xref: /linux/fs/bcachefs/bcachefs.h (revision 6f2a71a99ebd5dfaa7948a2e9c59eae94b741bd8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_H
3 #define _BCACHEFS_H
4 
5 /*
6  * SOME HIGH LEVEL CODE DOCUMENTATION:
7  *
8  * Bcache mostly works with cache sets, cache devices, and backing devices.
9  *
10  * Support for multiple cache devices hasn't quite been finished off yet, but
11  * it's about 95% plumbed through. A cache set and its cache devices is sort of
12  * like a md raid array and its component devices. Most of the code doesn't care
13  * about individual cache devices, the main abstraction is the cache set.
14  *
15  * Multiple cache devices is intended to give us the ability to mirror dirty
16  * cached data and metadata, without mirroring clean cached data.
17  *
18  * Backing devices are different, in that they have a lifetime independent of a
19  * cache set. When you register a newly formatted backing device it'll come up
20  * in passthrough mode, and then you can attach and detach a backing device from
21  * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22  * invalidates any cached data for that backing device.
23  *
24  * A cache set can have multiple (many) backing devices attached to it.
25  *
26  * There's also flash only volumes - this is the reason for the distinction
27  * between struct cached_dev and struct bcache_device. A flash only volume
28  * works much like a bcache device that has a backing device, except the
29  * "cached" data is always dirty. The end result is that we get thin
30  * provisioning with very little additional code.
31  *
32  * Flash only volumes work but they're not production ready because the moving
33  * garbage collector needs more work. More on that later.
34  *
35  * BUCKETS/ALLOCATION:
36  *
37  * Bcache is primarily designed for caching, which means that in normal
38  * operation all of our available space will be allocated. Thus, we need an
39  * efficient way of deleting things from the cache so we can write new things to
40  * it.
41  *
42  * To do this, we first divide the cache device up into buckets. A bucket is the
43  * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44  * works efficiently.
45  *
46  * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47  * it. The gens and priorities for all the buckets are stored contiguously and
48  * packed on disk (in a linked list of buckets - aside from the superblock, all
49  * of bcache's metadata is stored in buckets).
50  *
51  * The priority is used to implement an LRU. We reset a bucket's priority when
52  * we allocate it or on cache it, and every so often we decrement the priority
53  * of each bucket. It could be used to implement something more sophisticated,
54  * if anyone ever gets around to it.
55  *
56  * The generation is used for invalidating buckets. Each pointer also has an 8
57  * bit generation embedded in it; for a pointer to be considered valid, its gen
58  * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
59  * we have to do is increment its gen (and write its new gen to disk; we batch
60  * this up).
61  *
62  * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63  * contain metadata (including btree nodes).
64  *
65  * THE BTREE:
66  *
67  * Bcache is in large part design around the btree.
68  *
69  * At a high level, the btree is just an index of key -> ptr tuples.
70  *
71  * Keys represent extents, and thus have a size field. Keys also have a variable
72  * number of pointers attached to them (potentially zero, which is handy for
73  * invalidating the cache).
74  *
75  * The key itself is an inode:offset pair. The inode number corresponds to a
76  * backing device or a flash only volume. The offset is the ending offset of the
77  * extent within the inode - not the starting offset; this makes lookups
78  * slightly more convenient.
79  *
80  * Pointers contain the cache device id, the offset on that device, and an 8 bit
81  * generation number. More on the gen later.
82  *
83  * Index lookups are not fully abstracted - cache lookups in particular are
84  * still somewhat mixed in with the btree code, but things are headed in that
85  * direction.
86  *
87  * Updates are fairly well abstracted, though. There are two different ways of
88  * updating the btree; insert and replace.
89  *
90  * BTREE_INSERT will just take a list of keys and insert them into the btree -
91  * overwriting (possibly only partially) any extents they overlap with. This is
92  * used to update the index after a write.
93  *
94  * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95  * overwriting a key that matches another given key. This is used for inserting
96  * data into the cache after a cache miss, and for background writeback, and for
97  * the moving garbage collector.
98  *
99  * There is no "delete" operation; deleting things from the index is
100  * accomplished by either by invalidating pointers (by incrementing a bucket's
101  * gen) or by inserting a key with 0 pointers - which will overwrite anything
102  * previously present at that location in the index.
103  *
104  * This means that there are always stale/invalid keys in the btree. They're
105  * filtered out by the code that iterates through a btree node, and removed when
106  * a btree node is rewritten.
107  *
108  * BTREE NODES:
109  *
110  * Our unit of allocation is a bucket, and we can't arbitrarily allocate and
111  * free smaller than a bucket - so, that's how big our btree nodes are.
112  *
113  * (If buckets are really big we'll only use part of the bucket for a btree node
114  * - no less than 1/4th - but a bucket still contains no more than a single
115  * btree node. I'd actually like to change this, but for now we rely on the
116  * bucket's gen for deleting btree nodes when we rewrite/split a node.)
117  *
118  * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119  * btree implementation.
120  *
121  * The way this is solved is that btree nodes are internally log structured; we
122  * can append new keys to an existing btree node without rewriting it. This
123  * means each set of keys we write is sorted, but the node is not.
124  *
125  * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126  * be expensive, and we have to distinguish between the keys we have written and
127  * the keys we haven't. So to do a lookup in a btree node, we have to search
128  * each sorted set. But we do merge written sets together lazily, so the cost of
129  * these extra searches is quite low (normally most of the keys in a btree node
130  * will be in one big set, and then there'll be one or two sets that are much
131  * smaller).
132  *
133  * This log structure makes bcache's btree more of a hybrid between a
134  * conventional btree and a compacting data structure, with some of the
135  * advantages of both.
136  *
137  * GARBAGE COLLECTION:
138  *
139  * We can't just invalidate any bucket - it might contain dirty data or
140  * metadata. If it once contained dirty data, other writes might overwrite it
141  * later, leaving no valid pointers into that bucket in the index.
142  *
143  * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144  * It also counts how much valid data it each bucket currently contains, so that
145  * allocation can reuse buckets sooner when they've been mostly overwritten.
146  *
147  * It also does some things that are really internal to the btree
148  * implementation. If a btree node contains pointers that are stale by more than
149  * some threshold, it rewrites the btree node to avoid the bucket's generation
150  * wrapping around. It also merges adjacent btree nodes if they're empty enough.
151  *
152  * THE JOURNAL:
153  *
154  * Bcache's journal is not necessary for consistency; we always strictly
155  * order metadata writes so that the btree and everything else is consistent on
156  * disk in the event of an unclean shutdown, and in fact bcache had writeback
157  * caching (with recovery from unclean shutdown) before journalling was
158  * implemented.
159  *
160  * Rather, the journal is purely a performance optimization; we can't complete a
161  * write until we've updated the index on disk, otherwise the cache would be
162  * inconsistent in the event of an unclean shutdown. This means that without the
163  * journal, on random write workloads we constantly have to update all the leaf
164  * nodes in the btree, and those writes will be mostly empty (appending at most
165  * a few keys each) - highly inefficient in terms of amount of metadata writes,
166  * and it puts more strain on the various btree resorting/compacting code.
167  *
168  * The journal is just a log of keys we've inserted; on startup we just reinsert
169  * all the keys in the open journal entries. That means that when we're updating
170  * a node in the btree, we can wait until a 4k block of keys fills up before
171  * writing them out.
172  *
173  * For simplicity, we only journal updates to leaf nodes; updates to parent
174  * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175  * the complexity to deal with journalling them (in particular, journal replay)
176  * - updates to non leaf nodes just happen synchronously (see btree_split()).
177  */
178 
179 #undef pr_fmt
180 #ifdef __KERNEL__
181 #define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__
182 #else
183 #define pr_fmt(fmt) "%s() " fmt "\n", __func__
184 #endif
185 
186 #ifdef CONFIG_BCACHEFS_DEBUG
187 #define ENUMERATED_REF_DEBUG
188 #endif
189 
190 #ifndef dynamic_fault
191 #define dynamic_fault(...)		0
192 #endif
193 
194 #define race_fault(...)			dynamic_fault("bcachefs:race")
195 
196 #include <linux/backing-dev-defs.h>
197 #include <linux/bug.h>
198 #include <linux/bio.h>
199 #include <linux/closure.h>
200 #include <linux/kobject.h>
201 #include <linux/list.h>
202 #include <linux/math64.h>
203 #include <linux/mutex.h>
204 #include <linux/percpu-refcount.h>
205 #include <linux/percpu-rwsem.h>
206 #include <linux/refcount.h>
207 #include <linux/rhashtable.h>
208 #include <linux/rwsem.h>
209 #include <linux/semaphore.h>
210 #include <linux/seqlock.h>
211 #include <linux/shrinker.h>
212 #include <linux/srcu.h>
213 #include <linux/types.h>
214 #include <linux/workqueue.h>
215 #include <linux/zstd.h>
216 #include <linux/unicode.h>
217 
218 #include "bcachefs_format.h"
219 #include "btree_journal_iter_types.h"
220 #include "disk_accounting_types.h"
221 #include "errcode.h"
222 #include "fast_list.h"
223 #include "fifo.h"
224 #include "nocow_locking_types.h"
225 #include "opts.h"
226 #include "sb-errors_types.h"
227 #include "seqmutex.h"
228 #include "snapshot_types.h"
229 #include "time_stats.h"
230 #include "util.h"
231 
232 #include "alloc_types.h"
233 #include "async_objs_types.h"
234 #include "btree_gc_types.h"
235 #include "btree_types.h"
236 #include "btree_node_scan_types.h"
237 #include "btree_write_buffer_types.h"
238 #include "buckets_types.h"
239 #include "buckets_waiting_for_journal_types.h"
240 #include "clock_types.h"
241 #include "disk_groups_types.h"
242 #include "ec_types.h"
243 #include "enumerated_ref_types.h"
244 #include "journal_types.h"
245 #include "keylist_types.h"
246 #include "quota_types.h"
247 #include "rebalance_types.h"
248 #include "recovery_passes_types.h"
249 #include "replicas_types.h"
250 #include "sb-members_types.h"
251 #include "subvolume_types.h"
252 #include "super_types.h"
253 #include "thread_with_file_types.h"
254 
255 #include "trace.h"
256 
257 #define count_event(_c, _name)	this_cpu_inc((_c)->counters[BCH_COUNTER_##_name])
258 
259 #define trace_and_count(_c, _name, ...)					\
260 do {									\
261 	count_event(_c, _name);						\
262 	trace_##_name(__VA_ARGS__);					\
263 } while (0)
264 
265 #define bch2_fs_init_fault(name)					\
266 	dynamic_fault("bcachefs:bch_fs_init:" name)
267 #define bch2_meta_read_fault(name)					\
268 	 dynamic_fault("bcachefs:meta:read:" name)
269 #define bch2_meta_write_fault(name)					\
270 	 dynamic_fault("bcachefs:meta:write:" name)
271 
272 #ifdef __KERNEL__
273 #define BCACHEFS_LOG_PREFIX
274 #endif
275 
276 #ifdef BCACHEFS_LOG_PREFIX
277 
278 #define bch2_log_msg(_c, fmt)			"bcachefs (%s): " fmt, ((_c)->name)
279 #define bch2_fmt_dev(_ca, fmt)			"bcachefs (%s): " fmt "\n", ((_ca)->name)
280 #define bch2_fmt_dev_offset(_ca, _offset, fmt)	"bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset)
281 #define bch2_fmt_inum(_c, _inum, fmt)		"bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum)
282 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt)			\
283 	 "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset)
284 
285 #else
286 
287 #define bch2_log_msg(_c, fmt)			fmt
288 #define bch2_fmt_dev(_ca, fmt)			"%s: " fmt "\n", ((_ca)->name)
289 #define bch2_fmt_dev_offset(_ca, _offset, fmt)	"%s sector %llu: " fmt "\n", ((_ca)->name), (_offset)
290 #define bch2_fmt_inum(_c, _inum, fmt)		"inum %llu: " fmt "\n", (_inum)
291 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt)				\
292 	 "inum %llu offset %llu: " fmt "\n", (_inum), (_offset)
293 
294 #endif
295 
296 #define bch2_fmt(_c, fmt)		bch2_log_msg(_c, fmt "\n")
297 
298 void bch2_print_str(struct bch_fs *, const char *, const char *);
299 
300 __printf(2, 3)
301 void bch2_print_opts(struct bch_opts *, const char *, ...);
302 
303 __printf(2, 3)
304 void __bch2_print(struct bch_fs *c, const char *fmt, ...);
305 
306 #define maybe_dev_to_fs(_c)	_Generic((_c),				\
307 	struct bch_dev *:	((struct bch_dev *) (_c))->fs,		\
308 	struct bch_fs *:	(_c))
309 
310 #define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__)
311 
312 #define bch2_print_ratelimited(_c, ...)					\
313 do {									\
314 	static DEFINE_RATELIMIT_STATE(_rs,				\
315 				      DEFAULT_RATELIMIT_INTERVAL,	\
316 				      DEFAULT_RATELIMIT_BURST);		\
317 									\
318 	if (__ratelimit(&_rs))						\
319 		bch2_print(_c, __VA_ARGS__);				\
320 } while (0)
321 
322 #define bch2_print_str_ratelimited(_c, ...)				\
323 do {									\
324 	static DEFINE_RATELIMIT_STATE(_rs,				\
325 				      DEFAULT_RATELIMIT_INTERVAL,	\
326 				      DEFAULT_RATELIMIT_BURST);		\
327 									\
328 	if (__ratelimit(&_rs))						\
329 		bch2_print_str(_c, __VA_ARGS__);			\
330 } while (0)
331 
332 #define bch_info(c, fmt, ...) \
333 	bch2_print(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__)
334 #define bch_info_ratelimited(c, fmt, ...) \
335 	bch2_print_ratelimited(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__)
336 #define bch_notice(c, fmt, ...) \
337 	bch2_print(c, KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__)
338 #define bch_warn(c, fmt, ...) \
339 	bch2_print(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
340 #define bch_warn_ratelimited(c, fmt, ...) \
341 	bch2_print_ratelimited(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
342 
343 #define bch_err(c, fmt, ...) \
344 	bch2_print(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
345 #define bch_err_dev(ca, fmt, ...) \
346 	bch2_print(c, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
347 #define bch_err_dev_offset(ca, _offset, fmt, ...) \
348 	bch2_print(c, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
349 #define bch_err_inum(c, _inum, fmt, ...) \
350 	bch2_print(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
351 #define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \
352 	bch2_print(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
353 
354 #define bch_err_ratelimited(c, fmt, ...) \
355 	bch2_print_ratelimited(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
356 #define bch_err_dev_ratelimited(ca, fmt, ...) \
357 	bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
358 #define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \
359 	bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
360 #define bch_err_inum_ratelimited(c, _inum, fmt, ...) \
361 	bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
362 #define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \
363 	bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
364 
should_print_err(int err)365 static inline bool should_print_err(int err)
366 {
367 	return err && !bch2_err_matches(err, BCH_ERR_transaction_restart);
368 }
369 
370 #define bch_err_fn(_c, _ret)						\
371 do {									\
372 	if (should_print_err(_ret))					\
373 		bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
374 } while (0)
375 
376 #define bch_err_fn_ratelimited(_c, _ret)				\
377 do {									\
378 	if (should_print_err(_ret))					\
379 		bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
380 } while (0)
381 
382 #define bch_err_msg(_c, _ret, _msg, ...)				\
383 do {									\
384 	if (should_print_err(_ret))					\
385 		bch_err(_c, "%s(): error " _msg " %s", __func__,	\
386 			##__VA_ARGS__, bch2_err_str(_ret));		\
387 } while (0)
388 
389 #define bch_verbose(c, fmt, ...)					\
390 do {									\
391 	if ((c)->opts.verbose)						\
392 		bch_info(c, fmt, ##__VA_ARGS__);			\
393 } while (0)
394 
395 #define bch_verbose_ratelimited(c, fmt, ...)				\
396 do {									\
397 	if ((c)->opts.verbose)						\
398 		bch_info_ratelimited(c, fmt, ##__VA_ARGS__);		\
399 } while (0)
400 
401 #define pr_verbose_init(opts, fmt, ...)					\
402 do {									\
403 	if (opt_get(opts, verbose))					\
404 		pr_info(fmt, ##__VA_ARGS__);				\
405 } while (0)
406 
__bch2_err_trace(struct bch_fs * c,int err)407 static inline int __bch2_err_trace(struct bch_fs *c, int err)
408 {
409 	trace_error_throw(c, err, _THIS_IP_);
410 	return err;
411 }
412 
413 #define bch_err_throw(_c, _err) __bch2_err_trace(_c, -BCH_ERR_##_err)
414 
415 /* Parameters that are useful for debugging, but should always be compiled in: */
416 #define BCH_DEBUG_PARAMS_ALWAYS()					\
417 	BCH_DEBUG_PARAM(key_merging_disabled,				\
418 		"Disables merging of extents")				\
419 	BCH_DEBUG_PARAM(btree_node_merging_disabled,			\
420 		"Disables merging of btree nodes")			\
421 	BCH_DEBUG_PARAM(btree_gc_always_rewrite,			\
422 		"Causes mark and sweep to compact and rewrite every "	\
423 		"btree node it traverses")				\
424 	BCH_DEBUG_PARAM(btree_gc_rewrite_disabled,			\
425 		"Disables rewriting of btree nodes during mark and sweep")\
426 	BCH_DEBUG_PARAM(btree_shrinker_disabled,			\
427 		"Disables the shrinker callback for the btree node cache")\
428 	BCH_DEBUG_PARAM(verify_btree_ondisk,				\
429 		"Reread btree nodes at various points to verify the "	\
430 		"mergesort in the read path against modifications "	\
431 		"done in memory")					\
432 	BCH_DEBUG_PARAM(verify_all_btree_replicas,			\
433 		"When reading btree nodes, read all replicas and "	\
434 		"compare them")						\
435 	BCH_DEBUG_PARAM(backpointers_no_use_write_buffer,		\
436 		"Don't use the write buffer for backpointers, enabling "\
437 		"extra runtime checks")					\
438 	BCH_DEBUG_PARAM(debug_check_btree_locking,			\
439 		"Enable additional asserts for btree locking")		\
440 	BCH_DEBUG_PARAM(debug_check_iterators,				\
441 		"Enables extra verification for btree iterators")	\
442 	BCH_DEBUG_PARAM(debug_check_bset_lookups,			\
443 		"Enables extra verification for bset lookups")		\
444 	BCH_DEBUG_PARAM(debug_check_btree_accounting,			\
445 		"Verify btree accounting for keys within a node")	\
446 	BCH_DEBUG_PARAM(debug_check_bkey_unpack,			\
447 		"Enables extra verification for bkey unpack")
448 
449 /* Parameters that should only be compiled in debug mode: */
450 #define BCH_DEBUG_PARAMS_DEBUG()					\
451 	BCH_DEBUG_PARAM(journal_seq_verify,				\
452 		"Store the journal sequence number in the version "	\
453 		"number of every btree key, and verify that btree "	\
454 		"update ordering is preserved during recovery")		\
455 	BCH_DEBUG_PARAM(inject_invalid_keys,				\
456 		"Store the journal sequence number in the version "	\
457 		"number of every btree key, and verify that btree "	\
458 		"update ordering is preserved during recovery")		\
459 	BCH_DEBUG_PARAM(test_alloc_startup,				\
460 		"Force allocator startup to use the slowpath where it"	\
461 		"can't find enough free buckets without invalidating"	\
462 		"cached data")						\
463 	BCH_DEBUG_PARAM(force_reconstruct_read,				\
464 		"Force reads to use the reconstruct path, when reading"	\
465 		"from erasure coded extents")				\
466 	BCH_DEBUG_PARAM(test_restart_gc,				\
467 		"Test restarting mark and sweep gc when bucket gens change")
468 
469 #define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG()
470 
471 #ifdef CONFIG_BCACHEFS_DEBUG
472 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL()
473 #else
474 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS()
475 #endif
476 
477 #define BCH_DEBUG_PARAM(name, description) extern struct static_key_false bch2_##name;
478 BCH_DEBUG_PARAMS_ALL()
479 #undef BCH_DEBUG_PARAM
480 
481 #define BCH_TIME_STATS()			\
482 	x(btree_node_mem_alloc)			\
483 	x(btree_node_split)			\
484 	x(btree_node_compact)			\
485 	x(btree_node_merge)			\
486 	x(btree_node_sort)			\
487 	x(btree_node_get)			\
488 	x(btree_node_read)			\
489 	x(btree_node_read_done)			\
490 	x(btree_node_write)			\
491 	x(btree_interior_update_foreground)	\
492 	x(btree_interior_update_total)		\
493 	x(btree_gc)				\
494 	x(data_write)				\
495 	x(data_write_to_submit)			\
496 	x(data_write_to_queue)			\
497 	x(data_write_to_btree_update)		\
498 	x(data_write_btree_update)		\
499 	x(data_read)				\
500 	x(data_promote)				\
501 	x(journal_flush_write)			\
502 	x(journal_noflush_write)		\
503 	x(journal_flush_seq)			\
504 	x(blocked_journal_low_on_space)		\
505 	x(blocked_journal_low_on_pin)		\
506 	x(blocked_journal_max_in_flight)	\
507 	x(blocked_journal_max_open)		\
508 	x(blocked_key_cache_flush)		\
509 	x(blocked_allocate)			\
510 	x(blocked_allocate_open_bucket)		\
511 	x(blocked_write_buffer_full)		\
512 	x(nocow_lock_contended)
513 
514 enum bch_time_stats {
515 #define x(name) BCH_TIME_##name,
516 	BCH_TIME_STATS()
517 #undef x
518 	BCH_TIME_STAT_NR
519 };
520 
521 /* Number of nodes btree coalesce will try to coalesce at once */
522 #define GC_MERGE_NODES		4U
523 
524 /* Maximum number of nodes we might need to allocate atomically: */
525 #define BTREE_RESERVE_MAX	(BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1))
526 
527 /* Size of the freelist we allocate btree nodes from: */
528 #define BTREE_NODE_RESERVE	(BTREE_RESERVE_MAX * 4)
529 
530 #define BTREE_NODE_OPEN_BUCKET_RESERVE	(BTREE_RESERVE_MAX * BCH_REPLICAS_MAX)
531 
532 struct btree;
533 
534 struct io_count {
535 	u64			sectors[2][BCH_DATA_NR];
536 };
537 
538 struct discard_in_flight {
539 	bool			in_progress:1;
540 	u64			bucket:63;
541 };
542 
543 #define BCH_DEV_READ_REFS()				\
544 	x(bch2_online_devs)				\
545 	x(trans_mark_dev_sbs)				\
546 	x(read_fua_test)				\
547 	x(sb_field_resize)				\
548 	x(write_super)					\
549 	x(journal_read)					\
550 	x(fs_journal_alloc)				\
551 	x(fs_resize_on_mount)				\
552 	x(btree_node_read)				\
553 	x(btree_node_read_all_replicas)			\
554 	x(btree_node_scrub)				\
555 	x(btree_node_write)				\
556 	x(btree_node_scan)				\
557 	x(btree_verify_replicas)			\
558 	x(btree_node_ondisk_to_text)			\
559 	x(io_read)					\
560 	x(check_extent_checksums)			\
561 	x(ec_block)
562 
563 enum bch_dev_read_ref {
564 #define x(n) BCH_DEV_READ_REF_##n,
565 	BCH_DEV_READ_REFS()
566 #undef x
567 	BCH_DEV_READ_REF_NR,
568 };
569 
570 #define BCH_DEV_WRITE_REFS()				\
571 	x(journal_write)				\
572 	x(journal_do_discards)				\
573 	x(dev_do_discards)				\
574 	x(discard_one_bucket_fast)			\
575 	x(do_invalidates)				\
576 	x(nocow_flush)					\
577 	x(io_write)					\
578 	x(ec_block)					\
579 	x(ec_bucket_zero)
580 
581 enum bch_dev_write_ref {
582 #define x(n) BCH_DEV_WRITE_REF_##n,
583 	BCH_DEV_WRITE_REFS()
584 #undef x
585 	BCH_DEV_WRITE_REF_NR,
586 };
587 
588 struct bucket_bitmap {
589 	unsigned long		*buckets;
590 	u64			nr;
591 	struct mutex		lock;
592 };
593 
594 struct bch_dev {
595 	struct kobject		kobj;
596 #ifdef CONFIG_BCACHEFS_DEBUG
597 	atomic_long_t		ref;
598 	bool			dying;
599 	unsigned long		last_put;
600 #else
601 	struct percpu_ref	ref;
602 #endif
603 	struct completion	ref_completion;
604 	struct enumerated_ref	io_ref[2];
605 
606 	struct bch_fs		*fs;
607 
608 	u8			dev_idx;
609 	/*
610 	 * Cached version of this device's member info from superblock
611 	 * Committed by bch2_write_super() -> bch_fs_mi_update()
612 	 */
613 	struct bch_member_cpu	mi;
614 	atomic64_t		errors[BCH_MEMBER_ERROR_NR];
615 	unsigned long		write_errors_start;
616 
617 	__uuid_t		uuid;
618 	char			name[BDEVNAME_SIZE];
619 
620 	struct bch_sb_handle	disk_sb;
621 	struct bch_sb		*sb_read_scratch;
622 	int			sb_write_error;
623 	dev_t			dev;
624 	atomic_t		flush_seq;
625 
626 	struct bch_devs_mask	self;
627 
628 	/*
629 	 * Buckets:
630 	 * Per-bucket arrays are protected by either rcu_read_lock or
631 	 * state_lock, for device resize.
632 	 */
633 	GENRADIX(struct bucket)	buckets_gc;
634 	struct bucket_gens __rcu *bucket_gens;
635 	u8			*oldest_gen;
636 	unsigned long		*buckets_nouse;
637 
638 	struct bucket_bitmap	bucket_backpointer_mismatch;
639 	struct bucket_bitmap	bucket_backpointer_empty;
640 
641 	struct bch_dev_usage_full __percpu
642 				*usage;
643 
644 	/* Allocator: */
645 	u64			alloc_cursor[3];
646 
647 	unsigned		nr_open_buckets;
648 	unsigned		nr_partial_buckets;
649 	unsigned		nr_btree_reserve;
650 
651 	struct work_struct	invalidate_work;
652 	struct work_struct	discard_work;
653 	struct mutex		discard_buckets_in_flight_lock;
654 	DARRAY(struct discard_in_flight)	discard_buckets_in_flight;
655 	struct work_struct	discard_fast_work;
656 
657 	atomic64_t		rebalance_work;
658 
659 	struct journal_device	journal;
660 	u64			prev_journal_sector;
661 
662 	struct work_struct	io_error_work;
663 
664 	/* The rest of this all shows up in sysfs */
665 	atomic64_t		cur_latency[2];
666 	struct bch2_time_stats_quantiles io_latency[2];
667 
668 #define CONGESTED_MAX		1024
669 	atomic_t		congested;
670 	u64			congested_last;
671 
672 	struct io_count __percpu *io_done;
673 };
674 
675 /*
676  * initial_gc_unfixed
677  * error
678  * topology error
679  */
680 
681 #define BCH_FS_FLAGS()			\
682 	x(new_fs)			\
683 	x(started)			\
684 	x(clean_recovery)		\
685 	x(btree_running)		\
686 	x(accounting_replay_done)	\
687 	x(may_go_rw)			\
688 	x(rw)				\
689 	x(rw_init_done)			\
690 	x(was_rw)			\
691 	x(stopping)			\
692 	x(emergency_ro)			\
693 	x(going_ro)			\
694 	x(write_disable_complete)	\
695 	x(clean_shutdown)		\
696 	x(in_recovery)			\
697 	x(in_fsck)			\
698 	x(initial_gc_unfixed)		\
699 	x(need_delete_dead_snapshots)	\
700 	x(error)			\
701 	x(topology_error)		\
702 	x(errors_fixed)			\
703 	x(errors_not_fixed)		\
704 	x(no_invalid_checks)		\
705 	x(discard_mount_opt_set)	\
706 
707 enum bch_fs_flags {
708 #define x(n)		BCH_FS_##n,
709 	BCH_FS_FLAGS()
710 #undef x
711 };
712 
713 struct btree_debug {
714 	unsigned		id;
715 };
716 
717 #define BCH_TRANSACTIONS_NR 128
718 
719 struct btree_transaction_stats {
720 	struct bch2_time_stats	duration;
721 	struct bch2_time_stats	lock_hold_times;
722 	struct mutex		lock;
723 	unsigned		nr_max_paths;
724 	unsigned		max_mem;
725 #ifdef CONFIG_BCACHEFS_TRANS_KMALLOC_TRACE
726 	darray_trans_kmalloc_trace trans_kmalloc_trace;
727 #endif
728 	char			*max_paths_text;
729 };
730 
731 struct bch_fs_pcpu {
732 	u64			sectors_available;
733 };
734 
735 struct journal_seq_blacklist_table {
736 	size_t			nr;
737 	struct journal_seq_blacklist_table_entry {
738 		u64		start;
739 		u64		end;
740 		bool		dirty;
741 	}			entries[];
742 };
743 
744 struct btree_trans_buf {
745 	struct btree_trans	*trans;
746 };
747 
748 #define BCH_WRITE_REFS()						\
749 	x(journal)							\
750 	x(trans)							\
751 	x(write)							\
752 	x(promote)							\
753 	x(node_rewrite)							\
754 	x(stripe_create)						\
755 	x(stripe_delete)						\
756 	x(reflink)							\
757 	x(fallocate)							\
758 	x(fsync)							\
759 	x(dio_write)							\
760 	x(discard)							\
761 	x(discard_fast)							\
762 	x(check_discard_freespace_key)					\
763 	x(invalidate)							\
764 	x(delete_dead_snapshots)					\
765 	x(gc_gens)							\
766 	x(snapshot_delete_pagecache)					\
767 	x(sysfs)							\
768 	x(btree_write_buffer)						\
769 	x(btree_node_scrub)						\
770 	x(async_recovery_passes)					\
771 	x(ioctl_data)
772 
773 enum bch_write_ref {
774 #define x(n) BCH_WRITE_REF_##n,
775 	BCH_WRITE_REFS()
776 #undef x
777 	BCH_WRITE_REF_NR,
778 };
779 
780 #define BCH_FS_DEFAULT_UTF8_ENCODING UNICODE_AGE(12, 1, 0)
781 
782 struct bch_fs {
783 	struct closure		cl;
784 
785 	struct list_head	list;
786 	struct kobject		kobj;
787 	struct kobject		counters_kobj;
788 	struct kobject		internal;
789 	struct kobject		opts_dir;
790 	struct kobject		time_stats;
791 	unsigned long		flags;
792 
793 	int			minor;
794 	struct device		*chardev;
795 	struct super_block	*vfs_sb;
796 	dev_t			dev;
797 	char			name[40];
798 	struct stdio_redirect	*stdio;
799 	struct task_struct	*stdio_filter;
800 
801 	/* ro/rw, add/remove/resize devices: */
802 	struct rw_semaphore	state_lock;
803 
804 	/* Counts outstanding writes, for clean transition to read-only */
805 	struct enumerated_ref	writes;
806 	/*
807 	 * Certain operations are only allowed in single threaded mode, during
808 	 * recovery, and we want to assert that this is the case:
809 	 */
810 	struct task_struct	*recovery_task;
811 
812 	/*
813 	 * Analagous to c->writes, for asynchronous ops that don't necessarily
814 	 * need fs to be read-write
815 	 */
816 	refcount_t		ro_ref;
817 	wait_queue_head_t	ro_ref_wait;
818 
819 	struct work_struct	read_only_work;
820 
821 	struct bch_dev __rcu	*devs[BCH_SB_MEMBERS_MAX];
822 
823 	struct bch_accounting_mem accounting;
824 
825 	struct bch_replicas_cpu replicas;
826 	struct bch_replicas_cpu replicas_gc;
827 	struct mutex		replicas_gc_lock;
828 
829 	struct journal_entry_res btree_root_journal_res;
830 	struct journal_entry_res clock_journal_res;
831 
832 	struct bch_disk_groups_cpu __rcu *disk_groups;
833 
834 	struct bch_opts		opts;
835 
836 	/* Updated by bch2_sb_update():*/
837 	struct {
838 		__uuid_t	uuid;
839 		__uuid_t	user_uuid;
840 
841 		u16		version;
842 		u16		version_incompat;
843 		u16		version_incompat_allowed;
844 		u16		version_min;
845 		u16		version_upgrade_complete;
846 
847 		u8		nr_devices;
848 		u8		clean;
849 		bool		multi_device; /* true if we've ever had more than one device */
850 
851 		u8		encryption_type;
852 
853 		u64		time_base_lo;
854 		u32		time_base_hi;
855 		unsigned	time_units_per_sec;
856 		unsigned	nsec_per_time_unit;
857 		u64		features;
858 		u64		compat;
859 		u64		recovery_passes_required;
860 		unsigned long	errors_silent[BITS_TO_LONGS(BCH_FSCK_ERR_MAX)];
861 		u64		btrees_lost_data;
862 	}			sb;
863 	DARRAY(enum bcachefs_metadata_version)
864 				incompat_versions_requested;
865 
866 #ifdef CONFIG_UNICODE
867 	struct unicode_map	*cf_encoding;
868 #endif
869 
870 	struct bch_sb_handle	disk_sb;
871 
872 	unsigned short		block_bits;	/* ilog2(block_size) */
873 
874 	u16			btree_foreground_merge_threshold;
875 
876 	struct closure		sb_write;
877 	struct mutex		sb_lock;
878 
879 	/* snapshot.c: */
880 	struct snapshot_table __rcu *snapshots;
881 	struct mutex		snapshot_table_lock;
882 	struct rw_semaphore	snapshot_create_lock;
883 
884 	struct snapshot_delete	snapshot_delete;
885 	struct work_struct	snapshot_wait_for_pagecache_and_delete_work;
886 	snapshot_id_list	snapshots_unlinked;
887 	struct mutex		snapshots_unlinked_lock;
888 
889 	/* BTREE CACHE */
890 	struct bio_set		btree_bio;
891 	struct workqueue_struct	*btree_read_complete_wq;
892 	struct workqueue_struct	*btree_write_submit_wq;
893 
894 	struct btree_root	btree_roots_known[BTREE_ID_NR];
895 	DARRAY(struct btree_root) btree_roots_extra;
896 	struct mutex		btree_root_lock;
897 
898 	struct btree_cache	btree_cache;
899 
900 	/*
901 	 * Cache of allocated btree nodes - if we allocate a btree node and
902 	 * don't use it, if we free it that space can't be reused until going
903 	 * _all_ the way through the allocator (which exposes us to a livelock
904 	 * when allocating btree reserves fail halfway through) - instead, we
905 	 * can stick them here:
906 	 */
907 	struct btree_alloc	btree_reserve_cache[BTREE_NODE_RESERVE * 2];
908 	unsigned		btree_reserve_cache_nr;
909 	struct mutex		btree_reserve_cache_lock;
910 
911 	mempool_t		btree_interior_update_pool;
912 	struct list_head	btree_interior_update_list;
913 	struct list_head	btree_interior_updates_unwritten;
914 	struct mutex		btree_interior_update_lock;
915 	struct closure_waitlist	btree_interior_update_wait;
916 
917 	struct workqueue_struct	*btree_interior_update_worker;
918 	struct work_struct	btree_interior_update_work;
919 
920 	struct workqueue_struct	*btree_node_rewrite_worker;
921 	struct list_head	btree_node_rewrites;
922 	struct list_head	btree_node_rewrites_pending;
923 	spinlock_t		btree_node_rewrites_lock;
924 	struct closure_waitlist	btree_node_rewrites_wait;
925 
926 	/* btree_io.c: */
927 	spinlock_t		btree_write_error_lock;
928 	struct btree_write_stats {
929 		atomic64_t	nr;
930 		atomic64_t	bytes;
931 	}			btree_write_stats[BTREE_WRITE_TYPE_NR];
932 
933 	/* btree_iter.c: */
934 	struct seqmutex		btree_trans_lock;
935 	struct list_head	btree_trans_list;
936 	mempool_t		btree_trans_pool;
937 	mempool_t		btree_trans_mem_pool;
938 	struct btree_trans_buf  __percpu	*btree_trans_bufs;
939 
940 	struct srcu_struct	btree_trans_barrier;
941 	bool			btree_trans_barrier_initialized;
942 
943 	struct btree_key_cache	btree_key_cache;
944 	unsigned		btree_key_cache_btrees;
945 
946 	struct btree_write_buffer btree_write_buffer;
947 
948 	struct workqueue_struct	*btree_update_wq;
949 	struct workqueue_struct	*btree_write_complete_wq;
950 	/* copygc needs its own workqueue for index updates.. */
951 	struct workqueue_struct	*copygc_wq;
952 	/*
953 	 * Use a dedicated wq for write ref holder tasks. Required to avoid
954 	 * dependency problems with other wq tasks that can block on ref
955 	 * draining, such as read-only transition.
956 	 */
957 	struct workqueue_struct *write_ref_wq;
958 
959 	/* ALLOCATION */
960 	struct bch_devs_mask	online_devs;
961 	struct bch_devs_mask	rw_devs[BCH_DATA_NR];
962 	unsigned long		rw_devs_change_count;
963 
964 	u64			capacity; /* sectors */
965 	u64			reserved; /* sectors */
966 
967 	/*
968 	 * When capacity _decreases_ (due to a disk being removed), we
969 	 * increment capacity_gen - this invalidates outstanding reservations
970 	 * and forces them to be revalidated
971 	 */
972 	u32			capacity_gen;
973 	unsigned		bucket_size_max;
974 
975 	atomic64_t		sectors_available;
976 	struct mutex		sectors_available_lock;
977 
978 	struct bch_fs_pcpu __percpu	*pcpu;
979 
980 	struct percpu_rw_semaphore	mark_lock;
981 
982 	seqcount_t			usage_lock;
983 	struct bch_fs_usage_base __percpu *usage;
984 	u64 __percpu		*online_reserved;
985 
986 	unsigned long		allocator_last_stuck;
987 
988 	struct io_clock		io_clock[2];
989 
990 	/* JOURNAL SEQ BLACKLIST */
991 	struct journal_seq_blacklist_table *
992 				journal_seq_blacklist_table;
993 
994 	/* ALLOCATOR */
995 	spinlock_t		freelist_lock;
996 	struct closure_waitlist	freelist_wait;
997 
998 	open_bucket_idx_t	open_buckets_freelist;
999 	open_bucket_idx_t	open_buckets_nr_free;
1000 	struct closure_waitlist	open_buckets_wait;
1001 	struct open_bucket	open_buckets[OPEN_BUCKETS_COUNT];
1002 	open_bucket_idx_t	open_buckets_hash[OPEN_BUCKETS_COUNT];
1003 
1004 	open_bucket_idx_t	open_buckets_partial[OPEN_BUCKETS_COUNT];
1005 	open_bucket_idx_t	open_buckets_partial_nr;
1006 
1007 	struct write_point	btree_write_point;
1008 	struct write_point	rebalance_write_point;
1009 
1010 	struct write_point	write_points[WRITE_POINT_MAX];
1011 	struct hlist_head	write_points_hash[WRITE_POINT_HASH_NR];
1012 	struct mutex		write_points_hash_lock;
1013 	unsigned		write_points_nr;
1014 
1015 	struct buckets_waiting_for_journal buckets_waiting_for_journal;
1016 
1017 	/* GARBAGE COLLECTION */
1018 	struct work_struct	gc_gens_work;
1019 	unsigned long		gc_count;
1020 
1021 	enum btree_id		gc_gens_btree;
1022 	struct bpos		gc_gens_pos;
1023 
1024 	/*
1025 	 * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos]
1026 	 * has been marked by GC.
1027 	 *
1028 	 * gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.)
1029 	 *
1030 	 * Protected by gc_pos_lock. Only written to by GC thread, so GC thread
1031 	 * can read without a lock.
1032 	 */
1033 	seqcount_t		gc_pos_lock;
1034 	struct gc_pos		gc_pos;
1035 
1036 	/*
1037 	 * The allocation code needs gc_mark in struct bucket to be correct, but
1038 	 * it's not while a gc is in progress.
1039 	 */
1040 	struct rw_semaphore	gc_lock;
1041 	struct mutex		gc_gens_lock;
1042 
1043 	/* IO PATH */
1044 	struct semaphore	io_in_flight;
1045 	struct bio_set		bio_read;
1046 	struct bio_set		bio_read_split;
1047 	struct bio_set		bio_write;
1048 	struct bio_set		replica_set;
1049 	struct mutex		bio_bounce_pages_lock;
1050 	mempool_t		bio_bounce_pages;
1051 	struct bucket_nocow_lock_table
1052 				nocow_locks;
1053 	struct rhashtable	promote_table;
1054 
1055 #ifdef CONFIG_BCACHEFS_ASYNC_OBJECT_LISTS
1056 	struct async_obj_list	async_objs[BCH_ASYNC_OBJ_NR];
1057 #endif
1058 
1059 	mempool_t		compression_bounce[2];
1060 	mempool_t		compress_workspace[BCH_COMPRESSION_OPT_NR];
1061 	size_t			zstd_workspace_size;
1062 
1063 	struct bch_key		chacha20_key;
1064 	bool			chacha20_key_set;
1065 
1066 	atomic64_t		key_version;
1067 
1068 	mempool_t		large_bkey_pool;
1069 
1070 	/* MOVE.C */
1071 	struct list_head	moving_context_list;
1072 	struct mutex		moving_context_lock;
1073 
1074 	/* REBALANCE */
1075 	struct bch_fs_rebalance	rebalance;
1076 
1077 	/* COPYGC */
1078 	struct task_struct	*copygc_thread;
1079 	struct write_point	copygc_write_point;
1080 	s64			copygc_wait_at;
1081 	s64			copygc_wait;
1082 	bool			copygc_running;
1083 	wait_queue_head_t	copygc_running_wq;
1084 
1085 	/* STRIPES: */
1086 	GENRADIX(struct gc_stripe) gc_stripes;
1087 
1088 	struct hlist_head	ec_stripes_new[32];
1089 	spinlock_t		ec_stripes_new_lock;
1090 
1091 	/* ERASURE CODING */
1092 	struct list_head	ec_stripe_head_list;
1093 	struct mutex		ec_stripe_head_lock;
1094 
1095 	struct list_head	ec_stripe_new_list;
1096 	struct mutex		ec_stripe_new_lock;
1097 	wait_queue_head_t	ec_stripe_new_wait;
1098 
1099 	struct work_struct	ec_stripe_create_work;
1100 	u64			ec_stripe_hint;
1101 
1102 	struct work_struct	ec_stripe_delete_work;
1103 
1104 	struct bio_set		ec_bioset;
1105 
1106 	/* REFLINK */
1107 	reflink_gc_table	reflink_gc_table;
1108 	size_t			reflink_gc_nr;
1109 
1110 	/* fs.c */
1111 	struct list_head	vfs_inodes_list;
1112 	struct mutex		vfs_inodes_lock;
1113 	struct rhashtable	vfs_inodes_table;
1114 	struct rhltable		vfs_inodes_by_inum_table;
1115 
1116 	/* VFS IO PATH - fs-io.c */
1117 	struct bio_set		writepage_bioset;
1118 	struct bio_set		dio_write_bioset;
1119 	struct bio_set		dio_read_bioset;
1120 	struct bio_set		nocow_flush_bioset;
1121 
1122 	/* QUOTAS */
1123 	struct bch_memquota_type quotas[QTYP_NR];
1124 
1125 	/* RECOVERY */
1126 	u64			journal_replay_seq_start;
1127 	u64			journal_replay_seq_end;
1128 	struct bch_fs_recovery	recovery;
1129 
1130 	/* DEBUG JUNK */
1131 	struct dentry		*fs_debug_dir;
1132 	struct dentry		*btree_debug_dir;
1133 	struct dentry		*async_obj_dir;
1134 	struct btree_debug	btree_debug[BTREE_ID_NR];
1135 	struct btree		*verify_data;
1136 	struct btree_node	*verify_ondisk;
1137 	struct mutex		verify_lock;
1138 
1139 	/*
1140 	 * A btree node on disk could have too many bsets for an iterator to fit
1141 	 * on the stack - have to dynamically allocate them
1142 	 */
1143 	mempool_t		fill_iter;
1144 
1145 	mempool_t		btree_bounce_pool;
1146 
1147 	struct journal		journal;
1148 	GENRADIX(struct journal_replay *) journal_entries;
1149 	u64			journal_entries_base_seq;
1150 	struct journal_keys	journal_keys;
1151 	struct list_head	journal_iters;
1152 
1153 	struct find_btree_nodes	found_btree_nodes;
1154 
1155 	u64			last_bucket_seq_cleanup;
1156 
1157 	u64			counters_on_mount[BCH_COUNTER_NR];
1158 	u64 __percpu		*counters;
1159 
1160 	struct bch2_time_stats	times[BCH_TIME_STAT_NR];
1161 
1162 	struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR];
1163 
1164 	/* ERRORS */
1165 	struct list_head	fsck_error_msgs;
1166 	struct mutex		fsck_error_msgs_lock;
1167 	bool			fsck_alloc_msgs_err;
1168 
1169 	bch_sb_errors_cpu	fsck_error_counts;
1170 	struct mutex		fsck_error_counts_lock;
1171 };
1172 
1173 extern struct wait_queue_head bch2_read_only_wait;
1174 
bch2_ro_ref_tryget(struct bch_fs * c)1175 static inline bool bch2_ro_ref_tryget(struct bch_fs *c)
1176 {
1177 	if (test_bit(BCH_FS_stopping, &c->flags))
1178 		return false;
1179 
1180 	return refcount_inc_not_zero(&c->ro_ref);
1181 }
1182 
bch2_ro_ref_put(struct bch_fs * c)1183 static inline void bch2_ro_ref_put(struct bch_fs *c)
1184 {
1185 	if (refcount_dec_and_test(&c->ro_ref))
1186 		wake_up(&c->ro_ref_wait);
1187 }
1188 
bch2_set_ra_pages(struct bch_fs * c,unsigned ra_pages)1189 static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages)
1190 {
1191 #ifndef NO_BCACHEFS_FS
1192 	if (c->vfs_sb)
1193 		c->vfs_sb->s_bdi->ra_pages = ra_pages;
1194 #endif
1195 }
1196 
bucket_bytes(const struct bch_dev * ca)1197 static inline unsigned bucket_bytes(const struct bch_dev *ca)
1198 {
1199 	return ca->mi.bucket_size << 9;
1200 }
1201 
block_bytes(const struct bch_fs * c)1202 static inline unsigned block_bytes(const struct bch_fs *c)
1203 {
1204 	return c->opts.block_size;
1205 }
1206 
block_sectors(const struct bch_fs * c)1207 static inline unsigned block_sectors(const struct bch_fs *c)
1208 {
1209 	return c->opts.block_size >> 9;
1210 }
1211 
btree_id_cached(const struct bch_fs * c,enum btree_id btree)1212 static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree)
1213 {
1214 	return c->btree_key_cache_btrees & (1U << btree);
1215 }
1216 
bch2_time_to_timespec(const struct bch_fs * c,s64 time)1217 static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time)
1218 {
1219 	struct timespec64 t;
1220 	s64 sec;
1221 	s32 rem;
1222 
1223 	time += c->sb.time_base_lo;
1224 
1225 	sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem);
1226 
1227 	set_normalized_timespec64(&t, sec, rem * (s64)c->sb.nsec_per_time_unit);
1228 
1229 	return t;
1230 }
1231 
timespec_to_bch2_time(const struct bch_fs * c,struct timespec64 ts)1232 static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts)
1233 {
1234 	return (ts.tv_sec * c->sb.time_units_per_sec +
1235 		(int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo;
1236 }
1237 
bch2_current_time(const struct bch_fs * c)1238 static inline s64 bch2_current_time(const struct bch_fs *c)
1239 {
1240 	struct timespec64 now;
1241 
1242 	ktime_get_coarse_real_ts64(&now);
1243 	return timespec_to_bch2_time(c, now);
1244 }
1245 
bch2_current_io_time(const struct bch_fs * c,int rw)1246 static inline u64 bch2_current_io_time(const struct bch_fs *c, int rw)
1247 {
1248 	return max(1ULL, (u64) atomic64_read(&c->io_clock[rw].now) & LRU_TIME_MAX);
1249 }
1250 
bch2_fs_stdio_redirect(struct bch_fs * c)1251 static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c)
1252 {
1253 	struct stdio_redirect *stdio = c->stdio;
1254 
1255 	if (c->stdio_filter && c->stdio_filter != current)
1256 		stdio = NULL;
1257 	return stdio;
1258 }
1259 
metadata_replicas_required(struct bch_fs * c)1260 static inline unsigned metadata_replicas_required(struct bch_fs *c)
1261 {
1262 	return min(c->opts.metadata_replicas,
1263 		   c->opts.metadata_replicas_required);
1264 }
1265 
data_replicas_required(struct bch_fs * c)1266 static inline unsigned data_replicas_required(struct bch_fs *c)
1267 {
1268 	return min(c->opts.data_replicas,
1269 		   c->opts.data_replicas_required);
1270 }
1271 
1272 #define BKEY_PADDED_ONSTACK(key, pad)				\
1273 	struct { struct bkey_i key; __u64 key ## _pad[pad]; }
1274 
1275 /*
1276  * This is needed because discard is both a filesystem option and a device
1277  * option, and mount options are supposed to apply to that mount and not be
1278  * persisted, i.e. if it's set as a mount option we can't propagate it to the
1279  * device.
1280  */
bch2_discard_opt_enabled(struct bch_fs * c,struct bch_dev * ca)1281 static inline bool bch2_discard_opt_enabled(struct bch_fs *c, struct bch_dev *ca)
1282 {
1283 	return test_bit(BCH_FS_discard_mount_opt_set, &c->flags)
1284 		? c->opts.discard
1285 		: ca->mi.discard;
1286 }
1287 
1288 #endif /* _BCACHEFS_H */
1289