13740 kvm_invalidate_pcid(vcpu, operand.pcid);
13741 return kvm_skip_emulated_instruction(vcpu);
13742
13743 case INVPCID_TYPE_ALL_NON_GLOBAL:
13744 /*
13745 * Currently, KVM doesn't mark global entries in the shadow
13746 * page tables, so a non-global flush just degenerates to a
13747 * global flush. If needed, we could optimize this later by
13748 * keeping track of global entries in shadow page tables.
13749 */
13750
13751 fallthrough;
13752 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13753 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13754 return kvm_skip_emulated_instruction(vcpu);
13755
13756 default:
13757 kvm_inject_gp(vcpu, 0);
13758 return 1;
13759 }
13760 }
13761 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13762
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13763 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13764 {
13765 struct kvm_run *run = vcpu->run;
13766 struct kvm_mmio_fragment *frag;
13767 unsigned int len;
13768
13769 BUG_ON(!vcpu->mmio_needed);
13770
13771 /* Complete previous fragment */
13772 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13773 len = min(8u, frag->len);
13774 if (!vcpu->mmio_is_write)
13775 memcpy(frag->data, run->mmio.data, len);
13776
13777 if (frag->len <= 8) {
13778 /* Switch to the next fragment. */
13779 frag++;
13780 vcpu->mmio_cur_fragment++;
13781 } else {
13782 /* Go forward to the next mmio piece. */
13783 frag->data += len;
13784 frag->gpa += len;
13785 frag->len -= len;
13786 }
13787
13788 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13789 vcpu->mmio_needed = 0;
13790
13791 // VMG change, at this point, we're always done
13792 // RIP has already been advanced
13793 return 1;
13794 }
13795
13796 // More MMIO is needed
13797 run->mmio.phys_addr = frag->gpa;
13798 run->mmio.len = min(8u, frag->len);
13799 run->mmio.is_write = vcpu->mmio_is_write;
13800 if (run->mmio.is_write)
13801 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13802 run->exit_reason = KVM_EXIT_MMIO;
13803
13804 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13805
13806 return 0;
13807 }
13808
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13809 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13810 void *data)
13811 {
13812 int handled;
13813 struct kvm_mmio_fragment *frag;
13814
13815 if (!data)
13816 return -EINVAL;
13817
13818 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13819 if (handled == bytes)
13820 return 1;
13821
13822 bytes -= handled;
13823 gpa += handled;
13824 data += handled;
13825
13826 /*TODO: Check if need to increment number of frags */
13827 frag = vcpu->mmio_fragments;
13828 vcpu->mmio_nr_fragments = 1;
13829 frag->len = bytes;
13830 frag->gpa = gpa;
13831 frag->data = data;
13832
13833 vcpu->mmio_needed = 1;
13834 vcpu->mmio_cur_fragment = 0;
13835
13836 vcpu->run->mmio.phys_addr = gpa;
13837 vcpu->run->mmio.len = min(8u, frag->len);
13838 vcpu->run->mmio.is_write = 1;
13839 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13840 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13841
13842 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13843
13844 return 0;
13845 }
13846 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13847
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13848 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13849 void *data)
13850 {
13851 int handled;
13852 struct kvm_mmio_fragment *frag;
13853
13854 if (!data)
13855 return -EINVAL;
13856
13857 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13858 if (handled == bytes)
13859 return 1;
13860
13861 bytes -= handled;
13862 gpa += handled;
13863 data += handled;
13864
13865 /*TODO: Check if need to increment number of frags */
13866 frag = vcpu->mmio_fragments;
13867 vcpu->mmio_nr_fragments = 1;
13868 frag->len = bytes;
13869 frag->gpa = gpa;
13870 frag->data = data;
13871
13872 vcpu->mmio_needed = 1;
13873 vcpu->mmio_cur_fragment = 0;
13874
13875 vcpu->run->mmio.phys_addr = gpa;
13876 vcpu->run->mmio.len = min(8u, frag->len);
13877 vcpu->run->mmio.is_write = 0;
13878 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13879
13880 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13881
13882 return 0;
13883 }
13884 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13885
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13886 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13887 {
13888 vcpu->arch.sev_pio_count -= count;
13889 vcpu->arch.sev_pio_data += count * size;
13890 }
13891
13892 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13893 unsigned int port);
13894
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13895 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13896 {
13897 int size = vcpu->arch.pio.size;
13898 int port = vcpu->arch.pio.port;
13899
13900 vcpu->arch.pio.count = 0;
13901 if (vcpu->arch.sev_pio_count)
13902 return kvm_sev_es_outs(vcpu, size, port);
13903 return 1;
13904 }
13905
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13906 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13907 unsigned int port)
13908 {
13909 for (;;) {
13910 unsigned int count =
13911 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13912 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13913
13914 /* memcpy done already by emulator_pio_out. */
13915 advance_sev_es_emulated_pio(vcpu, count, size);
13916 if (!ret)
13917 break;
13918
13919 /* Emulation done by the kernel. */
13920 if (!vcpu->arch.sev_pio_count)
13921 return 1;
13922 }
13923
13924 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13925 return 0;
13926 }
13927
13928 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13929 unsigned int port);
13930
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13931 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13932 {
13933 unsigned count = vcpu->arch.pio.count;
13934 int size = vcpu->arch.pio.size;
13935 int port = vcpu->arch.pio.port;
13936
13937 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13938 advance_sev_es_emulated_pio(vcpu, count, size);
13939 if (vcpu->arch.sev_pio_count)
13940 return kvm_sev_es_ins(vcpu, size, port);
13941 return 1;
13942 }
13943
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13944 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13945 unsigned int port)
13946 {
13947 for (;;) {
13948 unsigned int count =
13949 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13950 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13951 break;
13952
13953 /* Emulation done by the kernel. */
13954 advance_sev_es_emulated_pio(vcpu, count, size);
13955 if (!vcpu->arch.sev_pio_count)
13956 return 1;
13957 }
13958
13959 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13960 return 0;
13961 }
13962
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13963 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13964 unsigned int port, void *data, unsigned int count,
13965 int in)
13966 {
13967 vcpu->arch.sev_pio_data = data;
13968 vcpu->arch.sev_pio_count = count;
13969 return in ? kvm_sev_es_ins(vcpu, size, port)
13970 : kvm_sev_es_outs(vcpu, size, port);
13971 }
13972 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13973
13974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14004
kvm_x86_init(void)14005 static int __init kvm_x86_init(void)
14006 {
14007 kvm_init_xstate_sizes();
14008
14009 kvm_mmu_x86_module_init();
14010 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14011 return 0;
14012 }
14013 module_init(kvm_x86_init);
14014
kvm_x86_exit(void)14015 static void __exit kvm_x86_exit(void)
14016 {
14017 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14018 }
14019 module_exit(kvm_x86_exit);
14020