1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)80 void vma_set_page_prot(struct vm_area_struct *vma)
81 {
82 unsigned long vm_flags = vma->vm_flags;
83 pgprot_t vm_page_prot;
84
85 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
86 if (vma_wants_writenotify(vma, vm_page_prot)) {
87 vm_flags &= ~VM_SHARED;
88 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
89 }
90 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
91 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
92 }
93
94 /*
95 * check_brk_limits() - Use platform specific check of range & verify mlock
96 * limits.
97 * @addr: The address to check
98 * @len: The size of increase.
99 *
100 * Return: 0 on success.
101 */
check_brk_limits(unsigned long addr,unsigned long len)102 static int check_brk_limits(unsigned long addr, unsigned long len)
103 {
104 unsigned long mapped_addr;
105
106 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
107 if (IS_ERR_VALUE(mapped_addr))
108 return mapped_addr;
109
110 return mlock_future_ok(current->mm, current->mm->def_flags, len)
111 ? 0 : -EAGAIN;
112 }
113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
114 unsigned long addr, unsigned long request, unsigned long flags);
SYSCALL_DEFINE1(brk,unsigned long,brk)115 SYSCALL_DEFINE1(brk, unsigned long, brk)
116 {
117 unsigned long newbrk, oldbrk, origbrk;
118 struct mm_struct *mm = current->mm;
119 struct vm_area_struct *brkvma, *next = NULL;
120 unsigned long min_brk;
121 bool populate = false;
122 LIST_HEAD(uf);
123 struct vma_iterator vmi;
124
125 if (mmap_write_lock_killable(mm))
126 return -EINTR;
127
128 origbrk = mm->brk;
129
130 #ifdef CONFIG_COMPAT_BRK
131 /*
132 * CONFIG_COMPAT_BRK can still be overridden by setting
133 * randomize_va_space to 2, which will still cause mm->start_brk
134 * to be arbitrarily shifted
135 */
136 if (current->brk_randomized)
137 min_brk = mm->start_brk;
138 else
139 min_brk = mm->end_data;
140 #else
141 min_brk = mm->start_brk;
142 #endif
143 if (brk < min_brk)
144 goto out;
145
146 /*
147 * Check against rlimit here. If this check is done later after the test
148 * of oldbrk with newbrk then it can escape the test and let the data
149 * segment grow beyond its set limit the in case where the limit is
150 * not page aligned -Ram Gupta
151 */
152 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
153 mm->end_data, mm->start_data))
154 goto out;
155
156 newbrk = PAGE_ALIGN(brk);
157 oldbrk = PAGE_ALIGN(mm->brk);
158 if (oldbrk == newbrk) {
159 mm->brk = brk;
160 goto success;
161 }
162
163 /* Always allow shrinking brk. */
164 if (brk <= mm->brk) {
165 /* Search one past newbrk */
166 vma_iter_init(&vmi, mm, newbrk);
167 brkvma = vma_find(&vmi, oldbrk);
168 if (!brkvma || brkvma->vm_start >= oldbrk)
169 goto out; /* mapping intersects with an existing non-brk vma. */
170 /*
171 * mm->brk must be protected by write mmap_lock.
172 * do_vmi_align_munmap() will drop the lock on success, so
173 * update it before calling do_vma_munmap().
174 */
175 mm->brk = brk;
176 if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
177 /* unlock = */ true))
178 goto out;
179
180 goto success_unlocked;
181 }
182
183 if (check_brk_limits(oldbrk, newbrk - oldbrk))
184 goto out;
185
186 /*
187 * Only check if the next VMA is within the stack_guard_gap of the
188 * expansion area
189 */
190 vma_iter_init(&vmi, mm, oldbrk);
191 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
192 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
193 goto out;
194
195 brkvma = vma_prev_limit(&vmi, mm->start_brk);
196 /* Ok, looks good - let it rip. */
197 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
198 goto out;
199
200 mm->brk = brk;
201 if (mm->def_flags & VM_LOCKED)
202 populate = true;
203
204 success:
205 mmap_write_unlock(mm);
206 success_unlocked:
207 userfaultfd_unmap_complete(mm, &uf);
208 if (populate)
209 mm_populate(oldbrk, newbrk - oldbrk);
210 return brk;
211
212 out:
213 mm->brk = origbrk;
214 mmap_write_unlock(mm);
215 return origbrk;
216 }
217
218 /*
219 * If a hint addr is less than mmap_min_addr change hint to be as
220 * low as possible but still greater than mmap_min_addr
221 */
round_hint_to_min(unsigned long hint)222 static inline unsigned long round_hint_to_min(unsigned long hint)
223 {
224 hint &= PAGE_MASK;
225 if (((void *)hint != NULL) &&
226 (hint < mmap_min_addr))
227 return PAGE_ALIGN(mmap_min_addr);
228 return hint;
229 }
230
mlock_future_ok(struct mm_struct * mm,unsigned long flags,unsigned long bytes)231 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
232 unsigned long bytes)
233 {
234 unsigned long locked_pages, limit_pages;
235
236 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
237 return true;
238
239 locked_pages = bytes >> PAGE_SHIFT;
240 locked_pages += mm->locked_vm;
241
242 limit_pages = rlimit(RLIMIT_MEMLOCK);
243 limit_pages >>= PAGE_SHIFT;
244
245 return locked_pages <= limit_pages;
246 }
247
file_mmap_size_max(struct file * file,struct inode * inode)248 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
249 {
250 if (S_ISREG(inode->i_mode))
251 return MAX_LFS_FILESIZE;
252
253 if (S_ISBLK(inode->i_mode))
254 return MAX_LFS_FILESIZE;
255
256 if (S_ISSOCK(inode->i_mode))
257 return MAX_LFS_FILESIZE;
258
259 /* Special "we do even unsigned file positions" case */
260 if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
261 return 0;
262
263 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
264 return ULONG_MAX;
265 }
266
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)267 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
268 unsigned long pgoff, unsigned long len)
269 {
270 u64 maxsize = file_mmap_size_max(file, inode);
271
272 if (maxsize && len > maxsize)
273 return false;
274 maxsize -= len;
275 if (pgoff > maxsize >> PAGE_SHIFT)
276 return false;
277 return true;
278 }
279
280 /*
281 * The caller must write-lock current->mm->mmap_lock.
282 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)283 unsigned long do_mmap(struct file *file, unsigned long addr,
284 unsigned long len, unsigned long prot,
285 unsigned long flags, vm_flags_t vm_flags,
286 unsigned long pgoff, unsigned long *populate,
287 struct list_head *uf)
288 {
289 struct mm_struct *mm = current->mm;
290 int pkey = 0;
291
292 *populate = 0;
293
294 if (!len)
295 return -EINVAL;
296
297 /*
298 * Does the application expect PROT_READ to imply PROT_EXEC?
299 *
300 * (the exception is when the underlying filesystem is noexec
301 * mounted, in which case we don't add PROT_EXEC.)
302 */
303 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
304 if (!(file && path_noexec(&file->f_path)))
305 prot |= PROT_EXEC;
306
307 /* force arch specific MAP_FIXED handling in get_unmapped_area */
308 if (flags & MAP_FIXED_NOREPLACE)
309 flags |= MAP_FIXED;
310
311 if (!(flags & MAP_FIXED))
312 addr = round_hint_to_min(addr);
313
314 /* Careful about overflows.. */
315 len = PAGE_ALIGN(len);
316 if (!len)
317 return -ENOMEM;
318
319 /* offset overflow? */
320 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
321 return -EOVERFLOW;
322
323 /* Too many mappings? */
324 if (mm->map_count > sysctl_max_map_count)
325 return -ENOMEM;
326
327 /*
328 * addr is returned from get_unmapped_area,
329 * There are two cases:
330 * 1> MAP_FIXED == false
331 * unallocated memory, no need to check sealing.
332 * 1> MAP_FIXED == true
333 * sealing is checked inside mmap_region when
334 * do_vmi_munmap is called.
335 */
336
337 if (prot == PROT_EXEC) {
338 pkey = execute_only_pkey(mm);
339 if (pkey < 0)
340 pkey = 0;
341 }
342
343 /* Do simple checking here so the lower-level routines won't have
344 * to. we assume access permissions have been handled by the open
345 * of the memory object, so we don't do any here.
346 */
347 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
348 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
349
350 /* Obtain the address to map to. we verify (or select) it and ensure
351 * that it represents a valid section of the address space.
352 */
353 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
354 if (IS_ERR_VALUE(addr))
355 return addr;
356
357 if (flags & MAP_FIXED_NOREPLACE) {
358 if (find_vma_intersection(mm, addr, addr + len))
359 return -EEXIST;
360 }
361
362 if (flags & MAP_LOCKED)
363 if (!can_do_mlock())
364 return -EPERM;
365
366 if (!mlock_future_ok(mm, vm_flags, len))
367 return -EAGAIN;
368
369 if (file) {
370 struct inode *inode = file_inode(file);
371 unsigned long flags_mask;
372
373 if (!file_mmap_ok(file, inode, pgoff, len))
374 return -EOVERFLOW;
375
376 flags_mask = LEGACY_MAP_MASK;
377 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
378 flags_mask |= MAP_SYNC;
379
380 switch (flags & MAP_TYPE) {
381 case MAP_SHARED:
382 /*
383 * Force use of MAP_SHARED_VALIDATE with non-legacy
384 * flags. E.g. MAP_SYNC is dangerous to use with
385 * MAP_SHARED as you don't know which consistency model
386 * you will get. We silently ignore unsupported flags
387 * with MAP_SHARED to preserve backward compatibility.
388 */
389 flags &= LEGACY_MAP_MASK;
390 fallthrough;
391 case MAP_SHARED_VALIDATE:
392 if (flags & ~flags_mask)
393 return -EOPNOTSUPP;
394 if (prot & PROT_WRITE) {
395 if (!(file->f_mode & FMODE_WRITE))
396 return -EACCES;
397 if (IS_SWAPFILE(file->f_mapping->host))
398 return -ETXTBSY;
399 }
400
401 /*
402 * Make sure we don't allow writing to an append-only
403 * file..
404 */
405 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
406 return -EACCES;
407
408 vm_flags |= VM_SHARED | VM_MAYSHARE;
409 if (!(file->f_mode & FMODE_WRITE))
410 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
411 fallthrough;
412 case MAP_PRIVATE:
413 if (!(file->f_mode & FMODE_READ))
414 return -EACCES;
415 if (path_noexec(&file->f_path)) {
416 if (vm_flags & VM_EXEC)
417 return -EPERM;
418 vm_flags &= ~VM_MAYEXEC;
419 }
420
421 if (!file->f_op->mmap)
422 return -ENODEV;
423 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
424 return -EINVAL;
425 break;
426
427 default:
428 return -EINVAL;
429 }
430 } else {
431 switch (flags & MAP_TYPE) {
432 case MAP_SHARED:
433 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
434 return -EINVAL;
435 /*
436 * Ignore pgoff.
437 */
438 pgoff = 0;
439 vm_flags |= VM_SHARED | VM_MAYSHARE;
440 break;
441 case MAP_DROPPABLE:
442 if (VM_DROPPABLE == VM_NONE)
443 return -ENOTSUPP;
444 /*
445 * A locked or stack area makes no sense to be droppable.
446 *
447 * Also, since droppable pages can just go away at any time
448 * it makes no sense to copy them on fork or dump them.
449 *
450 * And don't attempt to combine with hugetlb for now.
451 */
452 if (flags & (MAP_LOCKED | MAP_HUGETLB))
453 return -EINVAL;
454 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
455 return -EINVAL;
456
457 vm_flags |= VM_DROPPABLE;
458
459 /*
460 * If the pages can be dropped, then it doesn't make
461 * sense to reserve them.
462 */
463 vm_flags |= VM_NORESERVE;
464
465 /*
466 * Likewise, they're volatile enough that they
467 * shouldn't survive forks or coredumps.
468 */
469 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
470 fallthrough;
471 case MAP_PRIVATE:
472 /*
473 * Set pgoff according to addr for anon_vma.
474 */
475 pgoff = addr >> PAGE_SHIFT;
476 break;
477 default:
478 return -EINVAL;
479 }
480 }
481
482 /*
483 * Set 'VM_NORESERVE' if we should not account for the
484 * memory use of this mapping.
485 */
486 if (flags & MAP_NORESERVE) {
487 /* We honor MAP_NORESERVE if allowed to overcommit */
488 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
489 vm_flags |= VM_NORESERVE;
490
491 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
492 if (file && is_file_hugepages(file))
493 vm_flags |= VM_NORESERVE;
494 }
495
496 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
497 if (!IS_ERR_VALUE(addr) &&
498 ((vm_flags & VM_LOCKED) ||
499 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
500 *populate = len;
501 return addr;
502 }
503
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)504 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
505 unsigned long prot, unsigned long flags,
506 unsigned long fd, unsigned long pgoff)
507 {
508 struct file *file = NULL;
509 unsigned long retval;
510
511 if (!(flags & MAP_ANONYMOUS)) {
512 audit_mmap_fd(fd, flags);
513 file = fget(fd);
514 if (!file)
515 return -EBADF;
516 if (is_file_hugepages(file)) {
517 len = ALIGN(len, huge_page_size(hstate_file(file)));
518 } else if (unlikely(flags & MAP_HUGETLB)) {
519 retval = -EINVAL;
520 goto out_fput;
521 }
522 } else if (flags & MAP_HUGETLB) {
523 struct hstate *hs;
524
525 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
526 if (!hs)
527 return -EINVAL;
528
529 len = ALIGN(len, huge_page_size(hs));
530 /*
531 * VM_NORESERVE is used because the reservations will be
532 * taken when vm_ops->mmap() is called
533 */
534 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
535 VM_NORESERVE,
536 HUGETLB_ANONHUGE_INODE,
537 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
538 if (IS_ERR(file))
539 return PTR_ERR(file);
540 }
541
542 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
543 out_fput:
544 if (file)
545 fput(file);
546 return retval;
547 }
548
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)549 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
550 unsigned long, prot, unsigned long, flags,
551 unsigned long, fd, unsigned long, pgoff)
552 {
553 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
554 }
555
556 #ifdef __ARCH_WANT_SYS_OLD_MMAP
557 struct mmap_arg_struct {
558 unsigned long addr;
559 unsigned long len;
560 unsigned long prot;
561 unsigned long flags;
562 unsigned long fd;
563 unsigned long offset;
564 };
565
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)566 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
567 {
568 struct mmap_arg_struct a;
569
570 if (copy_from_user(&a, arg, sizeof(a)))
571 return -EFAULT;
572 if (offset_in_page(a.offset))
573 return -EINVAL;
574
575 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
576 a.offset >> PAGE_SHIFT);
577 }
578 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
579
580 /**
581 * unmapped_area() - Find an area between the low_limit and the high_limit with
582 * the correct alignment and offset, all from @info. Note: current->mm is used
583 * for the search.
584 *
585 * @info: The unmapped area information including the range [low_limit -
586 * high_limit), the alignment offset and mask.
587 *
588 * Return: A memory address or -ENOMEM.
589 */
unmapped_area(struct vm_unmapped_area_info * info)590 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
591 {
592 unsigned long length, gap;
593 unsigned long low_limit, high_limit;
594 struct vm_area_struct *tmp;
595 VMA_ITERATOR(vmi, current->mm, 0);
596
597 /* Adjust search length to account for worst case alignment overhead */
598 length = info->length + info->align_mask + info->start_gap;
599 if (length < info->length)
600 return -ENOMEM;
601
602 low_limit = info->low_limit;
603 if (low_limit < mmap_min_addr)
604 low_limit = mmap_min_addr;
605 high_limit = info->high_limit;
606 retry:
607 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
608 return -ENOMEM;
609
610 /*
611 * Adjust for the gap first so it doesn't interfere with the
612 * later alignment. The first step is the minimum needed to
613 * fulill the start gap, the next steps is the minimum to align
614 * that. It is the minimum needed to fulill both.
615 */
616 gap = vma_iter_addr(&vmi) + info->start_gap;
617 gap += (info->align_offset - gap) & info->align_mask;
618 tmp = vma_next(&vmi);
619 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
620 if (vm_start_gap(tmp) < gap + length - 1) {
621 low_limit = tmp->vm_end;
622 vma_iter_reset(&vmi);
623 goto retry;
624 }
625 } else {
626 tmp = vma_prev(&vmi);
627 if (tmp && vm_end_gap(tmp) > gap) {
628 low_limit = vm_end_gap(tmp);
629 vma_iter_reset(&vmi);
630 goto retry;
631 }
632 }
633
634 return gap;
635 }
636
637 /**
638 * unmapped_area_topdown() - Find an area between the low_limit and the
639 * high_limit with the correct alignment and offset at the highest available
640 * address, all from @info. Note: current->mm is used for the search.
641 *
642 * @info: The unmapped area information including the range [low_limit -
643 * high_limit), the alignment offset and mask.
644 *
645 * Return: A memory address or -ENOMEM.
646 */
unmapped_area_topdown(struct vm_unmapped_area_info * info)647 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
648 {
649 unsigned long length, gap, gap_end;
650 unsigned long low_limit, high_limit;
651 struct vm_area_struct *tmp;
652 VMA_ITERATOR(vmi, current->mm, 0);
653
654 /* Adjust search length to account for worst case alignment overhead */
655 length = info->length + info->align_mask + info->start_gap;
656 if (length < info->length)
657 return -ENOMEM;
658
659 low_limit = info->low_limit;
660 if (low_limit < mmap_min_addr)
661 low_limit = mmap_min_addr;
662 high_limit = info->high_limit;
663 retry:
664 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
665 return -ENOMEM;
666
667 gap = vma_iter_end(&vmi) - info->length;
668 gap -= (gap - info->align_offset) & info->align_mask;
669 gap_end = vma_iter_end(&vmi);
670 tmp = vma_next(&vmi);
671 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
672 if (vm_start_gap(tmp) < gap_end) {
673 high_limit = vm_start_gap(tmp);
674 vma_iter_reset(&vmi);
675 goto retry;
676 }
677 } else {
678 tmp = vma_prev(&vmi);
679 if (tmp && vm_end_gap(tmp) > gap) {
680 high_limit = tmp->vm_start;
681 vma_iter_reset(&vmi);
682 goto retry;
683 }
684 }
685
686 return gap;
687 }
688
689 /*
690 * Determine if the allocation needs to ensure that there is no
691 * existing mapping within it's guard gaps, for use as start_gap.
692 */
stack_guard_placement(vm_flags_t vm_flags)693 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
694 {
695 if (vm_flags & VM_SHADOW_STACK)
696 return PAGE_SIZE;
697
698 return 0;
699 }
700
701 /*
702 * Search for an unmapped address range.
703 *
704 * We are looking for a range that:
705 * - does not intersect with any VMA;
706 * - is contained within the [low_limit, high_limit) interval;
707 * - is at least the desired size.
708 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
709 */
vm_unmapped_area(struct vm_unmapped_area_info * info)710 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
711 {
712 unsigned long addr;
713
714 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
715 addr = unmapped_area_topdown(info);
716 else
717 addr = unmapped_area(info);
718
719 trace_vm_unmapped_area(addr, info);
720 return addr;
721 }
722
723 /* Get an address range which is currently unmapped.
724 * For shmat() with addr=0.
725 *
726 * Ugly calling convention alert:
727 * Return value with the low bits set means error value,
728 * ie
729 * if (ret & ~PAGE_MASK)
730 * error = ret;
731 *
732 * This function "knows" that -ENOMEM has the bits set.
733 */
734 unsigned long
generic_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)735 generic_get_unmapped_area(struct file *filp, unsigned long addr,
736 unsigned long len, unsigned long pgoff,
737 unsigned long flags, vm_flags_t vm_flags)
738 {
739 struct mm_struct *mm = current->mm;
740 struct vm_area_struct *vma, *prev;
741 struct vm_unmapped_area_info info = {};
742 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
743
744 if (len > mmap_end - mmap_min_addr)
745 return -ENOMEM;
746
747 if (flags & MAP_FIXED)
748 return addr;
749
750 if (addr) {
751 addr = PAGE_ALIGN(addr);
752 vma = find_vma_prev(mm, addr, &prev);
753 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
754 (!vma || addr + len <= vm_start_gap(vma)) &&
755 (!prev || addr >= vm_end_gap(prev)))
756 return addr;
757 }
758
759 info.length = len;
760 info.low_limit = mm->mmap_base;
761 info.high_limit = mmap_end;
762 info.start_gap = stack_guard_placement(vm_flags);
763 if (filp && is_file_hugepages(filp))
764 info.align_mask = huge_page_mask_align(filp);
765 return vm_unmapped_area(&info);
766 }
767
768 #ifndef HAVE_ARCH_UNMAPPED_AREA
769 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)770 arch_get_unmapped_area(struct file *filp, unsigned long addr,
771 unsigned long len, unsigned long pgoff,
772 unsigned long flags, vm_flags_t vm_flags)
773 {
774 return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
775 vm_flags);
776 }
777 #endif
778
779 /*
780 * This mmap-allocator allocates new areas top-down from below the
781 * stack's low limit (the base):
782 */
783 unsigned long
generic_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)784 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
785 unsigned long len, unsigned long pgoff,
786 unsigned long flags, vm_flags_t vm_flags)
787 {
788 struct vm_area_struct *vma, *prev;
789 struct mm_struct *mm = current->mm;
790 struct vm_unmapped_area_info info = {};
791 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
792
793 /* requested length too big for entire address space */
794 if (len > mmap_end - mmap_min_addr)
795 return -ENOMEM;
796
797 if (flags & MAP_FIXED)
798 return addr;
799
800 /* requesting a specific address */
801 if (addr) {
802 addr = PAGE_ALIGN(addr);
803 vma = find_vma_prev(mm, addr, &prev);
804 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
805 (!vma || addr + len <= vm_start_gap(vma)) &&
806 (!prev || addr >= vm_end_gap(prev)))
807 return addr;
808 }
809
810 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
811 info.length = len;
812 info.low_limit = PAGE_SIZE;
813 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
814 info.start_gap = stack_guard_placement(vm_flags);
815 if (filp && is_file_hugepages(filp))
816 info.align_mask = huge_page_mask_align(filp);
817 addr = vm_unmapped_area(&info);
818
819 /*
820 * A failed mmap() very likely causes application failure,
821 * so fall back to the bottom-up function here. This scenario
822 * can happen with large stack limits and large mmap()
823 * allocations.
824 */
825 if (offset_in_page(addr)) {
826 VM_BUG_ON(addr != -ENOMEM);
827 info.flags = 0;
828 info.low_limit = TASK_UNMAPPED_BASE;
829 info.high_limit = mmap_end;
830 addr = vm_unmapped_area(&info);
831 }
832
833 return addr;
834 }
835
836 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
837 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)838 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
839 unsigned long len, unsigned long pgoff,
840 unsigned long flags, vm_flags_t vm_flags)
841 {
842 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
843 vm_flags);
844 }
845 #endif
846
mm_get_unmapped_area_vmflags(struct mm_struct * mm,struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)847 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
848 unsigned long addr, unsigned long len,
849 unsigned long pgoff, unsigned long flags,
850 vm_flags_t vm_flags)
851 {
852 if (test_bit(MMF_TOPDOWN, &mm->flags))
853 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
854 flags, vm_flags);
855 return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
856 }
857
858 unsigned long
__get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)859 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
860 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
861 {
862 unsigned long (*get_area)(struct file *, unsigned long,
863 unsigned long, unsigned long, unsigned long)
864 = NULL;
865
866 unsigned long error = arch_mmap_check(addr, len, flags);
867 if (error)
868 return error;
869
870 /* Careful about overflows.. */
871 if (len > TASK_SIZE)
872 return -ENOMEM;
873
874 if (file) {
875 if (file->f_op->get_unmapped_area)
876 get_area = file->f_op->get_unmapped_area;
877 } else if (flags & MAP_SHARED) {
878 /*
879 * mmap_region() will call shmem_zero_setup() to create a file,
880 * so use shmem's get_unmapped_area in case it can be huge.
881 */
882 get_area = shmem_get_unmapped_area;
883 }
884
885 /* Always treat pgoff as zero for anonymous memory. */
886 if (!file)
887 pgoff = 0;
888
889 if (get_area) {
890 addr = get_area(file, addr, len, pgoff, flags);
891 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)
892 && !addr /* no hint */
893 && IS_ALIGNED(len, PMD_SIZE)) {
894 /* Ensures that larger anonymous mappings are THP aligned. */
895 addr = thp_get_unmapped_area_vmflags(file, addr, len,
896 pgoff, flags, vm_flags);
897 } else {
898 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
899 pgoff, flags, vm_flags);
900 }
901 if (IS_ERR_VALUE(addr))
902 return addr;
903
904 if (addr > TASK_SIZE - len)
905 return -ENOMEM;
906 if (offset_in_page(addr))
907 return -EINVAL;
908
909 error = security_mmap_addr(addr);
910 return error ? error : addr;
911 }
912
913 unsigned long
mm_get_unmapped_area(struct mm_struct * mm,struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)914 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
915 unsigned long addr, unsigned long len,
916 unsigned long pgoff, unsigned long flags)
917 {
918 if (test_bit(MMF_TOPDOWN, &mm->flags))
919 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
920 return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
921 }
922 EXPORT_SYMBOL(mm_get_unmapped_area);
923
924 /**
925 * find_vma_intersection() - Look up the first VMA which intersects the interval
926 * @mm: The process address space.
927 * @start_addr: The inclusive start user address.
928 * @end_addr: The exclusive end user address.
929 *
930 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
931 * start_addr < end_addr.
932 */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)933 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
934 unsigned long start_addr,
935 unsigned long end_addr)
936 {
937 unsigned long index = start_addr;
938
939 mmap_assert_locked(mm);
940 return mt_find(&mm->mm_mt, &index, end_addr - 1);
941 }
942 EXPORT_SYMBOL(find_vma_intersection);
943
944 /**
945 * find_vma() - Find the VMA for a given address, or the next VMA.
946 * @mm: The mm_struct to check
947 * @addr: The address
948 *
949 * Returns: The VMA associated with addr, or the next VMA.
950 * May return %NULL in the case of no VMA at addr or above.
951 */
find_vma(struct mm_struct * mm,unsigned long addr)952 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
953 {
954 unsigned long index = addr;
955
956 mmap_assert_locked(mm);
957 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
958 }
959 EXPORT_SYMBOL(find_vma);
960
961 /**
962 * find_vma_prev() - Find the VMA for a given address, or the next vma and
963 * set %pprev to the previous VMA, if any.
964 * @mm: The mm_struct to check
965 * @addr: The address
966 * @pprev: The pointer to set to the previous VMA
967 *
968 * Note that RCU lock is missing here since the external mmap_lock() is used
969 * instead.
970 *
971 * Returns: The VMA associated with @addr, or the next vma.
972 * May return %NULL in the case of no vma at addr or above.
973 */
974 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)975 find_vma_prev(struct mm_struct *mm, unsigned long addr,
976 struct vm_area_struct **pprev)
977 {
978 struct vm_area_struct *vma;
979 VMA_ITERATOR(vmi, mm, addr);
980
981 vma = vma_iter_load(&vmi);
982 *pprev = vma_prev(&vmi);
983 if (!vma)
984 vma = vma_next(&vmi);
985 return vma;
986 }
987
988 /*
989 * Verify that the stack growth is acceptable and
990 * update accounting. This is shared with both the
991 * grow-up and grow-down cases.
992 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)993 static int acct_stack_growth(struct vm_area_struct *vma,
994 unsigned long size, unsigned long grow)
995 {
996 struct mm_struct *mm = vma->vm_mm;
997 unsigned long new_start;
998
999 /* address space limit tests */
1000 if (!may_expand_vm(mm, vma->vm_flags, grow))
1001 return -ENOMEM;
1002
1003 /* Stack limit test */
1004 if (size > rlimit(RLIMIT_STACK))
1005 return -ENOMEM;
1006
1007 /* mlock limit tests */
1008 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1009 return -ENOMEM;
1010
1011 /* Check to ensure the stack will not grow into a hugetlb-only region */
1012 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1013 vma->vm_end - size;
1014 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1015 return -EFAULT;
1016
1017 /*
1018 * Overcommit.. This must be the final test, as it will
1019 * update security statistics.
1020 */
1021 if (security_vm_enough_memory_mm(mm, grow))
1022 return -ENOMEM;
1023
1024 return 0;
1025 }
1026
1027 #if defined(CONFIG_STACK_GROWSUP)
1028 /*
1029 * PA-RISC uses this for its stack.
1030 * vma is the last one with address > vma->vm_end. Have to extend vma.
1031 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)1032 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1033 {
1034 struct mm_struct *mm = vma->vm_mm;
1035 struct vm_area_struct *next;
1036 unsigned long gap_addr;
1037 int error = 0;
1038 VMA_ITERATOR(vmi, mm, vma->vm_start);
1039
1040 if (!(vma->vm_flags & VM_GROWSUP))
1041 return -EFAULT;
1042
1043 mmap_assert_write_locked(mm);
1044
1045 /* Guard against exceeding limits of the address space. */
1046 address &= PAGE_MASK;
1047 if (address >= (TASK_SIZE & PAGE_MASK))
1048 return -ENOMEM;
1049 address += PAGE_SIZE;
1050
1051 /* Enforce stack_guard_gap */
1052 gap_addr = address + stack_guard_gap;
1053
1054 /* Guard against overflow */
1055 if (gap_addr < address || gap_addr > TASK_SIZE)
1056 gap_addr = TASK_SIZE;
1057
1058 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1059 if (next && vma_is_accessible(next)) {
1060 if (!(next->vm_flags & VM_GROWSUP))
1061 return -ENOMEM;
1062 /* Check that both stack segments have the same anon_vma? */
1063 }
1064
1065 if (next)
1066 vma_iter_prev_range_limit(&vmi, address);
1067
1068 vma_iter_config(&vmi, vma->vm_start, address);
1069 if (vma_iter_prealloc(&vmi, vma))
1070 return -ENOMEM;
1071
1072 /* We must make sure the anon_vma is allocated. */
1073 if (unlikely(anon_vma_prepare(vma))) {
1074 vma_iter_free(&vmi);
1075 return -ENOMEM;
1076 }
1077
1078 /* Lock the VMA before expanding to prevent concurrent page faults */
1079 vma_start_write(vma);
1080 /* We update the anon VMA tree. */
1081 anon_vma_lock_write(vma->anon_vma);
1082
1083 /* Somebody else might have raced and expanded it already */
1084 if (address > vma->vm_end) {
1085 unsigned long size, grow;
1086
1087 size = address - vma->vm_start;
1088 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1089
1090 error = -ENOMEM;
1091 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1092 error = acct_stack_growth(vma, size, grow);
1093 if (!error) {
1094 if (vma->vm_flags & VM_LOCKED)
1095 mm->locked_vm += grow;
1096 vm_stat_account(mm, vma->vm_flags, grow);
1097 anon_vma_interval_tree_pre_update_vma(vma);
1098 vma->vm_end = address;
1099 /* Overwrite old entry in mtree. */
1100 vma_iter_store(&vmi, vma);
1101 anon_vma_interval_tree_post_update_vma(vma);
1102
1103 perf_event_mmap(vma);
1104 }
1105 }
1106 }
1107 anon_vma_unlock_write(vma->anon_vma);
1108 vma_iter_free(&vmi);
1109 validate_mm(mm);
1110 return error;
1111 }
1112 #endif /* CONFIG_STACK_GROWSUP */
1113
1114 /*
1115 * vma is the first one with address < vma->vm_start. Have to extend vma.
1116 * mmap_lock held for writing.
1117 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)1118 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1119 {
1120 struct mm_struct *mm = vma->vm_mm;
1121 struct vm_area_struct *prev;
1122 int error = 0;
1123 VMA_ITERATOR(vmi, mm, vma->vm_start);
1124
1125 if (!(vma->vm_flags & VM_GROWSDOWN))
1126 return -EFAULT;
1127
1128 mmap_assert_write_locked(mm);
1129
1130 address &= PAGE_MASK;
1131 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1132 return -EPERM;
1133
1134 /* Enforce stack_guard_gap */
1135 prev = vma_prev(&vmi);
1136 /* Check that both stack segments have the same anon_vma? */
1137 if (prev) {
1138 if (!(prev->vm_flags & VM_GROWSDOWN) &&
1139 vma_is_accessible(prev) &&
1140 (address - prev->vm_end < stack_guard_gap))
1141 return -ENOMEM;
1142 }
1143
1144 if (prev)
1145 vma_iter_next_range_limit(&vmi, vma->vm_start);
1146
1147 vma_iter_config(&vmi, address, vma->vm_end);
1148 if (vma_iter_prealloc(&vmi, vma))
1149 return -ENOMEM;
1150
1151 /* We must make sure the anon_vma is allocated. */
1152 if (unlikely(anon_vma_prepare(vma))) {
1153 vma_iter_free(&vmi);
1154 return -ENOMEM;
1155 }
1156
1157 /* Lock the VMA before expanding to prevent concurrent page faults */
1158 vma_start_write(vma);
1159 /* We update the anon VMA tree. */
1160 anon_vma_lock_write(vma->anon_vma);
1161
1162 /* Somebody else might have raced and expanded it already */
1163 if (address < vma->vm_start) {
1164 unsigned long size, grow;
1165
1166 size = vma->vm_end - address;
1167 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1168
1169 error = -ENOMEM;
1170 if (grow <= vma->vm_pgoff) {
1171 error = acct_stack_growth(vma, size, grow);
1172 if (!error) {
1173 if (vma->vm_flags & VM_LOCKED)
1174 mm->locked_vm += grow;
1175 vm_stat_account(mm, vma->vm_flags, grow);
1176 anon_vma_interval_tree_pre_update_vma(vma);
1177 vma->vm_start = address;
1178 vma->vm_pgoff -= grow;
1179 /* Overwrite old entry in mtree. */
1180 vma_iter_store(&vmi, vma);
1181 anon_vma_interval_tree_post_update_vma(vma);
1182
1183 perf_event_mmap(vma);
1184 }
1185 }
1186 }
1187 anon_vma_unlock_write(vma->anon_vma);
1188 vma_iter_free(&vmi);
1189 validate_mm(mm);
1190 return error;
1191 }
1192
1193 /* enforced gap between the expanding stack and other mappings. */
1194 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1195
cmdline_parse_stack_guard_gap(char * p)1196 static int __init cmdline_parse_stack_guard_gap(char *p)
1197 {
1198 unsigned long val;
1199 char *endptr;
1200
1201 val = simple_strtoul(p, &endptr, 10);
1202 if (!*endptr)
1203 stack_guard_gap = val << PAGE_SHIFT;
1204
1205 return 1;
1206 }
1207 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1208
1209 #ifdef CONFIG_STACK_GROWSUP
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)1210 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1211 {
1212 return expand_upwards(vma, address);
1213 }
1214
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)1215 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1216 {
1217 struct vm_area_struct *vma, *prev;
1218
1219 addr &= PAGE_MASK;
1220 vma = find_vma_prev(mm, addr, &prev);
1221 if (vma && (vma->vm_start <= addr))
1222 return vma;
1223 if (!prev)
1224 return NULL;
1225 if (expand_stack_locked(prev, addr))
1226 return NULL;
1227 if (prev->vm_flags & VM_LOCKED)
1228 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1229 return prev;
1230 }
1231 #else
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)1232 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1233 {
1234 return expand_downwards(vma, address);
1235 }
1236
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)1237 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1238 {
1239 struct vm_area_struct *vma;
1240 unsigned long start;
1241
1242 addr &= PAGE_MASK;
1243 vma = find_vma(mm, addr);
1244 if (!vma)
1245 return NULL;
1246 if (vma->vm_start <= addr)
1247 return vma;
1248 start = vma->vm_start;
1249 if (expand_stack_locked(vma, addr))
1250 return NULL;
1251 if (vma->vm_flags & VM_LOCKED)
1252 populate_vma_page_range(vma, addr, start, NULL);
1253 return vma;
1254 }
1255 #endif
1256
1257 #if defined(CONFIG_STACK_GROWSUP)
1258
1259 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1260 #define vma_expand_down(vma, addr) (-EFAULT)
1261
1262 #else
1263
1264 #define vma_expand_up(vma,addr) (-EFAULT)
1265 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1266
1267 #endif
1268
1269 /*
1270 * expand_stack(): legacy interface for page faulting. Don't use unless
1271 * you have to.
1272 *
1273 * This is called with the mm locked for reading, drops the lock, takes
1274 * the lock for writing, tries to look up a vma again, expands it if
1275 * necessary, and downgrades the lock to reading again.
1276 *
1277 * If no vma is found or it can't be expanded, it returns NULL and has
1278 * dropped the lock.
1279 */
expand_stack(struct mm_struct * mm,unsigned long addr)1280 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1281 {
1282 struct vm_area_struct *vma, *prev;
1283
1284 mmap_read_unlock(mm);
1285 if (mmap_write_lock_killable(mm))
1286 return NULL;
1287
1288 vma = find_vma_prev(mm, addr, &prev);
1289 if (vma && vma->vm_start <= addr)
1290 goto success;
1291
1292 if (prev && !vma_expand_up(prev, addr)) {
1293 vma = prev;
1294 goto success;
1295 }
1296
1297 if (vma && !vma_expand_down(vma, addr))
1298 goto success;
1299
1300 mmap_write_unlock(mm);
1301 return NULL;
1302
1303 success:
1304 mmap_write_downgrade(mm);
1305 return vma;
1306 }
1307
1308 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1309 * @mm: The mm_struct
1310 * @start: The start address to munmap
1311 * @len: The length to be munmapped.
1312 * @uf: The userfaultfd list_head
1313 *
1314 * Return: 0 on success, error otherwise.
1315 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1316 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1317 struct list_head *uf)
1318 {
1319 VMA_ITERATOR(vmi, mm, start);
1320
1321 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1322 }
1323
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1324 unsigned long mmap_region(struct file *file, unsigned long addr,
1325 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1326 struct list_head *uf)
1327 {
1328 unsigned long ret;
1329 bool writable_file_mapping = false;
1330
1331 /* Check to see if MDWE is applicable. */
1332 if (map_deny_write_exec(vm_flags, vm_flags))
1333 return -EACCES;
1334
1335 /* Allow architectures to sanity-check the vm_flags. */
1336 if (!arch_validate_flags(vm_flags))
1337 return -EINVAL;
1338
1339 /* Map writable and ensure this isn't a sealed memfd. */
1340 if (file && is_shared_maywrite(vm_flags)) {
1341 int error = mapping_map_writable(file->f_mapping);
1342
1343 if (error)
1344 return error;
1345 writable_file_mapping = true;
1346 }
1347
1348 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
1349
1350 /* Clear our write mapping regardless of error. */
1351 if (writable_file_mapping)
1352 mapping_unmap_writable(file->f_mapping);
1353
1354 validate_mm(current->mm);
1355 return ret;
1356 }
1357
__vm_munmap(unsigned long start,size_t len,bool unlock)1358 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1359 {
1360 int ret;
1361 struct mm_struct *mm = current->mm;
1362 LIST_HEAD(uf);
1363 VMA_ITERATOR(vmi, mm, start);
1364
1365 if (mmap_write_lock_killable(mm))
1366 return -EINTR;
1367
1368 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1369 if (ret || !unlock)
1370 mmap_write_unlock(mm);
1371
1372 userfaultfd_unmap_complete(mm, &uf);
1373 return ret;
1374 }
1375
vm_munmap(unsigned long start,size_t len)1376 int vm_munmap(unsigned long start, size_t len)
1377 {
1378 return __vm_munmap(start, len, false);
1379 }
1380 EXPORT_SYMBOL(vm_munmap);
1381
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1382 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1383 {
1384 addr = untagged_addr(addr);
1385 return __vm_munmap(addr, len, true);
1386 }
1387
1388
1389 /*
1390 * Emulation of deprecated remap_file_pages() syscall.
1391 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)1392 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1393 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1394 {
1395
1396 struct mm_struct *mm = current->mm;
1397 struct vm_area_struct *vma;
1398 unsigned long populate = 0;
1399 unsigned long ret = -EINVAL;
1400 struct file *file;
1401 vm_flags_t vm_flags;
1402
1403 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1404 current->comm, current->pid);
1405
1406 if (prot)
1407 return ret;
1408 start = start & PAGE_MASK;
1409 size = size & PAGE_MASK;
1410
1411 if (start + size <= start)
1412 return ret;
1413
1414 /* Does pgoff wrap? */
1415 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1416 return ret;
1417
1418 if (mmap_read_lock_killable(mm))
1419 return -EINTR;
1420
1421 /*
1422 * Look up VMA under read lock first so we can perform the security
1423 * without holding locks (which can be problematic). We reacquire a
1424 * write lock later and check nothing changed underneath us.
1425 */
1426 vma = vma_lookup(mm, start);
1427
1428 if (!vma || !(vma->vm_flags & VM_SHARED)) {
1429 mmap_read_unlock(mm);
1430 return -EINVAL;
1431 }
1432
1433 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1434 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1435 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1436
1437 flags &= MAP_NONBLOCK;
1438 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1439 if (vma->vm_flags & VM_LOCKED)
1440 flags |= MAP_LOCKED;
1441
1442 /* Save vm_flags used to calculate prot and flags, and recheck later. */
1443 vm_flags = vma->vm_flags;
1444 file = get_file(vma->vm_file);
1445
1446 mmap_read_unlock(mm);
1447
1448 /* Call outside mmap_lock to be consistent with other callers. */
1449 ret = security_mmap_file(file, prot, flags);
1450 if (ret) {
1451 fput(file);
1452 return ret;
1453 }
1454
1455 ret = -EINVAL;
1456
1457 /* OK security check passed, take write lock + let it rip. */
1458 if (mmap_write_lock_killable(mm)) {
1459 fput(file);
1460 return -EINTR;
1461 }
1462
1463 vma = vma_lookup(mm, start);
1464
1465 if (!vma)
1466 goto out;
1467
1468 /* Make sure things didn't change under us. */
1469 if (vma->vm_flags != vm_flags)
1470 goto out;
1471 if (vma->vm_file != file)
1472 goto out;
1473
1474 if (start + size > vma->vm_end) {
1475 VMA_ITERATOR(vmi, mm, vma->vm_end);
1476 struct vm_area_struct *next, *prev = vma;
1477
1478 for_each_vma_range(vmi, next, start + size) {
1479 /* hole between vmas ? */
1480 if (next->vm_start != prev->vm_end)
1481 goto out;
1482
1483 if (next->vm_file != vma->vm_file)
1484 goto out;
1485
1486 if (next->vm_flags != vma->vm_flags)
1487 goto out;
1488
1489 if (start + size <= next->vm_end)
1490 break;
1491
1492 prev = next;
1493 }
1494
1495 if (!next)
1496 goto out;
1497 }
1498
1499 ret = do_mmap(vma->vm_file, start, size,
1500 prot, flags, 0, pgoff, &populate, NULL);
1501 out:
1502 mmap_write_unlock(mm);
1503 fput(file);
1504 if (populate)
1505 mm_populate(ret, populate);
1506 if (!IS_ERR_VALUE(ret))
1507 ret = 0;
1508 return ret;
1509 }
1510
1511 /*
1512 * do_brk_flags() - Increase the brk vma if the flags match.
1513 * @vmi: The vma iterator
1514 * @addr: The start address
1515 * @len: The length of the increase
1516 * @vma: The vma,
1517 * @flags: The VMA Flags
1518 *
1519 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
1520 * do not match then create a new anonymous VMA. Eventually we may be able to
1521 * do some brk-specific accounting here.
1522 */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,unsigned long flags)1523 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1524 unsigned long addr, unsigned long len, unsigned long flags)
1525 {
1526 struct mm_struct *mm = current->mm;
1527
1528 /*
1529 * Check against address space limits by the changed size
1530 * Note: This happens *after* clearing old mappings in some code paths.
1531 */
1532 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1533 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1534 return -ENOMEM;
1535
1536 if (mm->map_count > sysctl_max_map_count)
1537 return -ENOMEM;
1538
1539 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1540 return -ENOMEM;
1541
1542 /*
1543 * Expand the existing vma if possible; Note that singular lists do not
1544 * occur after forking, so the expand will only happen on new VMAs.
1545 */
1546 if (vma && vma->vm_end == addr) {
1547 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1548
1549 vmg.prev = vma;
1550 /* vmi is positioned at prev, which this mode expects. */
1551 vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
1552
1553 if (vma_merge_new_range(&vmg))
1554 goto out;
1555 else if (vmg_nomem(&vmg))
1556 goto unacct_fail;
1557 }
1558
1559 if (vma)
1560 vma_iter_next_range(vmi);
1561 /* create a vma struct for an anonymous mapping */
1562 vma = vm_area_alloc(mm);
1563 if (!vma)
1564 goto unacct_fail;
1565
1566 vma_set_anonymous(vma);
1567 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1568 vm_flags_init(vma, flags);
1569 vma->vm_page_prot = vm_get_page_prot(flags);
1570 vma_start_write(vma);
1571 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1572 goto mas_store_fail;
1573
1574 mm->map_count++;
1575 validate_mm(mm);
1576 ksm_add_vma(vma);
1577 out:
1578 perf_event_mmap(vma);
1579 mm->total_vm += len >> PAGE_SHIFT;
1580 mm->data_vm += len >> PAGE_SHIFT;
1581 if (flags & VM_LOCKED)
1582 mm->locked_vm += (len >> PAGE_SHIFT);
1583 vm_flags_set(vma, VM_SOFTDIRTY);
1584 return 0;
1585
1586 mas_store_fail:
1587 vm_area_free(vma);
1588 unacct_fail:
1589 vm_unacct_memory(len >> PAGE_SHIFT);
1590 return -ENOMEM;
1591 }
1592
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)1593 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1594 {
1595 struct mm_struct *mm = current->mm;
1596 struct vm_area_struct *vma = NULL;
1597 unsigned long len;
1598 int ret;
1599 bool populate;
1600 LIST_HEAD(uf);
1601 VMA_ITERATOR(vmi, mm, addr);
1602
1603 len = PAGE_ALIGN(request);
1604 if (len < request)
1605 return -ENOMEM;
1606 if (!len)
1607 return 0;
1608
1609 /* Until we need other flags, refuse anything except VM_EXEC. */
1610 if ((flags & (~VM_EXEC)) != 0)
1611 return -EINVAL;
1612
1613 if (mmap_write_lock_killable(mm))
1614 return -EINTR;
1615
1616 ret = check_brk_limits(addr, len);
1617 if (ret)
1618 goto limits_failed;
1619
1620 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1621 if (ret)
1622 goto munmap_failed;
1623
1624 vma = vma_prev(&vmi);
1625 ret = do_brk_flags(&vmi, vma, addr, len, flags);
1626 populate = ((mm->def_flags & VM_LOCKED) != 0);
1627 mmap_write_unlock(mm);
1628 userfaultfd_unmap_complete(mm, &uf);
1629 if (populate && !ret)
1630 mm_populate(addr, len);
1631 return ret;
1632
1633 munmap_failed:
1634 limits_failed:
1635 mmap_write_unlock(mm);
1636 return ret;
1637 }
1638 EXPORT_SYMBOL(vm_brk_flags);
1639
1640 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)1641 void exit_mmap(struct mm_struct *mm)
1642 {
1643 struct mmu_gather tlb;
1644 struct vm_area_struct *vma;
1645 unsigned long nr_accounted = 0;
1646 VMA_ITERATOR(vmi, mm, 0);
1647 int count = 0;
1648
1649 /* mm's last user has gone, and its about to be pulled down */
1650 mmu_notifier_release(mm);
1651
1652 mmap_read_lock(mm);
1653 arch_exit_mmap(mm);
1654
1655 vma = vma_next(&vmi);
1656 if (!vma || unlikely(xa_is_zero(vma))) {
1657 /* Can happen if dup_mmap() received an OOM */
1658 mmap_read_unlock(mm);
1659 mmap_write_lock(mm);
1660 goto destroy;
1661 }
1662
1663 lru_add_drain();
1664 flush_cache_mm(mm);
1665 tlb_gather_mmu_fullmm(&tlb, mm);
1666 /* update_hiwater_rss(mm) here? but nobody should be looking */
1667 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1668 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1669 mmap_read_unlock(mm);
1670
1671 /*
1672 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1673 * because the memory has been already freed.
1674 */
1675 set_bit(MMF_OOM_SKIP, &mm->flags);
1676 mmap_write_lock(mm);
1677 mt_clear_in_rcu(&mm->mm_mt);
1678 vma_iter_set(&vmi, vma->vm_end);
1679 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1680 USER_PGTABLES_CEILING, true);
1681 tlb_finish_mmu(&tlb);
1682
1683 /*
1684 * Walk the list again, actually closing and freeing it, with preemption
1685 * enabled, without holding any MM locks besides the unreachable
1686 * mmap_write_lock.
1687 */
1688 vma_iter_set(&vmi, vma->vm_end);
1689 do {
1690 if (vma->vm_flags & VM_ACCOUNT)
1691 nr_accounted += vma_pages(vma);
1692 remove_vma(vma, /* unreachable = */ true);
1693 count++;
1694 cond_resched();
1695 vma = vma_next(&vmi);
1696 } while (vma && likely(!xa_is_zero(vma)));
1697
1698 BUG_ON(count != mm->map_count);
1699
1700 trace_exit_mmap(mm);
1701 destroy:
1702 __mt_destroy(&mm->mm_mt);
1703 mmap_write_unlock(mm);
1704 vm_unacct_memory(nr_accounted);
1705 }
1706
1707 /* Insert vm structure into process list sorted by address
1708 * and into the inode's i_mmap tree. If vm_file is non-NULL
1709 * then i_mmap_rwsem is taken here.
1710 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)1711 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1712 {
1713 unsigned long charged = vma_pages(vma);
1714
1715
1716 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
1717 return -ENOMEM;
1718
1719 if ((vma->vm_flags & VM_ACCOUNT) &&
1720 security_vm_enough_memory_mm(mm, charged))
1721 return -ENOMEM;
1722
1723 /*
1724 * The vm_pgoff of a purely anonymous vma should be irrelevant
1725 * until its first write fault, when page's anon_vma and index
1726 * are set. But now set the vm_pgoff it will almost certainly
1727 * end up with (unless mremap moves it elsewhere before that
1728 * first wfault), so /proc/pid/maps tells a consistent story.
1729 *
1730 * By setting it to reflect the virtual start address of the
1731 * vma, merges and splits can happen in a seamless way, just
1732 * using the existing file pgoff checks and manipulations.
1733 * Similarly in do_mmap and in do_brk_flags.
1734 */
1735 if (vma_is_anonymous(vma)) {
1736 BUG_ON(vma->anon_vma);
1737 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1738 }
1739
1740 if (vma_link(mm, vma)) {
1741 if (vma->vm_flags & VM_ACCOUNT)
1742 vm_unacct_memory(charged);
1743 return -ENOMEM;
1744 }
1745
1746 return 0;
1747 }
1748
1749 /*
1750 * Return true if the calling process may expand its vm space by the passed
1751 * number of pages
1752 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)1753 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1754 {
1755 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1756 return false;
1757
1758 if (is_data_mapping(flags) &&
1759 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1760 /* Workaround for Valgrind */
1761 if (rlimit(RLIMIT_DATA) == 0 &&
1762 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1763 return true;
1764
1765 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1766 current->comm, current->pid,
1767 (mm->data_vm + npages) << PAGE_SHIFT,
1768 rlimit(RLIMIT_DATA),
1769 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1770
1771 if (!ignore_rlimit_data)
1772 return false;
1773 }
1774
1775 return true;
1776 }
1777
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)1778 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1779 {
1780 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1781
1782 if (is_exec_mapping(flags))
1783 mm->exec_vm += npages;
1784 else if (is_stack_mapping(flags))
1785 mm->stack_vm += npages;
1786 else if (is_data_mapping(flags))
1787 mm->data_vm += npages;
1788 }
1789
1790 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1791
1792 /*
1793 * Close hook, called for unmap() and on the old vma for mremap().
1794 *
1795 * Having a close hook prevents vma merging regardless of flags.
1796 */
special_mapping_close(struct vm_area_struct * vma)1797 static void special_mapping_close(struct vm_area_struct *vma)
1798 {
1799 const struct vm_special_mapping *sm = vma->vm_private_data;
1800
1801 if (sm->close)
1802 sm->close(sm, vma);
1803 }
1804
special_mapping_name(struct vm_area_struct * vma)1805 static const char *special_mapping_name(struct vm_area_struct *vma)
1806 {
1807 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1808 }
1809
special_mapping_mremap(struct vm_area_struct * new_vma)1810 static int special_mapping_mremap(struct vm_area_struct *new_vma)
1811 {
1812 struct vm_special_mapping *sm = new_vma->vm_private_data;
1813
1814 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1815 return -EFAULT;
1816
1817 if (sm->mremap)
1818 return sm->mremap(sm, new_vma);
1819
1820 return 0;
1821 }
1822
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)1823 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
1824 {
1825 /*
1826 * Forbid splitting special mappings - kernel has expectations over
1827 * the number of pages in mapping. Together with VM_DONTEXPAND
1828 * the size of vma should stay the same over the special mapping's
1829 * lifetime.
1830 */
1831 return -EINVAL;
1832 }
1833
1834 static const struct vm_operations_struct special_mapping_vmops = {
1835 .close = special_mapping_close,
1836 .fault = special_mapping_fault,
1837 .mremap = special_mapping_mremap,
1838 .name = special_mapping_name,
1839 /* vDSO code relies that VVAR can't be accessed remotely */
1840 .access = NULL,
1841 .may_split = special_mapping_split,
1842 };
1843
special_mapping_fault(struct vm_fault * vmf)1844 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
1845 {
1846 struct vm_area_struct *vma = vmf->vma;
1847 pgoff_t pgoff;
1848 struct page **pages;
1849 struct vm_special_mapping *sm = vma->vm_private_data;
1850
1851 if (sm->fault)
1852 return sm->fault(sm, vmf->vma, vmf);
1853
1854 pages = sm->pages;
1855
1856 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1857 pgoff--;
1858
1859 if (*pages) {
1860 struct page *page = *pages;
1861 get_page(page);
1862 vmf->page = page;
1863 return 0;
1864 }
1865
1866 return VM_FAULT_SIGBUS;
1867 }
1868
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)1869 static struct vm_area_struct *__install_special_mapping(
1870 struct mm_struct *mm,
1871 unsigned long addr, unsigned long len,
1872 unsigned long vm_flags, void *priv,
1873 const struct vm_operations_struct *ops)
1874 {
1875 int ret;
1876 struct vm_area_struct *vma;
1877
1878 vma = vm_area_alloc(mm);
1879 if (unlikely(vma == NULL))
1880 return ERR_PTR(-ENOMEM);
1881
1882 vma_set_range(vma, addr, addr + len, 0);
1883 vm_flags_init(vma, (vm_flags | mm->def_flags |
1884 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
1885 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1886
1887 vma->vm_ops = ops;
1888 vma->vm_private_data = priv;
1889
1890 ret = insert_vm_struct(mm, vma);
1891 if (ret)
1892 goto out;
1893
1894 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
1895
1896 perf_event_mmap(vma);
1897
1898 return vma;
1899
1900 out:
1901 vm_area_free(vma);
1902 return ERR_PTR(ret);
1903 }
1904
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)1905 bool vma_is_special_mapping(const struct vm_area_struct *vma,
1906 const struct vm_special_mapping *sm)
1907 {
1908 return vma->vm_private_data == sm &&
1909 vma->vm_ops == &special_mapping_vmops;
1910 }
1911
1912 /*
1913 * Called with mm->mmap_lock held for writing.
1914 * Insert a new vma covering the given region, with the given flags.
1915 * Its pages are supplied by the given array of struct page *.
1916 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1917 * The region past the last page supplied will always produce SIGBUS.
1918 * The array pointer and the pages it points to are assumed to stay alive
1919 * for as long as this mapping might exist.
1920 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)1921 struct vm_area_struct *_install_special_mapping(
1922 struct mm_struct *mm,
1923 unsigned long addr, unsigned long len,
1924 unsigned long vm_flags, const struct vm_special_mapping *spec)
1925 {
1926 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
1927 &special_mapping_vmops);
1928 }
1929
1930 /*
1931 * initialise the percpu counter for VM
1932 */
mmap_init(void)1933 void __init mmap_init(void)
1934 {
1935 int ret;
1936
1937 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1938 VM_BUG_ON(ret);
1939 }
1940
1941 /*
1942 * Initialise sysctl_user_reserve_kbytes.
1943 *
1944 * This is intended to prevent a user from starting a single memory hogging
1945 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1946 * mode.
1947 *
1948 * The default value is min(3% of free memory, 128MB)
1949 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1950 */
init_user_reserve(void)1951 static int init_user_reserve(void)
1952 {
1953 unsigned long free_kbytes;
1954
1955 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1956
1957 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1958 return 0;
1959 }
1960 subsys_initcall(init_user_reserve);
1961
1962 /*
1963 * Initialise sysctl_admin_reserve_kbytes.
1964 *
1965 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1966 * to log in and kill a memory hogging process.
1967 *
1968 * Systems with more than 256MB will reserve 8MB, enough to recover
1969 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1970 * only reserve 3% of free pages by default.
1971 */
init_admin_reserve(void)1972 static int init_admin_reserve(void)
1973 {
1974 unsigned long free_kbytes;
1975
1976 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1977
1978 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
1979 return 0;
1980 }
1981 subsys_initcall(init_admin_reserve);
1982
1983 /*
1984 * Reinititalise user and admin reserves if memory is added or removed.
1985 *
1986 * The default user reserve max is 128MB, and the default max for the
1987 * admin reserve is 8MB. These are usually, but not always, enough to
1988 * enable recovery from a memory hogging process using login/sshd, a shell,
1989 * and tools like top. It may make sense to increase or even disable the
1990 * reserve depending on the existence of swap or variations in the recovery
1991 * tools. So, the admin may have changed them.
1992 *
1993 * If memory is added and the reserves have been eliminated or increased above
1994 * the default max, then we'll trust the admin.
1995 *
1996 * If memory is removed and there isn't enough free memory, then we
1997 * need to reset the reserves.
1998 *
1999 * Otherwise keep the reserve set by the admin.
2000 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)2001 static int reserve_mem_notifier(struct notifier_block *nb,
2002 unsigned long action, void *data)
2003 {
2004 unsigned long tmp, free_kbytes;
2005
2006 switch (action) {
2007 case MEM_ONLINE:
2008 /* Default max is 128MB. Leave alone if modified by operator. */
2009 tmp = sysctl_user_reserve_kbytes;
2010 if (tmp > 0 && tmp < SZ_128K)
2011 init_user_reserve();
2012
2013 /* Default max is 8MB. Leave alone if modified by operator. */
2014 tmp = sysctl_admin_reserve_kbytes;
2015 if (tmp > 0 && tmp < SZ_8K)
2016 init_admin_reserve();
2017
2018 break;
2019 case MEM_OFFLINE:
2020 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2021
2022 if (sysctl_user_reserve_kbytes > free_kbytes) {
2023 init_user_reserve();
2024 pr_info("vm.user_reserve_kbytes reset to %lu\n",
2025 sysctl_user_reserve_kbytes);
2026 }
2027
2028 if (sysctl_admin_reserve_kbytes > free_kbytes) {
2029 init_admin_reserve();
2030 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2031 sysctl_admin_reserve_kbytes);
2032 }
2033 break;
2034 default:
2035 break;
2036 }
2037 return NOTIFY_OK;
2038 }
2039
init_reserve_notifier(void)2040 static int __meminit init_reserve_notifier(void)
2041 {
2042 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2043 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2044
2045 return 0;
2046 }
2047 subsys_initcall(init_reserve_notifier);
2048
2049 /*
2050 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2051 * this VMA and its relocated range, which will now reside at [vma->vm_start -
2052 * shift, vma->vm_end - shift).
2053 *
2054 * This function is almost certainly NOT what you want for anything other than
2055 * early executable temporary stack relocation.
2056 */
relocate_vma_down(struct vm_area_struct * vma,unsigned long shift)2057 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2058 {
2059 /*
2060 * The process proceeds as follows:
2061 *
2062 * 1) Use shift to calculate the new vma endpoints.
2063 * 2) Extend vma to cover both the old and new ranges. This ensures the
2064 * arguments passed to subsequent functions are consistent.
2065 * 3) Move vma's page tables to the new range.
2066 * 4) Free up any cleared pgd range.
2067 * 5) Shrink the vma to cover only the new range.
2068 */
2069
2070 struct mm_struct *mm = vma->vm_mm;
2071 unsigned long old_start = vma->vm_start;
2072 unsigned long old_end = vma->vm_end;
2073 unsigned long length = old_end - old_start;
2074 unsigned long new_start = old_start - shift;
2075 unsigned long new_end = old_end - shift;
2076 VMA_ITERATOR(vmi, mm, new_start);
2077 VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2078 struct vm_area_struct *next;
2079 struct mmu_gather tlb;
2080
2081 BUG_ON(new_start > new_end);
2082
2083 /*
2084 * ensure there are no vmas between where we want to go
2085 * and where we are
2086 */
2087 if (vma != vma_next(&vmi))
2088 return -EFAULT;
2089
2090 vma_iter_prev_range(&vmi);
2091 /*
2092 * cover the whole range: [new_start, old_end)
2093 */
2094 vmg.vma = vma;
2095 if (vma_expand(&vmg))
2096 return -ENOMEM;
2097
2098 /*
2099 * move the page tables downwards, on failure we rely on
2100 * process cleanup to remove whatever mess we made.
2101 */
2102 if (length != move_page_tables(vma, old_start,
2103 vma, new_start, length, false, true))
2104 return -ENOMEM;
2105
2106 lru_add_drain();
2107 tlb_gather_mmu(&tlb, mm);
2108 next = vma_next(&vmi);
2109 if (new_end > old_start) {
2110 /*
2111 * when the old and new regions overlap clear from new_end.
2112 */
2113 free_pgd_range(&tlb, new_end, old_end, new_end,
2114 next ? next->vm_start : USER_PGTABLES_CEILING);
2115 } else {
2116 /*
2117 * otherwise, clean from old_start; this is done to not touch
2118 * the address space in [new_end, old_start) some architectures
2119 * have constraints on va-space that make this illegal (IA64) -
2120 * for the others its just a little faster.
2121 */
2122 free_pgd_range(&tlb, old_start, old_end, new_end,
2123 next ? next->vm_start : USER_PGTABLES_CEILING);
2124 }
2125 tlb_finish_mmu(&tlb);
2126
2127 vma_prev(&vmi);
2128 /* Shrink the vma to just the new range */
2129 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
2130 }
2131