xref: /linux/sound/pci/emu10k1/io.c (revision 33e02dc69afbd8f1b85a51d74d72f139ba4ca623)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4   *                   Lee Revell <rlrevell@joe-job.com>
5   *                   James Courtier-Dutton <James@superbug.co.uk>
6   *                   Oswald Buddenhagen <oswald.buddenhagen@gmx.de>
7   *                   Creative Labs, Inc.
8   *
9   *  Routines for control of EMU10K1 chips
10   */
11  
12  #include <linux/time.h>
13  #include <sound/core.h>
14  #include <sound/emu10k1.h>
15  #include <linux/delay.h>
16  #include <linux/export.h>
17  #include "p17v.h"
18  
check_ptr_reg(struct snd_emu10k1 * emu,unsigned int reg)19  static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg)
20  {
21  	if (snd_BUG_ON(!emu))
22  		return false;
23  	if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK)
24  					  : (0xffff0000 & ~PTR_ADDRESS_MASK))))
25  		return false;
26  	if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK))
27  		return false;
28  	return true;
29  }
30  
snd_emu10k1_ptr_read(struct snd_emu10k1 * emu,unsigned int reg,unsigned int chn)31  unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
32  {
33  	unsigned long flags;
34  	unsigned int regptr, val;
35  	unsigned int mask;
36  
37  	regptr = (reg << 16) | chn;
38  	if (!check_ptr_reg(emu, regptr))
39  		return 0;
40  
41  	spin_lock_irqsave(&emu->emu_lock, flags);
42  	outl(regptr, emu->port + PTR);
43  	val = inl(emu->port + DATA);
44  	spin_unlock_irqrestore(&emu->emu_lock, flags);
45  
46  	if (reg & 0xff000000) {
47  		unsigned char size, offset;
48  
49  		size = (reg >> 24) & 0x3f;
50  		offset = (reg >> 16) & 0x1f;
51  		mask = (1 << size) - 1;
52  
53  		return (val >> offset) & mask;
54  	} else {
55  		return val;
56  	}
57  }
58  
59  EXPORT_SYMBOL(snd_emu10k1_ptr_read);
60  
snd_emu10k1_ptr_write(struct snd_emu10k1 * emu,unsigned int reg,unsigned int chn,unsigned int data)61  void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
62  {
63  	unsigned int regptr;
64  	unsigned long flags;
65  	unsigned int mask;
66  
67  	regptr = (reg << 16) | chn;
68  	if (!check_ptr_reg(emu, regptr))
69  		return;
70  
71  	if (reg & 0xff000000) {
72  		unsigned char size, offset;
73  
74  		size = (reg >> 24) & 0x3f;
75  		offset = (reg >> 16) & 0x1f;
76  		mask = (1 << size) - 1;
77  		if (snd_BUG_ON(data & ~mask))
78  			return;
79  		mask <<= offset;
80  		data <<= offset;
81  
82  		spin_lock_irqsave(&emu->emu_lock, flags);
83  		outl(regptr, emu->port + PTR);
84  		data |= inl(emu->port + DATA) & ~mask;
85  	} else {
86  		spin_lock_irqsave(&emu->emu_lock, flags);
87  		outl(regptr, emu->port + PTR);
88  	}
89  	outl(data, emu->port + DATA);
90  	spin_unlock_irqrestore(&emu->emu_lock, flags);
91  }
92  
93  EXPORT_SYMBOL(snd_emu10k1_ptr_write);
94  
snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 * emu,unsigned int chn,...)95  void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...)
96  {
97  	va_list va;
98  	u32 addr_mask;
99  	unsigned long flags;
100  
101  	if (snd_BUG_ON(!emu))
102  		return;
103  	if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK))
104  		return;
105  	addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16);
106  
107  	va_start(va, chn);
108  	spin_lock_irqsave(&emu->emu_lock, flags);
109  	for (;;) {
110  		u32 data;
111  		u32 reg = va_arg(va, u32);
112  		if (reg == REGLIST_END)
113  			break;
114  		data = va_arg(va, u32);
115  		if (snd_BUG_ON(reg & addr_mask))  // Only raw registers supported here
116  			continue;
117  		outl((reg << 16) | chn, emu->port + PTR);
118  		outl(data, emu->port + DATA);
119  	}
120  	spin_unlock_irqrestore(&emu->emu_lock, flags);
121  	va_end(va);
122  }
123  
124  EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple);
125  
snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,unsigned int reg,unsigned int chn)126  unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,
127  					  unsigned int reg,
128  					  unsigned int chn)
129  {
130  	unsigned long flags;
131  	unsigned int regptr, val;
132  
133  	regptr = (reg << 16) | chn;
134  
135  	spin_lock_irqsave(&emu->emu_lock, flags);
136  	outl(regptr, emu->port + PTR2);
137  	val = inl(emu->port + DATA2);
138  	spin_unlock_irqrestore(&emu->emu_lock, flags);
139  	return val;
140  }
141  
snd_emu10k1_ptr20_write(struct snd_emu10k1 * emu,unsigned int reg,unsigned int chn,unsigned int data)142  void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu,
143  				   unsigned int reg,
144  				   unsigned int chn,
145  				   unsigned int data)
146  {
147  	unsigned int regptr;
148  	unsigned long flags;
149  
150  	regptr = (reg << 16) | chn;
151  
152  	spin_lock_irqsave(&emu->emu_lock, flags);
153  	outl(regptr, emu->port + PTR2);
154  	outl(data, emu->port + DATA2);
155  	spin_unlock_irqrestore(&emu->emu_lock, flags);
156  }
157  
snd_emu10k1_spi_write(struct snd_emu10k1 * emu,unsigned int data)158  int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
159  				   unsigned int data)
160  {
161  	unsigned int reset, set;
162  	unsigned int reg, tmp;
163  	int n, result;
164  	int err = 0;
165  
166  	/* This function is not re-entrant, so protect against it. */
167  	spin_lock(&emu->spi_lock);
168  	if (emu->card_capabilities->ca0108_chip)
169  		reg = P17V_SPI;
170  	else {
171  		/* For other chip types the SPI register
172  		 * is currently unknown. */
173  		err = 1;
174  		goto spi_write_exit;
175  	}
176  	if (data > 0xffff) {
177  		/* Only 16bit values allowed */
178  		err = 1;
179  		goto spi_write_exit;
180  	}
181  
182  	tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
183  	reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
184  	set = reset | 0x10000; /* Set xxx1xxxx */
185  	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
186  	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
187  	snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
188  	result = 1;
189  	/* Wait for status bit to return to 0 */
190  	for (n = 0; n < 100; n++) {
191  		udelay(10);
192  		tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
193  		if (!(tmp & 0x10000)) {
194  			result = 0;
195  			break;
196  		}
197  	}
198  	if (result) {
199  		/* Timed out */
200  		err = 1;
201  		goto spi_write_exit;
202  	}
203  	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
204  	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
205  	err = 0;
206  spi_write_exit:
207  	spin_unlock(&emu->spi_lock);
208  	return err;
209  }
210  
211  /* The ADC does not support i2c read, so only write is implemented */
snd_emu10k1_i2c_write(struct snd_emu10k1 * emu,u32 reg,u32 value)212  int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
213  				u32 reg,
214  				u32 value)
215  {
216  	u32 tmp;
217  	int timeout = 0;
218  	int status;
219  	int retry;
220  	int err = 0;
221  
222  	if ((reg > 0x7f) || (value > 0x1ff)) {
223  		dev_err(emu->card->dev, "i2c_write: invalid values.\n");
224  		return -EINVAL;
225  	}
226  
227  	/* This function is not re-entrant, so protect against it. */
228  	spin_lock(&emu->i2c_lock);
229  
230  	tmp = reg << 25 | value << 16;
231  
232  	/* This controls the I2C connected to the WM8775 ADC Codec */
233  	snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
234  	tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */
235  
236  	for (retry = 0; retry < 10; retry++) {
237  		/* Send the data to i2c */
238  		tmp = 0;
239  		tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
240  		snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);
241  
242  		/* Wait till the transaction ends */
243  		while (1) {
244  			mdelay(1);
245  			status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
246  			timeout++;
247  			if ((status & I2C_A_ADC_START) == 0)
248  				break;
249  
250  			if (timeout > 1000) {
251  				dev_warn(emu->card->dev,
252  					   "emu10k1:I2C:timeout status=0x%x\n",
253  					   status);
254  				break;
255  			}
256  		}
257  		//Read back and see if the transaction is successful
258  		if ((status & I2C_A_ADC_ABORT) == 0)
259  			break;
260  	}
261  
262  	if (retry == 10) {
263  		dev_err(emu->card->dev, "Writing to ADC failed!\n");
264  		dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n",
265  			status, reg, value);
266  		/* dump_stack(); */
267  		err = -EINVAL;
268  	}
269  
270  	spin_unlock(&emu->i2c_lock);
271  	return err;
272  }
273  
snd_emu1010_fpga_write_locked(struct snd_emu10k1 * emu,u32 reg,u32 value)274  static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value)
275  {
276  	if (snd_BUG_ON(reg > 0x3f))
277  		return;
278  	reg += 0x40; /* 0x40 upwards are registers. */
279  	if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */
280  		return;
281  	outw(reg, emu->port + A_GPIO);
282  	udelay(10);
283  	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
284  	udelay(10);
285  	outw(value, emu->port + A_GPIO);
286  	udelay(10);
287  	outw(value | 0x80 , emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
288  	udelay(10);
289  }
290  
snd_emu1010_fpga_write(struct snd_emu10k1 * emu,u32 reg,u32 value)291  void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value)
292  {
293  	if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
294  		return;
295  	snd_emu1010_fpga_write_locked(emu, reg, value);
296  }
297  
snd_emu1010_fpga_write_lock(struct snd_emu10k1 * emu,u32 reg,u32 value)298  void snd_emu1010_fpga_write_lock(struct snd_emu10k1 *emu, u32 reg, u32 value)
299  {
300  	snd_emu1010_fpga_lock(emu);
301  	snd_emu1010_fpga_write_locked(emu, reg, value);
302  	snd_emu1010_fpga_unlock(emu);
303  }
304  
snd_emu1010_fpga_read(struct snd_emu10k1 * emu,u32 reg,u32 * value)305  void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value)
306  {
307  	// The higest input pin is used as the designated interrupt trigger,
308  	// so it needs to be masked out.
309  	// But note that any other input pin change will also cause an IRQ,
310  	// so using this function often causes an IRQ as a side effect.
311  	u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f;
312  
313  	if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
314  		return;
315  	if (snd_BUG_ON(reg > 0x3f))
316  		return;
317  	reg += 0x40; /* 0x40 upwards are registers. */
318  	outw(reg, emu->port + A_GPIO);
319  	udelay(10);
320  	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
321  	udelay(10);
322  	*value = ((inw(emu->port + A_GPIO) >> 8) & mask);
323  }
324  
325  /* Each Destination has one and only one Source,
326   * but one Source can feed any number of Destinations simultaneously.
327   */
snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 * emu,u32 dst,u32 src)328  void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src)
329  {
330  	if (snd_BUG_ON(dst & ~0x71f))
331  		return;
332  	if (snd_BUG_ON(src & ~0x71f))
333  		return;
334  	snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
335  	snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
336  	snd_emu1010_fpga_write(emu, EMU_HANA_SRCHI, src >> 8);
337  	snd_emu1010_fpga_write(emu, EMU_HANA_SRCLO, src & 0x1f);
338  }
339  
snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 * emu,u32 dst)340  u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst)
341  {
342  	u32 hi, lo;
343  
344  	if (snd_BUG_ON(dst & ~0x71f))
345  		return 0;
346  	snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
347  	snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
348  	snd_emu1010_fpga_read(emu, EMU_HANA_SRCHI, &hi);
349  	snd_emu1010_fpga_read(emu, EMU_HANA_SRCLO, &lo);
350  	return (hi << 8) | lo;
351  }
352  
snd_emu1010_get_raw_rate(struct snd_emu10k1 * emu,u8 src)353  int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src)
354  {
355  	u32 reg_lo, reg_hi, value, value2;
356  
357  	switch (src) {
358  	case EMU_HANA_WCLOCK_HANA_SPDIF_IN:
359  		snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value);
360  		if (value & EMU_HANA_SPDIF_MODE_RX_INVALID)
361  			return 0;
362  		reg_lo = EMU_HANA_WC_SPDIF_LO;
363  		reg_hi = EMU_HANA_WC_SPDIF_HI;
364  		break;
365  	case EMU_HANA_WCLOCK_HANA_ADAT_IN:
366  		reg_lo = EMU_HANA_WC_ADAT_LO;
367  		reg_hi = EMU_HANA_WC_ADAT_HI;
368  		break;
369  	case EMU_HANA_WCLOCK_SYNC_BNC:
370  		reg_lo = EMU_HANA_WC_BNC_LO;
371  		reg_hi = EMU_HANA_WC_BNC_HI;
372  		break;
373  	case EMU_HANA_WCLOCK_2ND_HANA:
374  		reg_lo = EMU_HANA2_WC_SPDIF_LO;
375  		reg_hi = EMU_HANA2_WC_SPDIF_HI;
376  		break;
377  	default:
378  		return 0;
379  	}
380  	snd_emu1010_fpga_read(emu, reg_hi, &value);
381  	snd_emu1010_fpga_read(emu, reg_lo, &value2);
382  	// FIXME: The /4 is valid for 0404b, but contradicts all other info.
383  	return 0x1770000 / 4 / (((value << 5) | value2) + 1);
384  }
385  
snd_emu1010_update_clock(struct snd_emu10k1 * emu)386  void snd_emu1010_update_clock(struct snd_emu10k1 *emu)
387  {
388  	int clock;
389  	u32 leds;
390  
391  	switch (emu->emu1010.wclock) {
392  	case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X:
393  		clock = 44100;
394  		leds = EMU_HANA_DOCK_LEDS_2_44K;
395  		break;
396  	case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X:
397  		clock = 48000;
398  		leds = EMU_HANA_DOCK_LEDS_2_48K;
399  		break;
400  	default:
401  		clock = snd_emu1010_get_raw_rate(
402  				emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK);
403  		// The raw rate reading is rather coarse (it cannot accurately
404  		// represent 44.1 kHz) and fluctuates slightly. Luckily, the
405  		// clock comes from digital inputs, which use standardized rates.
406  		// So we round to the closest standard rate and ignore discrepancies.
407  		if (clock < 46000) {
408  			clock = 44100;
409  			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K;
410  		} else {
411  			clock = 48000;
412  			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K;
413  		}
414  		break;
415  	}
416  	emu->emu1010.word_clock = clock;
417  
418  	// FIXME: this should probably represent the AND of all currently
419  	// used sources' lock status. But we don't know how to get that ...
420  	leds |= EMU_HANA_DOCK_LEDS_2_LOCK;
421  
422  	snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds);
423  }
424  
snd_emu1010_load_firmware_entry(struct snd_emu10k1 * emu,int dock,const struct firmware * fw_entry)425  void snd_emu1010_load_firmware_entry(struct snd_emu10k1 *emu, int dock,
426  				     const struct firmware *fw_entry)
427  {
428  	__always_unused u16 write_post;
429  
430  	// On E-MU 1010 rev1 the FPGA is a Xilinx Spartan IIE XC2S50E.
431  	// On E-MU 0404b it is a Xilinx Spartan III XC3S50.
432  	// The wiring is as follows:
433  	// GPO7 -> FPGA input & 1K resistor -> FPGA /PGMN <- FPGA output
434  	//   In normal operation, the active low reset line is held up by
435  	//   an FPGA output, while the GPO pin performs its duty as control
436  	//   register access strobe signal. Writing the respective bit to
437  	//   EMU_HANA_FPGA_CONFIG puts the FPGA output into high-Z mode, at
438  	//   which point the GPO pin can control the reset line through the
439  	//   resistor.
440  	// GPO6 -> FPGA CCLK & FPGA input
441  	// GPO5 -> FPGA DIN (dual function)
442  
443  	// If the FPGA is already programmed, return it to programming mode
444  	snd_emu1010_fpga_write(emu, EMU_HANA_FPGA_CONFIG,
445  			       dock ? EMU_HANA_FPGA_CONFIG_AUDIODOCK :
446  				      EMU_HANA_FPGA_CONFIG_HANA);
447  
448  	// Assert reset line for 100uS
449  	outw(0x00, emu->port + A_GPIO);
450  	write_post = inw(emu->port + A_GPIO);
451  	udelay(100);
452  	outw(0x80, emu->port + A_GPIO);
453  	write_post = inw(emu->port + A_GPIO);
454  	udelay(100);  // Allow FPGA memory to clean
455  
456  	// Upload the netlist. Keep reset line high!
457  	for (int n = 0; n < fw_entry->size; n++) {
458  		u8 value = fw_entry->data[n];
459  		for (int i = 0; i < 8; i++) {
460  			u16 reg = 0x80;
461  			if (value & 1)
462  				reg |= 0x20;
463  			value >>= 1;
464  			outw(reg, emu->port + A_GPIO);
465  			write_post = inw(emu->port + A_GPIO);
466  			outw(reg | 0x40, emu->port + A_GPIO);
467  			write_post = inw(emu->port + A_GPIO);
468  		}
469  	}
470  
471  	// After programming, set GPIO bit 4 high again.
472  	// This appears to be a config word that the rev1 Hana
473  	// firmware reads; weird things happen without this.
474  	outw(0x10, emu->port + A_GPIO);
475  	write_post = inw(emu->port + A_GPIO);
476  }
477  
snd_emu10k1_intr_enable(struct snd_emu10k1 * emu,unsigned int intrenb)478  void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
479  {
480  	unsigned long flags;
481  	unsigned int enable;
482  
483  	spin_lock_irqsave(&emu->emu_lock, flags);
484  	enable = inl(emu->port + INTE) | intrenb;
485  	outl(enable, emu->port + INTE);
486  	spin_unlock_irqrestore(&emu->emu_lock, flags);
487  }
488  
snd_emu10k1_intr_disable(struct snd_emu10k1 * emu,unsigned int intrenb)489  void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
490  {
491  	unsigned long flags;
492  	unsigned int enable;
493  
494  	spin_lock_irqsave(&emu->emu_lock, flags);
495  	enable = inl(emu->port + INTE) & ~intrenb;
496  	outl(enable, emu->port + INTE);
497  	spin_unlock_irqrestore(&emu->emu_lock, flags);
498  }
499  
snd_emu10k1_voice_intr_enable(struct snd_emu10k1 * emu,unsigned int voicenum)500  void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
501  {
502  	unsigned long flags;
503  	unsigned int val;
504  
505  	spin_lock_irqsave(&emu->emu_lock, flags);
506  	if (voicenum >= 32) {
507  		outl(CLIEH << 16, emu->port + PTR);
508  		val = inl(emu->port + DATA);
509  		val |= 1 << (voicenum - 32);
510  	} else {
511  		outl(CLIEL << 16, emu->port + PTR);
512  		val = inl(emu->port + DATA);
513  		val |= 1 << voicenum;
514  	}
515  	outl(val, emu->port + DATA);
516  	spin_unlock_irqrestore(&emu->emu_lock, flags);
517  }
518  
snd_emu10k1_voice_intr_disable(struct snd_emu10k1 * emu,unsigned int voicenum)519  void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
520  {
521  	unsigned long flags;
522  	unsigned int val;
523  
524  	spin_lock_irqsave(&emu->emu_lock, flags);
525  	if (voicenum >= 32) {
526  		outl(CLIEH << 16, emu->port + PTR);
527  		val = inl(emu->port + DATA);
528  		val &= ~(1 << (voicenum - 32));
529  	} else {
530  		outl(CLIEL << 16, emu->port + PTR);
531  		val = inl(emu->port + DATA);
532  		val &= ~(1 << voicenum);
533  	}
534  	outl(val, emu->port + DATA);
535  	spin_unlock_irqrestore(&emu->emu_lock, flags);
536  }
537  
snd_emu10k1_voice_intr_ack(struct snd_emu10k1 * emu,unsigned int voicenum)538  void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
539  {
540  	unsigned long flags;
541  
542  	spin_lock_irqsave(&emu->emu_lock, flags);
543  	if (voicenum >= 32) {
544  		outl(CLIPH << 16, emu->port + PTR);
545  		voicenum = 1 << (voicenum - 32);
546  	} else {
547  		outl(CLIPL << 16, emu->port + PTR);
548  		voicenum = 1 << voicenum;
549  	}
550  	outl(voicenum, emu->port + DATA);
551  	spin_unlock_irqrestore(&emu->emu_lock, flags);
552  }
553  
snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 * emu,unsigned int voicenum)554  void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
555  {
556  	unsigned long flags;
557  	unsigned int val;
558  
559  	spin_lock_irqsave(&emu->emu_lock, flags);
560  	if (voicenum >= 32) {
561  		outl(HLIEH << 16, emu->port + PTR);
562  		val = inl(emu->port + DATA);
563  		val |= 1 << (voicenum - 32);
564  	} else {
565  		outl(HLIEL << 16, emu->port + PTR);
566  		val = inl(emu->port + DATA);
567  		val |= 1 << voicenum;
568  	}
569  	outl(val, emu->port + DATA);
570  	spin_unlock_irqrestore(&emu->emu_lock, flags);
571  }
572  
snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 * emu,unsigned int voicenum)573  void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
574  {
575  	unsigned long flags;
576  	unsigned int val;
577  
578  	spin_lock_irqsave(&emu->emu_lock, flags);
579  	if (voicenum >= 32) {
580  		outl(HLIEH << 16, emu->port + PTR);
581  		val = inl(emu->port + DATA);
582  		val &= ~(1 << (voicenum - 32));
583  	} else {
584  		outl(HLIEL << 16, emu->port + PTR);
585  		val = inl(emu->port + DATA);
586  		val &= ~(1 << voicenum);
587  	}
588  	outl(val, emu->port + DATA);
589  	spin_unlock_irqrestore(&emu->emu_lock, flags);
590  }
591  
snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 * emu,unsigned int voicenum)592  void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
593  {
594  	unsigned long flags;
595  
596  	spin_lock_irqsave(&emu->emu_lock, flags);
597  	if (voicenum >= 32) {
598  		outl(HLIPH << 16, emu->port + PTR);
599  		voicenum = 1 << (voicenum - 32);
600  	} else {
601  		outl(HLIPL << 16, emu->port + PTR);
602  		voicenum = 1 << voicenum;
603  	}
604  	outl(voicenum, emu->port + DATA);
605  	spin_unlock_irqrestore(&emu->emu_lock, flags);
606  }
607  
608  #if 0
609  void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
610  {
611  	unsigned long flags;
612  	unsigned int sol;
613  
614  	spin_lock_irqsave(&emu->emu_lock, flags);
615  	if (voicenum >= 32) {
616  		outl(SOLEH << 16, emu->port + PTR);
617  		sol = inl(emu->port + DATA);
618  		sol |= 1 << (voicenum - 32);
619  	} else {
620  		outl(SOLEL << 16, emu->port + PTR);
621  		sol = inl(emu->port + DATA);
622  		sol |= 1 << voicenum;
623  	}
624  	outl(sol, emu->port + DATA);
625  	spin_unlock_irqrestore(&emu->emu_lock, flags);
626  }
627  
628  void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
629  {
630  	unsigned long flags;
631  	unsigned int sol;
632  
633  	spin_lock_irqsave(&emu->emu_lock, flags);
634  	if (voicenum >= 32) {
635  		outl(SOLEH << 16, emu->port + PTR);
636  		sol = inl(emu->port + DATA);
637  		sol &= ~(1 << (voicenum - 32));
638  	} else {
639  		outl(SOLEL << 16, emu->port + PTR);
640  		sol = inl(emu->port + DATA);
641  		sol &= ~(1 << voicenum);
642  	}
643  	outl(sol, emu->port + DATA);
644  	spin_unlock_irqrestore(&emu->emu_lock, flags);
645  }
646  #endif
647  
snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 * emu,u64 voices)648  void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
649  {
650  	unsigned long flags;
651  
652  	spin_lock_irqsave(&emu->emu_lock, flags);
653  	outl(SOLEL << 16, emu->port + PTR);
654  	outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA);
655  	outl(SOLEH << 16, emu->port + PTR);
656  	outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA);
657  	spin_unlock_irqrestore(&emu->emu_lock, flags);
658  }
659  
snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 * emu,u64 voices)660  void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
661  {
662  	unsigned long flags;
663  
664  	spin_lock_irqsave(&emu->emu_lock, flags);
665  	outl(SOLEL << 16, emu->port + PTR);
666  	outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA);
667  	outl(SOLEH << 16, emu->port + PTR);
668  	outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA);
669  	spin_unlock_irqrestore(&emu->emu_lock, flags);
670  }
671  
snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 * emu,u64 voices)672  int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices)
673  {
674  	unsigned long flags;
675  	u32 soll, solh;
676  	int ret = -EIO;
677  
678  	spin_lock_irqsave(&emu->emu_lock, flags);
679  
680  	outl(SOLEL << 16, emu->port + PTR);
681  	soll = inl(emu->port + DATA);
682  	outl(SOLEH << 16, emu->port + PTR);
683  	solh = inl(emu->port + DATA);
684  
685  	soll &= (u32)~voices;
686  	solh &= (u32)(~voices >> 32);
687  
688  	for (int tries = 0; tries < 1000; tries++) {
689  		const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2);
690  		// First we wait for the third quarter of the sample cycle ...
691  		u32 wc = inl(emu->port + WC);
692  		u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc);
693  		if (cc >= quart * 2 && cc < quart * 3) {
694  			// ... and release the low voices, while the high ones are serviced.
695  			outl(SOLEL << 16, emu->port + PTR);
696  			outl(soll, emu->port + DATA);
697  			// Then we wait for the first quarter of the next sample cycle ...
698  			for (; tries < 1000; tries++) {
699  				cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC));
700  				if (cc < quart)
701  					goto good;
702  				// We will block for 10+ us with interrupts disabled. This is
703  				// not nice at all, but necessary for reasonable reliability.
704  				udelay(1);
705  			}
706  			break;
707  		good:
708  			// ... and release the high voices, while the low ones are serviced.
709  			outl(SOLEH << 16, emu->port + PTR);
710  			outl(solh, emu->port + DATA);
711  			// Finally we verify that nothing interfered in fact.
712  			if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) ==
713  			    ((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) {
714  				ret = 0;
715  			} else {
716  				ret = -EAGAIN;
717  			}
718  			break;
719  		}
720  		// Don't block for too long
721  		spin_unlock_irqrestore(&emu->emu_lock, flags);
722  		udelay(1);
723  		spin_lock_irqsave(&emu->emu_lock, flags);
724  	}
725  
726  	spin_unlock_irqrestore(&emu->emu_lock, flags);
727  	return ret;
728  }
729  
snd_emu10k1_wait(struct snd_emu10k1 * emu,unsigned int wait)730  void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
731  {
732  	volatile unsigned count;
733  	unsigned int newtime = 0, curtime;
734  
735  	curtime = inl(emu->port + WC) >> 6;
736  	while (wait-- > 0) {
737  		count = 0;
738  		while (count++ < 16384) {
739  			newtime = inl(emu->port + WC) >> 6;
740  			if (newtime != curtime)
741  				break;
742  		}
743  		if (count > 16384)
744  			break;
745  		curtime = newtime;
746  	}
747  }
748  
snd_emu10k1_ac97_read(struct snd_ac97 * ac97,unsigned short reg)749  unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
750  {
751  	struct snd_emu10k1 *emu = ac97->private_data;
752  	unsigned long flags;
753  	unsigned short val;
754  
755  	spin_lock_irqsave(&emu->emu_lock, flags);
756  	outb(reg, emu->port + AC97ADDRESS);
757  	val = inw(emu->port + AC97DATA);
758  	spin_unlock_irqrestore(&emu->emu_lock, flags);
759  	return val;
760  }
761  
snd_emu10k1_ac97_write(struct snd_ac97 * ac97,unsigned short reg,unsigned short data)762  void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
763  {
764  	struct snd_emu10k1 *emu = ac97->private_data;
765  	unsigned long flags;
766  
767  	spin_lock_irqsave(&emu->emu_lock, flags);
768  	outb(reg, emu->port + AC97ADDRESS);
769  	outw(data, emu->port + AC97DATA);
770  	spin_unlock_irqrestore(&emu->emu_lock, flags);
771  }
772