xref: /linux/mm/page-writeback.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 #include "swap.h"
45 
46 /*
47  * Sleep at most 200ms at a time in balance_dirty_pages().
48  */
49 #define MAX_PAUSE		max(HZ/5, 1)
50 
51 /*
52  * Try to keep balance_dirty_pages() call intervals higher than this many pages
53  * by raising pause time to max_pause when falls below it.
54  */
55 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
56 
57 /*
58  * Estimate write bandwidth or update dirty limit at 200ms intervals.
59  */
60 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
61 
62 #define RATELIMIT_CALC_SHIFT	10
63 
64 /*
65  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
66  * will look to see if it needs to force writeback or throttling.
67  */
68 static long ratelimit_pages = 32;
69 
70 /* The following parameters are exported via /proc/sys/vm */
71 
72 /*
73  * Start background writeback (via writeback threads) at this percentage
74  */
75 static int dirty_background_ratio = 10;
76 
77 /*
78  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
79  * dirty_background_ratio * the amount of dirtyable memory
80  */
81 static unsigned long dirty_background_bytes;
82 
83 /*
84  * free highmem will not be subtracted from the total free memory
85  * for calculating free ratios if vm_highmem_is_dirtyable is true
86  */
87 static int vm_highmem_is_dirtyable;
88 
89 /*
90  * The generator of dirty data starts writeback at this percentage
91  */
92 static int vm_dirty_ratio = 20;
93 
94 /*
95  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
96  * vm_dirty_ratio * the amount of dirtyable memory
97  */
98 static unsigned long vm_dirty_bytes;
99 
100 /*
101  * The interval between `kupdate'-style writebacks
102  */
103 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
104 
105 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106 
107 /*
108  * The longest time for which data is allowed to remain dirty
109  */
110 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111 
112 /*
113  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114  * a full sync is triggered after this time elapses without any disk activity.
115  */
116 int laptop_mode;
117 
118 EXPORT_SYMBOL(laptop_mode);
119 
120 /* End of sysctl-exported parameters */
121 
122 struct wb_domain global_wb_domain;
123 
124 /*
125  * Length of period for aging writeout fractions of bdis. This is an
126  * arbitrarily chosen number. The longer the period, the slower fractions will
127  * reflect changes in current writeout rate.
128  */
129 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
130 
131 #ifdef CONFIG_CGROUP_WRITEBACK
132 
133 #define GDTC_INIT(__wb)		.wb = (__wb),				\
134 				.dom = &global_wb_domain,		\
135 				.wb_completions = &(__wb)->completions
136 
137 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
138 
139 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
140 				.dom = mem_cgroup_wb_domain(__wb),	\
141 				.wb_completions = &(__wb)->memcg_completions, \
142 				.gdtc = __gdtc
143 
mdtc_valid(struct dirty_throttle_control * dtc)144 static bool mdtc_valid(struct dirty_throttle_control *dtc)
145 {
146 	return dtc->dom;
147 }
148 
dtc_dom(struct dirty_throttle_control * dtc)149 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
150 {
151 	return dtc->dom;
152 }
153 
mdtc_gdtc(struct dirty_throttle_control * mdtc)154 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
155 {
156 	return mdtc->gdtc;
157 }
158 
wb_memcg_completions(struct bdi_writeback * wb)159 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
160 {
161 	return &wb->memcg_completions;
162 }
163 
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)164 static void wb_min_max_ratio(struct bdi_writeback *wb,
165 			     unsigned long *minp, unsigned long *maxp)
166 {
167 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
168 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
169 	unsigned long long min = wb->bdi->min_ratio;
170 	unsigned long long max = wb->bdi->max_ratio;
171 
172 	/*
173 	 * @wb may already be clean by the time control reaches here and
174 	 * the total may not include its bw.
175 	 */
176 	if (this_bw < tot_bw) {
177 		if (min) {
178 			min *= this_bw;
179 			min = div64_ul(min, tot_bw);
180 		}
181 		if (max < 100 * BDI_RATIO_SCALE) {
182 			max *= this_bw;
183 			max = div64_ul(max, tot_bw);
184 		}
185 	}
186 
187 	*minp = min;
188 	*maxp = max;
189 }
190 
191 #else	/* CONFIG_CGROUP_WRITEBACK */
192 
193 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
194 				.wb_completions = &(__wb)->completions
195 #define GDTC_INIT_NO_WB
196 #define MDTC_INIT(__wb, __gdtc)
197 
mdtc_valid(struct dirty_throttle_control * dtc)198 static bool mdtc_valid(struct dirty_throttle_control *dtc)
199 {
200 	return false;
201 }
202 
dtc_dom(struct dirty_throttle_control * dtc)203 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
204 {
205 	return &global_wb_domain;
206 }
207 
mdtc_gdtc(struct dirty_throttle_control * mdtc)208 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
209 {
210 	return NULL;
211 }
212 
wb_memcg_completions(struct bdi_writeback * wb)213 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
214 {
215 	return NULL;
216 }
217 
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)218 static void wb_min_max_ratio(struct bdi_writeback *wb,
219 			     unsigned long *minp, unsigned long *maxp)
220 {
221 	*minp = wb->bdi->min_ratio;
222 	*maxp = wb->bdi->max_ratio;
223 }
224 
225 #endif	/* CONFIG_CGROUP_WRITEBACK */
226 
227 /*
228  * In a memory zone, there is a certain amount of pages we consider
229  * available for the page cache, which is essentially the number of
230  * free and reclaimable pages, minus some zone reserves to protect
231  * lowmem and the ability to uphold the zone's watermarks without
232  * requiring writeback.
233  *
234  * This number of dirtyable pages is the base value of which the
235  * user-configurable dirty ratio is the effective number of pages that
236  * are allowed to be actually dirtied.  Per individual zone, or
237  * globally by using the sum of dirtyable pages over all zones.
238  *
239  * Because the user is allowed to specify the dirty limit globally as
240  * absolute number of bytes, calculating the per-zone dirty limit can
241  * require translating the configured limit into a percentage of
242  * global dirtyable memory first.
243  */
244 
245 /**
246  * node_dirtyable_memory - number of dirtyable pages in a node
247  * @pgdat: the node
248  *
249  * Return: the node's number of pages potentially available for dirty
250  * page cache.  This is the base value for the per-node dirty limits.
251  */
node_dirtyable_memory(struct pglist_data * pgdat)252 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
253 {
254 	unsigned long nr_pages = 0;
255 	int z;
256 
257 	for (z = 0; z < MAX_NR_ZONES; z++) {
258 		struct zone *zone = pgdat->node_zones + z;
259 
260 		if (!populated_zone(zone))
261 			continue;
262 
263 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
264 	}
265 
266 	/*
267 	 * Pages reserved for the kernel should not be considered
268 	 * dirtyable, to prevent a situation where reclaim has to
269 	 * clean pages in order to balance the zones.
270 	 */
271 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
272 
273 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
274 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
275 
276 	return nr_pages;
277 }
278 
highmem_dirtyable_memory(unsigned long total)279 static unsigned long highmem_dirtyable_memory(unsigned long total)
280 {
281 #ifdef CONFIG_HIGHMEM
282 	int node;
283 	unsigned long x = 0;
284 	int i;
285 
286 	for_each_node_state(node, N_HIGH_MEMORY) {
287 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
288 			struct zone *z;
289 			unsigned long nr_pages;
290 
291 			if (!is_highmem_idx(i))
292 				continue;
293 
294 			z = &NODE_DATA(node)->node_zones[i];
295 			if (!populated_zone(z))
296 				continue;
297 
298 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
299 			/* watch for underflows */
300 			nr_pages -= min(nr_pages, high_wmark_pages(z));
301 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
302 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
303 			x += nr_pages;
304 		}
305 	}
306 
307 	/*
308 	 * Make sure that the number of highmem pages is never larger
309 	 * than the number of the total dirtyable memory. This can only
310 	 * occur in very strange VM situations but we want to make sure
311 	 * that this does not occur.
312 	 */
313 	return min(x, total);
314 #else
315 	return 0;
316 #endif
317 }
318 
319 /**
320  * global_dirtyable_memory - number of globally dirtyable pages
321  *
322  * Return: the global number of pages potentially available for dirty
323  * page cache.  This is the base value for the global dirty limits.
324  */
global_dirtyable_memory(void)325 static unsigned long global_dirtyable_memory(void)
326 {
327 	unsigned long x;
328 
329 	x = global_zone_page_state(NR_FREE_PAGES);
330 	/*
331 	 * Pages reserved for the kernel should not be considered
332 	 * dirtyable, to prevent a situation where reclaim has to
333 	 * clean pages in order to balance the zones.
334 	 */
335 	x -= min(x, totalreserve_pages);
336 
337 	x += global_node_page_state(NR_INACTIVE_FILE);
338 	x += global_node_page_state(NR_ACTIVE_FILE);
339 
340 	if (!vm_highmem_is_dirtyable)
341 		x -= highmem_dirtyable_memory(x);
342 
343 	return x + 1;	/* Ensure that we never return 0 */
344 }
345 
346 /**
347  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348  * @dtc: dirty_throttle_control of interest
349  *
350  * Calculate @dtc->thresh and ->bg_thresh considering
351  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
352  * must ensure that @dtc->avail is set before calling this function.  The
353  * dirty limits will be lifted by 1/4 for real-time tasks.
354  */
domain_dirty_limits(struct dirty_throttle_control * dtc)355 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
356 {
357 	const unsigned long available_memory = dtc->avail;
358 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
359 	unsigned long bytes = vm_dirty_bytes;
360 	unsigned long bg_bytes = dirty_background_bytes;
361 	/* convert ratios to per-PAGE_SIZE for higher precision */
362 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
363 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
364 	unsigned long thresh;
365 	unsigned long bg_thresh;
366 	struct task_struct *tsk;
367 
368 	/* gdtc is !NULL iff @dtc is for memcg domain */
369 	if (gdtc) {
370 		unsigned long global_avail = gdtc->avail;
371 
372 		/*
373 		 * The byte settings can't be applied directly to memcg
374 		 * domains.  Convert them to ratios by scaling against
375 		 * globally available memory.  As the ratios are in
376 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
377 		 * number of pages.
378 		 */
379 		if (bytes)
380 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
381 				    PAGE_SIZE);
382 		if (bg_bytes)
383 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
384 				       PAGE_SIZE);
385 		bytes = bg_bytes = 0;
386 	}
387 
388 	if (bytes)
389 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
390 	else
391 		thresh = (ratio * available_memory) / PAGE_SIZE;
392 
393 	if (bg_bytes)
394 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
395 	else
396 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
397 
398 	tsk = current;
399 	if (rt_or_dl_task(tsk)) {
400 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
401 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
402 	}
403 	/*
404 	 * Dirty throttling logic assumes the limits in page units fit into
405 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
406 	 */
407 	if (thresh > UINT_MAX)
408 		thresh = UINT_MAX;
409 	/* This makes sure bg_thresh is within 32-bits as well */
410 	if (bg_thresh >= thresh)
411 		bg_thresh = thresh / 2;
412 	dtc->thresh = thresh;
413 	dtc->bg_thresh = bg_thresh;
414 
415 	/* we should eventually report the domain in the TP */
416 	if (!gdtc)
417 		trace_global_dirty_state(bg_thresh, thresh);
418 }
419 
420 /**
421  * global_dirty_limits - background-writeback and dirty-throttling thresholds
422  * @pbackground: out parameter for bg_thresh
423  * @pdirty: out parameter for thresh
424  *
425  * Calculate bg_thresh and thresh for global_wb_domain.  See
426  * domain_dirty_limits() for details.
427  */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)428 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
429 {
430 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
431 
432 	gdtc.avail = global_dirtyable_memory();
433 	domain_dirty_limits(&gdtc);
434 
435 	*pbackground = gdtc.bg_thresh;
436 	*pdirty = gdtc.thresh;
437 }
438 
439 /**
440  * node_dirty_limit - maximum number of dirty pages allowed in a node
441  * @pgdat: the node
442  *
443  * Return: the maximum number of dirty pages allowed in a node, based
444  * on the node's dirtyable memory.
445  */
node_dirty_limit(struct pglist_data * pgdat)446 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
447 {
448 	unsigned long node_memory = node_dirtyable_memory(pgdat);
449 	struct task_struct *tsk = current;
450 	unsigned long dirty;
451 
452 	if (vm_dirty_bytes)
453 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
454 			node_memory / global_dirtyable_memory();
455 	else
456 		dirty = vm_dirty_ratio * node_memory / 100;
457 
458 	if (rt_or_dl_task(tsk))
459 		dirty += dirty / 4;
460 
461 	/*
462 	 * Dirty throttling logic assumes the limits in page units fit into
463 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
464 	 */
465 	return min_t(unsigned long, dirty, UINT_MAX);
466 }
467 
468 /**
469  * node_dirty_ok - tells whether a node is within its dirty limits
470  * @pgdat: the node to check
471  *
472  * Return: %true when the dirty pages in @pgdat are within the node's
473  * dirty limit, %false if the limit is exceeded.
474  */
node_dirty_ok(struct pglist_data * pgdat)475 bool node_dirty_ok(struct pglist_data *pgdat)
476 {
477 	unsigned long limit = node_dirty_limit(pgdat);
478 	unsigned long nr_pages = 0;
479 
480 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
481 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
482 
483 	return nr_pages <= limit;
484 }
485 
486 #ifdef CONFIG_SYSCTL
dirty_background_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)487 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
488 		void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 	int ret;
491 
492 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
493 	if (ret == 0 && write)
494 		dirty_background_bytes = 0;
495 	return ret;
496 }
497 
dirty_background_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)498 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
499 		void *buffer, size_t *lenp, loff_t *ppos)
500 {
501 	int ret;
502 	unsigned long old_bytes = dirty_background_bytes;
503 
504 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
505 	if (ret == 0 && write) {
506 		if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
507 								UINT_MAX) {
508 			dirty_background_bytes = old_bytes;
509 			return -ERANGE;
510 		}
511 		dirty_background_ratio = 0;
512 	}
513 	return ret;
514 }
515 
dirty_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)516 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
517 		size_t *lenp, loff_t *ppos)
518 {
519 	int old_ratio = vm_dirty_ratio;
520 	int ret;
521 
522 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
523 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
524 		vm_dirty_bytes = 0;
525 		writeback_set_ratelimit();
526 	}
527 	return ret;
528 }
529 
dirty_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)530 static int dirty_bytes_handler(const struct ctl_table *table, int write,
531 		void *buffer, size_t *lenp, loff_t *ppos)
532 {
533 	unsigned long old_bytes = vm_dirty_bytes;
534 	int ret;
535 
536 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
537 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
538 		if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
539 			vm_dirty_bytes = old_bytes;
540 			return -ERANGE;
541 		}
542 		writeback_set_ratelimit();
543 		vm_dirty_ratio = 0;
544 	}
545 	return ret;
546 }
547 #endif
548 
wp_next_time(unsigned long cur_time)549 static unsigned long wp_next_time(unsigned long cur_time)
550 {
551 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
552 	/* 0 has a special meaning... */
553 	if (!cur_time)
554 		return 1;
555 	return cur_time;
556 }
557 
wb_domain_writeout_add(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac,long nr)558 static void wb_domain_writeout_add(struct wb_domain *dom,
559 				   struct fprop_local_percpu *completions,
560 				   unsigned int max_prop_frac, long nr)
561 {
562 	__fprop_add_percpu_max(&dom->completions, completions,
563 			       max_prop_frac, nr);
564 	/* First event after period switching was turned off? */
565 	if (unlikely(!dom->period_time)) {
566 		/*
567 		 * We can race with other wb_domain_writeout_add calls here but
568 		 * it does not cause any harm since the resulting time when
569 		 * timer will fire and what is in writeout_period_time will be
570 		 * roughly the same.
571 		 */
572 		dom->period_time = wp_next_time(jiffies);
573 		mod_timer(&dom->period_timer, dom->period_time);
574 	}
575 }
576 
577 /*
578  * Increment @wb's writeout completion count and the global writeout
579  * completion count. Called from __folio_end_writeback().
580  */
__wb_writeout_add(struct bdi_writeback * wb,long nr)581 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
582 {
583 	struct wb_domain *cgdom;
584 
585 	wb_stat_mod(wb, WB_WRITTEN, nr);
586 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
587 			       wb->bdi->max_prop_frac, nr);
588 
589 	cgdom = mem_cgroup_wb_domain(wb);
590 	if (cgdom)
591 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
592 				       wb->bdi->max_prop_frac, nr);
593 }
594 
wb_writeout_inc(struct bdi_writeback * wb)595 void wb_writeout_inc(struct bdi_writeback *wb)
596 {
597 	unsigned long flags;
598 
599 	local_irq_save(flags);
600 	__wb_writeout_add(wb, 1);
601 	local_irq_restore(flags);
602 }
603 EXPORT_SYMBOL_GPL(wb_writeout_inc);
604 
605 /*
606  * On idle system, we can be called long after we scheduled because we use
607  * deferred timers so count with missed periods.
608  */
writeout_period(struct timer_list * t)609 static void writeout_period(struct timer_list *t)
610 {
611 	struct wb_domain *dom = timer_container_of(dom, t, period_timer);
612 	int miss_periods = (jiffies - dom->period_time) /
613 						 VM_COMPLETIONS_PERIOD_LEN;
614 
615 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
616 		dom->period_time = wp_next_time(dom->period_time +
617 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
618 		mod_timer(&dom->period_timer, dom->period_time);
619 	} else {
620 		/*
621 		 * Aging has zeroed all fractions. Stop wasting CPU on period
622 		 * updates.
623 		 */
624 		dom->period_time = 0;
625 	}
626 }
627 
wb_domain_init(struct wb_domain * dom,gfp_t gfp)628 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
629 {
630 	memset(dom, 0, sizeof(*dom));
631 
632 	spin_lock_init(&dom->lock);
633 
634 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
635 
636 	dom->dirty_limit_tstamp = jiffies;
637 
638 	return fprop_global_init(&dom->completions, gfp);
639 }
640 
641 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)642 void wb_domain_exit(struct wb_domain *dom)
643 {
644 	timer_delete_sync(&dom->period_timer);
645 	fprop_global_destroy(&dom->completions);
646 }
647 #endif
648 
649 /*
650  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
651  * registered backing devices, which, for obvious reasons, can not
652  * exceed 100%.
653  */
654 static unsigned int bdi_min_ratio;
655 
bdi_check_pages_limit(unsigned long pages)656 static int bdi_check_pages_limit(unsigned long pages)
657 {
658 	unsigned long max_dirty_pages = global_dirtyable_memory();
659 
660 	if (pages > max_dirty_pages)
661 		return -EINVAL;
662 
663 	return 0;
664 }
665 
bdi_ratio_from_pages(unsigned long pages)666 static unsigned long bdi_ratio_from_pages(unsigned long pages)
667 {
668 	unsigned long background_thresh;
669 	unsigned long dirty_thresh;
670 	unsigned long ratio;
671 
672 	global_dirty_limits(&background_thresh, &dirty_thresh);
673 	if (!dirty_thresh)
674 		return -EINVAL;
675 	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
676 
677 	return ratio;
678 }
679 
bdi_get_bytes(unsigned int ratio)680 static u64 bdi_get_bytes(unsigned int ratio)
681 {
682 	unsigned long background_thresh;
683 	unsigned long dirty_thresh;
684 	u64 bytes;
685 
686 	global_dirty_limits(&background_thresh, &dirty_thresh);
687 	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
688 
689 	return bytes;
690 }
691 
__bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)692 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
693 {
694 	unsigned int delta;
695 	int ret = 0;
696 
697 	if (min_ratio > 100 * BDI_RATIO_SCALE)
698 		return -EINVAL;
699 
700 	spin_lock_bh(&bdi_lock);
701 	if (min_ratio > bdi->max_ratio) {
702 		ret = -EINVAL;
703 	} else {
704 		if (min_ratio < bdi->min_ratio) {
705 			delta = bdi->min_ratio - min_ratio;
706 			bdi_min_ratio -= delta;
707 			bdi->min_ratio = min_ratio;
708 		} else {
709 			delta = min_ratio - bdi->min_ratio;
710 			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
711 				bdi_min_ratio += delta;
712 				bdi->min_ratio = min_ratio;
713 			} else {
714 				ret = -EINVAL;
715 			}
716 		}
717 	}
718 	spin_unlock_bh(&bdi_lock);
719 
720 	return ret;
721 }
722 
__bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)723 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
724 {
725 	int ret = 0;
726 
727 	if (max_ratio > 100 * BDI_RATIO_SCALE)
728 		return -EINVAL;
729 
730 	spin_lock_bh(&bdi_lock);
731 	if (bdi->min_ratio > max_ratio) {
732 		ret = -EINVAL;
733 	} else {
734 		bdi->max_ratio = max_ratio;
735 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
736 						(100 * BDI_RATIO_SCALE);
737 	}
738 	spin_unlock_bh(&bdi_lock);
739 
740 	return ret;
741 }
742 
bdi_set_min_ratio_no_scale(struct backing_dev_info * bdi,unsigned int min_ratio)743 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
744 {
745 	return __bdi_set_min_ratio(bdi, min_ratio);
746 }
747 
bdi_set_max_ratio_no_scale(struct backing_dev_info * bdi,unsigned int max_ratio)748 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
749 {
750 	return __bdi_set_max_ratio(bdi, max_ratio);
751 }
752 
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)753 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
754 {
755 	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
756 }
757 
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)758 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
759 {
760 	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
761 }
762 EXPORT_SYMBOL(bdi_set_max_ratio);
763 
bdi_get_min_bytes(struct backing_dev_info * bdi)764 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
765 {
766 	return bdi_get_bytes(bdi->min_ratio);
767 }
768 
bdi_set_min_bytes(struct backing_dev_info * bdi,u64 min_bytes)769 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
770 {
771 	int ret;
772 	unsigned long pages = min_bytes >> PAGE_SHIFT;
773 	long min_ratio;
774 
775 	ret = bdi_check_pages_limit(pages);
776 	if (ret)
777 		return ret;
778 
779 	min_ratio = bdi_ratio_from_pages(pages);
780 	if (min_ratio < 0)
781 		return min_ratio;
782 	return __bdi_set_min_ratio(bdi, min_ratio);
783 }
784 
bdi_get_max_bytes(struct backing_dev_info * bdi)785 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
786 {
787 	return bdi_get_bytes(bdi->max_ratio);
788 }
789 
bdi_set_max_bytes(struct backing_dev_info * bdi,u64 max_bytes)790 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
791 {
792 	int ret;
793 	unsigned long pages = max_bytes >> PAGE_SHIFT;
794 	long max_ratio;
795 
796 	ret = bdi_check_pages_limit(pages);
797 	if (ret)
798 		return ret;
799 
800 	max_ratio = bdi_ratio_from_pages(pages);
801 	if (max_ratio < 0)
802 		return max_ratio;
803 	return __bdi_set_max_ratio(bdi, max_ratio);
804 }
805 
bdi_set_strict_limit(struct backing_dev_info * bdi,unsigned int strict_limit)806 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
807 {
808 	if (strict_limit > 1)
809 		return -EINVAL;
810 
811 	spin_lock_bh(&bdi_lock);
812 	if (strict_limit)
813 		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
814 	else
815 		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
816 	spin_unlock_bh(&bdi_lock);
817 
818 	return 0;
819 }
820 
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)821 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
822 					   unsigned long bg_thresh)
823 {
824 	return (thresh + bg_thresh) / 2;
825 }
826 
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)827 static unsigned long hard_dirty_limit(struct wb_domain *dom,
828 				      unsigned long thresh)
829 {
830 	return max(thresh, dom->dirty_limit);
831 }
832 
833 /*
834  * Memory which can be further allocated to a memcg domain is capped by
835  * system-wide clean memory excluding the amount being used in the domain.
836  */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)837 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
838 			    unsigned long filepages, unsigned long headroom)
839 {
840 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
841 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
842 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
843 	unsigned long other_clean = global_clean - min(global_clean, clean);
844 
845 	mdtc->avail = filepages + min(headroom, other_clean);
846 }
847 
dtc_is_global(struct dirty_throttle_control * dtc)848 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
849 {
850 	return mdtc_gdtc(dtc) == NULL;
851 }
852 
853 /*
854  * Dirty background will ignore pages being written as we're trying to
855  * decide whether to put more under writeback.
856  */
domain_dirty_avail(struct dirty_throttle_control * dtc,bool include_writeback)857 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
858 			       bool include_writeback)
859 {
860 	if (dtc_is_global(dtc)) {
861 		dtc->avail = global_dirtyable_memory();
862 		dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
863 		if (include_writeback)
864 			dtc->dirty += global_node_page_state(NR_WRITEBACK);
865 	} else {
866 		unsigned long filepages = 0, headroom = 0, writeback = 0;
867 
868 		mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
869 				    &writeback);
870 		if (include_writeback)
871 			dtc->dirty += writeback;
872 		mdtc_calc_avail(dtc, filepages, headroom);
873 	}
874 }
875 
876 /**
877  * __wb_calc_thresh - @wb's share of dirty threshold
878  * @dtc: dirty_throttle_context of interest
879  * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
880  *
881  * Note that balance_dirty_pages() will only seriously take dirty throttling
882  * threshold as a hard limit when sleeping max_pause per page is not enough
883  * to keep the dirty pages under control. For example, when the device is
884  * completely stalled due to some error conditions, or when there are 1000
885  * dd tasks writing to a slow 10MB/s USB key.
886  * In the other normal situations, it acts more gently by throttling the tasks
887  * more (rather than completely block them) when the wb dirty pages go high.
888  *
889  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
890  * - starving fast devices
891  * - piling up dirty pages (that will take long time to sync) on slow devices
892  *
893  * The wb's share of dirty limit will be adapting to its throughput and
894  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
895  *
896  * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
897  * "dirty" in the context of dirty balancing includes all PG_dirty and
898  * PG_writeback pages.
899  */
__wb_calc_thresh(struct dirty_throttle_control * dtc,unsigned long thresh)900 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
901 				      unsigned long thresh)
902 {
903 	struct wb_domain *dom = dtc_dom(dtc);
904 	struct bdi_writeback *wb = dtc->wb;
905 	u64 wb_thresh;
906 	u64 wb_max_thresh;
907 	unsigned long numerator, denominator;
908 	unsigned long wb_min_ratio, wb_max_ratio;
909 
910 	/*
911 	 * Calculate this wb's share of the thresh ratio.
912 	 */
913 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
914 			      &numerator, &denominator);
915 
916 	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
917 	wb_thresh *= numerator;
918 	wb_thresh = div64_ul(wb_thresh, denominator);
919 
920 	wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
921 
922 	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
923 
924 	/*
925 	 * It's very possible that wb_thresh is close to 0 not because the
926 	 * device is slow, but that it has remained inactive for long time.
927 	 * Honour such devices a reasonable good (hopefully IO efficient)
928 	 * threshold, so that the occasional writes won't be blocked and active
929 	 * writes can rampup the threshold quickly.
930 	 */
931 	if (thresh > dtc->dirty) {
932 		if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT))
933 			wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100);
934 		else
935 			wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8);
936 	}
937 
938 	wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
939 	if (wb_thresh > wb_max_thresh)
940 		wb_thresh = wb_max_thresh;
941 
942 	return wb_thresh;
943 }
944 
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)945 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
946 {
947 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
948 
949 	domain_dirty_avail(&gdtc, true);
950 	return __wb_calc_thresh(&gdtc, thresh);
951 }
952 
cgwb_calc_thresh(struct bdi_writeback * wb)953 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
954 {
955 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
956 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
957 
958 	domain_dirty_avail(&gdtc, true);
959 	domain_dirty_avail(&mdtc, true);
960 	domain_dirty_limits(&mdtc);
961 
962 	return __wb_calc_thresh(&mdtc, mdtc.thresh);
963 }
964 
965 /*
966  *                           setpoint - dirty 3
967  *        f(dirty) := 1.0 + (----------------)
968  *                           limit - setpoint
969  *
970  * it's a 3rd order polynomial that subjects to
971  *
972  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
973  * (2) f(setpoint) = 1.0 => the balance point
974  * (3) f(limit)    = 0   => the hard limit
975  * (4) df/dx      <= 0	 => negative feedback control
976  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
977  *     => fast response on large errors; small oscillation near setpoint
978  */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)979 static long long pos_ratio_polynom(unsigned long setpoint,
980 					  unsigned long dirty,
981 					  unsigned long limit)
982 {
983 	long long pos_ratio;
984 	long x;
985 
986 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
987 		      (limit - setpoint) | 1);
988 	pos_ratio = x;
989 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
990 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
991 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
992 
993 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
994 }
995 
996 /*
997  * Dirty position control.
998  *
999  * (o) global/bdi setpoints
1000  *
1001  * We want the dirty pages be balanced around the global/wb setpoints.
1002  * When the number of dirty pages is higher/lower than the setpoint, the
1003  * dirty position control ratio (and hence task dirty ratelimit) will be
1004  * decreased/increased to bring the dirty pages back to the setpoint.
1005  *
1006  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1007  *
1008  *     if (dirty < setpoint) scale up   pos_ratio
1009  *     if (dirty > setpoint) scale down pos_ratio
1010  *
1011  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
1012  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
1013  *
1014  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1015  *
1016  * (o) global control line
1017  *
1018  *     ^ pos_ratio
1019  *     |
1020  *     |            |<===== global dirty control scope ======>|
1021  * 2.0  * * * * * * *
1022  *     |            .*
1023  *     |            . *
1024  *     |            .   *
1025  *     |            .     *
1026  *     |            .        *
1027  *     |            .            *
1028  * 1.0 ................................*
1029  *     |            .                  .     *
1030  *     |            .                  .          *
1031  *     |            .                  .              *
1032  *     |            .                  .                 *
1033  *     |            .                  .                    *
1034  *   0 +------------.------------------.----------------------*------------->
1035  *           freerun^          setpoint^                 limit^   dirty pages
1036  *
1037  * (o) wb control line
1038  *
1039  *     ^ pos_ratio
1040  *     |
1041  *     |            *
1042  *     |              *
1043  *     |                *
1044  *     |                  *
1045  *     |                    * |<=========== span ============>|
1046  * 1.0 .......................*
1047  *     |                      . *
1048  *     |                      .   *
1049  *     |                      .     *
1050  *     |                      .       *
1051  *     |                      .         *
1052  *     |                      .           *
1053  *     |                      .             *
1054  *     |                      .               *
1055  *     |                      .                 *
1056  *     |                      .                   *
1057  *     |                      .                     *
1058  * 1/4 ...............................................* * * * * * * * * * * *
1059  *     |                      .                         .
1060  *     |                      .                           .
1061  *     |                      .                             .
1062  *   0 +----------------------.-------------------------------.------------->
1063  *                wb_setpoint^                    x_intercept^
1064  *
1065  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1066  * be smoothly throttled down to normal if it starts high in situations like
1067  * - start writing to a slow SD card and a fast disk at the same time. The SD
1068  *   card's wb_dirty may rush to many times higher than wb_setpoint.
1069  * - the wb dirty thresh drops quickly due to change of JBOD workload
1070  */
wb_position_ratio(struct dirty_throttle_control * dtc)1071 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1072 {
1073 	struct bdi_writeback *wb = dtc->wb;
1074 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1075 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1076 	unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1077 	unsigned long wb_thresh = dtc->wb_thresh;
1078 	unsigned long x_intercept;
1079 	unsigned long setpoint;		/* dirty pages' target balance point */
1080 	unsigned long wb_setpoint;
1081 	unsigned long span;
1082 	long long pos_ratio;		/* for scaling up/down the rate limit */
1083 	long x;
1084 
1085 	dtc->pos_ratio = 0;
1086 
1087 	if (unlikely(dtc->dirty >= limit))
1088 		return;
1089 
1090 	/*
1091 	 * global setpoint
1092 	 *
1093 	 * See comment for pos_ratio_polynom().
1094 	 */
1095 	setpoint = (freerun + limit) / 2;
1096 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1097 
1098 	/*
1099 	 * The strictlimit feature is a tool preventing mistrusted filesystems
1100 	 * from growing a large number of dirty pages before throttling. For
1101 	 * such filesystems balance_dirty_pages always checks wb counters
1102 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1103 	 * This is especially important for fuse which sets bdi->max_ratio to
1104 	 * 1% by default. Without strictlimit feature, fuse writeback may
1105 	 * consume arbitrary amount of RAM because it is accounted in
1106 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1107 	 *
1108 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1109 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1110 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1111 	 * limits are set by default to 10% and 20% (background and throttle).
1112 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1113 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1114 	 * about ~6K pages (as the average of background and throttle wb
1115 	 * limits). The 3rd order polynomial will provide positive feedback if
1116 	 * wb_dirty is under wb_setpoint and vice versa.
1117 	 *
1118 	 * Note, that we cannot use global counters in these calculations
1119 	 * because we want to throttle process writing to a strictlimit wb
1120 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1121 	 * in the example above).
1122 	 */
1123 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1124 		long long wb_pos_ratio;
1125 
1126 		if (dtc->wb_dirty >= wb_thresh)
1127 			return;
1128 
1129 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1130 						    dtc->wb_bg_thresh);
1131 
1132 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1133 			return;
1134 
1135 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1136 						 wb_thresh);
1137 
1138 		/*
1139 		 * Typically, for strictlimit case, wb_setpoint << setpoint
1140 		 * and pos_ratio >> wb_pos_ratio. In the other words global
1141 		 * state ("dirty") is not limiting factor and we have to
1142 		 * make decision based on wb counters. But there is an
1143 		 * important case when global pos_ratio should get precedence:
1144 		 * global limits are exceeded (e.g. due to activities on other
1145 		 * wb's) while given strictlimit wb is below limit.
1146 		 *
1147 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1148 		 * but it would look too non-natural for the case of all
1149 		 * activity in the system coming from a single strictlimit wb
1150 		 * with bdi->max_ratio == 100%.
1151 		 *
1152 		 * Note that min() below somewhat changes the dynamics of the
1153 		 * control system. Normally, pos_ratio value can be well over 3
1154 		 * (when globally we are at freerun and wb is well below wb
1155 		 * setpoint). Now the maximum pos_ratio in the same situation
1156 		 * is 2. We might want to tweak this if we observe the control
1157 		 * system is too slow to adapt.
1158 		 */
1159 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1160 		return;
1161 	}
1162 
1163 	/*
1164 	 * We have computed basic pos_ratio above based on global situation. If
1165 	 * the wb is over/under its share of dirty pages, we want to scale
1166 	 * pos_ratio further down/up. That is done by the following mechanism.
1167 	 */
1168 
1169 	/*
1170 	 * wb setpoint
1171 	 *
1172 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1173 	 *
1174 	 *                        x_intercept - wb_dirty
1175 	 *                     := --------------------------
1176 	 *                        x_intercept - wb_setpoint
1177 	 *
1178 	 * The main wb control line is a linear function that subjects to
1179 	 *
1180 	 * (1) f(wb_setpoint) = 1.0
1181 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1182 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1183 	 *
1184 	 * For single wb case, the dirty pages are observed to fluctuate
1185 	 * regularly within range
1186 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1187 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1188 	 * fluctuation range for pos_ratio.
1189 	 *
1190 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1191 	 * own size, so move the slope over accordingly and choose a slope that
1192 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1193 	 */
1194 	if (unlikely(wb_thresh > dtc->thresh))
1195 		wb_thresh = dtc->thresh;
1196 	/*
1197 	 * scale global setpoint to wb's:
1198 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1199 	 */
1200 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1201 	wb_setpoint = setpoint * (u64)x >> 16;
1202 	/*
1203 	 * Use span=(8*write_bw) in single wb case as indicated by
1204 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1205 	 *
1206 	 *        wb_thresh                    thresh - wb_thresh
1207 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1208 	 *         thresh                           thresh
1209 	 */
1210 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1211 	x_intercept = wb_setpoint + span;
1212 
1213 	if (dtc->wb_dirty < x_intercept - span / 4) {
1214 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1215 				      (x_intercept - wb_setpoint) | 1);
1216 	} else
1217 		pos_ratio /= 4;
1218 
1219 	/*
1220 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1221 	 * It may push the desired control point of global dirty pages higher
1222 	 * than setpoint.
1223 	 */
1224 	x_intercept = wb_thresh / 2;
1225 	if (dtc->wb_dirty < x_intercept) {
1226 		if (dtc->wb_dirty > x_intercept / 8)
1227 			pos_ratio = div_u64(pos_ratio * x_intercept,
1228 					    dtc->wb_dirty);
1229 		else
1230 			pos_ratio *= 8;
1231 	}
1232 
1233 	dtc->pos_ratio = pos_ratio;
1234 }
1235 
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1236 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1237 				      unsigned long elapsed,
1238 				      unsigned long written)
1239 {
1240 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1241 	unsigned long avg = wb->avg_write_bandwidth;
1242 	unsigned long old = wb->write_bandwidth;
1243 	u64 bw;
1244 
1245 	/*
1246 	 * bw = written * HZ / elapsed
1247 	 *
1248 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1249 	 * write_bandwidth = ---------------------------------------------------
1250 	 *                                          period
1251 	 *
1252 	 * @written may have decreased due to folio_redirty_for_writepage().
1253 	 * Avoid underflowing @bw calculation.
1254 	 */
1255 	bw = written - min(written, wb->written_stamp);
1256 	bw *= HZ;
1257 	if (unlikely(elapsed > period)) {
1258 		bw = div64_ul(bw, elapsed);
1259 		avg = bw;
1260 		goto out;
1261 	}
1262 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1263 	bw >>= ilog2(period);
1264 
1265 	/*
1266 	 * one more level of smoothing, for filtering out sudden spikes
1267 	 */
1268 	if (avg > old && old >= (unsigned long)bw)
1269 		avg -= (avg - old) >> 3;
1270 
1271 	if (avg < old && old <= (unsigned long)bw)
1272 		avg += (old - avg) >> 3;
1273 
1274 out:
1275 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1276 	avg = max(avg, 1LU);
1277 	if (wb_has_dirty_io(wb)) {
1278 		long delta = avg - wb->avg_write_bandwidth;
1279 		WARN_ON_ONCE(atomic_long_add_return(delta,
1280 					&wb->bdi->tot_write_bandwidth) <= 0);
1281 	}
1282 	wb->write_bandwidth = bw;
1283 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1284 }
1285 
update_dirty_limit(struct dirty_throttle_control * dtc)1286 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1287 {
1288 	struct wb_domain *dom = dtc_dom(dtc);
1289 	unsigned long thresh = dtc->thresh;
1290 	unsigned long limit = dom->dirty_limit;
1291 
1292 	/*
1293 	 * Follow up in one step.
1294 	 */
1295 	if (limit < thresh) {
1296 		limit = thresh;
1297 		goto update;
1298 	}
1299 
1300 	/*
1301 	 * Follow down slowly. Use the higher one as the target, because thresh
1302 	 * may drop below dirty. This is exactly the reason to introduce
1303 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1304 	 */
1305 	thresh = max(thresh, dtc->dirty);
1306 	if (limit > thresh) {
1307 		limit -= (limit - thresh) >> 5;
1308 		goto update;
1309 	}
1310 	return;
1311 update:
1312 	dom->dirty_limit = limit;
1313 }
1314 
domain_update_dirty_limit(struct dirty_throttle_control * dtc,unsigned long now)1315 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1316 				      unsigned long now)
1317 {
1318 	struct wb_domain *dom = dtc_dom(dtc);
1319 
1320 	/*
1321 	 * check locklessly first to optimize away locking for the most time
1322 	 */
1323 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1324 		return;
1325 
1326 	spin_lock(&dom->lock);
1327 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1328 		update_dirty_limit(dtc);
1329 		dom->dirty_limit_tstamp = now;
1330 	}
1331 	spin_unlock(&dom->lock);
1332 }
1333 
1334 /*
1335  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1336  *
1337  * Normal wb tasks will be curbed at or below it in long term.
1338  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1339  */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1340 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1341 				      unsigned long dirtied,
1342 				      unsigned long elapsed)
1343 {
1344 	struct bdi_writeback *wb = dtc->wb;
1345 	unsigned long dirty = dtc->dirty;
1346 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1347 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1348 	unsigned long setpoint = (freerun + limit) / 2;
1349 	unsigned long write_bw = wb->avg_write_bandwidth;
1350 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1351 	unsigned long dirty_rate;
1352 	unsigned long task_ratelimit;
1353 	unsigned long balanced_dirty_ratelimit;
1354 	unsigned long step;
1355 	unsigned long x;
1356 	unsigned long shift;
1357 
1358 	/*
1359 	 * The dirty rate will match the writeout rate in long term, except
1360 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1361 	 */
1362 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1363 
1364 	/*
1365 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1366 	 */
1367 	task_ratelimit = (u64)dirty_ratelimit *
1368 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1369 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1370 
1371 	/*
1372 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1373 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1374 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1375 	 * formula will yield the balanced rate limit (write_bw / N).
1376 	 *
1377 	 * Note that the expanded form is not a pure rate feedback:
1378 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1379 	 * but also takes pos_ratio into account:
1380 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1381 	 *
1382 	 * (1) is not realistic because pos_ratio also takes part in balancing
1383 	 * the dirty rate.  Consider the state
1384 	 *	pos_ratio = 0.5						     (3)
1385 	 *	rate = 2 * (write_bw / N)				     (4)
1386 	 * If (1) is used, it will stuck in that state! Because each dd will
1387 	 * be throttled at
1388 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1389 	 * yielding
1390 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1391 	 * put (6) into (1) we get
1392 	 *	rate_(i+1) = rate_(i)					     (7)
1393 	 *
1394 	 * So we end up using (2) to always keep
1395 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1396 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1397 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1398 	 * the dirty count meet the setpoint, but also where the slope of
1399 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1400 	 */
1401 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1402 					   dirty_rate | 1);
1403 	/*
1404 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1405 	 */
1406 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1407 		balanced_dirty_ratelimit = write_bw;
1408 
1409 	/*
1410 	 * We could safely do this and return immediately:
1411 	 *
1412 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1413 	 *
1414 	 * However to get a more stable dirty_ratelimit, the below elaborated
1415 	 * code makes use of task_ratelimit to filter out singular points and
1416 	 * limit the step size.
1417 	 *
1418 	 * The below code essentially only uses the relative value of
1419 	 *
1420 	 *	task_ratelimit - dirty_ratelimit
1421 	 *	= (pos_ratio - 1) * dirty_ratelimit
1422 	 *
1423 	 * which reflects the direction and size of dirty position error.
1424 	 */
1425 
1426 	/*
1427 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1428 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1429 	 * For example, when
1430 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1431 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1432 	 * lowering dirty_ratelimit will help meet both the position and rate
1433 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1434 	 * only help meet the rate target. After all, what the users ultimately
1435 	 * feel and care are stable dirty rate and small position error.
1436 	 *
1437 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1438 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1439 	 * keeps jumping around randomly and can even leap far away at times
1440 	 * due to the small 200ms estimation period of dirty_rate (we want to
1441 	 * keep that period small to reduce time lags).
1442 	 */
1443 	step = 0;
1444 
1445 	/*
1446 	 * For strictlimit case, calculations above were based on wb counters
1447 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1448 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1449 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1450 	 * "dirty" and wb_setpoint as "setpoint".
1451 	 */
1452 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1453 		dirty = dtc->wb_dirty;
1454 		setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1455 	}
1456 
1457 	if (dirty < setpoint) {
1458 		x = min3(wb->balanced_dirty_ratelimit,
1459 			 balanced_dirty_ratelimit, task_ratelimit);
1460 		if (dirty_ratelimit < x)
1461 			step = x - dirty_ratelimit;
1462 	} else {
1463 		x = max3(wb->balanced_dirty_ratelimit,
1464 			 balanced_dirty_ratelimit, task_ratelimit);
1465 		if (dirty_ratelimit > x)
1466 			step = dirty_ratelimit - x;
1467 	}
1468 
1469 	/*
1470 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1471 	 * rate itself is constantly fluctuating. So decrease the track speed
1472 	 * when it gets close to the target. Helps eliminate pointless tremors.
1473 	 */
1474 	shift = dirty_ratelimit / (2 * step + 1);
1475 	if (shift < BITS_PER_LONG)
1476 		step = DIV_ROUND_UP(step >> shift, 8);
1477 	else
1478 		step = 0;
1479 
1480 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1481 		dirty_ratelimit += step;
1482 	else
1483 		dirty_ratelimit -= step;
1484 
1485 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1486 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1487 
1488 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1489 }
1490 
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,bool update_ratelimit)1491 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1492 				  struct dirty_throttle_control *mdtc,
1493 				  bool update_ratelimit)
1494 {
1495 	struct bdi_writeback *wb = gdtc->wb;
1496 	unsigned long now = jiffies;
1497 	unsigned long elapsed;
1498 	unsigned long dirtied;
1499 	unsigned long written;
1500 
1501 	spin_lock(&wb->list_lock);
1502 
1503 	/*
1504 	 * Lockless checks for elapsed time are racy and delayed update after
1505 	 * IO completion doesn't do it at all (to make sure written pages are
1506 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1507 	 * division errors.
1508 	 */
1509 	elapsed = max(now - wb->bw_time_stamp, 1UL);
1510 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1511 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1512 
1513 	if (update_ratelimit) {
1514 		domain_update_dirty_limit(gdtc, now);
1515 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1516 
1517 		/*
1518 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1519 		 * compiler has no way to figure that out.  Help it.
1520 		 */
1521 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1522 			domain_update_dirty_limit(mdtc, now);
1523 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1524 		}
1525 	}
1526 	wb_update_write_bandwidth(wb, elapsed, written);
1527 
1528 	wb->dirtied_stamp = dirtied;
1529 	wb->written_stamp = written;
1530 	WRITE_ONCE(wb->bw_time_stamp, now);
1531 	spin_unlock(&wb->list_lock);
1532 }
1533 
wb_update_bandwidth(struct bdi_writeback * wb)1534 void wb_update_bandwidth(struct bdi_writeback *wb)
1535 {
1536 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1537 
1538 	__wb_update_bandwidth(&gdtc, NULL, false);
1539 }
1540 
1541 /* Interval after which we consider wb idle and don't estimate bandwidth */
1542 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1543 
wb_bandwidth_estimate_start(struct bdi_writeback * wb)1544 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1545 {
1546 	unsigned long now = jiffies;
1547 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1548 
1549 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1550 	    !atomic_read(&wb->writeback_inodes)) {
1551 		spin_lock(&wb->list_lock);
1552 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1553 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1554 		WRITE_ONCE(wb->bw_time_stamp, now);
1555 		spin_unlock(&wb->list_lock);
1556 	}
1557 }
1558 
1559 /*
1560  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1561  * will look to see if it needs to start dirty throttling.
1562  *
1563  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1564  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1565  * (the number of pages we may dirty without exceeding the dirty limits).
1566  */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1567 static unsigned long dirty_poll_interval(unsigned long dirty,
1568 					 unsigned long thresh)
1569 {
1570 	if (thresh > dirty)
1571 		return 1UL << (ilog2(thresh - dirty) >> 1);
1572 
1573 	return 1;
1574 }
1575 
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1576 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1577 				  unsigned long wb_dirty)
1578 {
1579 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1580 	unsigned long t;
1581 
1582 	/*
1583 	 * Limit pause time for small memory systems. If sleeping for too long
1584 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1585 	 * idle.
1586 	 *
1587 	 * 8 serves as the safety ratio.
1588 	 */
1589 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1590 	t++;
1591 
1592 	return min_t(unsigned long, t, MAX_PAUSE);
1593 }
1594 
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1595 static long wb_min_pause(struct bdi_writeback *wb,
1596 			 long max_pause,
1597 			 unsigned long task_ratelimit,
1598 			 unsigned long dirty_ratelimit,
1599 			 int *nr_dirtied_pause)
1600 {
1601 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1602 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1603 	long t;		/* target pause */
1604 	long pause;	/* estimated next pause */
1605 	int pages;	/* target nr_dirtied_pause */
1606 
1607 	/* target for 10ms pause on 1-dd case */
1608 	t = max(1, HZ / 100);
1609 
1610 	/*
1611 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1612 	 * overheads.
1613 	 *
1614 	 * (N * 10ms) on 2^N concurrent tasks.
1615 	 */
1616 	if (hi > lo)
1617 		t += (hi - lo) * (10 * HZ) / 1024;
1618 
1619 	/*
1620 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1621 	 * on the much more stable dirty_ratelimit. However the next pause time
1622 	 * will be computed based on task_ratelimit and the two rate limits may
1623 	 * depart considerably at some time. Especially if task_ratelimit goes
1624 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1625 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1626 	 * result task_ratelimit won't be executed faithfully, which could
1627 	 * eventually bring down dirty_ratelimit.
1628 	 *
1629 	 * We apply two rules to fix it up:
1630 	 * 1) try to estimate the next pause time and if necessary, use a lower
1631 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1632 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1633 	 * 2) limit the target pause time to max_pause/2, so that the normal
1634 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1635 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1636 	 */
1637 	t = min(t, 1 + max_pause / 2);
1638 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1639 
1640 	/*
1641 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1642 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1643 	 * When the 16 consecutive reads are often interrupted by some dirty
1644 	 * throttling pause during the async writes, cfq will go into idles
1645 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1646 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1647 	 */
1648 	if (pages < DIRTY_POLL_THRESH) {
1649 		t = max_pause;
1650 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1651 		if (pages > DIRTY_POLL_THRESH) {
1652 			pages = DIRTY_POLL_THRESH;
1653 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1654 		}
1655 	}
1656 
1657 	pause = HZ * pages / (task_ratelimit + 1);
1658 	if (pause > max_pause) {
1659 		t = max_pause;
1660 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1661 	}
1662 
1663 	*nr_dirtied_pause = pages;
1664 	/*
1665 	 * The minimal pause time will normally be half the target pause time.
1666 	 */
1667 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1668 }
1669 
wb_dirty_limits(struct dirty_throttle_control * dtc)1670 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1671 {
1672 	struct bdi_writeback *wb = dtc->wb;
1673 	unsigned long wb_reclaimable;
1674 
1675 	/*
1676 	 * wb_thresh is not treated as some limiting factor as
1677 	 * dirty_thresh, due to reasons
1678 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1679 	 * - in a system with HDD and USB key, the USB key may somehow
1680 	 *   go into state (wb_dirty >> wb_thresh) either because
1681 	 *   wb_dirty starts high, or because wb_thresh drops low.
1682 	 *   In this case we don't want to hard throttle the USB key
1683 	 *   dirtiers for 100 seconds until wb_dirty drops under
1684 	 *   wb_thresh. Instead the auxiliary wb control line in
1685 	 *   wb_position_ratio() will let the dirtier task progress
1686 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1687 	 */
1688 	dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1689 	dtc->wb_bg_thresh = dtc->thresh ?
1690 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1691 
1692 	/*
1693 	 * In order to avoid the stacked BDI deadlock we need
1694 	 * to ensure we accurately count the 'dirty' pages when
1695 	 * the threshold is low.
1696 	 *
1697 	 * Otherwise it would be possible to get thresh+n pages
1698 	 * reported dirty, even though there are thresh-m pages
1699 	 * actually dirty; with m+n sitting in the percpu
1700 	 * deltas.
1701 	 */
1702 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1703 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1704 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1705 	} else {
1706 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1707 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1708 	}
1709 }
1710 
domain_poll_intv(struct dirty_throttle_control * dtc,bool strictlimit)1711 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1712 				      bool strictlimit)
1713 {
1714 	unsigned long dirty, thresh;
1715 
1716 	if (strictlimit) {
1717 		dirty = dtc->wb_dirty;
1718 		thresh = dtc->wb_thresh;
1719 	} else {
1720 		dirty = dtc->dirty;
1721 		thresh = dtc->thresh;
1722 	}
1723 
1724 	return dirty_poll_interval(dirty, thresh);
1725 }
1726 
1727 /*
1728  * Throttle it only when the background writeback cannot catch-up. This avoids
1729  * (excessively) small writeouts when the wb limits are ramping up in case of
1730  * !strictlimit.
1731  *
1732  * In strictlimit case make decision based on the wb counters and limits. Small
1733  * writeouts when the wb limits are ramping up are the price we consciously pay
1734  * for strictlimit-ing.
1735  */
domain_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1736 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1737 				 bool strictlimit)
1738 {
1739 	unsigned long dirty, thresh, bg_thresh;
1740 
1741 	if (unlikely(strictlimit)) {
1742 		wb_dirty_limits(dtc);
1743 		dirty = dtc->wb_dirty;
1744 		thresh = dtc->wb_thresh;
1745 		bg_thresh = dtc->wb_bg_thresh;
1746 	} else {
1747 		dirty = dtc->dirty;
1748 		thresh = dtc->thresh;
1749 		bg_thresh = dtc->bg_thresh;
1750 	}
1751 	dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1752 }
1753 
balance_domain_limits(struct dirty_throttle_control * dtc,bool strictlimit)1754 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1755 				  bool strictlimit)
1756 {
1757 	domain_dirty_avail(dtc, true);
1758 	domain_dirty_limits(dtc);
1759 	domain_dirty_freerun(dtc, strictlimit);
1760 }
1761 
wb_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1762 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1763 			     bool strictlimit)
1764 {
1765 	dtc->freerun = false;
1766 
1767 	/* was already handled in domain_dirty_freerun */
1768 	if (strictlimit)
1769 		return;
1770 
1771 	wb_dirty_limits(dtc);
1772 	/*
1773 	 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1774 	 * freerun ceiling.
1775 	 */
1776 	if (!(current->flags & PF_LOCAL_THROTTLE))
1777 		return;
1778 
1779 	dtc->freerun = dtc->wb_dirty <
1780 		       dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1781 }
1782 
wb_dirty_exceeded(struct dirty_throttle_control * dtc,bool strictlimit)1783 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1784 				     bool strictlimit)
1785 {
1786 	dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1787 		((dtc->dirty > dtc->thresh) || strictlimit);
1788 }
1789 
1790 /*
1791  * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1792  * in freerun state. Please don't use these invalid fields in freerun case.
1793  */
balance_wb_limits(struct dirty_throttle_control * dtc,bool strictlimit)1794 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1795 			      bool strictlimit)
1796 {
1797 	wb_dirty_freerun(dtc, strictlimit);
1798 	if (dtc->freerun)
1799 		return;
1800 
1801 	wb_dirty_exceeded(dtc, strictlimit);
1802 	wb_position_ratio(dtc);
1803 }
1804 
1805 /*
1806  * balance_dirty_pages() must be called by processes which are generating dirty
1807  * data.  It looks at the number of dirty pages in the machine and will force
1808  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1809  * If we're over `background_thresh' then the writeback threads are woken to
1810  * perform some writeout.
1811  */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied,unsigned int flags)1812 static int balance_dirty_pages(struct bdi_writeback *wb,
1813 			       unsigned long pages_dirtied, unsigned int flags)
1814 {
1815 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1816 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1817 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1818 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1819 						     &mdtc_stor : NULL;
1820 	struct dirty_throttle_control *sdtc;
1821 	unsigned long nr_dirty;
1822 	long period;
1823 	long pause;
1824 	long max_pause;
1825 	long min_pause;
1826 	int nr_dirtied_pause;
1827 	unsigned long task_ratelimit;
1828 	unsigned long dirty_ratelimit;
1829 	struct backing_dev_info *bdi = wb->bdi;
1830 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1831 	unsigned long start_time = jiffies;
1832 	int ret = 0;
1833 
1834 	for (;;) {
1835 		unsigned long now = jiffies;
1836 
1837 		nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1838 
1839 		balance_domain_limits(gdtc, strictlimit);
1840 		if (mdtc) {
1841 			/*
1842 			 * If @wb belongs to !root memcg, repeat the same
1843 			 * basic calculations for the memcg domain.
1844 			 */
1845 			balance_domain_limits(mdtc, strictlimit);
1846 		}
1847 
1848 		/*
1849 		 * In laptop mode, we wait until hitting the higher threshold
1850 		 * before starting background writeout, and then write out all
1851 		 * the way down to the lower threshold.  So slow writers cause
1852 		 * minimal disk activity.
1853 		 *
1854 		 * In normal mode, we start background writeout at the lower
1855 		 * background_thresh, to keep the amount of dirty memory low.
1856 		 */
1857 		if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1858 		    !writeback_in_progress(wb))
1859 			wb_start_background_writeback(wb);
1860 
1861 		/*
1862 		 * If memcg domain is in effect, @dirty should be under
1863 		 * both global and memcg freerun ceilings.
1864 		 */
1865 		if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1866 			unsigned long intv;
1867 			unsigned long m_intv;
1868 
1869 free_running:
1870 			intv = domain_poll_intv(gdtc, strictlimit);
1871 			m_intv = ULONG_MAX;
1872 
1873 			current->dirty_paused_when = now;
1874 			current->nr_dirtied = 0;
1875 			if (mdtc)
1876 				m_intv = domain_poll_intv(mdtc, strictlimit);
1877 			current->nr_dirtied_pause = min(intv, m_intv);
1878 			break;
1879 		}
1880 
1881 		/* Start writeback even when in laptop mode */
1882 		if (unlikely(!writeback_in_progress(wb)))
1883 			wb_start_background_writeback(wb);
1884 
1885 		mem_cgroup_flush_foreign(wb);
1886 
1887 		/*
1888 		 * Calculate global domain's pos_ratio and select the
1889 		 * global dtc by default.
1890 		 */
1891 		balance_wb_limits(gdtc, strictlimit);
1892 		if (gdtc->freerun)
1893 			goto free_running;
1894 		sdtc = gdtc;
1895 
1896 		if (mdtc) {
1897 			/*
1898 			 * If memcg domain is in effect, calculate its
1899 			 * pos_ratio.  @wb should satisfy constraints from
1900 			 * both global and memcg domains.  Choose the one
1901 			 * w/ lower pos_ratio.
1902 			 */
1903 			balance_wb_limits(mdtc, strictlimit);
1904 			if (mdtc->freerun)
1905 				goto free_running;
1906 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1907 				sdtc = mdtc;
1908 		}
1909 
1910 		wb->dirty_exceeded = gdtc->dirty_exceeded ||
1911 				     (mdtc && mdtc->dirty_exceeded);
1912 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1913 					   BANDWIDTH_INTERVAL))
1914 			__wb_update_bandwidth(gdtc, mdtc, true);
1915 
1916 		/* throttle according to the chosen dtc */
1917 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1918 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1919 							RATELIMIT_CALC_SHIFT;
1920 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1921 		min_pause = wb_min_pause(wb, max_pause,
1922 					 task_ratelimit, dirty_ratelimit,
1923 					 &nr_dirtied_pause);
1924 
1925 		if (unlikely(task_ratelimit == 0)) {
1926 			period = max_pause;
1927 			pause = max_pause;
1928 			goto pause;
1929 		}
1930 		period = HZ * pages_dirtied / task_ratelimit;
1931 		pause = period;
1932 		if (current->dirty_paused_when)
1933 			pause -= now - current->dirty_paused_when;
1934 		/*
1935 		 * For less than 1s think time (ext3/4 may block the dirtier
1936 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1937 		 * however at much less frequency), try to compensate it in
1938 		 * future periods by updating the virtual time; otherwise just
1939 		 * do a reset, as it may be a light dirtier.
1940 		 */
1941 		if (pause < min_pause) {
1942 			trace_balance_dirty_pages(wb,
1943 						  sdtc,
1944 						  dirty_ratelimit,
1945 						  task_ratelimit,
1946 						  pages_dirtied,
1947 						  period,
1948 						  min(pause, 0L),
1949 						  start_time);
1950 			if (pause < -HZ) {
1951 				current->dirty_paused_when = now;
1952 				current->nr_dirtied = 0;
1953 			} else if (period) {
1954 				current->dirty_paused_when += period;
1955 				current->nr_dirtied = 0;
1956 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1957 				current->nr_dirtied_pause += pages_dirtied;
1958 			break;
1959 		}
1960 		if (unlikely(pause > max_pause)) {
1961 			/* for occasional dropped task_ratelimit */
1962 			now += min(pause - max_pause, max_pause);
1963 			pause = max_pause;
1964 		}
1965 
1966 pause:
1967 		trace_balance_dirty_pages(wb,
1968 					  sdtc,
1969 					  dirty_ratelimit,
1970 					  task_ratelimit,
1971 					  pages_dirtied,
1972 					  period,
1973 					  pause,
1974 					  start_time);
1975 		if (flags & BDP_ASYNC) {
1976 			ret = -EAGAIN;
1977 			break;
1978 		}
1979 		__set_current_state(TASK_KILLABLE);
1980 		bdi->last_bdp_sleep = jiffies;
1981 		io_schedule_timeout(pause);
1982 
1983 		current->dirty_paused_when = now + pause;
1984 		current->nr_dirtied = 0;
1985 		current->nr_dirtied_pause = nr_dirtied_pause;
1986 
1987 		/*
1988 		 * This is typically equal to (dirty < thresh) and can also
1989 		 * keep "1000+ dd on a slow USB stick" under control.
1990 		 */
1991 		if (task_ratelimit)
1992 			break;
1993 
1994 		/*
1995 		 * In the case of an unresponsive NFS server and the NFS dirty
1996 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1997 		 * to go through, so that tasks on them still remain responsive.
1998 		 *
1999 		 * In theory 1 page is enough to keep the consumer-producer
2000 		 * pipe going: the flusher cleans 1 page => the task dirties 1
2001 		 * more page. However wb_dirty has accounting errors.  So use
2002 		 * the larger and more IO friendly wb_stat_error.
2003 		 */
2004 		if (sdtc->wb_dirty <= wb_stat_error())
2005 			break;
2006 
2007 		if (fatal_signal_pending(current))
2008 			break;
2009 	}
2010 	return ret;
2011 }
2012 
2013 static DEFINE_PER_CPU(int, bdp_ratelimits);
2014 
2015 /*
2016  * Normal tasks are throttled by
2017  *	loop {
2018  *		dirty tsk->nr_dirtied_pause pages;
2019  *		take a snap in balance_dirty_pages();
2020  *	}
2021  * However there is a worst case. If every task exit immediately when dirtied
2022  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2023  * called to throttle the page dirties. The solution is to save the not yet
2024  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2025  * randomly into the running tasks. This works well for the above worst case,
2026  * as the new task will pick up and accumulate the old task's leaked dirty
2027  * count and eventually get throttled.
2028  */
2029 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2030 
2031 /**
2032  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2033  * @mapping: address_space which was dirtied.
2034  * @flags: BDP flags.
2035  *
2036  * Processes which are dirtying memory should call in here once for each page
2037  * which was newly dirtied.  The function will periodically check the system's
2038  * dirty state and will initiate writeback if needed.
2039  *
2040  * See balance_dirty_pages_ratelimited() for details.
2041  *
2042  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2043  * indicate that memory is out of balance and the caller must wait
2044  * for I/O to complete.  Otherwise, it will return 0 to indicate
2045  * that either memory was already in balance, or it was able to sleep
2046  * until the amount of dirty memory returned to balance.
2047  */
balance_dirty_pages_ratelimited_flags(struct address_space * mapping,unsigned int flags)2048 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2049 					unsigned int flags)
2050 {
2051 	struct inode *inode = mapping->host;
2052 	struct backing_dev_info *bdi = inode_to_bdi(inode);
2053 	struct bdi_writeback *wb = NULL;
2054 	int ratelimit;
2055 	int ret = 0;
2056 	int *p;
2057 
2058 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2059 		return ret;
2060 
2061 	if (inode_cgwb_enabled(inode))
2062 		wb = wb_get_create_current(bdi, GFP_KERNEL);
2063 	if (!wb)
2064 		wb = &bdi->wb;
2065 
2066 	ratelimit = current->nr_dirtied_pause;
2067 	if (wb->dirty_exceeded)
2068 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2069 
2070 	preempt_disable();
2071 	/*
2072 	 * This prevents one CPU to accumulate too many dirtied pages without
2073 	 * calling into balance_dirty_pages(), which can happen when there are
2074 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2075 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2076 	 */
2077 	p =  this_cpu_ptr(&bdp_ratelimits);
2078 	if (unlikely(current->nr_dirtied >= ratelimit))
2079 		*p = 0;
2080 	else if (unlikely(*p >= ratelimit_pages)) {
2081 		*p = 0;
2082 		ratelimit = 0;
2083 	}
2084 	/*
2085 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2086 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2087 	 * the dirty throttling and livelock other long-run dirtiers.
2088 	 */
2089 	p = this_cpu_ptr(&dirty_throttle_leaks);
2090 	if (*p > 0 && current->nr_dirtied < ratelimit) {
2091 		unsigned long nr_pages_dirtied;
2092 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2093 		*p -= nr_pages_dirtied;
2094 		current->nr_dirtied += nr_pages_dirtied;
2095 	}
2096 	preempt_enable();
2097 
2098 	if (unlikely(current->nr_dirtied >= ratelimit))
2099 		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2100 
2101 	wb_put(wb);
2102 	return ret;
2103 }
2104 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2105 
2106 /**
2107  * balance_dirty_pages_ratelimited - balance dirty memory state.
2108  * @mapping: address_space which was dirtied.
2109  *
2110  * Processes which are dirtying memory should call in here once for each page
2111  * which was newly dirtied.  The function will periodically check the system's
2112  * dirty state and will initiate writeback if needed.
2113  *
2114  * Once we're over the dirty memory limit we decrease the ratelimiting
2115  * by a lot, to prevent individual processes from overshooting the limit
2116  * by (ratelimit_pages) each.
2117  */
balance_dirty_pages_ratelimited(struct address_space * mapping)2118 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2119 {
2120 	balance_dirty_pages_ratelimited_flags(mapping, 0);
2121 }
2122 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2123 
2124 /*
2125  * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2126  * and thresh, but it's for background writeback.
2127  */
wb_bg_dirty_limits(struct dirty_throttle_control * dtc)2128 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2129 {
2130 	struct bdi_writeback *wb = dtc->wb;
2131 
2132 	dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2133 	if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2134 		dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2135 	else
2136 		dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2137 }
2138 
domain_over_bg_thresh(struct dirty_throttle_control * dtc)2139 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2140 {
2141 	domain_dirty_avail(dtc, false);
2142 	domain_dirty_limits(dtc);
2143 	if (dtc->dirty > dtc->bg_thresh)
2144 		return true;
2145 
2146 	wb_bg_dirty_limits(dtc);
2147 	if (dtc->wb_dirty > dtc->wb_bg_thresh)
2148 		return true;
2149 
2150 	return false;
2151 }
2152 
2153 /**
2154  * wb_over_bg_thresh - does @wb need to be written back?
2155  * @wb: bdi_writeback of interest
2156  *
2157  * Determines whether background writeback should keep writing @wb or it's
2158  * clean enough.
2159  *
2160  * Return: %true if writeback should continue.
2161  */
wb_over_bg_thresh(struct bdi_writeback * wb)2162 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2163 {
2164 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2165 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2166 
2167 	if (domain_over_bg_thresh(&gdtc))
2168 		return true;
2169 
2170 	if (mdtc_valid(&mdtc))
2171 		return domain_over_bg_thresh(&mdtc);
2172 
2173 	return false;
2174 }
2175 
2176 #ifdef CONFIG_SYSCTL
2177 /*
2178  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2179  */
dirty_writeback_centisecs_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2180 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2181 		void *buffer, size_t *length, loff_t *ppos)
2182 {
2183 	unsigned int old_interval = dirty_writeback_interval;
2184 	int ret;
2185 
2186 	ret = proc_dointvec(table, write, buffer, length, ppos);
2187 
2188 	/*
2189 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2190 	 * and a different non-zero value will wakeup the writeback threads.
2191 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2192 	 * iterate over all bdis and wbs.
2193 	 * The reason we do this is to make the change take effect immediately.
2194 	 */
2195 	if (!ret && write && dirty_writeback_interval &&
2196 		dirty_writeback_interval != old_interval)
2197 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2198 
2199 	return ret;
2200 }
2201 #endif
2202 
laptop_mode_timer_fn(struct timer_list * t)2203 void laptop_mode_timer_fn(struct timer_list *t)
2204 {
2205 	struct backing_dev_info *backing_dev_info =
2206 		timer_container_of(backing_dev_info, t, laptop_mode_wb_timer);
2207 
2208 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2209 }
2210 
2211 /*
2212  * We've spun up the disk and we're in laptop mode: schedule writeback
2213  * of all dirty data a few seconds from now.  If the flush is already scheduled
2214  * then push it back - the user is still using the disk.
2215  */
laptop_io_completion(struct backing_dev_info * info)2216 void laptop_io_completion(struct backing_dev_info *info)
2217 {
2218 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2219 }
2220 
2221 /*
2222  * We're in laptop mode and we've just synced. The sync's writes will have
2223  * caused another writeback to be scheduled by laptop_io_completion.
2224  * Nothing needs to be written back anymore, so we unschedule the writeback.
2225  */
laptop_sync_completion(void)2226 void laptop_sync_completion(void)
2227 {
2228 	struct backing_dev_info *bdi;
2229 
2230 	rcu_read_lock();
2231 
2232 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2233 		timer_delete(&bdi->laptop_mode_wb_timer);
2234 
2235 	rcu_read_unlock();
2236 }
2237 
2238 /*
2239  * If ratelimit_pages is too high then we can get into dirty-data overload
2240  * if a large number of processes all perform writes at the same time.
2241  *
2242  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2243  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2244  * thresholds.
2245  */
2246 
writeback_set_ratelimit(void)2247 void writeback_set_ratelimit(void)
2248 {
2249 	struct wb_domain *dom = &global_wb_domain;
2250 	unsigned long background_thresh;
2251 	unsigned long dirty_thresh;
2252 
2253 	global_dirty_limits(&background_thresh, &dirty_thresh);
2254 	dom->dirty_limit = dirty_thresh;
2255 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2256 	if (ratelimit_pages < 16)
2257 		ratelimit_pages = 16;
2258 }
2259 
page_writeback_cpu_online(unsigned int cpu)2260 static int page_writeback_cpu_online(unsigned int cpu)
2261 {
2262 	writeback_set_ratelimit();
2263 	return 0;
2264 }
2265 
2266 #ifdef CONFIG_SYSCTL
2267 
2268 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2269 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2270 
2271 static const struct ctl_table vm_page_writeback_sysctls[] = {
2272 	{
2273 		.procname   = "dirty_background_ratio",
2274 		.data       = &dirty_background_ratio,
2275 		.maxlen     = sizeof(dirty_background_ratio),
2276 		.mode       = 0644,
2277 		.proc_handler   = dirty_background_ratio_handler,
2278 		.extra1     = SYSCTL_ZERO,
2279 		.extra2     = SYSCTL_ONE_HUNDRED,
2280 	},
2281 	{
2282 		.procname   = "dirty_background_bytes",
2283 		.data       = &dirty_background_bytes,
2284 		.maxlen     = sizeof(dirty_background_bytes),
2285 		.mode       = 0644,
2286 		.proc_handler   = dirty_background_bytes_handler,
2287 		.extra1     = SYSCTL_LONG_ONE,
2288 	},
2289 	{
2290 		.procname   = "dirty_ratio",
2291 		.data       = &vm_dirty_ratio,
2292 		.maxlen     = sizeof(vm_dirty_ratio),
2293 		.mode       = 0644,
2294 		.proc_handler   = dirty_ratio_handler,
2295 		.extra1     = SYSCTL_ZERO,
2296 		.extra2     = SYSCTL_ONE_HUNDRED,
2297 	},
2298 	{
2299 		.procname   = "dirty_bytes",
2300 		.data       = &vm_dirty_bytes,
2301 		.maxlen     = sizeof(vm_dirty_bytes),
2302 		.mode       = 0644,
2303 		.proc_handler   = dirty_bytes_handler,
2304 		.extra1     = (void *)&dirty_bytes_min,
2305 	},
2306 	{
2307 		.procname   = "dirty_writeback_centisecs",
2308 		.data       = &dirty_writeback_interval,
2309 		.maxlen     = sizeof(dirty_writeback_interval),
2310 		.mode       = 0644,
2311 		.proc_handler   = dirty_writeback_centisecs_handler,
2312 	},
2313 	{
2314 		.procname   = "dirty_expire_centisecs",
2315 		.data       = &dirty_expire_interval,
2316 		.maxlen     = sizeof(dirty_expire_interval),
2317 		.mode       = 0644,
2318 		.proc_handler   = proc_dointvec_minmax,
2319 		.extra1     = SYSCTL_ZERO,
2320 	},
2321 #ifdef CONFIG_HIGHMEM
2322 	{
2323 		.procname	= "highmem_is_dirtyable",
2324 		.data		= &vm_highmem_is_dirtyable,
2325 		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2326 		.mode		= 0644,
2327 		.proc_handler	= proc_dointvec_minmax,
2328 		.extra1		= SYSCTL_ZERO,
2329 		.extra2		= SYSCTL_ONE,
2330 	},
2331 #endif
2332 	{
2333 		.procname	= "laptop_mode",
2334 		.data		= &laptop_mode,
2335 		.maxlen		= sizeof(laptop_mode),
2336 		.mode		= 0644,
2337 		.proc_handler	= proc_dointvec_jiffies,
2338 	},
2339 };
2340 #endif
2341 
2342 /*
2343  * Called early on to tune the page writeback dirty limits.
2344  *
2345  * We used to scale dirty pages according to how total memory
2346  * related to pages that could be allocated for buffers.
2347  *
2348  * However, that was when we used "dirty_ratio" to scale with
2349  * all memory, and we don't do that any more. "dirty_ratio"
2350  * is now applied to total non-HIGHPAGE memory, and as such we can't
2351  * get into the old insane situation any more where we had
2352  * large amounts of dirty pages compared to a small amount of
2353  * non-HIGHMEM memory.
2354  *
2355  * But we might still want to scale the dirty_ratio by how
2356  * much memory the box has..
2357  */
page_writeback_init(void)2358 void __init page_writeback_init(void)
2359 {
2360 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2361 
2362 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2363 			  page_writeback_cpu_online, NULL);
2364 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2365 			  page_writeback_cpu_online);
2366 #ifdef CONFIG_SYSCTL
2367 	register_sysctl_init("vm", vm_page_writeback_sysctls);
2368 #endif
2369 }
2370 
2371 /**
2372  * tag_pages_for_writeback - tag pages to be written by writeback
2373  * @mapping: address space structure to write
2374  * @start: starting page index
2375  * @end: ending page index (inclusive)
2376  *
2377  * This function scans the page range from @start to @end (inclusive) and tags
2378  * all pages that have DIRTY tag set with a special TOWRITE tag.  The caller
2379  * can then use the TOWRITE tag to identify pages eligible for writeback.
2380  * This mechanism is used to avoid livelocking of writeback by a process
2381  * steadily creating new dirty pages in the file (thus it is important for this
2382  * function to be quick so that it can tag pages faster than a dirtying process
2383  * can create them).
2384  */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2385 void tag_pages_for_writeback(struct address_space *mapping,
2386 			     pgoff_t start, pgoff_t end)
2387 {
2388 	XA_STATE(xas, &mapping->i_pages, start);
2389 	unsigned int tagged = 0;
2390 	void *page;
2391 
2392 	xas_lock_irq(&xas);
2393 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2394 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2395 		if (++tagged % XA_CHECK_SCHED)
2396 			continue;
2397 
2398 		xas_pause(&xas);
2399 		xas_unlock_irq(&xas);
2400 		cond_resched();
2401 		xas_lock_irq(&xas);
2402 	}
2403 	xas_unlock_irq(&xas);
2404 }
2405 EXPORT_SYMBOL(tag_pages_for_writeback);
2406 
folio_prepare_writeback(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio)2407 static bool folio_prepare_writeback(struct address_space *mapping,
2408 		struct writeback_control *wbc, struct folio *folio)
2409 {
2410 	/*
2411 	 * Folio truncated or invalidated. We can freely skip it then,
2412 	 * even for data integrity operations: the folio has disappeared
2413 	 * concurrently, so there could be no real expectation of this
2414 	 * data integrity operation even if there is now a new, dirty
2415 	 * folio at the same pagecache index.
2416 	 */
2417 	if (unlikely(folio->mapping != mapping))
2418 		return false;
2419 
2420 	/*
2421 	 * Did somebody else write it for us?
2422 	 */
2423 	if (!folio_test_dirty(folio))
2424 		return false;
2425 
2426 	if (folio_test_writeback(folio)) {
2427 		if (wbc->sync_mode == WB_SYNC_NONE)
2428 			return false;
2429 		folio_wait_writeback(folio);
2430 	}
2431 	BUG_ON(folio_test_writeback(folio));
2432 
2433 	if (!folio_clear_dirty_for_io(folio))
2434 		return false;
2435 
2436 	return true;
2437 }
2438 
wbc_to_tag(struct writeback_control * wbc)2439 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2440 {
2441 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2442 		return PAGECACHE_TAG_TOWRITE;
2443 	return PAGECACHE_TAG_DIRTY;
2444 }
2445 
wbc_end(struct writeback_control * wbc)2446 static pgoff_t wbc_end(struct writeback_control *wbc)
2447 {
2448 	if (wbc->range_cyclic)
2449 		return -1;
2450 	return wbc->range_end >> PAGE_SHIFT;
2451 }
2452 
writeback_get_folio(struct address_space * mapping,struct writeback_control * wbc)2453 static struct folio *writeback_get_folio(struct address_space *mapping,
2454 		struct writeback_control *wbc)
2455 {
2456 	struct folio *folio;
2457 
2458 retry:
2459 	folio = folio_batch_next(&wbc->fbatch);
2460 	if (!folio) {
2461 		folio_batch_release(&wbc->fbatch);
2462 		cond_resched();
2463 		filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2464 				wbc_to_tag(wbc), &wbc->fbatch);
2465 		folio = folio_batch_next(&wbc->fbatch);
2466 		if (!folio)
2467 			return NULL;
2468 	}
2469 
2470 	folio_lock(folio);
2471 	if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2472 		folio_unlock(folio);
2473 		goto retry;
2474 	}
2475 
2476 	trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2477 	return folio;
2478 }
2479 
2480 /**
2481  * writeback_iter - iterate folio of a mapping for writeback
2482  * @mapping: address space structure to write
2483  * @wbc: writeback context
2484  * @folio: previously iterated folio (%NULL to start)
2485  * @error: in-out pointer for writeback errors (see below)
2486  *
2487  * This function returns the next folio for the writeback operation described by
2488  * @wbc on @mapping and  should be called in a while loop in the ->writepages
2489  * implementation.
2490  *
2491  * To start the writeback operation, %NULL is passed in the @folio argument, and
2492  * for every subsequent iteration the folio returned previously should be passed
2493  * back in.
2494  *
2495  * If there was an error in the per-folio writeback inside the writeback_iter()
2496  * loop, @error should be set to the error value.
2497  *
2498  * Once the writeback described in @wbc has finished, this function will return
2499  * %NULL and if there was an error in any iteration restore it to @error.
2500  *
2501  * Note: callers should not manually break out of the loop using break or goto
2502  * but must keep calling writeback_iter() until it returns %NULL.
2503  *
2504  * Return: the folio to write or %NULL if the loop is done.
2505  */
writeback_iter(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,int * error)2506 struct folio *writeback_iter(struct address_space *mapping,
2507 		struct writeback_control *wbc, struct folio *folio, int *error)
2508 {
2509 	if (!folio) {
2510 		folio_batch_init(&wbc->fbatch);
2511 		wbc->saved_err = *error = 0;
2512 
2513 		/*
2514 		 * For range cyclic writeback we remember where we stopped so
2515 		 * that we can continue where we stopped.
2516 		 *
2517 		 * For non-cyclic writeback we always start at the beginning of
2518 		 * the passed in range.
2519 		 */
2520 		if (wbc->range_cyclic)
2521 			wbc->index = mapping->writeback_index;
2522 		else
2523 			wbc->index = wbc->range_start >> PAGE_SHIFT;
2524 
2525 		/*
2526 		 * To avoid livelocks when other processes dirty new pages, we
2527 		 * first tag pages which should be written back and only then
2528 		 * start writing them.
2529 		 *
2530 		 * For data-integrity writeback we have to be careful so that we
2531 		 * do not miss some pages (e.g., because some other process has
2532 		 * cleared the TOWRITE tag we set).  The rule we follow is that
2533 		 * TOWRITE tag can be cleared only by the process clearing the
2534 		 * DIRTY tag (and submitting the page for I/O).
2535 		 */
2536 		if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2537 			tag_pages_for_writeback(mapping, wbc->index,
2538 					wbc_end(wbc));
2539 	} else {
2540 		wbc->nr_to_write -= folio_nr_pages(folio);
2541 
2542 		WARN_ON_ONCE(*error > 0);
2543 
2544 		/*
2545 		 * For integrity writeback we have to keep going until we have
2546 		 * written all the folios we tagged for writeback above, even if
2547 		 * we run past wbc->nr_to_write or encounter errors.
2548 		 * We stash away the first error we encounter in wbc->saved_err
2549 		 * so that it can be retrieved when we're done.  This is because
2550 		 * the file system may still have state to clear for each folio.
2551 		 *
2552 		 * For background writeback we exit as soon as we run past
2553 		 * wbc->nr_to_write or encounter the first error.
2554 		 */
2555 		if (wbc->sync_mode == WB_SYNC_ALL) {
2556 			if (*error && !wbc->saved_err)
2557 				wbc->saved_err = *error;
2558 		} else {
2559 			if (*error || wbc->nr_to_write <= 0)
2560 				goto done;
2561 		}
2562 	}
2563 
2564 	folio = writeback_get_folio(mapping, wbc);
2565 	if (!folio) {
2566 		/*
2567 		 * To avoid deadlocks between range_cyclic writeback and callers
2568 		 * that hold folios in writeback to aggregate I/O until
2569 		 * the writeback iteration finishes, we do not loop back to the
2570 		 * start of the file.  Doing so causes a folio lock/folio
2571 		 * writeback access order inversion - we should only ever lock
2572 		 * multiple folios in ascending folio->index order, and looping
2573 		 * back to the start of the file violates that rule and causes
2574 		 * deadlocks.
2575 		 */
2576 		if (wbc->range_cyclic)
2577 			mapping->writeback_index = 0;
2578 
2579 		/*
2580 		 * Return the first error we encountered (if there was any) to
2581 		 * the caller.
2582 		 */
2583 		*error = wbc->saved_err;
2584 	}
2585 	return folio;
2586 
2587 done:
2588 	if (wbc->range_cyclic)
2589 		mapping->writeback_index = folio_next_index(folio);
2590 	folio_batch_release(&wbc->fbatch);
2591 	return NULL;
2592 }
2593 EXPORT_SYMBOL_GPL(writeback_iter);
2594 
2595 /**
2596  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2597  * @mapping: address space structure to write
2598  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2599  * @writepage: function called for each page
2600  * @data: data passed to writepage function
2601  *
2602  * Return: %0 on success, negative error code otherwise
2603  *
2604  * Note: please use writeback_iter() instead.
2605  */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2606 int write_cache_pages(struct address_space *mapping,
2607 		      struct writeback_control *wbc, writepage_t writepage,
2608 		      void *data)
2609 {
2610 	struct folio *folio = NULL;
2611 	int error;
2612 
2613 	while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2614 		error = writepage(folio, wbc, data);
2615 		if (error == AOP_WRITEPAGE_ACTIVATE) {
2616 			folio_unlock(folio);
2617 			error = 0;
2618 		}
2619 	}
2620 
2621 	return error;
2622 }
2623 EXPORT_SYMBOL(write_cache_pages);
2624 
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2625 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2626 {
2627 	int ret;
2628 	struct bdi_writeback *wb;
2629 
2630 	if (wbc->nr_to_write <= 0)
2631 		return 0;
2632 	wb = inode_to_wb_wbc(mapping->host, wbc);
2633 	wb_bandwidth_estimate_start(wb);
2634 	while (1) {
2635 		if (mapping->a_ops->writepages)
2636 			ret = mapping->a_ops->writepages(mapping, wbc);
2637 		else
2638 			/* deal with chardevs and other special files */
2639 			ret = 0;
2640 		if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2641 			break;
2642 
2643 		/*
2644 		 * Lacking an allocation context or the locality or writeback
2645 		 * state of any of the inode's pages, throttle based on
2646 		 * writeback activity on the local node. It's as good a
2647 		 * guess as any.
2648 		 */
2649 		reclaim_throttle(NODE_DATA(numa_node_id()),
2650 			VMSCAN_THROTTLE_WRITEBACK);
2651 	}
2652 	/*
2653 	 * Usually few pages are written by now from those we've just submitted
2654 	 * but if there's constant writeback being submitted, this makes sure
2655 	 * writeback bandwidth is updated once in a while.
2656 	 */
2657 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2658 				   BANDWIDTH_INTERVAL))
2659 		wb_update_bandwidth(wb);
2660 	return ret;
2661 }
2662 
2663 /*
2664  * For address_spaces which do not use buffers nor write back.
2665  */
noop_dirty_folio(struct address_space * mapping,struct folio * folio)2666 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2667 {
2668 	if (!folio_test_dirty(folio))
2669 		return !folio_test_set_dirty(folio);
2670 	return false;
2671 }
2672 EXPORT_SYMBOL(noop_dirty_folio);
2673 
2674 /*
2675  * Helper function for set_page_dirty family.
2676  *
2677  * NOTE: This relies on being atomic wrt interrupts.
2678  */
folio_account_dirtied(struct folio * folio,struct address_space * mapping)2679 static void folio_account_dirtied(struct folio *folio,
2680 		struct address_space *mapping)
2681 {
2682 	struct inode *inode = mapping->host;
2683 
2684 	trace_writeback_dirty_folio(folio, mapping);
2685 
2686 	if (mapping_can_writeback(mapping)) {
2687 		struct bdi_writeback *wb;
2688 		long nr = folio_nr_pages(folio);
2689 
2690 		inode_attach_wb(inode, folio);
2691 		wb = inode_to_wb(inode);
2692 
2693 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2694 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2695 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2696 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2697 		wb_stat_mod(wb, WB_DIRTIED, nr);
2698 		task_io_account_write(nr * PAGE_SIZE);
2699 		current->nr_dirtied += nr;
2700 		__this_cpu_add(bdp_ratelimits, nr);
2701 
2702 		mem_cgroup_track_foreign_dirty(folio, wb);
2703 	}
2704 }
2705 
2706 /*
2707  * Helper function for deaccounting dirty page without writeback.
2708  *
2709  */
folio_account_cleaned(struct folio * folio,struct bdi_writeback * wb)2710 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2711 {
2712 	long nr = folio_nr_pages(folio);
2713 
2714 	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2715 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2716 	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2717 	task_io_account_cancelled_write(nr * PAGE_SIZE);
2718 }
2719 
2720 /*
2721  * Mark the folio dirty, and set it dirty in the page cache.
2722  *
2723  * If warn is true, then emit a warning if the folio is not uptodate and has
2724  * not been truncated.
2725  *
2726  * It is the caller's responsibility to prevent the folio from being truncated
2727  * while this function is in progress, although it may have been truncated
2728  * before this function is called.  Most callers have the folio locked.
2729  * A few have the folio blocked from truncation through other means (e.g.
2730  * zap_vma_pages() has it mapped and is holding the page table lock).
2731  * When called from mark_buffer_dirty(), the filesystem should hold a
2732  * reference to the buffer_head that is being marked dirty, which causes
2733  * try_to_free_buffers() to fail.
2734  */
__folio_mark_dirty(struct folio * folio,struct address_space * mapping,int warn)2735 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2736 			     int warn)
2737 {
2738 	unsigned long flags;
2739 
2740 	xa_lock_irqsave(&mapping->i_pages, flags);
2741 	if (folio->mapping) {	/* Race with truncate? */
2742 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2743 		folio_account_dirtied(folio, mapping);
2744 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2745 				PAGECACHE_TAG_DIRTY);
2746 	}
2747 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2748 }
2749 
2750 /**
2751  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2752  * @mapping: Address space this folio belongs to.
2753  * @folio: Folio to be marked as dirty.
2754  *
2755  * Filesystems which do not use buffer heads should call this function
2756  * from their dirty_folio address space operation.  It ignores the
2757  * contents of folio_get_private(), so if the filesystem marks individual
2758  * blocks as dirty, the filesystem should handle that itself.
2759  *
2760  * This is also sometimes used by filesystems which use buffer_heads when
2761  * a single buffer is being dirtied: we want to set the folio dirty in
2762  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2763  * whereas block_dirty_folio() is a "top-down" dirtying.
2764  *
2765  * The caller must ensure this doesn't race with truncation.  Most will
2766  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2767  * folio mapped and the pte lock held, which also locks out truncation.
2768  */
filemap_dirty_folio(struct address_space * mapping,struct folio * folio)2769 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2770 {
2771 	if (folio_test_set_dirty(folio))
2772 		return false;
2773 
2774 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2775 
2776 	if (mapping->host) {
2777 		/* !PageAnon && !swapper_space */
2778 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2779 	}
2780 	return true;
2781 }
2782 EXPORT_SYMBOL(filemap_dirty_folio);
2783 
2784 /**
2785  * folio_redirty_for_writepage - Decline to write a dirty folio.
2786  * @wbc: The writeback control.
2787  * @folio: The folio.
2788  *
2789  * When a writepage implementation decides that it doesn't want to write
2790  * @folio for some reason, it should call this function, unlock @folio and
2791  * return 0.
2792  *
2793  * Return: True if we redirtied the folio.  False if someone else dirtied
2794  * it first.
2795  */
folio_redirty_for_writepage(struct writeback_control * wbc,struct folio * folio)2796 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2797 		struct folio *folio)
2798 {
2799 	struct address_space *mapping = folio->mapping;
2800 	long nr = folio_nr_pages(folio);
2801 	bool ret;
2802 
2803 	wbc->pages_skipped += nr;
2804 	ret = filemap_dirty_folio(mapping, folio);
2805 	if (mapping && mapping_can_writeback(mapping)) {
2806 		struct inode *inode = mapping->host;
2807 		struct bdi_writeback *wb;
2808 		struct wb_lock_cookie cookie = {};
2809 
2810 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2811 		current->nr_dirtied -= nr;
2812 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2813 		wb_stat_mod(wb, WB_DIRTIED, -nr);
2814 		unlocked_inode_to_wb_end(inode, &cookie);
2815 	}
2816 	return ret;
2817 }
2818 EXPORT_SYMBOL(folio_redirty_for_writepage);
2819 
2820 /**
2821  * folio_mark_dirty - Mark a folio as being modified.
2822  * @folio: The folio.
2823  *
2824  * The folio may not be truncated while this function is running.
2825  * Holding the folio lock is sufficient to prevent truncation, but some
2826  * callers cannot acquire a sleeping lock.  These callers instead hold
2827  * the page table lock for a page table which contains at least one page
2828  * in this folio.  Truncation will block on the page table lock as it
2829  * unmaps pages before removing the folio from its mapping.
2830  *
2831  * Return: True if the folio was newly dirtied, false if it was already dirty.
2832  */
folio_mark_dirty(struct folio * folio)2833 bool folio_mark_dirty(struct folio *folio)
2834 {
2835 	struct address_space *mapping = folio_mapping(folio);
2836 
2837 	if (likely(mapping)) {
2838 		/*
2839 		 * readahead/folio_deactivate could remain
2840 		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2841 		 * About readahead, if the folio is written, the flags would be
2842 		 * reset. So no problem.
2843 		 * About folio_deactivate, if the folio is redirtied,
2844 		 * the flag will be reset. So no problem. but if the
2845 		 * folio is used by readahead it will confuse readahead
2846 		 * and make it restart the size rampup process. But it's
2847 		 * a trivial problem.
2848 		 */
2849 		if (folio_test_reclaim(folio))
2850 			folio_clear_reclaim(folio);
2851 		return mapping->a_ops->dirty_folio(mapping, folio);
2852 	}
2853 
2854 	return noop_dirty_folio(mapping, folio);
2855 }
2856 EXPORT_SYMBOL(folio_mark_dirty);
2857 
2858 /*
2859  * folio_mark_dirty() is racy if the caller has no reference against
2860  * folio->mapping->host, and if the folio is unlocked.  This is because another
2861  * CPU could truncate the folio off the mapping and then free the mapping.
2862  *
2863  * Usually, the folio _is_ locked, or the caller is a user-space process which
2864  * holds a reference on the inode by having an open file.
2865  *
2866  * In other cases, the folio should be locked before running folio_mark_dirty().
2867  */
folio_mark_dirty_lock(struct folio * folio)2868 bool folio_mark_dirty_lock(struct folio *folio)
2869 {
2870 	bool ret;
2871 
2872 	folio_lock(folio);
2873 	ret = folio_mark_dirty(folio);
2874 	folio_unlock(folio);
2875 	return ret;
2876 }
2877 EXPORT_SYMBOL(folio_mark_dirty_lock);
2878 
2879 /*
2880  * This cancels just the dirty bit on the kernel page itself, it does NOT
2881  * actually remove dirty bits on any mmap's that may be around. It also
2882  * leaves the page tagged dirty, so any sync activity will still find it on
2883  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2884  * look at the dirty bits in the VM.
2885  *
2886  * Doing this should *normally* only ever be done when a page is truncated,
2887  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2888  * this when it notices that somebody has cleaned out all the buffers on a
2889  * page without actually doing it through the VM. Can you say "ext3 is
2890  * horribly ugly"? Thought you could.
2891  */
__folio_cancel_dirty(struct folio * folio)2892 void __folio_cancel_dirty(struct folio *folio)
2893 {
2894 	struct address_space *mapping = folio_mapping(folio);
2895 
2896 	if (mapping_can_writeback(mapping)) {
2897 		struct inode *inode = mapping->host;
2898 		struct bdi_writeback *wb;
2899 		struct wb_lock_cookie cookie = {};
2900 
2901 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2902 
2903 		if (folio_test_clear_dirty(folio))
2904 			folio_account_cleaned(folio, wb);
2905 
2906 		unlocked_inode_to_wb_end(inode, &cookie);
2907 	} else {
2908 		folio_clear_dirty(folio);
2909 	}
2910 }
2911 EXPORT_SYMBOL(__folio_cancel_dirty);
2912 
2913 /*
2914  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2915  * Returns true if the folio was previously dirty.
2916  *
2917  * This is for preparing to put the folio under writeout.  We leave
2918  * the folio tagged as dirty in the xarray so that a concurrent
2919  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2920  * The ->writepage implementation will run either folio_start_writeback()
2921  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2922  * and xarray dirty tag back into sync.
2923  *
2924  * This incoherency between the folio's dirty flag and xarray tag is
2925  * unfortunate, but it only exists while the folio is locked.
2926  */
folio_clear_dirty_for_io(struct folio * folio)2927 bool folio_clear_dirty_for_io(struct folio *folio)
2928 {
2929 	struct address_space *mapping = folio_mapping(folio);
2930 	bool ret = false;
2931 
2932 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2933 
2934 	if (mapping && mapping_can_writeback(mapping)) {
2935 		struct inode *inode = mapping->host;
2936 		struct bdi_writeback *wb;
2937 		struct wb_lock_cookie cookie = {};
2938 
2939 		/*
2940 		 * Yes, Virginia, this is indeed insane.
2941 		 *
2942 		 * We use this sequence to make sure that
2943 		 *  (a) we account for dirty stats properly
2944 		 *  (b) we tell the low-level filesystem to
2945 		 *      mark the whole folio dirty if it was
2946 		 *      dirty in a pagetable. Only to then
2947 		 *  (c) clean the folio again and return 1 to
2948 		 *      cause the writeback.
2949 		 *
2950 		 * This way we avoid all nasty races with the
2951 		 * dirty bit in multiple places and clearing
2952 		 * them concurrently from different threads.
2953 		 *
2954 		 * Note! Normally the "folio_mark_dirty(folio)"
2955 		 * has no effect on the actual dirty bit - since
2956 		 * that will already usually be set. But we
2957 		 * need the side effects, and it can help us
2958 		 * avoid races.
2959 		 *
2960 		 * We basically use the folio "master dirty bit"
2961 		 * as a serialization point for all the different
2962 		 * threads doing their things.
2963 		 */
2964 		if (folio_mkclean(folio))
2965 			folio_mark_dirty(folio);
2966 		/*
2967 		 * We carefully synchronise fault handlers against
2968 		 * installing a dirty pte and marking the folio dirty
2969 		 * at this point.  We do this by having them hold the
2970 		 * page lock while dirtying the folio, and folios are
2971 		 * always locked coming in here, so we get the desired
2972 		 * exclusion.
2973 		 */
2974 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2975 		if (folio_test_clear_dirty(folio)) {
2976 			long nr = folio_nr_pages(folio);
2977 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2978 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2979 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2980 			ret = true;
2981 		}
2982 		unlocked_inode_to_wb_end(inode, &cookie);
2983 		return ret;
2984 	}
2985 	return folio_test_clear_dirty(folio);
2986 }
2987 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2988 
wb_inode_writeback_start(struct bdi_writeback * wb)2989 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2990 {
2991 	atomic_inc(&wb->writeback_inodes);
2992 }
2993 
wb_inode_writeback_end(struct bdi_writeback * wb)2994 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2995 {
2996 	unsigned long flags;
2997 	atomic_dec(&wb->writeback_inodes);
2998 	/*
2999 	 * Make sure estimate of writeback throughput gets updated after
3000 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3001 	 * (which is the interval other bandwidth updates use for batching) so
3002 	 * that if multiple inodes end writeback at a similar time, they get
3003 	 * batched into one bandwidth update.
3004 	 */
3005 	spin_lock_irqsave(&wb->work_lock, flags);
3006 	if (test_bit(WB_registered, &wb->state))
3007 		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3008 	spin_unlock_irqrestore(&wb->work_lock, flags);
3009 }
3010 
__folio_end_writeback(struct folio * folio)3011 bool __folio_end_writeback(struct folio *folio)
3012 {
3013 	long nr = folio_nr_pages(folio);
3014 	struct address_space *mapping = folio_mapping(folio);
3015 	bool ret;
3016 
3017 	if (mapping && mapping_use_writeback_tags(mapping)) {
3018 		struct inode *inode = mapping->host;
3019 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3020 		unsigned long flags;
3021 
3022 		xa_lock_irqsave(&mapping->i_pages, flags);
3023 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3024 		__xa_clear_mark(&mapping->i_pages, folio_index(folio),
3025 					PAGECACHE_TAG_WRITEBACK);
3026 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3027 			struct bdi_writeback *wb = inode_to_wb(inode);
3028 
3029 			wb_stat_mod(wb, WB_WRITEBACK, -nr);
3030 			__wb_writeout_add(wb, nr);
3031 			if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3032 				wb_inode_writeback_end(wb);
3033 		}
3034 
3035 		if (mapping->host && !mapping_tagged(mapping,
3036 						     PAGECACHE_TAG_WRITEBACK))
3037 			sb_clear_inode_writeback(mapping->host);
3038 
3039 		xa_unlock_irqrestore(&mapping->i_pages, flags);
3040 	} else {
3041 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3042 	}
3043 
3044 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3045 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3046 	node_stat_mod_folio(folio, NR_WRITTEN, nr);
3047 
3048 	return ret;
3049 }
3050 
__folio_start_writeback(struct folio * folio,bool keep_write)3051 void __folio_start_writeback(struct folio *folio, bool keep_write)
3052 {
3053 	long nr = folio_nr_pages(folio);
3054 	struct address_space *mapping = folio_mapping(folio);
3055 	int access_ret;
3056 
3057 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3058 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3059 
3060 	if (mapping && mapping_use_writeback_tags(mapping)) {
3061 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3062 		struct inode *inode = mapping->host;
3063 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3064 		unsigned long flags;
3065 		bool on_wblist;
3066 
3067 		xas_lock_irqsave(&xas, flags);
3068 		xas_load(&xas);
3069 		folio_test_set_writeback(folio);
3070 
3071 		on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3072 
3073 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3074 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3075 			struct bdi_writeback *wb = inode_to_wb(inode);
3076 
3077 			wb_stat_mod(wb, WB_WRITEBACK, nr);
3078 			if (!on_wblist)
3079 				wb_inode_writeback_start(wb);
3080 		}
3081 
3082 		/*
3083 		 * We can come through here when swapping anonymous
3084 		 * folios, so we don't necessarily have an inode to
3085 		 * track for sync.
3086 		 */
3087 		if (mapping->host && !on_wblist)
3088 			sb_mark_inode_writeback(mapping->host);
3089 		if (!folio_test_dirty(folio))
3090 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3091 		if (!keep_write)
3092 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3093 		xas_unlock_irqrestore(&xas, flags);
3094 	} else {
3095 		folio_test_set_writeback(folio);
3096 	}
3097 
3098 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3099 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3100 
3101 	access_ret = arch_make_folio_accessible(folio);
3102 	/*
3103 	 * If writeback has been triggered on a page that cannot be made
3104 	 * accessible, it is too late to recover here.
3105 	 */
3106 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3107 }
3108 EXPORT_SYMBOL(__folio_start_writeback);
3109 
3110 /**
3111  * folio_wait_writeback - Wait for a folio to finish writeback.
3112  * @folio: The folio to wait for.
3113  *
3114  * If the folio is currently being written back to storage, wait for the
3115  * I/O to complete.
3116  *
3117  * Context: Sleeps.  Must be called in process context and with
3118  * no spinlocks held.  Caller should hold a reference on the folio.
3119  * If the folio is not locked, writeback may start again after writeback
3120  * has finished.
3121  */
folio_wait_writeback(struct folio * folio)3122 void folio_wait_writeback(struct folio *folio)
3123 {
3124 	while (folio_test_writeback(folio)) {
3125 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3126 		folio_wait_bit(folio, PG_writeback);
3127 	}
3128 }
3129 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3130 
3131 /**
3132  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3133  * @folio: The folio to wait for.
3134  *
3135  * If the folio is currently being written back to storage, wait for the
3136  * I/O to complete or a fatal signal to arrive.
3137  *
3138  * Context: Sleeps.  Must be called in process context and with
3139  * no spinlocks held.  Caller should hold a reference on the folio.
3140  * If the folio is not locked, writeback may start again after writeback
3141  * has finished.
3142  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3143  */
folio_wait_writeback_killable(struct folio * folio)3144 int folio_wait_writeback_killable(struct folio *folio)
3145 {
3146 	while (folio_test_writeback(folio)) {
3147 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3148 		if (folio_wait_bit_killable(folio, PG_writeback))
3149 			return -EINTR;
3150 	}
3151 
3152 	return 0;
3153 }
3154 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3155 
3156 /**
3157  * folio_wait_stable() - wait for writeback to finish, if necessary.
3158  * @folio: The folio to wait on.
3159  *
3160  * This function determines if the given folio is related to a backing
3161  * device that requires folio contents to be held stable during writeback.
3162  * If so, then it will wait for any pending writeback to complete.
3163  *
3164  * Context: Sleeps.  Must be called in process context and with
3165  * no spinlocks held.  Caller should hold a reference on the folio.
3166  * If the folio is not locked, writeback may start again after writeback
3167  * has finished.
3168  */
folio_wait_stable(struct folio * folio)3169 void folio_wait_stable(struct folio *folio)
3170 {
3171 	if (mapping_stable_writes(folio_mapping(folio)))
3172 		folio_wait_writeback(folio);
3173 }
3174 EXPORT_SYMBOL_GPL(folio_wait_stable);
3175