1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4 #include <linux/etherdevice.h>
5 #include <linux/netdevice.h>
6 #include <linux/if_ether.h>
7 #include <linux/if_vlan.h>
8 #include <linux/iopoll.h>
9 #include <linux/pci.h>
10
11 #include "wx_type.h"
12 #include "wx_lib.h"
13 #include "wx_sriov.h"
14 #include "wx_vf.h"
15 #include "wx_hw.h"
16
wx_phy_read_reg_mdi(struct mii_bus * bus,int phy_addr,int devnum,int regnum)17 static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
18 {
19 struct wx *wx = bus->priv;
20 u32 command, val;
21 int ret;
22
23 /* setup and write the address cycle command */
24 command = WX_MSCA_RA(regnum) |
25 WX_MSCA_PA(phy_addr) |
26 WX_MSCA_DA(devnum);
27 wr32(wx, WX_MSCA, command);
28
29 command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY;
30 if (wx->mac.type == wx_mac_em)
31 command |= WX_MDIO_CLK(6);
32 wr32(wx, WX_MSCC, command);
33
34 /* wait to complete */
35 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
36 100000, false, wx, WX_MSCC);
37 if (ret) {
38 wx_err(wx, "Mdio read c22 command did not complete.\n");
39 return ret;
40 }
41
42 return (u16)rd32(wx, WX_MSCC);
43 }
44
wx_phy_write_reg_mdi(struct mii_bus * bus,int phy_addr,int devnum,int regnum,u16 value)45 static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr,
46 int devnum, int regnum, u16 value)
47 {
48 struct wx *wx = bus->priv;
49 u32 command, val;
50 int ret;
51
52 /* setup and write the address cycle command */
53 command = WX_MSCA_RA(regnum) |
54 WX_MSCA_PA(phy_addr) |
55 WX_MSCA_DA(devnum);
56 wr32(wx, WX_MSCA, command);
57
58 command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY;
59 if (wx->mac.type == wx_mac_em)
60 command |= WX_MDIO_CLK(6);
61 wr32(wx, WX_MSCC, command);
62
63 /* wait to complete */
64 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
65 100000, false, wx, WX_MSCC);
66 if (ret)
67 wx_err(wx, "Mdio write c22 command did not complete.\n");
68
69 return ret;
70 }
71
wx_phy_read_reg_mdi_c22(struct mii_bus * bus,int phy_addr,int regnum)72 int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum)
73 {
74 struct wx *wx = bus->priv;
75
76 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
77 return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum);
78 }
79 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22);
80
wx_phy_write_reg_mdi_c22(struct mii_bus * bus,int phy_addr,int regnum,u16 value)81 int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value)
82 {
83 struct wx *wx = bus->priv;
84
85 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
86 return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value);
87 }
88 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22);
89
wx_phy_read_reg_mdi_c45(struct mii_bus * bus,int phy_addr,int devnum,int regnum)90 int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
91 {
92 struct wx *wx = bus->priv;
93
94 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
95 return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum);
96 }
97 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45);
98
wx_phy_write_reg_mdi_c45(struct mii_bus * bus,int phy_addr,int devnum,int regnum,u16 value)99 int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr,
100 int devnum, int regnum, u16 value)
101 {
102 struct wx *wx = bus->priv;
103
104 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
105 return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value);
106 }
107 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45);
108
wx_intr_disable(struct wx * wx,u64 qmask)109 static void wx_intr_disable(struct wx *wx, u64 qmask)
110 {
111 u32 mask;
112
113 mask = (qmask & U32_MAX);
114 if (mask)
115 wr32(wx, WX_PX_IMS(0), mask);
116
117 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
118 mask = (qmask >> 32);
119 if (mask)
120 wr32(wx, WX_PX_IMS(1), mask);
121 }
122 }
123
wx_intr_enable(struct wx * wx,u64 qmask)124 void wx_intr_enable(struct wx *wx, u64 qmask)
125 {
126 u32 mask;
127
128 if (wx->pdev->is_virtfn) {
129 wr32(wx, WX_VXIMC, qmask);
130 return;
131 }
132
133 mask = (qmask & U32_MAX);
134 if (mask)
135 wr32(wx, WX_PX_IMC(0), mask);
136
137 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
138 mask = (qmask >> 32);
139 if (mask)
140 wr32(wx, WX_PX_IMC(1), mask);
141 }
142 }
143 EXPORT_SYMBOL(wx_intr_enable);
144
145 /**
146 * wx_irq_disable - Mask off interrupt generation on the NIC
147 * @wx: board private structure
148 **/
wx_irq_disable(struct wx * wx)149 void wx_irq_disable(struct wx *wx)
150 {
151 struct pci_dev *pdev = wx->pdev;
152
153 wr32(wx, WX_PX_MISC_IEN, 0);
154 wx_intr_disable(wx, WX_INTR_ALL);
155
156 if (pdev->msix_enabled) {
157 int vector;
158
159 for (vector = 0; vector < wx->num_q_vectors; vector++)
160 synchronize_irq(wx->msix_q_entries[vector].vector);
161
162 synchronize_irq(wx->msix_entry->vector);
163 } else {
164 synchronize_irq(pdev->irq);
165 }
166 }
167 EXPORT_SYMBOL(wx_irq_disable);
168
169 /* cmd_addr is used for some special command:
170 * 1. to be sector address, when implemented erase sector command
171 * 2. to be flash address when implemented read, write flash address
172 */
wx_fmgr_cmd_op(struct wx * wx,u32 cmd,u32 cmd_addr)173 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
174 {
175 u32 cmd_val = 0, val = 0;
176
177 cmd_val = WX_SPI_CMD_CMD(cmd) |
178 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
179 cmd_addr;
180 wr32(wx, WX_SPI_CMD, cmd_val);
181
182 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
183 false, wx, WX_SPI_STATUS);
184 }
185
wx_flash_read_dword(struct wx * wx,u32 addr,u32 * data)186 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
187 {
188 int ret = 0;
189
190 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
191 if (ret < 0)
192 return ret;
193
194 *data = rd32(wx, WX_SPI_DATA);
195
196 return ret;
197 }
198
wx_check_flash_load(struct wx * hw,u32 check_bit)199 int wx_check_flash_load(struct wx *hw, u32 check_bit)
200 {
201 u32 reg = 0;
202 int err = 0;
203
204 /* if there's flash existing */
205 if (!(rd32(hw, WX_SPI_STATUS) &
206 WX_SPI_STATUS_FLASH_BYPASS)) {
207 /* wait hw load flash done */
208 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
209 false, hw, WX_SPI_ILDR_STATUS);
210 if (err < 0)
211 wx_err(hw, "Check flash load timeout.\n");
212 }
213
214 return err;
215 }
216 EXPORT_SYMBOL(wx_check_flash_load);
217
wx_control_hw(struct wx * wx,bool drv)218 void wx_control_hw(struct wx *wx, bool drv)
219 {
220 /* True : Let firmware know the driver has taken over
221 * False : Let firmware take over control of hw
222 */
223 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
224 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
225 }
226 EXPORT_SYMBOL(wx_control_hw);
227
228 /**
229 * wx_mng_present - returns 0 when management capability is present
230 * @wx: pointer to hardware structure
231 */
wx_mng_present(struct wx * wx)232 int wx_mng_present(struct wx *wx)
233 {
234 u32 fwsm;
235
236 fwsm = rd32(wx, WX_MIS_ST);
237 if (fwsm & WX_MIS_ST_MNG_INIT_DN)
238 return 0;
239 else
240 return -EACCES;
241 }
242 EXPORT_SYMBOL(wx_mng_present);
243
244 /* Software lock to be held while software semaphore is being accessed. */
245 static DEFINE_MUTEX(wx_sw_sync_lock);
246
247 /**
248 * wx_release_sw_sync - Release SW semaphore
249 * @wx: pointer to hardware structure
250 * @mask: Mask to specify which semaphore to release
251 *
252 * Releases the SW semaphore for the specified
253 * function (CSR, PHY0, PHY1, EEPROM, Flash)
254 **/
wx_release_sw_sync(struct wx * wx,u32 mask)255 static void wx_release_sw_sync(struct wx *wx, u32 mask)
256 {
257 mutex_lock(&wx_sw_sync_lock);
258 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
259 mutex_unlock(&wx_sw_sync_lock);
260 }
261
262 /**
263 * wx_acquire_sw_sync - Acquire SW semaphore
264 * @wx: pointer to hardware structure
265 * @mask: Mask to specify which semaphore to acquire
266 *
267 * Acquires the SW semaphore for the specified
268 * function (CSR, PHY0, PHY1, EEPROM, Flash)
269 **/
wx_acquire_sw_sync(struct wx * wx,u32 mask)270 static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
271 {
272 u32 sem = 0;
273 int ret = 0;
274
275 mutex_lock(&wx_sw_sync_lock);
276 ret = read_poll_timeout(rd32, sem, !(sem & mask),
277 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
278 if (!ret) {
279 sem |= mask;
280 wr32(wx, WX_MNG_SWFW_SYNC, sem);
281 } else {
282 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
283 }
284 mutex_unlock(&wx_sw_sync_lock);
285
286 return ret;
287 }
288
wx_host_interface_command_s(struct wx * wx,u32 * buffer,u32 length,u32 timeout,bool return_data)289 static int wx_host_interface_command_s(struct wx *wx, u32 *buffer,
290 u32 length, u32 timeout, bool return_data)
291 {
292 u32 hdr_size = sizeof(struct wx_hic_hdr);
293 u32 hicr, i, bi, buf[64] = {};
294 int status = 0;
295 u32 dword_len;
296 u16 buf_len;
297
298 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
299 if (status != 0)
300 return status;
301
302 dword_len = length >> 2;
303
304 /* The device driver writes the relevant command block
305 * into the ram area.
306 */
307 for (i = 0; i < dword_len; i++) {
308 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
309 /* write flush */
310 buf[i] = rd32a(wx, WX_MNG_MBOX, i);
311 }
312 /* Setting this bit tells the ARC that a new command is pending. */
313 wr32m(wx, WX_MNG_MBOX_CTL,
314 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
315
316 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
317 timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
318
319 buf[0] = rd32(wx, WX_MNG_MBOX);
320 if ((buf[0] & 0xff0000) >> 16 == 0x80) {
321 wx_err(wx, "Unknown FW command: 0x%x\n", buffer[0] & 0xff);
322 status = -EINVAL;
323 goto rel_out;
324 }
325
326 /* Check command completion */
327 if (status) {
328 wx_err(wx, "Command has failed with no status valid.\n");
329 wx_dbg(wx, "write value:\n");
330 for (i = 0; i < dword_len; i++)
331 wx_dbg(wx, "%x ", buffer[i]);
332 wx_dbg(wx, "read value:\n");
333 for (i = 0; i < dword_len; i++)
334 wx_dbg(wx, "%x ", buf[i]);
335 wx_dbg(wx, "\ncheck: %x %x\n", buffer[0] & 0xff, ~buf[0] >> 24);
336
337 goto rel_out;
338 }
339
340 if (!return_data)
341 goto rel_out;
342
343 /* Calculate length in DWORDs */
344 dword_len = hdr_size >> 2;
345
346 /* first pull in the header so we know the buffer length */
347 for (bi = 0; bi < dword_len; bi++) {
348 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
349 le32_to_cpus(&buffer[bi]);
350 }
351
352 /* If there is any thing in data position pull it in */
353 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
354 if (buf_len == 0)
355 goto rel_out;
356
357 if (length < buf_len + hdr_size) {
358 wx_err(wx, "Buffer not large enough for reply message.\n");
359 status = -EFAULT;
360 goto rel_out;
361 }
362
363 /* Calculate length in DWORDs, add 3 for odd lengths */
364 dword_len = (buf_len + 3) >> 2;
365
366 /* Pull in the rest of the buffer (bi is where we left off) */
367 for (; bi <= dword_len; bi++) {
368 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
369 le32_to_cpus(&buffer[bi]);
370 }
371
372 rel_out:
373 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
374 return status;
375 }
376
wx_poll_fw_reply(struct wx * wx,u32 * buffer,u8 send_cmd)377 static bool wx_poll_fw_reply(struct wx *wx, u32 *buffer, u8 send_cmd)
378 {
379 u32 dword_len = sizeof(struct wx_hic_hdr) >> 2;
380 struct wx_hic_hdr *recv_hdr;
381 u32 i;
382
383 /* read hdr */
384 for (i = 0; i < dword_len; i++) {
385 buffer[i] = rd32a(wx, WX_FW2SW_MBOX, i);
386 le32_to_cpus(&buffer[i]);
387 }
388
389 /* check hdr */
390 recv_hdr = (struct wx_hic_hdr *)buffer;
391 if (recv_hdr->cmd == send_cmd &&
392 recv_hdr->index == wx->swfw_index)
393 return true;
394
395 return false;
396 }
397
wx_host_interface_command_r(struct wx * wx,u32 * buffer,u32 length,u32 timeout,bool return_data)398 static int wx_host_interface_command_r(struct wx *wx, u32 *buffer,
399 u32 length, u32 timeout, bool return_data)
400 {
401 struct wx_hic_hdr *hdr = (struct wx_hic_hdr *)buffer;
402 u32 hdr_size = sizeof(struct wx_hic_hdr);
403 bool busy, reply;
404 u32 dword_len;
405 u16 buf_len;
406 int err = 0;
407 u8 send_cmd;
408 u32 i;
409
410 /* wait to get lock */
411 might_sleep();
412 err = read_poll_timeout(test_and_set_bit, busy, !busy, 1000, timeout * 1000,
413 false, WX_STATE_SWFW_BUSY, wx->state);
414 if (err)
415 return err;
416
417 /* index to unique seq id for each mbox message */
418 hdr->index = wx->swfw_index;
419 send_cmd = hdr->cmd;
420
421 dword_len = length >> 2;
422 /* write data to SW-FW mbox array */
423 for (i = 0; i < dword_len; i++) {
424 wr32a(wx, WX_SW2FW_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
425 /* write flush */
426 rd32a(wx, WX_SW2FW_MBOX, i);
427 }
428
429 /* generate interrupt to notify FW */
430 wr32m(wx, WX_SW2FW_MBOX_CMD, WX_SW2FW_MBOX_CMD_VLD, 0);
431 wr32m(wx, WX_SW2FW_MBOX_CMD, WX_SW2FW_MBOX_CMD_VLD, WX_SW2FW_MBOX_CMD_VLD);
432
433 /* polling reply from FW */
434 err = read_poll_timeout(wx_poll_fw_reply, reply, reply, 2000,
435 timeout * 1000, true, wx, buffer, send_cmd);
436 if (err) {
437 wx_err(wx, "Polling from FW messages timeout, cmd: 0x%x, index: %d\n",
438 send_cmd, wx->swfw_index);
439 goto rel_out;
440 }
441
442 if (hdr->cmd_or_resp.ret_status == 0x80) {
443 wx_err(wx, "Unknown FW command: 0x%x\n", send_cmd);
444 err = -EINVAL;
445 goto rel_out;
446 }
447
448 /* expect no reply from FW then return */
449 if (!return_data)
450 goto rel_out;
451
452 /* If there is any thing in data position pull it in */
453 buf_len = hdr->buf_len;
454 if (buf_len == 0)
455 goto rel_out;
456
457 if (length < buf_len + hdr_size) {
458 wx_err(wx, "Buffer not large enough for reply message.\n");
459 err = -EFAULT;
460 goto rel_out;
461 }
462
463 /* Calculate length in DWORDs, add 3 for odd lengths */
464 dword_len = (buf_len + 3) >> 2;
465 for (i = hdr_size >> 2; i <= dword_len; i++) {
466 buffer[i] = rd32a(wx, WX_FW2SW_MBOX, i);
467 le32_to_cpus(&buffer[i]);
468 }
469
470 rel_out:
471 /* index++, index replace wx_hic_hdr.checksum */
472 if (wx->swfw_index == WX_HIC_HDR_INDEX_MAX)
473 wx->swfw_index = 0;
474 else
475 wx->swfw_index++;
476
477 clear_bit(WX_STATE_SWFW_BUSY, wx->state);
478 return err;
479 }
480
481 /**
482 * wx_host_interface_command - Issue command to manageability block
483 * @wx: pointer to the HW structure
484 * @buffer: contains the command to write and where the return status will
485 * be placed
486 * @length: length of buffer, must be multiple of 4 bytes
487 * @timeout: time in ms to wait for command completion
488 * @return_data: read and return data from the buffer (true) or not (false)
489 * Needed because FW structures are big endian and decoding of
490 * these fields can be 8 bit or 16 bit based on command. Decoding
491 * is not easily understood without making a table of commands.
492 * So we will leave this up to the caller to read back the data
493 * in these cases.
494 **/
wx_host_interface_command(struct wx * wx,u32 * buffer,u32 length,u32 timeout,bool return_data)495 int wx_host_interface_command(struct wx *wx, u32 *buffer,
496 u32 length, u32 timeout, bool return_data)
497 {
498 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
499 wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
500 return -EINVAL;
501 }
502
503 /* Calculate length in DWORDs. We must be DWORD aligned */
504 if ((length % (sizeof(u32))) != 0) {
505 wx_err(wx, "Buffer length failure, not aligned to dword");
506 return -EINVAL;
507 }
508
509 if (test_bit(WX_FLAG_SWFW_RING, wx->flags))
510 return wx_host_interface_command_r(wx, buffer, length,
511 timeout, return_data);
512
513 return wx_host_interface_command_s(wx, buffer, length, timeout, return_data);
514 }
515 EXPORT_SYMBOL(wx_host_interface_command);
516
wx_set_pps(struct wx * wx,bool enable,u64 nsec,u64 cycles)517 int wx_set_pps(struct wx *wx, bool enable, u64 nsec, u64 cycles)
518 {
519 struct wx_hic_set_pps pps_cmd;
520
521 pps_cmd.hdr.cmd = FW_PPS_SET_CMD;
522 pps_cmd.hdr.buf_len = FW_PPS_SET_LEN;
523 pps_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
524 pps_cmd.lan_id = wx->bus.func;
525 pps_cmd.enable = (u8)enable;
526 pps_cmd.nsec = nsec;
527 pps_cmd.cycles = cycles;
528 pps_cmd.hdr.checksum = FW_DEFAULT_CHECKSUM;
529
530 return wx_host_interface_command(wx, (u32 *)&pps_cmd,
531 sizeof(pps_cmd),
532 WX_HI_COMMAND_TIMEOUT,
533 false);
534 }
535
536 /**
537 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
538 * assuming that the semaphore is already obtained.
539 * @wx: pointer to hardware structure
540 * @offset: offset of word in the EEPROM to read
541 * @data: word read from the EEPROM
542 *
543 * Reads a 16 bit word from the EEPROM using the hostif.
544 **/
wx_read_ee_hostif_data(struct wx * wx,u16 offset,u16 * data)545 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
546 {
547 struct wx_hic_read_shadow_ram buffer;
548 int status;
549
550 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
551 buffer.hdr.req.buf_lenh = 0;
552 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
553 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
554
555 /* convert offset from words to bytes */
556 buffer.address = (__force u32)cpu_to_be32(offset * 2);
557 /* one word */
558 buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
559
560 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
561 WX_HI_COMMAND_TIMEOUT, false);
562
563 if (status != 0)
564 return status;
565
566 if (!test_bit(WX_FLAG_SWFW_RING, wx->flags))
567 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
568 else
569 *data = (u16)rd32a(wx, WX_FW2SW_MBOX, FW_NVM_DATA_OFFSET);
570
571 return status;
572 }
573
574 /**
575 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd
576 * @wx: pointer to hardware structure
577 * @offset: offset of word in the EEPROM to read
578 * @data: word read from the EEPROM
579 *
580 * Reads a 16 bit word from the EEPROM using the hostif.
581 **/
wx_read_ee_hostif(struct wx * wx,u16 offset,u16 * data)582 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
583 {
584 int status = 0;
585
586 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
587 if (status == 0) {
588 status = wx_read_ee_hostif_data(wx, offset, data);
589 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
590 }
591
592 return status;
593 }
594 EXPORT_SYMBOL(wx_read_ee_hostif);
595
596 /**
597 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
598 * @wx: pointer to hardware structure
599 * @offset: offset of word in the EEPROM to read
600 * @words: number of words
601 * @data: word(s) read from the EEPROM
602 *
603 * Reads a 16 bit word(s) from the EEPROM using the hostif.
604 **/
wx_read_ee_hostif_buffer(struct wx * wx,u16 offset,u16 words,u16 * data)605 int wx_read_ee_hostif_buffer(struct wx *wx,
606 u16 offset, u16 words, u16 *data)
607 {
608 struct wx_hic_read_shadow_ram buffer;
609 u32 current_word = 0;
610 u16 words_to_read;
611 u32 value = 0;
612 int status;
613 u32 mbox;
614 u32 i;
615
616 /* Take semaphore for the entire operation. */
617 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
618 if (status != 0)
619 return status;
620
621 while (words) {
622 if (words > FW_MAX_READ_BUFFER_SIZE / 2)
623 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
624 else
625 words_to_read = words;
626
627 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
628 buffer.hdr.req.buf_lenh = 0;
629 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
630 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
631
632 /* convert offset from words to bytes */
633 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
634 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
635
636 status = wx_host_interface_command(wx, (u32 *)&buffer,
637 sizeof(buffer),
638 WX_HI_COMMAND_TIMEOUT,
639 false);
640
641 if (status != 0) {
642 wx_err(wx, "Host interface command failed\n");
643 goto out;
644 }
645
646 if (!test_bit(WX_FLAG_SWFW_RING, wx->flags))
647 mbox = WX_MNG_MBOX;
648 else
649 mbox = WX_FW2SW_MBOX;
650 for (i = 0; i < words_to_read; i++) {
651 u32 reg = mbox + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
652
653 value = rd32(wx, reg);
654 data[current_word] = (u16)(value & 0xffff);
655 current_word++;
656 i++;
657 if (i < words_to_read) {
658 value >>= 16;
659 data[current_word] = (u16)(value & 0xffff);
660 current_word++;
661 }
662 }
663 words -= words_to_read;
664 }
665
666 out:
667 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
668 return status;
669 }
670 EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
671
672 /**
673 * wx_init_eeprom_params - Initialize EEPROM params
674 * @wx: pointer to hardware structure
675 *
676 * Initializes the EEPROM parameters wx_eeprom_info within the
677 * wx_hw struct in order to set up EEPROM access.
678 **/
wx_init_eeprom_params(struct wx * wx)679 void wx_init_eeprom_params(struct wx *wx)
680 {
681 struct wx_eeprom_info *eeprom = &wx->eeprom;
682 u16 eeprom_size;
683 u16 data = 0x80;
684
685 if (eeprom->type == wx_eeprom_uninitialized) {
686 eeprom->semaphore_delay = 10;
687 eeprom->type = wx_eeprom_none;
688
689 if (!(rd32(wx, WX_SPI_STATUS) &
690 WX_SPI_STATUS_FLASH_BYPASS)) {
691 eeprom->type = wx_flash;
692
693 eeprom_size = 4096;
694 eeprom->word_size = eeprom_size >> 1;
695
696 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
697 eeprom->type, eeprom->word_size);
698 }
699 }
700
701 switch (wx->mac.type) {
702 case wx_mac_sp:
703 case wx_mac_aml:
704 case wx_mac_aml40:
705 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
706 wx_err(wx, "NVM Read Error\n");
707 return;
708 }
709 data = data >> 1;
710 break;
711 default:
712 break;
713 }
714
715 eeprom->sw_region_offset = data;
716 }
717 EXPORT_SYMBOL(wx_init_eeprom_params);
718
719 /**
720 * wx_get_mac_addr - Generic get MAC address
721 * @wx: pointer to hardware structure
722 * @mac_addr: Adapter MAC address
723 *
724 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
725 * A reset of the adapter must be performed prior to calling this function
726 * in order for the MAC address to have been loaded from the EEPROM into RAR0
727 **/
wx_get_mac_addr(struct wx * wx,u8 * mac_addr)728 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
729 {
730 u32 rar_high;
731 u32 rar_low;
732 u16 i;
733
734 wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
735 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
736 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
737
738 for (i = 0; i < 2; i++)
739 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
740
741 for (i = 0; i < 4; i++)
742 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
743 }
744 EXPORT_SYMBOL(wx_get_mac_addr);
745
746 /**
747 * wx_set_rar - Set Rx address register
748 * @wx: pointer to hardware structure
749 * @index: Receive address register to write
750 * @addr: Address to put into receive address register
751 * @pools: VMDq "set" or "pool" index
752 * @enable_addr: set flag that address is active
753 *
754 * Puts an ethernet address into a receive address register.
755 **/
wx_set_rar(struct wx * wx,u32 index,u8 * addr,u64 pools,u32 enable_addr)756 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
757 u32 enable_addr)
758 {
759 u32 rar_entries = wx->mac.num_rar_entries;
760 u32 rar_low, rar_high;
761
762 /* Make sure we are using a valid rar index range */
763 if (index >= rar_entries) {
764 wx_err(wx, "RAR index %d is out of range.\n", index);
765 return -EINVAL;
766 }
767
768 /* select the MAC address */
769 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
770
771 /* setup VMDq pool mapping */
772 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
773
774 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags))
775 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
776
777 /* HW expects these in little endian so we reverse the byte
778 * order from network order (big endian) to little endian
779 *
780 * Some parts put the VMDq setting in the extra RAH bits,
781 * so save everything except the lower 16 bits that hold part
782 * of the address and the address valid bit.
783 */
784 rar_low = ((u32)addr[5] |
785 ((u32)addr[4] << 8) |
786 ((u32)addr[3] << 16) |
787 ((u32)addr[2] << 24));
788 rar_high = ((u32)addr[1] |
789 ((u32)addr[0] << 8));
790 if (enable_addr != 0)
791 rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
792
793 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
794 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
795 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
796 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
797 WX_PSR_MAC_SWC_AD_H_AV),
798 rar_high);
799
800 return 0;
801 }
802
803 /**
804 * wx_clear_rar - Remove Rx address register
805 * @wx: pointer to hardware structure
806 * @index: Receive address register to write
807 *
808 * Clears an ethernet address from a receive address register.
809 **/
wx_clear_rar(struct wx * wx,u32 index)810 static int wx_clear_rar(struct wx *wx, u32 index)
811 {
812 u32 rar_entries = wx->mac.num_rar_entries;
813
814 /* Make sure we are using a valid rar index range */
815 if (index >= rar_entries) {
816 wx_err(wx, "RAR index %d is out of range.\n", index);
817 return -EINVAL;
818 }
819
820 /* Some parts put the VMDq setting in the extra RAH bits,
821 * so save everything except the lower 16 bits that hold part
822 * of the address and the address valid bit.
823 */
824 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
825
826 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
827 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
828
829 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
830 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
831 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
832 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
833 WX_PSR_MAC_SWC_AD_H_AV),
834 0);
835
836 return 0;
837 }
838
839 /**
840 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
841 * @wx: pointer to hardware struct
842 * @rar: receive address register index to disassociate
843 * @vmdq: VMDq pool index to remove from the rar
844 **/
wx_clear_vmdq(struct wx * wx,u32 rar,u32 __maybe_unused vmdq)845 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
846 {
847 u32 rar_entries = wx->mac.num_rar_entries;
848 u32 mpsar_lo, mpsar_hi;
849
850 /* Make sure we are using a valid rar index range */
851 if (rar >= rar_entries) {
852 wx_err(wx, "RAR index %d is out of range.\n", rar);
853 return -EINVAL;
854 }
855
856 wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
857 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
858 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
859
860 if (!mpsar_lo && !mpsar_hi)
861 return 0;
862
863 /* was that the last pool using this rar? */
864 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
865 wx_clear_rar(wx, rar);
866
867 return 0;
868 }
869
870 /**
871 * wx_init_uta_tables - Initialize the Unicast Table Array
872 * @wx: pointer to hardware structure
873 **/
wx_init_uta_tables(struct wx * wx)874 static void wx_init_uta_tables(struct wx *wx)
875 {
876 int i;
877
878 wx_dbg(wx, " Clearing UTA\n");
879
880 for (i = 0; i < 128; i++)
881 wr32(wx, WX_PSR_UC_TBL(i), 0);
882 }
883
884 /**
885 * wx_init_rx_addrs - Initializes receive address filters.
886 * @wx: pointer to hardware structure
887 *
888 * Places the MAC address in receive address register 0 and clears the rest
889 * of the receive address registers. Clears the multicast table. Assumes
890 * the receiver is in reset when the routine is called.
891 **/
wx_init_rx_addrs(struct wx * wx)892 void wx_init_rx_addrs(struct wx *wx)
893 {
894 u32 rar_entries = wx->mac.num_rar_entries;
895 u32 psrctl;
896 int i;
897
898 /* If the current mac address is valid, assume it is a software override
899 * to the permanent address.
900 * Otherwise, use the permanent address from the eeprom.
901 */
902 if (!is_valid_ether_addr(wx->mac.addr)) {
903 /* Get the MAC address from the RAR0 for later reference */
904 wx_get_mac_addr(wx, wx->mac.addr);
905 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
906 } else {
907 /* Setup the receive address. */
908 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
909 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
910
911 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
912
913 if (test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
914 /* clear VMDq pool/queue selection for RAR 0 */
915 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
916 }
917 }
918
919 /* Zero out the other receive addresses. */
920 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
921 for (i = 1; i < rar_entries; i++) {
922 wr32(wx, WX_PSR_MAC_SWC_IDX, i);
923 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
924 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
925 }
926
927 /* Clear the MTA */
928 wx->addr_ctrl.mta_in_use = 0;
929 psrctl = rd32(wx, WX_PSR_CTL);
930 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
931 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
932 wr32(wx, WX_PSR_CTL, psrctl);
933 wx_dbg(wx, " Clearing MTA\n");
934 for (i = 0; i < wx->mac.mcft_size; i++)
935 wr32(wx, WX_PSR_MC_TBL(i), 0);
936
937 wx_init_uta_tables(wx);
938 }
939 EXPORT_SYMBOL(wx_init_rx_addrs);
940
wx_sync_mac_table(struct wx * wx)941 static void wx_sync_mac_table(struct wx *wx)
942 {
943 int i;
944
945 for (i = 0; i < wx->mac.num_rar_entries; i++) {
946 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
947 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
948 wx_set_rar(wx, i,
949 wx->mac_table[i].addr,
950 wx->mac_table[i].pools,
951 WX_PSR_MAC_SWC_AD_H_AV);
952 } else {
953 wx_clear_rar(wx, i);
954 }
955 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
956 }
957 }
958 }
959
wx_full_sync_mac_table(struct wx * wx)960 static void wx_full_sync_mac_table(struct wx *wx)
961 {
962 int i;
963
964 for (i = 0; i < wx->mac.num_rar_entries; i++) {
965 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
966 wx_set_rar(wx, i,
967 wx->mac_table[i].addr,
968 wx->mac_table[i].pools,
969 WX_PSR_MAC_SWC_AD_H_AV);
970 } else {
971 wx_clear_rar(wx, i);
972 }
973 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
974 }
975 }
976
977 /* this function destroys the first RAR entry */
wx_mac_set_default_filter(struct wx * wx,u8 * addr)978 void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
979 {
980 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
981 wx->mac_table[0].pools = BIT(VMDQ_P(0));
982 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
983 wx_set_rar(wx, 0, wx->mac_table[0].addr,
984 wx->mac_table[0].pools,
985 WX_PSR_MAC_SWC_AD_H_AV);
986 }
987 EXPORT_SYMBOL(wx_mac_set_default_filter);
988
wx_flush_sw_mac_table(struct wx * wx)989 void wx_flush_sw_mac_table(struct wx *wx)
990 {
991 u32 i;
992
993 for (i = 0; i < wx->mac.num_rar_entries; i++) {
994 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
995 continue;
996
997 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
998 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
999 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
1000 wx->mac_table[i].pools = 0;
1001 }
1002 wx_sync_mac_table(wx);
1003 }
1004 EXPORT_SYMBOL(wx_flush_sw_mac_table);
1005
wx_add_mac_filter(struct wx * wx,u8 * addr,u16 pool)1006 int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
1007 {
1008 u32 i;
1009
1010 if (is_zero_ether_addr(addr))
1011 return -EINVAL;
1012
1013 for (i = 0; i < wx->mac.num_rar_entries; i++) {
1014 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
1015 if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
1016 if (wx->mac_table[i].pools != (1ULL << pool)) {
1017 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
1018 wx->mac_table[i].pools |= (1ULL << pool);
1019 wx_sync_mac_table(wx);
1020 return i;
1021 }
1022 }
1023 }
1024
1025 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
1026 continue;
1027 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
1028 WX_MAC_STATE_IN_USE);
1029 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
1030 wx->mac_table[i].pools |= (1ULL << pool);
1031 wx_sync_mac_table(wx);
1032 return i;
1033 }
1034 return -ENOMEM;
1035 }
1036
wx_del_mac_filter(struct wx * wx,u8 * addr,u16 pool)1037 int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
1038 {
1039 u32 i;
1040
1041 if (is_zero_ether_addr(addr))
1042 return -EINVAL;
1043
1044 /* search table for addr, if found, set to 0 and sync */
1045 for (i = 0; i < wx->mac.num_rar_entries; i++) {
1046 if (!ether_addr_equal(addr, wx->mac_table[i].addr))
1047 continue;
1048
1049 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
1050 wx->mac_table[i].pools &= ~(1ULL << pool);
1051 if (!wx->mac_table[i].pools) {
1052 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
1053 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
1054 }
1055 wx_sync_mac_table(wx);
1056 return 0;
1057 }
1058 return -ENOMEM;
1059 }
1060
wx_available_rars(struct wx * wx)1061 static int wx_available_rars(struct wx *wx)
1062 {
1063 u32 i, count = 0;
1064
1065 for (i = 0; i < wx->mac.num_rar_entries; i++) {
1066 if (wx->mac_table[i].state == 0)
1067 count++;
1068 }
1069
1070 return count;
1071 }
1072
1073 /**
1074 * wx_write_uc_addr_list - write unicast addresses to RAR table
1075 * @netdev: network interface device structure
1076 * @pool: index for mac table
1077 *
1078 * Writes unicast address list to the RAR table.
1079 * Returns: -ENOMEM on failure/insufficient address space
1080 * 0 on no addresses written
1081 * X on writing X addresses to the RAR table
1082 **/
wx_write_uc_addr_list(struct net_device * netdev,int pool)1083 static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
1084 {
1085 struct wx *wx = netdev_priv(netdev);
1086 int count = 0;
1087
1088 /* return ENOMEM indicating insufficient memory for addresses */
1089 if (netdev_uc_count(netdev) > wx_available_rars(wx))
1090 return -ENOMEM;
1091
1092 if (!netdev_uc_empty(netdev)) {
1093 struct netdev_hw_addr *ha;
1094
1095 netdev_for_each_uc_addr(ha, netdev) {
1096 wx_del_mac_filter(wx, ha->addr, pool);
1097 wx_add_mac_filter(wx, ha->addr, pool);
1098 count++;
1099 }
1100 }
1101 return count;
1102 }
1103
1104 /**
1105 * wx_mta_vector - Determines bit-vector in multicast table to set
1106 * @wx: pointer to private structure
1107 * @mc_addr: the multicast address
1108 *
1109 * Extracts the 12 bits, from a multicast address, to determine which
1110 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1111 * incoming rx multicast addresses, to determine the bit-vector to check in
1112 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1113 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1114 * to mc_filter_type.
1115 **/
wx_mta_vector(struct wx * wx,u8 * mc_addr)1116 u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
1117 {
1118 u32 vector = 0;
1119
1120 switch (wx->mac.mc_filter_type) {
1121 case 0: /* use bits [47:36] of the address */
1122 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1123 break;
1124 case 1: /* use bits [46:35] of the address */
1125 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1126 break;
1127 case 2: /* use bits [45:34] of the address */
1128 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1129 break;
1130 case 3: /* use bits [43:32] of the address */
1131 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1132 break;
1133 default: /* Invalid mc_filter_type */
1134 wx_err(wx, "MC filter type param set incorrectly\n");
1135 break;
1136 }
1137
1138 /* vector can only be 12-bits or boundary will be exceeded */
1139 vector &= 0xFFF;
1140 return vector;
1141 }
1142
1143 /**
1144 * wx_set_mta - Set bit-vector in multicast table
1145 * @wx: pointer to private structure
1146 * @mc_addr: Multicast address
1147 *
1148 * Sets the bit-vector in the multicast table.
1149 **/
wx_set_mta(struct wx * wx,u8 * mc_addr)1150 static void wx_set_mta(struct wx *wx, u8 *mc_addr)
1151 {
1152 u32 vector, vector_bit, vector_reg;
1153
1154 wx->addr_ctrl.mta_in_use++;
1155
1156 vector = wx_mta_vector(wx, mc_addr);
1157 wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
1158
1159 /* The MTA is a register array of 128 32-bit registers. It is treated
1160 * like an array of 4096 bits. We want to set bit
1161 * BitArray[vector_value]. So we figure out what register the bit is
1162 * in, read it, OR in the new bit, then write back the new value. The
1163 * register is determined by the upper 7 bits of the vector value and
1164 * the bit within that register are determined by the lower 5 bits of
1165 * the value.
1166 */
1167 vector_reg = (vector >> 5) & 0x7F;
1168 vector_bit = vector & 0x1F;
1169 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1170 }
1171
1172 /**
1173 * wx_update_mc_addr_list - Updates MAC list of multicast addresses
1174 * @wx: pointer to private structure
1175 * @netdev: pointer to net device structure
1176 *
1177 * The given list replaces any existing list. Clears the MC addrs from receive
1178 * address registers and the multicast table. Uses unused receive address
1179 * registers for the first multicast addresses, and hashes the rest into the
1180 * multicast table.
1181 **/
wx_update_mc_addr_list(struct wx * wx,struct net_device * netdev)1182 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
1183 {
1184 struct netdev_hw_addr *ha;
1185 u32 i, psrctl;
1186
1187 /* Set the new number of MC addresses that we are being requested to
1188 * use.
1189 */
1190 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1191 wx->addr_ctrl.mta_in_use = 0;
1192
1193 /* Clear mta_shadow */
1194 wx_dbg(wx, " Clearing MTA\n");
1195 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
1196
1197 /* Update mta_shadow */
1198 netdev_for_each_mc_addr(ha, netdev) {
1199 wx_dbg(wx, " Adding the multicast addresses:\n");
1200 wx_set_mta(wx, ha->addr);
1201 }
1202
1203 /* Enable mta */
1204 for (i = 0; i < wx->mac.mcft_size; i++)
1205 wr32a(wx, WX_PSR_MC_TBL(0), i,
1206 wx->mac.mta_shadow[i]);
1207
1208 if (wx->addr_ctrl.mta_in_use > 0) {
1209 psrctl = rd32(wx, WX_PSR_CTL);
1210 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1211 psrctl |= WX_PSR_CTL_MFE |
1212 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1213 wr32(wx, WX_PSR_CTL, psrctl);
1214 }
1215
1216 wx_dbg(wx, "Update mc addr list Complete\n");
1217 }
1218
wx_restore_vf_multicasts(struct wx * wx)1219 static void wx_restore_vf_multicasts(struct wx *wx)
1220 {
1221 u32 i, j, vector_bit, vector_reg;
1222 struct vf_data_storage *vfinfo;
1223
1224 for (i = 0; i < wx->num_vfs; i++) {
1225 u32 vmolr = rd32(wx, WX_PSR_VM_L2CTL(i));
1226
1227 vfinfo = &wx->vfinfo[i];
1228 for (j = 0; j < vfinfo->num_vf_mc_hashes; j++) {
1229 wx->addr_ctrl.mta_in_use++;
1230 vector_reg = WX_PSR_MC_TBL_REG(vfinfo->vf_mc_hashes[j]);
1231 vector_bit = WX_PSR_MC_TBL_BIT(vfinfo->vf_mc_hashes[j]);
1232 wr32m(wx, WX_PSR_MC_TBL(vector_reg),
1233 BIT(vector_bit), BIT(vector_bit));
1234 /* errata 5: maintain a copy of the reg table conf */
1235 wx->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
1236 }
1237 if (vfinfo->num_vf_mc_hashes)
1238 vmolr |= WX_PSR_VM_L2CTL_ROMPE;
1239 else
1240 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1241 wr32(wx, WX_PSR_VM_L2CTL(i), vmolr);
1242 }
1243
1244 /* Restore any VF macvlans */
1245 wx_full_sync_mac_table(wx);
1246 }
1247
1248 /**
1249 * wx_write_mc_addr_list - write multicast addresses to MTA
1250 * @netdev: network interface device structure
1251 *
1252 * Writes multicast address list to the MTA hash table.
1253 * Returns: 0 on no addresses written
1254 * X on writing X addresses to MTA
1255 **/
wx_write_mc_addr_list(struct net_device * netdev)1256 static int wx_write_mc_addr_list(struct net_device *netdev)
1257 {
1258 struct wx *wx = netdev_priv(netdev);
1259
1260 if (!netif_running(netdev))
1261 return 0;
1262
1263 wx_update_mc_addr_list(wx, netdev);
1264
1265 if (test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags))
1266 wx_restore_vf_multicasts(wx);
1267
1268 return netdev_mc_count(netdev);
1269 }
1270
1271 /**
1272 * wx_set_mac - Change the Ethernet Address of the NIC
1273 * @netdev: network interface device structure
1274 * @p: pointer to an address structure
1275 *
1276 * Returns 0 on success, negative on failure
1277 **/
wx_set_mac(struct net_device * netdev,void * p)1278 int wx_set_mac(struct net_device *netdev, void *p)
1279 {
1280 struct wx *wx = netdev_priv(netdev);
1281 struct sockaddr *addr = p;
1282 int retval;
1283
1284 retval = eth_prepare_mac_addr_change(netdev, addr);
1285 if (retval)
1286 return retval;
1287
1288 wx_del_mac_filter(wx, wx->mac.addr, VMDQ_P(0));
1289 eth_hw_addr_set(netdev, addr->sa_data);
1290 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1291
1292 wx_mac_set_default_filter(wx, wx->mac.addr);
1293
1294 return 0;
1295 }
1296 EXPORT_SYMBOL(wx_set_mac);
1297
wx_disable_rx(struct wx * wx)1298 void wx_disable_rx(struct wx *wx)
1299 {
1300 u32 pfdtxgswc;
1301 u32 rxctrl;
1302
1303 rxctrl = rd32(wx, WX_RDB_PB_CTL);
1304 if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1305 pfdtxgswc = rd32(wx, WX_PSR_CTL);
1306 if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1307 pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1308 wr32(wx, WX_PSR_CTL, pfdtxgswc);
1309 wx->mac.set_lben = true;
1310 } else {
1311 wx->mac.set_lben = false;
1312 }
1313 rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1314 wr32(wx, WX_RDB_PB_CTL, rxctrl);
1315
1316 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1317 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1318 /* disable mac receiver */
1319 wr32m(wx, WX_MAC_RX_CFG,
1320 WX_MAC_RX_CFG_RE, 0);
1321 }
1322 }
1323 }
1324 EXPORT_SYMBOL(wx_disable_rx);
1325
wx_enable_rx(struct wx * wx)1326 static void wx_enable_rx(struct wx *wx)
1327 {
1328 u32 psrctl;
1329
1330 /* enable mac receiver */
1331 wr32m(wx, WX_MAC_RX_CFG,
1332 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1333
1334 wr32m(wx, WX_RDB_PB_CTL,
1335 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1336
1337 if (wx->mac.set_lben) {
1338 psrctl = rd32(wx, WX_PSR_CTL);
1339 psrctl |= WX_PSR_CTL_SW_EN;
1340 wr32(wx, WX_PSR_CTL, psrctl);
1341 wx->mac.set_lben = false;
1342 }
1343 }
1344
1345 /**
1346 * wx_set_rxpba - Initialize Rx packet buffer
1347 * @wx: pointer to private structure
1348 **/
wx_set_rxpba(struct wx * wx)1349 static void wx_set_rxpba(struct wx *wx)
1350 {
1351 u32 rxpktsize, txpktsize, txpbthresh;
1352 u32 pbsize = wx->mac.rx_pb_size;
1353
1354 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) {
1355 if (test_bit(WX_FLAG_FDIR_HASH, wx->flags) ||
1356 test_bit(WX_FLAG_FDIR_PERFECT, wx->flags))
1357 pbsize -= 64; /* Default 64KB */
1358 }
1359
1360 rxpktsize = pbsize << WX_RDB_PB_SZ_SHIFT;
1361 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1362
1363 /* Only support an equally distributed Tx packet buffer strategy. */
1364 txpktsize = wx->mac.tx_pb_size;
1365 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1366 wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1367 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1368 }
1369
1370 #define WX_ETH_FRAMING 20
1371
1372 /**
1373 * wx_hpbthresh - calculate high water mark for flow control
1374 *
1375 * @wx: board private structure to calculate for
1376 **/
wx_hpbthresh(struct wx * wx)1377 static int wx_hpbthresh(struct wx *wx)
1378 {
1379 struct net_device *dev = wx->netdev;
1380 int link, tc, kb, marker;
1381 u32 dv_id, rx_pba;
1382
1383 /* Calculate max LAN frame size */
1384 link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING;
1385 tc = link;
1386
1387 /* Calculate delay value for device */
1388 dv_id = WX_DV(link, tc);
1389
1390 /* Loopback switch introduces additional latency */
1391 if (test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags))
1392 dv_id += WX_B2BT(tc);
1393
1394 /* Delay value is calculated in bit times convert to KB */
1395 kb = WX_BT2KB(dv_id);
1396 rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT;
1397
1398 marker = rx_pba - kb;
1399
1400 /* It is possible that the packet buffer is not large enough
1401 * to provide required headroom. In this case throw an error
1402 * to user and a do the best we can.
1403 */
1404 if (marker < 0) {
1405 dev_warn(&wx->pdev->dev,
1406 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n");
1407 marker = tc + 1;
1408 }
1409
1410 return marker;
1411 }
1412
1413 /**
1414 * wx_lpbthresh - calculate low water mark for flow control
1415 *
1416 * @wx: board private structure to calculate for
1417 **/
wx_lpbthresh(struct wx * wx)1418 static int wx_lpbthresh(struct wx *wx)
1419 {
1420 struct net_device *dev = wx->netdev;
1421 u32 dv_id;
1422 int tc;
1423
1424 /* Calculate max LAN frame size */
1425 tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN;
1426
1427 /* Calculate delay value for device */
1428 dv_id = WX_LOW_DV(tc);
1429
1430 /* Delay value is calculated in bit times convert to KB */
1431 return WX_BT2KB(dv_id);
1432 }
1433
1434 /**
1435 * wx_pbthresh_setup - calculate and setup high low water marks
1436 *
1437 * @wx: board private structure to calculate for
1438 **/
wx_pbthresh_setup(struct wx * wx)1439 static void wx_pbthresh_setup(struct wx *wx)
1440 {
1441 wx->fc.high_water = wx_hpbthresh(wx);
1442 wx->fc.low_water = wx_lpbthresh(wx);
1443
1444 /* Low water marks must not be larger than high water marks */
1445 if (wx->fc.low_water > wx->fc.high_water)
1446 wx->fc.low_water = 0;
1447 }
1448
wx_set_ethertype_anti_spoofing(struct wx * wx,bool enable,int vf)1449 static void wx_set_ethertype_anti_spoofing(struct wx *wx, bool enable, int vf)
1450 {
1451 u32 pfvfspoof, reg_offset, vf_shift;
1452
1453 vf_shift = WX_VF_IND_SHIFT(vf);
1454 reg_offset = WX_VF_REG_OFFSET(vf);
1455
1456 pfvfspoof = rd32(wx, WX_TDM_ETYPE_AS(reg_offset));
1457 if (enable)
1458 pfvfspoof |= BIT(vf_shift);
1459 else
1460 pfvfspoof &= ~BIT(vf_shift);
1461 wr32(wx, WX_TDM_ETYPE_AS(reg_offset), pfvfspoof);
1462 }
1463
wx_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)1464 int wx_set_vf_spoofchk(struct net_device *netdev, int vf, bool setting)
1465 {
1466 u32 index = WX_VF_REG_OFFSET(vf), vf_bit = WX_VF_IND_SHIFT(vf);
1467 struct wx *wx = netdev_priv(netdev);
1468 u32 regval;
1469
1470 if (vf >= wx->num_vfs)
1471 return -EINVAL;
1472
1473 wx->vfinfo[vf].spoofchk_enabled = setting;
1474
1475 regval = (setting << vf_bit);
1476 wr32m(wx, WX_TDM_MAC_AS(index), regval | BIT(vf_bit), regval);
1477
1478 if (wx->vfinfo[vf].vlan_count)
1479 wr32m(wx, WX_TDM_VLAN_AS(index), regval | BIT(vf_bit), regval);
1480
1481 return 0;
1482 }
1483
wx_configure_virtualization(struct wx * wx)1484 static void wx_configure_virtualization(struct wx *wx)
1485 {
1486 u16 pool = wx->num_rx_pools;
1487 u32 reg_offset, vf_shift;
1488 u32 i;
1489
1490 if (!test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags))
1491 return;
1492
1493 wr32m(wx, WX_PSR_VM_CTL,
1494 WX_PSR_VM_CTL_POOL_MASK | WX_PSR_VM_CTL_REPLEN,
1495 FIELD_PREP(WX_PSR_VM_CTL_POOL_MASK, VMDQ_P(0)) |
1496 WX_PSR_VM_CTL_REPLEN);
1497 while (pool--)
1498 wr32m(wx, WX_PSR_VM_L2CTL(pool),
1499 WX_PSR_VM_L2CTL_AUPE, WX_PSR_VM_L2CTL_AUPE);
1500
1501 if (!test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
1502 vf_shift = BIT(VMDQ_P(0));
1503 /* Enable only the PF pools for Tx/Rx */
1504 wr32(wx, WX_RDM_VF_RE(0), vf_shift);
1505 wr32(wx, WX_TDM_VF_TE(0), vf_shift);
1506 } else {
1507 vf_shift = WX_VF_IND_SHIFT(VMDQ_P(0));
1508 reg_offset = WX_VF_REG_OFFSET(VMDQ_P(0));
1509
1510 /* Enable only the PF pools for Tx/Rx */
1511 wr32(wx, WX_RDM_VF_RE(reg_offset), GENMASK(31, vf_shift));
1512 wr32(wx, WX_RDM_VF_RE(reg_offset ^ 1), reg_offset - 1);
1513 wr32(wx, WX_TDM_VF_TE(reg_offset), GENMASK(31, vf_shift));
1514 wr32(wx, WX_TDM_VF_TE(reg_offset ^ 1), reg_offset - 1);
1515 }
1516
1517 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1518 clear_bit(WX_FLAG_VLAN_PROMISC, wx->flags);
1519
1520 for (i = 0; i < wx->num_vfs; i++) {
1521 if (!wx->vfinfo[i].spoofchk_enabled)
1522 wx_set_vf_spoofchk(wx->netdev, i, false);
1523 /* enable ethertype anti spoofing if hw supports it */
1524 wx_set_ethertype_anti_spoofing(wx, true, i);
1525 }
1526 }
1527
wx_configure_port(struct wx * wx)1528 static void wx_configure_port(struct wx *wx)
1529 {
1530 u32 value, i;
1531
1532 if (!test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
1533 value = (wx->num_vfs == 0) ?
1534 WX_CFG_PORT_CTL_NUM_VT_NONE :
1535 WX_CFG_PORT_CTL_NUM_VT_8;
1536 } else {
1537 if (test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags)) {
1538 if (wx->ring_feature[RING_F_RSS].indices == 4)
1539 value = WX_CFG_PORT_CTL_NUM_VT_32;
1540 else
1541 value = WX_CFG_PORT_CTL_NUM_VT_64;
1542 } else {
1543 value = 0;
1544 }
1545 }
1546
1547 value |= WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1548 wr32m(wx, WX_CFG_PORT_CTL,
1549 WX_CFG_PORT_CTL_NUM_VT_MASK |
1550 WX_CFG_PORT_CTL_D_VLAN |
1551 WX_CFG_PORT_CTL_QINQ,
1552 value);
1553
1554 wr32(wx, WX_CFG_TAG_TPID(0),
1555 ETH_P_8021Q | ETH_P_8021AD << 16);
1556 wx->tpid[0] = ETH_P_8021Q;
1557 wx->tpid[1] = ETH_P_8021AD;
1558 for (i = 1; i < 4; i++)
1559 wr32(wx, WX_CFG_TAG_TPID(i),
1560 ETH_P_8021Q | ETH_P_8021Q << 16);
1561 for (i = 2; i < 8; i++)
1562 wx->tpid[i] = ETH_P_8021Q;
1563 }
1564
1565 /**
1566 * wx_disable_sec_rx_path - Stops the receive data path
1567 * @wx: pointer to private structure
1568 *
1569 * Stops the receive data path and waits for the HW to internally empty
1570 * the Rx security block
1571 **/
wx_disable_sec_rx_path(struct wx * wx)1572 int wx_disable_sec_rx_path(struct wx *wx)
1573 {
1574 u32 secrx;
1575
1576 wr32m(wx, WX_RSC_CTL,
1577 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1578
1579 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1580 1000, 40000, false, wx, WX_RSC_ST);
1581 }
1582 EXPORT_SYMBOL(wx_disable_sec_rx_path);
1583
1584 /**
1585 * wx_enable_sec_rx_path - Enables the receive data path
1586 * @wx: pointer to private structure
1587 *
1588 * Enables the receive data path.
1589 **/
wx_enable_sec_rx_path(struct wx * wx)1590 void wx_enable_sec_rx_path(struct wx *wx)
1591 {
1592 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1593 WX_WRITE_FLUSH(wx);
1594 }
1595 EXPORT_SYMBOL(wx_enable_sec_rx_path);
1596
wx_vlan_strip_control(struct wx * wx,bool enable)1597 static void wx_vlan_strip_control(struct wx *wx, bool enable)
1598 {
1599 int i, j;
1600
1601 for (i = 0; i < wx->num_rx_queues; i++) {
1602 struct wx_ring *ring = wx->rx_ring[i];
1603
1604 j = ring->reg_idx;
1605 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1606 enable ? WX_PX_RR_CFG_VLAN : 0);
1607 }
1608 }
1609
wx_vlan_promisc_enable(struct wx * wx)1610 static void wx_vlan_promisc_enable(struct wx *wx)
1611 {
1612 u32 vlnctrl, i, vind, bits, reg_idx;
1613
1614 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1615 if (test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags)) {
1616 /* we need to keep the VLAN filter on in SRIOV */
1617 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1618 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1619 } else {
1620 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1621 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1622 return;
1623 }
1624 /* We are already in VLAN promisc, nothing to do */
1625 if (test_bit(WX_FLAG_VLAN_PROMISC, wx->flags))
1626 return;
1627 /* Set flag so we don't redo unnecessary work */
1628 set_bit(WX_FLAG_VLAN_PROMISC, wx->flags);
1629 /* Add PF to all active pools */
1630 for (i = WX_PSR_VLAN_SWC_ENTRIES; --i;) {
1631 wr32(wx, WX_PSR_VLAN_SWC_IDX, i);
1632 vind = WX_VF_IND_SHIFT(VMDQ_P(0));
1633 reg_idx = WX_VF_REG_OFFSET(VMDQ_P(0));
1634 bits = rd32(wx, WX_PSR_VLAN_SWC_VM(reg_idx));
1635 bits |= BIT(vind);
1636 wr32(wx, WX_PSR_VLAN_SWC_VM(reg_idx), bits);
1637 }
1638 /* Set all bits in the VLAN filter table array */
1639 for (i = 0; i < wx->mac.vft_size; i++)
1640 wr32(wx, WX_PSR_VLAN_TBL(i), U32_MAX);
1641 }
1642
wx_scrub_vfta(struct wx * wx)1643 static void wx_scrub_vfta(struct wx *wx)
1644 {
1645 u32 i, vid, bits, vfta, vind, vlvf, reg_idx;
1646
1647 for (i = WX_PSR_VLAN_SWC_ENTRIES; --i;) {
1648 wr32(wx, WX_PSR_VLAN_SWC_IDX, i);
1649 vlvf = rd32(wx, WX_PSR_VLAN_SWC_IDX);
1650 /* pull VLAN ID from VLVF */
1651 vid = vlvf & ~WX_PSR_VLAN_SWC_VIEN;
1652 if (vlvf & WX_PSR_VLAN_SWC_VIEN) {
1653 /* if PF is part of this then continue */
1654 if (test_bit(vid, wx->active_vlans))
1655 continue;
1656 }
1657 /* remove PF from the pool */
1658 vind = WX_VF_IND_SHIFT(VMDQ_P(0));
1659 reg_idx = WX_VF_REG_OFFSET(VMDQ_P(0));
1660 bits = rd32(wx, WX_PSR_VLAN_SWC_VM(reg_idx));
1661 bits &= ~BIT(vind);
1662 wr32(wx, WX_PSR_VLAN_SWC_VM(reg_idx), bits);
1663 }
1664 /* extract values from vft_shadow and write back to VFTA */
1665 for (i = 0; i < wx->mac.vft_size; i++) {
1666 vfta = wx->mac.vft_shadow[i];
1667 wr32(wx, WX_PSR_VLAN_TBL(i), vfta);
1668 }
1669 }
1670
wx_vlan_promisc_disable(struct wx * wx)1671 static void wx_vlan_promisc_disable(struct wx *wx)
1672 {
1673 u32 vlnctrl;
1674
1675 /* configure vlan filtering */
1676 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1677 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1678 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1679 /* We are not in VLAN promisc, nothing to do */
1680 if (!test_bit(WX_FLAG_VLAN_PROMISC, wx->flags))
1681 return;
1682 /* Set flag so we don't redo unnecessary work */
1683 clear_bit(WX_FLAG_VLAN_PROMISC, wx->flags);
1684 wx_scrub_vfta(wx);
1685 }
1686
wx_set_rx_mode(struct net_device * netdev)1687 void wx_set_rx_mode(struct net_device *netdev)
1688 {
1689 struct wx *wx = netdev_priv(netdev);
1690 netdev_features_t features;
1691 u32 fctrl, vmolr, vlnctrl;
1692 int count;
1693
1694 features = netdev->features;
1695
1696 /* Check for Promiscuous and All Multicast modes */
1697 fctrl = rd32(wx, WX_PSR_CTL);
1698 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1699 vmolr = rd32(wx, WX_PSR_VM_L2CTL(VMDQ_P(0)));
1700 vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1701 WX_PSR_VM_L2CTL_MPE |
1702 WX_PSR_VM_L2CTL_ROPE |
1703 WX_PSR_VM_L2CTL_ROMPE);
1704 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1705 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1706
1707 /* set all bits that we expect to always be set */
1708 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1709 vmolr |= WX_PSR_VM_L2CTL_BAM |
1710 WX_PSR_VM_L2CTL_AUPE |
1711 WX_PSR_VM_L2CTL_VACC;
1712 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1713
1714 wx->addr_ctrl.user_set_promisc = false;
1715 if (netdev->flags & IFF_PROMISC) {
1716 wx->addr_ctrl.user_set_promisc = true;
1717 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1718 /* pf don't want packets routing to vf, so clear UPE */
1719 vmolr |= WX_PSR_VM_L2CTL_MPE;
1720 if (test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags) &&
1721 test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags))
1722 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1723 features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1724 }
1725
1726 if (netdev->flags & IFF_ALLMULTI) {
1727 fctrl |= WX_PSR_CTL_MPE;
1728 vmolr |= WX_PSR_VM_L2CTL_MPE;
1729 }
1730
1731 if (netdev->features & NETIF_F_RXALL) {
1732 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1733 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1734 /* receive bad packets */
1735 wr32m(wx, WX_RSC_CTL,
1736 WX_RSC_CTL_SAVE_MAC_ERR,
1737 WX_RSC_CTL_SAVE_MAC_ERR);
1738 } else {
1739 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1740 }
1741
1742 /* Write addresses to available RAR registers, if there is not
1743 * sufficient space to store all the addresses then enable
1744 * unicast promiscuous mode
1745 */
1746 count = wx_write_uc_addr_list(netdev, VMDQ_P(0));
1747 if (count < 0) {
1748 vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1749 vmolr |= WX_PSR_VM_L2CTL_UPE;
1750 }
1751
1752 /* Write addresses to the MTA, if the attempt fails
1753 * then we should just turn on promiscuous mode so
1754 * that we can at least receive multicast traffic
1755 */
1756 count = wx_write_mc_addr_list(netdev);
1757 if (count < 0) {
1758 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1759 vmolr |= WX_PSR_VM_L2CTL_MPE;
1760 }
1761
1762 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1763 wr32(wx, WX_PSR_CTL, fctrl);
1764 wr32(wx, WX_PSR_VM_L2CTL(VMDQ_P(0)), vmolr);
1765
1766 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1767 (features & NETIF_F_HW_VLAN_STAG_RX))
1768 wx_vlan_strip_control(wx, true);
1769 else
1770 wx_vlan_strip_control(wx, false);
1771
1772 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1773 wx_vlan_promisc_disable(wx);
1774 else
1775 wx_vlan_promisc_enable(wx);
1776 }
1777 EXPORT_SYMBOL(wx_set_rx_mode);
1778
wx_set_rx_buffer_len(struct wx * wx)1779 static void wx_set_rx_buffer_len(struct wx *wx)
1780 {
1781 struct net_device *netdev = wx->netdev;
1782 u32 mhadd, max_frame;
1783
1784 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1785 /* adjust max frame to be at least the size of a standard frame */
1786 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1787 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1788
1789 mhadd = rd32(wx, WX_PSR_MAX_SZ);
1790 if (max_frame != mhadd)
1791 wr32(wx, WX_PSR_MAX_SZ, max_frame);
1792 }
1793
1794 /**
1795 * wx_change_mtu - Change the Maximum Transfer Unit
1796 * @netdev: network interface device structure
1797 * @new_mtu: new value for maximum frame size
1798 *
1799 * Returns 0 on success, negative on failure
1800 **/
wx_change_mtu(struct net_device * netdev,int new_mtu)1801 int wx_change_mtu(struct net_device *netdev, int new_mtu)
1802 {
1803 struct wx *wx = netdev_priv(netdev);
1804
1805 WRITE_ONCE(netdev->mtu, new_mtu);
1806 wx_set_rx_buffer_len(wx);
1807
1808 return 0;
1809 }
1810 EXPORT_SYMBOL(wx_change_mtu);
1811
1812 /* Disable the specified rx queue */
wx_disable_rx_queue(struct wx * wx,struct wx_ring * ring)1813 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1814 {
1815 u8 reg_idx = ring->reg_idx;
1816 u32 rxdctl;
1817 int ret;
1818
1819 /* write value back with RRCFG.EN bit cleared */
1820 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1821 WX_PX_RR_CFG_RR_EN, 0);
1822
1823 /* the hardware may take up to 100us to really disable the rx queue */
1824 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1825 10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1826
1827 if (ret == -ETIMEDOUT) {
1828 /* Just for information */
1829 wx_err(wx,
1830 "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1831 reg_idx);
1832 }
1833 }
1834 EXPORT_SYMBOL(wx_disable_rx_queue);
1835
wx_enable_rx_queue(struct wx * wx,struct wx_ring * ring)1836 void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1837 {
1838 u8 reg_idx = ring->reg_idx;
1839 u32 rxdctl;
1840 int ret;
1841
1842 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1843 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1844
1845 if (ret == -ETIMEDOUT) {
1846 /* Just for information */
1847 wx_err(wx,
1848 "RRCFG.EN on Rx queue %d not set within the polling period\n",
1849 reg_idx);
1850 }
1851 }
1852 EXPORT_SYMBOL(wx_enable_rx_queue);
1853
wx_configure_srrctl(struct wx * wx,struct wx_ring * rx_ring)1854 static void wx_configure_srrctl(struct wx *wx,
1855 struct wx_ring *rx_ring)
1856 {
1857 u16 reg_idx = rx_ring->reg_idx;
1858 u32 srrctl;
1859
1860 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1861 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1862 WX_PX_RR_CFG_RR_BUF_SZ |
1863 WX_PX_RR_CFG_SPLIT_MODE);
1864 /* configure header buffer length, needed for RSC */
1865 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1866
1867 /* configure the packet buffer length */
1868 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1869
1870 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1871 }
1872
wx_configure_tx_ring(struct wx * wx,struct wx_ring * ring)1873 static void wx_configure_tx_ring(struct wx *wx,
1874 struct wx_ring *ring)
1875 {
1876 u32 txdctl = WX_PX_TR_CFG_ENABLE;
1877 u8 reg_idx = ring->reg_idx;
1878 u64 tdba = ring->dma;
1879 int ret;
1880
1881 /* disable queue to avoid issues while updating state */
1882 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1883 WX_WRITE_FLUSH(wx);
1884
1885 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1886 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1887
1888 /* reset head and tail pointers */
1889 wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1890 wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1891 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1892
1893 if (ring->count < WX_MAX_TXD)
1894 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1895 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1896
1897 ring->atr_count = 0;
1898 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) &&
1899 test_bit(WX_FLAG_FDIR_HASH, wx->flags))
1900 ring->atr_sample_rate = wx->atr_sample_rate;
1901 else
1902 ring->atr_sample_rate = 0;
1903
1904 /* reinitialize tx_buffer_info */
1905 memset(ring->tx_buffer_info, 0,
1906 sizeof(struct wx_tx_buffer) * ring->count);
1907
1908 /* enable queue */
1909 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1910
1911 /* poll to verify queue is enabled */
1912 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1913 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1914 if (ret == -ETIMEDOUT)
1915 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1916 }
1917
wx_configure_rx_ring(struct wx * wx,struct wx_ring * ring)1918 static void wx_configure_rx_ring(struct wx *wx,
1919 struct wx_ring *ring)
1920 {
1921 u16 reg_idx = ring->reg_idx;
1922 u64 rdba = ring->dma;
1923 u32 rxdctl;
1924
1925 /* disable queue to avoid issues while updating state */
1926 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1927 wx_disable_rx_queue(wx, ring);
1928
1929 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1930 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1931
1932 if (ring->count == WX_MAX_RXD)
1933 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1934 else
1935 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1936
1937 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1938 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1939
1940 /* reset head and tail pointers */
1941 wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1942 wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1943 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1944
1945 wx_configure_srrctl(wx, ring);
1946
1947 /* initialize rx_buffer_info */
1948 memset(ring->rx_buffer_info, 0,
1949 sizeof(struct wx_rx_buffer) * ring->count);
1950
1951 /* reset ntu and ntc to place SW in sync with hardware */
1952 ring->next_to_clean = 0;
1953 ring->next_to_use = 0;
1954
1955 /* enable receive descriptor ring */
1956 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1957 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1958
1959 wx_enable_rx_queue(wx, ring);
1960 wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1961 }
1962
1963 /**
1964 * wx_configure_tx - Configure Transmit Unit after Reset
1965 * @wx: pointer to private structure
1966 *
1967 * Configure the Tx unit of the MAC after a reset.
1968 **/
wx_configure_tx(struct wx * wx)1969 static void wx_configure_tx(struct wx *wx)
1970 {
1971 u32 i;
1972
1973 /* TDM_CTL.TE must be before Tx queues are enabled */
1974 wr32m(wx, WX_TDM_CTL,
1975 WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1976
1977 /* Setup the HW Tx Head and Tail descriptor pointers */
1978 for (i = 0; i < wx->num_tx_queues; i++)
1979 wx_configure_tx_ring(wx, wx->tx_ring[i]);
1980
1981 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1982
1983 if (wx->mac.type == wx_mac_em)
1984 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1985
1986 /* enable mac transmitter */
1987 wr32m(wx, WX_MAC_TX_CFG,
1988 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1989 }
1990
wx_restore_vlan(struct wx * wx)1991 static void wx_restore_vlan(struct wx *wx)
1992 {
1993 u16 vid = 1;
1994
1995 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1996
1997 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1998 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1999 }
2000
wx_store_reta(struct wx * wx)2001 static void wx_store_reta(struct wx *wx)
2002 {
2003 u8 *indir_tbl = wx->rss_indir_tbl;
2004 u32 reta = 0;
2005 u32 i;
2006
2007 /* Fill out the redirection table as follows:
2008 * - 8 bit wide entries containing 4 bit RSS index
2009 */
2010 for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) {
2011 reta |= indir_tbl[i] << (i & 0x3) * 8;
2012 if ((i & 3) == 3) {
2013 wr32(wx, WX_RDB_RSSTBL(i >> 2), reta);
2014 reta = 0;
2015 }
2016 }
2017 }
2018
wx_setup_reta(struct wx * wx)2019 static void wx_setup_reta(struct wx *wx)
2020 {
2021 u16 rss_i = wx->ring_feature[RING_F_RSS].indices;
2022 u32 random_key_size = WX_RSS_KEY_SIZE / 4;
2023 u32 i, j;
2024
2025 if (test_bit(WX_FLAG_SRIOV_ENABLED, wx->flags)) {
2026 if (wx->mac.type == wx_mac_em)
2027 rss_i = 1;
2028 else
2029 rss_i = rss_i < 4 ? 4 : rss_i;
2030 }
2031
2032 /* Fill out hash function seeds */
2033 for (i = 0; i < random_key_size; i++)
2034 wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]);
2035
2036 /* Fill out redirection table */
2037 memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl));
2038
2039 for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) {
2040 if (j == rss_i)
2041 j = 0;
2042
2043 wx->rss_indir_tbl[i] = j;
2044 }
2045
2046 wx_store_reta(wx);
2047 }
2048
2049 #define WX_RDB_RSS_PL_2 FIELD_PREP(GENMASK(31, 29), 1)
2050 #define WX_RDB_RSS_PL_4 FIELD_PREP(GENMASK(31, 29), 2)
wx_setup_psrtype(struct wx * wx)2051 static void wx_setup_psrtype(struct wx *wx)
2052 {
2053 int rss_i = wx->ring_feature[RING_F_RSS].indices;
2054 u32 psrtype;
2055 int pool;
2056
2057 psrtype = WX_RDB_PL_CFG_L4HDR |
2058 WX_RDB_PL_CFG_L3HDR |
2059 WX_RDB_PL_CFG_L2HDR |
2060 WX_RDB_PL_CFG_TUN_OUTL2HDR |
2061 WX_RDB_PL_CFG_TUN_TUNHDR;
2062
2063 if (!test_bit(WX_FLAG_MULTI_64_FUNC, wx->flags)) {
2064 for_each_set_bit(pool, &wx->fwd_bitmask, 8)
2065 wr32(wx, WX_RDB_PL_CFG(VMDQ_P(pool)), psrtype);
2066 } else {
2067 if (rss_i > 3)
2068 psrtype |= WX_RDB_RSS_PL_4;
2069 else if (rss_i > 1)
2070 psrtype |= WX_RDB_RSS_PL_2;
2071
2072 for_each_set_bit(pool, &wx->fwd_bitmask, 32)
2073 wr32(wx, WX_RDB_PL_CFG(VMDQ_P(pool)), psrtype);
2074 }
2075 }
2076
wx_setup_mrqc(struct wx * wx)2077 static void wx_setup_mrqc(struct wx *wx)
2078 {
2079 u32 rss_field = 0;
2080
2081 /* VT, and RSS do not coexist at the same time */
2082 if (test_bit(WX_FLAG_VMDQ_ENABLED, wx->flags))
2083 return;
2084
2085 /* Disable indicating checksum in descriptor, enables RSS hash */
2086 wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD);
2087
2088 /* Perform hash on these packet types */
2089 rss_field = WX_RDB_RA_CTL_RSS_IPV4 |
2090 WX_RDB_RA_CTL_RSS_IPV4_TCP |
2091 WX_RDB_RA_CTL_RSS_IPV4_UDP |
2092 WX_RDB_RA_CTL_RSS_IPV6 |
2093 WX_RDB_RA_CTL_RSS_IPV6_TCP |
2094 WX_RDB_RA_CTL_RSS_IPV6_UDP;
2095
2096 netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key));
2097
2098 wx_setup_reta(wx);
2099
2100 if (wx->rss_enabled)
2101 rss_field |= WX_RDB_RA_CTL_RSS_EN;
2102
2103 wr32(wx, WX_RDB_RA_CTL, rss_field);
2104 }
2105
2106 /**
2107 * wx_configure_rx - Configure Receive Unit after Reset
2108 * @wx: pointer to private structure
2109 *
2110 * Configure the Rx unit of the MAC after a reset.
2111 **/
wx_configure_rx(struct wx * wx)2112 void wx_configure_rx(struct wx *wx)
2113 {
2114 int ret;
2115 u32 i;
2116
2117 wx_disable_rx(wx);
2118 wx_setup_psrtype(wx);
2119
2120 /* enable hw crc stripping */
2121 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
2122
2123 if (test_bit(WX_FLAG_RSC_CAPABLE, wx->flags)) {
2124 u32 psrctl;
2125
2126 /* RSC Setup */
2127 psrctl = rd32(wx, WX_PSR_CTL);
2128 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
2129 psrctl |= WX_PSR_CTL_RSC_DIS;
2130 wr32(wx, WX_PSR_CTL, psrctl);
2131 }
2132
2133 wx_setup_mrqc(wx);
2134
2135 /* set_rx_buffer_len must be called before ring initialization */
2136 wx_set_rx_buffer_len(wx);
2137
2138 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2139 * the Base and Length of the Rx Descriptor Ring
2140 */
2141 for (i = 0; i < wx->num_rx_queues; i++)
2142 wx_configure_rx_ring(wx, wx->rx_ring[i]);
2143
2144 /* Enable all receives, disable security engine prior to block traffic */
2145 ret = wx_disable_sec_rx_path(wx);
2146 if (ret < 0)
2147 wx_err(wx, "The register status is abnormal, please check device.");
2148
2149 wx_enable_rx(wx);
2150 wx_enable_sec_rx_path(wx);
2151 }
2152 EXPORT_SYMBOL(wx_configure_rx);
2153
wx_configure_isb(struct wx * wx)2154 static void wx_configure_isb(struct wx *wx)
2155 {
2156 /* set ISB Address */
2157 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
2158 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
2159 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
2160 }
2161
wx_configure(struct wx * wx)2162 void wx_configure(struct wx *wx)
2163 {
2164 wx_set_rxpba(wx);
2165 wx_pbthresh_setup(wx);
2166 wx_configure_virtualization(wx);
2167 wx_configure_port(wx);
2168
2169 wx_set_rx_mode(wx->netdev);
2170 wx_restore_vlan(wx);
2171
2172 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags))
2173 wx->configure_fdir(wx);
2174
2175 wx_configure_tx(wx);
2176 wx_configure_rx(wx);
2177 wx_configure_isb(wx);
2178 }
2179 EXPORT_SYMBOL(wx_configure);
2180
2181 /**
2182 * wx_disable_pcie_master - Disable PCI-express master access
2183 * @wx: pointer to hardware structure
2184 *
2185 * Disables PCI-Express master access and verifies there are no pending
2186 * requests.
2187 **/
wx_disable_pcie_master(struct wx * wx)2188 int wx_disable_pcie_master(struct wx *wx)
2189 {
2190 int status = 0;
2191 u32 val;
2192
2193 /* Always set this bit to ensure any future transactions are blocked */
2194 pci_clear_master(wx->pdev);
2195
2196 /* Exit if master requests are blocked */
2197 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
2198 return 0;
2199
2200 /* Poll for master request bit to clear */
2201 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
2202 false, wx, WX_PX_TRANSACTION_PENDING);
2203 if (status < 0)
2204 wx_err(wx, "PCIe transaction pending bit did not clear.\n");
2205
2206 return status;
2207 }
2208 EXPORT_SYMBOL(wx_disable_pcie_master);
2209
2210 /**
2211 * wx_stop_adapter - Generic stop Tx/Rx units
2212 * @wx: pointer to hardware structure
2213 *
2214 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
2215 * disables transmit and receive units. The adapter_stopped flag is used by
2216 * the shared code and drivers to determine if the adapter is in a stopped
2217 * state and should not touch the hardware.
2218 **/
wx_stop_adapter(struct wx * wx)2219 int wx_stop_adapter(struct wx *wx)
2220 {
2221 u16 i;
2222
2223 /* Set the adapter_stopped flag so other driver functions stop touching
2224 * the hardware
2225 */
2226 wx->adapter_stopped = true;
2227
2228 /* Disable the receive unit */
2229 wx_disable_rx(wx);
2230
2231 /* Set interrupt mask to stop interrupts from being generated */
2232 wx_intr_disable(wx, WX_INTR_ALL);
2233
2234 /* Clear any pending interrupts, flush previous writes */
2235 wr32(wx, WX_PX_MISC_IC, 0xffffffff);
2236 wr32(wx, WX_BME_CTL, 0x3);
2237
2238 /* Disable the transmit unit. Each queue must be disabled. */
2239 for (i = 0; i < wx->mac.max_tx_queues; i++) {
2240 wr32m(wx, WX_PX_TR_CFG(i),
2241 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
2242 WX_PX_TR_CFG_SWFLSH);
2243 }
2244
2245 /* Disable the receive unit by stopping each queue */
2246 for (i = 0; i < wx->mac.max_rx_queues; i++) {
2247 wr32m(wx, WX_PX_RR_CFG(i),
2248 WX_PX_RR_CFG_RR_EN, 0);
2249 }
2250
2251 /* flush all queues disables */
2252 WX_WRITE_FLUSH(wx);
2253
2254 /* Prevent the PCI-E bus from hanging by disabling PCI-E master
2255 * access and verify no pending requests
2256 */
2257 return wx_disable_pcie_master(wx);
2258 }
2259 EXPORT_SYMBOL(wx_stop_adapter);
2260
wx_reset_mac(struct wx * wx)2261 void wx_reset_mac(struct wx *wx)
2262 {
2263 /* receive packets that size > 2048 */
2264 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
2265
2266 /* clear counters on read */
2267 wr32m(wx, WX_MMC_CONTROL,
2268 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
2269
2270 wr32m(wx, WX_MAC_RX_FLOW_CTRL,
2271 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
2272
2273 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
2274 }
2275 EXPORT_SYMBOL(wx_reset_mac);
2276
wx_reset_misc(struct wx * wx)2277 void wx_reset_misc(struct wx *wx)
2278 {
2279 int i;
2280
2281 wx_reset_mac(wx);
2282
2283 wr32m(wx, WX_MIS_RST_ST,
2284 WX_MIS_RST_ST_RST_INIT, 0x1E00);
2285
2286 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/
2287 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
2288 for (i = 0; i < 16; i++) {
2289 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
2290 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
2291 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
2292 }
2293 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
2294 for (i = 0; i < 16; i++) {
2295 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
2296 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
2297 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
2298 }
2299
2300 /* set pause frame dst mac addr */
2301 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
2302 wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
2303 }
2304 EXPORT_SYMBOL(wx_reset_misc);
2305
2306 /**
2307 * wx_get_pcie_msix_counts - Gets MSI-X vector count
2308 * @wx: pointer to hardware structure
2309 * @msix_count: number of MSI interrupts that can be obtained
2310 * @max_msix_count: number of MSI interrupts that mac need
2311 *
2312 * Read PCIe configuration space, and get the MSI-X vector count from
2313 * the capabilities table.
2314 **/
wx_get_pcie_msix_counts(struct wx * wx,u16 * msix_count,u16 max_msix_count)2315 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
2316 {
2317 struct pci_dev *pdev = wx->pdev;
2318 struct device *dev = &pdev->dev;
2319 int pos;
2320
2321 *msix_count = 1;
2322 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
2323 if (!pos) {
2324 dev_err(dev, "Unable to find MSI-X Capabilities\n");
2325 return -EINVAL;
2326 }
2327 pci_read_config_word(pdev,
2328 pos + PCI_MSIX_FLAGS,
2329 msix_count);
2330 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
2331 /* MSI-X count is zero-based in HW */
2332 *msix_count += 1;
2333
2334 if (*msix_count > max_msix_count)
2335 *msix_count = max_msix_count;
2336
2337 return 0;
2338 }
2339 EXPORT_SYMBOL(wx_get_pcie_msix_counts);
2340
2341 /**
2342 * wx_init_rss_key - Initialize wx RSS key
2343 * @wx: device handle
2344 *
2345 * Allocates and initializes the RSS key if it is not allocated.
2346 **/
wx_init_rss_key(struct wx * wx)2347 static int wx_init_rss_key(struct wx *wx)
2348 {
2349 u32 *rss_key;
2350
2351 if (!wx->rss_key) {
2352 rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL);
2353 if (unlikely(!rss_key))
2354 return -ENOMEM;
2355
2356 netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE);
2357 wx->rss_key = rss_key;
2358 }
2359
2360 return 0;
2361 }
2362
wx_sw_init(struct wx * wx)2363 int wx_sw_init(struct wx *wx)
2364 {
2365 struct pci_dev *pdev = wx->pdev;
2366 u32 ssid = 0;
2367 int err = 0;
2368
2369 wx->vendor_id = pdev->vendor;
2370 wx->device_id = pdev->device;
2371 wx->revision_id = pdev->revision;
2372 wx->oem_svid = pdev->subsystem_vendor;
2373 wx->oem_ssid = pdev->subsystem_device;
2374 wx->bus.device = PCI_SLOT(pdev->devfn);
2375 wx->bus.func = PCI_FUNC(pdev->devfn);
2376
2377 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN ||
2378 pdev->is_virtfn) {
2379 wx->subsystem_vendor_id = pdev->subsystem_vendor;
2380 wx->subsystem_device_id = pdev->subsystem_device;
2381 } else {
2382 err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
2383 if (err < 0) {
2384 wx_err(wx, "read of internal subsystem device id failed\n");
2385 return err;
2386 }
2387
2388 wx->subsystem_device_id = swab16((u16)ssid);
2389 }
2390
2391 err = wx_init_rss_key(wx);
2392 if (err < 0) {
2393 wx_err(wx, "rss key allocation failed\n");
2394 return err;
2395 }
2396
2397 wx->mac_table = kcalloc(wx->mac.num_rar_entries,
2398 sizeof(struct wx_mac_addr),
2399 GFP_KERNEL);
2400 if (!wx->mac_table) {
2401 wx_err(wx, "mac_table allocation failed\n");
2402 kfree(wx->rss_key);
2403 return -ENOMEM;
2404 }
2405
2406 bitmap_zero(wx->state, WX_STATE_NBITS);
2407 bitmap_zero(wx->flags, WX_PF_FLAGS_NBITS);
2408 wx->misc_irq_domain = false;
2409
2410 return 0;
2411 }
2412 EXPORT_SYMBOL(wx_sw_init);
2413
2414 /**
2415 * wx_find_vlvf_slot - find the vlanid or the first empty slot
2416 * @wx: pointer to hardware structure
2417 * @vlan: VLAN id to write to VLAN filter
2418 *
2419 * return the VLVF index where this VLAN id should be placed
2420 *
2421 **/
wx_find_vlvf_slot(struct wx * wx,u32 vlan)2422 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
2423 {
2424 u32 bits = 0, first_empty_slot = 0;
2425 int regindex;
2426
2427 /* short cut the special case */
2428 if (vlan == 0)
2429 return 0;
2430
2431 /* Search for the vlan id in the VLVF entries. Save off the first empty
2432 * slot found along the way
2433 */
2434 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
2435 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
2436 bits = rd32(wx, WX_PSR_VLAN_SWC);
2437 if (!bits && !(first_empty_slot))
2438 first_empty_slot = regindex;
2439 else if ((bits & 0x0FFF) == vlan)
2440 break;
2441 }
2442
2443 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
2444 if (first_empty_slot)
2445 regindex = first_empty_slot;
2446 else
2447 regindex = -ENOMEM;
2448 }
2449
2450 return regindex;
2451 }
2452
2453 /**
2454 * wx_set_vlvf - Set VLAN Pool Filter
2455 * @wx: pointer to hardware structure
2456 * @vlan: VLAN id to write to VLAN filter
2457 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2458 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2459 * @vfta_changed: pointer to boolean flag which indicates whether VFTA
2460 * should be changed
2461 *
2462 * Turn on/off specified bit in VLVF table.
2463 **/
wx_set_vlvf(struct wx * wx,u32 vlan,u32 vind,bool vlan_on,bool * vfta_changed)2464 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
2465 bool *vfta_changed)
2466 {
2467 int vlvf_index;
2468 u32 vt, bits;
2469
2470 /* If VT Mode is set
2471 * Either vlan_on
2472 * make sure the vlan is in VLVF
2473 * set the vind bit in the matching VLVFB
2474 * Or !vlan_on
2475 * clear the pool bit and possibly the vind
2476 */
2477 vt = rd32(wx, WX_CFG_PORT_CTL);
2478 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
2479 return 0;
2480
2481 vlvf_index = wx_find_vlvf_slot(wx, vlan);
2482 if (vlvf_index < 0)
2483 return vlvf_index;
2484
2485 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
2486 if (vlan_on) {
2487 /* set the pool bit */
2488 if (vind < 32) {
2489 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2490 bits |= (1 << vind);
2491 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2492 } else {
2493 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2494 bits |= (1 << (vind - 32));
2495 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2496 }
2497 } else {
2498 /* clear the pool bit */
2499 if (vind < 32) {
2500 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2501 bits &= ~(1 << vind);
2502 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2503 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2504 } else {
2505 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2506 bits &= ~(1 << (vind - 32));
2507 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2508 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2509 }
2510 }
2511
2512 if (bits) {
2513 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
2514 if (!vlan_on && vfta_changed)
2515 *vfta_changed = false;
2516 } else {
2517 wr32(wx, WX_PSR_VLAN_SWC, 0);
2518 }
2519
2520 return 0;
2521 }
2522
2523 /**
2524 * wx_set_vfta - Set VLAN filter table
2525 * @wx: pointer to hardware structure
2526 * @vlan: VLAN id to write to VLAN filter
2527 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2528 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2529 *
2530 * Turn on/off specified VLAN in the VLAN filter table.
2531 **/
wx_set_vfta(struct wx * wx,u32 vlan,u32 vind,bool vlan_on)2532 int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
2533 {
2534 u32 bitindex, vfta, targetbit;
2535 bool vfta_changed = false;
2536 int regindex, ret;
2537
2538 /* this is a 2 part operation - first the VFTA, then the
2539 * VLVF and VLVFB if VT Mode is set
2540 * We don't write the VFTA until we know the VLVF part succeeded.
2541 */
2542
2543 /* Part 1
2544 * The VFTA is a bitstring made up of 128 32-bit registers
2545 * that enable the particular VLAN id, much like the MTA:
2546 * bits[11-5]: which register
2547 * bits[4-0]: which bit in the register
2548 */
2549 regindex = (vlan >> 5) & 0x7F;
2550 bitindex = vlan & 0x1F;
2551 targetbit = (1 << bitindex);
2552 /* errata 5 */
2553 vfta = wx->mac.vft_shadow[regindex];
2554 if (vlan_on) {
2555 if (!(vfta & targetbit)) {
2556 vfta |= targetbit;
2557 vfta_changed = true;
2558 }
2559 } else {
2560 if ((vfta & targetbit)) {
2561 vfta &= ~targetbit;
2562 vfta_changed = true;
2563 }
2564 }
2565 /* Part 2
2566 * Call wx_set_vlvf to set VLVFB and VLVF
2567 */
2568 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
2569 if (ret != 0)
2570 return ret;
2571
2572 if (vfta_changed)
2573 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
2574 wx->mac.vft_shadow[regindex] = vfta;
2575
2576 return 0;
2577 }
2578
2579 /**
2580 * wx_clear_vfta - Clear VLAN filter table
2581 * @wx: pointer to hardware structure
2582 *
2583 * Clears the VLAN filer table, and the VMDq index associated with the filter
2584 **/
wx_clear_vfta(struct wx * wx)2585 static void wx_clear_vfta(struct wx *wx)
2586 {
2587 u32 offset;
2588
2589 for (offset = 0; offset < wx->mac.vft_size; offset++) {
2590 wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
2591 wx->mac.vft_shadow[offset] = 0;
2592 }
2593
2594 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
2595 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
2596 wr32(wx, WX_PSR_VLAN_SWC, 0);
2597 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
2598 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
2599 }
2600 }
2601
wx_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)2602 int wx_vlan_rx_add_vid(struct net_device *netdev,
2603 __be16 proto, u16 vid)
2604 {
2605 struct wx *wx = netdev_priv(netdev);
2606
2607 /* add VID to filter table */
2608 wx_set_vfta(wx, vid, VMDQ_P(0), true);
2609 set_bit(vid, wx->active_vlans);
2610
2611 return 0;
2612 }
2613 EXPORT_SYMBOL(wx_vlan_rx_add_vid);
2614
wx_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)2615 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
2616 {
2617 struct wx *wx = netdev_priv(netdev);
2618
2619 /* remove VID from filter table */
2620 if (vid)
2621 wx_set_vfta(wx, vid, VMDQ_P(0), false);
2622 clear_bit(vid, wx->active_vlans);
2623
2624 return 0;
2625 }
2626 EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
2627
wx_enable_rx_drop(struct wx * wx,struct wx_ring * ring)2628 static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring)
2629 {
2630 u16 reg_idx = ring->reg_idx;
2631 u32 srrctl;
2632
2633 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2634 srrctl |= WX_PX_RR_CFG_DROP_EN;
2635
2636 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2637 }
2638
wx_disable_rx_drop(struct wx * wx,struct wx_ring * ring)2639 static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring)
2640 {
2641 u16 reg_idx = ring->reg_idx;
2642 u32 srrctl;
2643
2644 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2645 srrctl &= ~WX_PX_RR_CFG_DROP_EN;
2646
2647 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2648 }
2649
wx_fc_enable(struct wx * wx,bool tx_pause,bool rx_pause)2650 int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause)
2651 {
2652 u16 pause_time = WX_DEFAULT_FCPAUSE;
2653 u32 mflcn_reg, fccfg_reg, reg;
2654 u32 fcrtl, fcrth;
2655 int i;
2656
2657 /* Low water mark of zero causes XOFF floods */
2658 if (tx_pause && wx->fc.high_water) {
2659 if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) {
2660 wx_err(wx, "Invalid water mark configuration\n");
2661 return -EINVAL;
2662 }
2663 }
2664
2665 /* Disable any previous flow control settings */
2666 mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL);
2667 mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE;
2668
2669 fccfg_reg = rd32(wx, WX_RDB_RFCC);
2670 fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X;
2671
2672 if (rx_pause)
2673 mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE;
2674 if (tx_pause)
2675 fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X;
2676
2677 /* Set 802.3x based flow control settings. */
2678 wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg);
2679 wr32(wx, WX_RDB_RFCC, fccfg_reg);
2680
2681 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2682 if (tx_pause && wx->fc.high_water) {
2683 fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE;
2684 wr32(wx, WX_RDB_RFCL, fcrtl);
2685 fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE;
2686 } else {
2687 wr32(wx, WX_RDB_RFCL, 0);
2688 /* In order to prevent Tx hangs when the internal Tx
2689 * switch is enabled we must set the high water mark
2690 * to the Rx packet buffer size - 24KB. This allows
2691 * the Tx switch to function even under heavy Rx
2692 * workloads.
2693 */
2694 fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576;
2695 }
2696
2697 wr32(wx, WX_RDB_RFCH, fcrth);
2698
2699 /* Configure pause time */
2700 reg = pause_time * 0x00010001;
2701 wr32(wx, WX_RDB_RFCV, reg);
2702
2703 /* Configure flow control refresh threshold value */
2704 wr32(wx, WX_RDB_RFCRT, pause_time / 2);
2705
2706 /* We should set the drop enable bit if:
2707 * Number of Rx queues > 1 and flow control is disabled
2708 *
2709 * This allows us to avoid head of line blocking for security
2710 * and performance reasons.
2711 */
2712 if (wx->num_rx_queues > 1 && !tx_pause) {
2713 for (i = 0; i < wx->num_rx_queues; i++)
2714 wx_enable_rx_drop(wx, wx->rx_ring[i]);
2715 } else {
2716 for (i = 0; i < wx->num_rx_queues; i++)
2717 wx_disable_rx_drop(wx, wx->rx_ring[i]);
2718 }
2719
2720 return 0;
2721 }
2722 EXPORT_SYMBOL(wx_fc_enable);
2723
2724 /**
2725 * wx_update_stats - Update the board statistics counters.
2726 * @wx: board private structure
2727 **/
wx_update_stats(struct wx * wx)2728 void wx_update_stats(struct wx *wx)
2729 {
2730 struct wx_hw_stats *hwstats = &wx->stats;
2731
2732 u64 non_eop_descs = 0, alloc_rx_buff_failed = 0;
2733 u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0;
2734 u64 restart_queue = 0, tx_busy = 0;
2735 u32 i;
2736
2737 /* gather some stats to the wx struct that are per queue */
2738 for (i = 0; i < wx->num_rx_queues; i++) {
2739 struct wx_ring *rx_ring = wx->rx_ring[i];
2740
2741 non_eop_descs += rx_ring->rx_stats.non_eop_descs;
2742 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2743 hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt;
2744 hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2745 }
2746 wx->non_eop_descs = non_eop_descs;
2747 wx->alloc_rx_buff_failed = alloc_rx_buff_failed;
2748 wx->hw_csum_rx_error = hw_csum_rx_error;
2749 wx->hw_csum_rx_good = hw_csum_rx_good;
2750
2751 for (i = 0; i < wx->num_tx_queues; i++) {
2752 struct wx_ring *tx_ring = wx->tx_ring[i];
2753
2754 restart_queue += tx_ring->tx_stats.restart_queue;
2755 tx_busy += tx_ring->tx_stats.tx_busy;
2756 }
2757 wx->restart_queue = restart_queue;
2758 wx->tx_busy = tx_busy;
2759
2760 hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT);
2761 hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT);
2762 hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB);
2763 hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB);
2764 hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2765 hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2766 hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2767 hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2768 hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2769 hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2770 hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2771 hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2772 hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2773 hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2774 hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC);
2775 hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC);
2776 hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC);
2777 hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT);
2778 hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT);
2779 hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT);
2780 hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT);
2781 hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT);
2782
2783 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) {
2784 hwstats->fdirmatch += rd32(wx, WX_RDB_FDIR_MATCH);
2785 hwstats->fdirmiss += rd32(wx, WX_RDB_FDIR_MISS);
2786 }
2787
2788 /* qmprc is not cleared on read, manual reset it */
2789 hwstats->qmprc = 0;
2790 for (i = wx->num_vfs * wx->num_rx_queues_per_pool;
2791 i < wx->mac.max_rx_queues; i++)
2792 hwstats->qmprc += rd32(wx, WX_PX_MPRC(i));
2793 }
2794 EXPORT_SYMBOL(wx_update_stats);
2795
2796 /**
2797 * wx_clear_hw_cntrs - Generic clear hardware counters
2798 * @wx: board private structure
2799 *
2800 * Clears all hardware statistics counters by reading them from the hardware
2801 * Statistics counters are clear on read.
2802 **/
wx_clear_hw_cntrs(struct wx * wx)2803 void wx_clear_hw_cntrs(struct wx *wx)
2804 {
2805 u16 i = 0;
2806
2807 for (i = 0; i < wx->mac.max_rx_queues; i++)
2808 wr32(wx, WX_PX_MPRC(i), 0);
2809
2810 rd32(wx, WX_RDM_PKT_CNT);
2811 rd32(wx, WX_TDM_PKT_CNT);
2812 rd64(wx, WX_RDM_BYTE_CNT_LSB);
2813 rd32(wx, WX_TDM_BYTE_CNT_LSB);
2814 rd32(wx, WX_RDM_DRP_PKT);
2815 rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2816 rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2817 rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2818 rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2819 rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2820 rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2821 rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2822 rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2823 rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2824 rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2825 rd32(wx, WX_RDB_LXONTXC);
2826 rd32(wx, WX_RDB_LXOFFTXC);
2827 rd32(wx, WX_MAC_LXONOFFRXC);
2828 }
2829 EXPORT_SYMBOL(wx_clear_hw_cntrs);
2830
2831 /**
2832 * wx_start_hw - Prepare hardware for Tx/Rx
2833 * @wx: pointer to hardware structure
2834 *
2835 * Starts the hardware using the generic start_hw function
2836 * and the generation start_hw function.
2837 * Then performs revision-specific operations, if any.
2838 **/
wx_start_hw(struct wx * wx)2839 void wx_start_hw(struct wx *wx)
2840 {
2841 int i;
2842
2843 /* Clear the VLAN filter table */
2844 wx_clear_vfta(wx);
2845 WX_WRITE_FLUSH(wx);
2846 /* Clear the rate limiters */
2847 for (i = 0; i < wx->mac.max_tx_queues; i++) {
2848 wr32(wx, WX_TDM_RP_IDX, i);
2849 wr32(wx, WX_TDM_RP_RATE, 0);
2850 }
2851 }
2852 EXPORT_SYMBOL(wx_start_hw);
2853
2854 MODULE_LICENSE("GPL");
2855