xref: /linux/drivers/spi/spi-cadence-quadspi.c (revision d26143bb38e2546fe6f8c9860c13a88146ce5dd6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		4
35 
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_DEVICE_CS_CNT_MAX);
37 
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
43 #define CQSPI_SLOW_SRAM		BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
45 #define CQSPI_RD_NO_IRQ			BIT(6)
46 #define CQSPI_DMA_SET_MASK		BIT(7)
47 #define CQSPI_SUPPORT_DEVICE_RESET	BIT(8)
48 #define CQSPI_DISABLE_STIG_MODE		BIT(9)
49 #define CQSPI_DISABLE_RUNTIME_PM	BIT(10)
50 
51 /* Capabilities */
52 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
53 #define CQSPI_SUPPORTS_QUAD		BIT(1)
54 
55 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
56 
57 enum {
58 	CLK_QSPI_APB = 0,
59 	CLK_QSPI_AHB,
60 	CLK_QSPI_NUM,
61 };
62 
63 struct cqspi_st;
64 
65 struct cqspi_flash_pdata {
66 	struct cqspi_st	*cqspi;
67 	u32		clk_rate;
68 	u32		read_delay;
69 	u32		tshsl_ns;
70 	u32		tsd2d_ns;
71 	u32		tchsh_ns;
72 	u32		tslch_ns;
73 	u8		cs;
74 };
75 
76 struct cqspi_st {
77 	struct platform_device	*pdev;
78 	struct spi_controller	*host;
79 	struct clk		*clk;
80 	struct clk		*clks[CLK_QSPI_NUM];
81 	unsigned int		sclk;
82 
83 	void __iomem		*iobase;
84 	void __iomem		*ahb_base;
85 	resource_size_t		ahb_size;
86 	struct completion	transfer_complete;
87 
88 	struct dma_chan		*rx_chan;
89 	struct completion	rx_dma_complete;
90 	dma_addr_t		mmap_phys_base;
91 
92 	int			current_cs;
93 	unsigned long		master_ref_clk_hz;
94 	bool			is_decoded_cs;
95 	u32			fifo_depth;
96 	u32			fifo_width;
97 	u32			num_chipselect;
98 	bool			rclk_en;
99 	u32			trigger_address;
100 	u32			wr_delay;
101 	bool			use_direct_mode;
102 	bool			use_direct_mode_wr;
103 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
104 	bool			use_dma_read;
105 	u32			pd_dev_id;
106 	bool			wr_completion;
107 	bool			slow_sram;
108 	bool			apb_ahb_hazard;
109 
110 	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
111 	bool			disable_stig_mode;
112 	refcount_t		refcount;
113 	refcount_t		inflight_ops;
114 
115 	const struct cqspi_driver_platdata *ddata;
116 };
117 
118 struct cqspi_driver_platdata {
119 	u32 hwcaps_mask;
120 	u16 quirks;
121 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
122 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
123 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
124 	int (*jh7110_clk_init)(struct platform_device *pdev,
125 			       struct cqspi_st *cqspi);
126 };
127 
128 /* Operation timeout value */
129 #define CQSPI_TIMEOUT_MS			500
130 #define CQSPI_READ_TIMEOUT_MS			10
131 #define CQSPI_BUSYWAIT_TIMEOUT_US		500
132 
133 /* Runtime_pm autosuspend delay */
134 #define CQSPI_AUTOSUSPEND_TIMEOUT		2000
135 
136 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
137 #define CQSPI_DUMMY_BYTES_MAX			4
138 #define CQSPI_DUMMY_CLKS_MAX			31
139 
140 #define CQSPI_STIG_DATA_LEN_MAX			8
141 
142 /* Register map */
143 #define CQSPI_REG_CONFIG			0x00
144 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
145 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
146 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
147 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
148 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
149 #define CQSPI_REG_CONFIG_BAUD_LSB		19
150 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
151 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
152 #define CQSPI_REG_CONFIG_IDLE_LSB		31
153 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
154 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
155 #define CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK    BIT(5)
156 #define CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK    BIT(6)
157 
158 #define CQSPI_REG_RD_INSTR			0x04
159 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
160 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
161 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
162 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
163 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
164 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
165 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
166 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
167 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
168 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
169 
170 #define CQSPI_REG_WR_INSTR			0x08
171 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
172 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
173 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
174 
175 #define CQSPI_REG_DELAY				0x0C
176 #define CQSPI_REG_DELAY_TSLCH_LSB		0
177 #define CQSPI_REG_DELAY_TCHSH_LSB		8
178 #define CQSPI_REG_DELAY_TSD2D_LSB		16
179 #define CQSPI_REG_DELAY_TSHSL_LSB		24
180 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
181 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
182 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
183 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
184 
185 #define CQSPI_REG_READCAPTURE			0x10
186 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
187 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
188 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
189 
190 #define CQSPI_REG_SIZE				0x14
191 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
192 #define CQSPI_REG_SIZE_PAGE_LSB			4
193 #define CQSPI_REG_SIZE_BLOCK_LSB		16
194 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
195 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
196 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
197 
198 #define CQSPI_REG_SRAMPARTITION			0x18
199 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
200 
201 #define CQSPI_REG_DMA				0x20
202 #define CQSPI_REG_DMA_SINGLE_LSB		0
203 #define CQSPI_REG_DMA_BURST_LSB			8
204 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
205 #define CQSPI_REG_DMA_BURST_MASK		0xFF
206 
207 #define CQSPI_REG_REMAP				0x24
208 #define CQSPI_REG_MODE_BIT			0x28
209 
210 #define CQSPI_REG_SDRAMLEVEL			0x2C
211 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
212 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
213 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
214 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
215 
216 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
217 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
218 
219 #define CQSPI_REG_IRQSTATUS			0x40
220 #define CQSPI_REG_IRQMASK			0x44
221 
222 #define CQSPI_REG_INDIRECTRD			0x60
223 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
224 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
225 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
226 
227 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
228 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
229 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
230 
231 #define CQSPI_REG_CMDCTRL			0x90
232 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
233 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
234 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
235 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
236 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
237 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
238 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
239 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
240 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
241 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
242 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
243 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
244 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
245 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
246 
247 #define CQSPI_REG_INDIRECTWR			0x70
248 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
249 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
250 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
251 
252 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
253 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
254 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
255 
256 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
257 
258 #define CQSPI_REG_CMDADDRESS			0x94
259 #define CQSPI_REG_CMDREADDATALOWER		0xA0
260 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
261 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
262 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
263 
264 #define CQSPI_REG_POLLING_STATUS		0xB0
265 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
266 
267 #define CQSPI_REG_OP_EXT_LOWER			0xE0
268 #define CQSPI_REG_OP_EXT_READ_LSB		24
269 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
270 #define CQSPI_REG_OP_EXT_STIG_LSB		0
271 
272 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
273 
274 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
275 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
276 
277 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
278 
279 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
280 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
281 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
282 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
283 
284 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
285 
286 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
287 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
288 
289 /* Interrupt status bits */
290 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
291 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
292 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
293 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
294 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
295 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
296 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
297 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
298 
299 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
300 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
301 					 CQSPI_REG_IRQ_IND_COMP)
302 
303 #define CQSPI_IRQ_MASK_RD_SLOW_SRAM	(CQSPI_REG_IRQ_WATERMARK	| \
304 					 CQSPI_REG_IRQ_IND_COMP)
305 
306 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
307 					 CQSPI_REG_IRQ_WATERMARK	| \
308 					 CQSPI_REG_IRQ_UNDERFLOW)
309 
310 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
311 #define CQSPI_DMA_UNALIGN		0x3
312 
313 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
314 
cqspi_wait_for_bit(const struct cqspi_driver_platdata * ddata,void __iomem * reg,const u32 mask,bool clr,bool busywait)315 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
316 			      void __iomem *reg, const u32 mask, bool clr,
317 			      bool busywait)
318 {
319 	u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
320 	u32 val;
321 
322 	if (busywait) {
323 		int ret = readl_relaxed_poll_timeout(reg, val,
324 						     (((clr ? ~val : val) & mask) == mask),
325 						     0, CQSPI_BUSYWAIT_TIMEOUT_US);
326 
327 		if (ret != -ETIMEDOUT)
328 			return ret;
329 
330 		timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
331 	}
332 
333 	return readl_relaxed_poll_timeout(reg, val,
334 					  (((clr ? ~val : val) & mask) == mask),
335 					  10, timeout_us);
336 }
337 
cqspi_is_idle(struct cqspi_st * cqspi)338 static bool cqspi_is_idle(struct cqspi_st *cqspi)
339 {
340 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
341 
342 	return reg & BIT(CQSPI_REG_CONFIG_IDLE_LSB);
343 }
344 
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)345 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
346 {
347 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
348 
349 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
350 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
351 }
352 
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)353 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
354 {
355 	u32 dma_status;
356 
357 	dma_status = readl(cqspi->iobase +
358 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
359 	writel(dma_status, cqspi->iobase +
360 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
361 
362 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
363 }
364 
cqspi_irq_handler(int this_irq,void * dev)365 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
366 {
367 	struct cqspi_st *cqspi = dev;
368 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
369 	unsigned int irq_status;
370 
371 	/* Read interrupt status */
372 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
373 
374 	/* Clear interrupt */
375 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
376 
377 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
378 		if (ddata->get_dma_status(cqspi)) {
379 			complete(&cqspi->transfer_complete);
380 			return IRQ_HANDLED;
381 		}
382 	}
383 
384 	else if (!cqspi->slow_sram)
385 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
386 	else
387 		irq_status &= CQSPI_IRQ_MASK_RD_SLOW_SRAM | CQSPI_IRQ_MASK_WR;
388 
389 	if (irq_status)
390 		complete(&cqspi->transfer_complete);
391 
392 	return IRQ_HANDLED;
393 }
394 
cqspi_calc_rdreg(const struct spi_mem_op * op)395 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
396 {
397 	u32 rdreg = 0;
398 
399 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
400 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
401 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
402 
403 	return rdreg;
404 }
405 
cqspi_calc_dummy(const struct spi_mem_op * op)406 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
407 {
408 	unsigned int dummy_clk;
409 
410 	if (!op->dummy.nbytes)
411 		return 0;
412 
413 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
414 	if (op->cmd.dtr)
415 		dummy_clk /= 2;
416 
417 	return dummy_clk;
418 }
419 
cqspi_wait_idle(struct cqspi_st * cqspi)420 static int cqspi_wait_idle(struct cqspi_st *cqspi)
421 {
422 	const unsigned int poll_idle_retry = 3;
423 	unsigned int count = 0;
424 	unsigned long timeout;
425 
426 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
427 	while (1) {
428 		/*
429 		 * Read few times in succession to ensure the controller
430 		 * is indeed idle, that is, the bit does not transition
431 		 * low again.
432 		 */
433 		if (cqspi_is_idle(cqspi))
434 			count++;
435 		else
436 			count = 0;
437 
438 		if (count >= poll_idle_retry)
439 			return 0;
440 
441 		if (time_after(jiffies, timeout)) {
442 			/* Timeout, in busy mode. */
443 			dev_err(&cqspi->pdev->dev,
444 				"QSPI is still busy after %dms timeout.\n",
445 				CQSPI_TIMEOUT_MS);
446 			return -ETIMEDOUT;
447 		}
448 
449 		cpu_relax();
450 	}
451 }
452 
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)453 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
454 {
455 	void __iomem *reg_base = cqspi->iobase;
456 	int ret;
457 
458 	/* Write the CMDCTRL without start execution. */
459 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
460 	/* Start execute */
461 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
462 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
463 
464 	/* Polling for completion. */
465 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
466 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
467 	if (ret) {
468 		dev_err(&cqspi->pdev->dev,
469 			"Flash command execution timed out.\n");
470 		return ret;
471 	}
472 
473 	/* Polling QSPI idle status. */
474 	return cqspi_wait_idle(cqspi);
475 }
476 
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)477 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
478 				  const struct spi_mem_op *op,
479 				  unsigned int shift)
480 {
481 	struct cqspi_st *cqspi = f_pdata->cqspi;
482 	void __iomem *reg_base = cqspi->iobase;
483 	unsigned int reg;
484 	u8 ext;
485 
486 	if (op->cmd.nbytes != 2)
487 		return -EINVAL;
488 
489 	/* Opcode extension is the LSB. */
490 	ext = op->cmd.opcode & 0xff;
491 
492 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
493 	reg &= ~(0xff << shift);
494 	reg |= ext << shift;
495 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
496 
497 	return 0;
498 }
499 
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)500 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
501 			    const struct spi_mem_op *op, unsigned int shift)
502 {
503 	struct cqspi_st *cqspi = f_pdata->cqspi;
504 	void __iomem *reg_base = cqspi->iobase;
505 	unsigned int reg;
506 	int ret;
507 
508 	reg = readl(reg_base + CQSPI_REG_CONFIG);
509 
510 	/*
511 	 * We enable dual byte opcode here. The callers have to set up the
512 	 * extension opcode based on which type of operation it is.
513 	 */
514 	if (op->cmd.dtr) {
515 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
516 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
517 
518 		/* Set up command opcode extension. */
519 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
520 		if (ret)
521 			return ret;
522 	} else {
523 		unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
524 		/* Shortcut if DTR is already disabled. */
525 		if ((reg & mask) == 0)
526 			return 0;
527 		reg &= ~mask;
528 	}
529 
530 	writel(reg, reg_base + CQSPI_REG_CONFIG);
531 
532 	return cqspi_wait_idle(cqspi);
533 }
534 
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)535 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
536 			      const struct spi_mem_op *op)
537 {
538 	struct cqspi_st *cqspi = f_pdata->cqspi;
539 	void __iomem *reg_base = cqspi->iobase;
540 	u8 *rxbuf = op->data.buf.in;
541 	u8 opcode;
542 	size_t n_rx = op->data.nbytes;
543 	unsigned int rdreg;
544 	unsigned int reg;
545 	unsigned int dummy_clk;
546 	size_t read_len;
547 	int status;
548 
549 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
550 	if (status)
551 		return status;
552 
553 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
554 		dev_err(&cqspi->pdev->dev,
555 			"Invalid input argument, len %zu rxbuf 0x%p\n",
556 			n_rx, rxbuf);
557 		return -EINVAL;
558 	}
559 
560 	if (op->cmd.dtr)
561 		opcode = op->cmd.opcode >> 8;
562 	else
563 		opcode = op->cmd.opcode;
564 
565 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
566 
567 	rdreg = cqspi_calc_rdreg(op);
568 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
569 
570 	dummy_clk = cqspi_calc_dummy(op);
571 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
572 		return -EOPNOTSUPP;
573 
574 	if (dummy_clk)
575 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
576 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
577 
578 	reg |= BIT(CQSPI_REG_CMDCTRL_RD_EN_LSB);
579 
580 	/* 0 means 1 byte. */
581 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
582 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
583 
584 	/* setup ADDR BIT field */
585 	if (op->addr.nbytes) {
586 		reg |= BIT(CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
587 		reg |= ((op->addr.nbytes - 1) &
588 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
589 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
590 
591 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
592 	}
593 
594 	status = cqspi_exec_flash_cmd(cqspi, reg);
595 	if (status)
596 		return status;
597 
598 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
599 
600 	/* Put the read value into rx_buf */
601 	read_len = (n_rx > 4) ? 4 : n_rx;
602 	memcpy(rxbuf, &reg, read_len);
603 	rxbuf += read_len;
604 
605 	if (n_rx > 4) {
606 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
607 
608 		read_len = n_rx - read_len;
609 		memcpy(rxbuf, &reg, read_len);
610 	}
611 
612 	/* Reset CMD_CTRL Reg once command read completes */
613 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
614 
615 	return 0;
616 }
617 
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)618 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
619 			       const struct spi_mem_op *op)
620 {
621 	struct cqspi_st *cqspi = f_pdata->cqspi;
622 	void __iomem *reg_base = cqspi->iobase;
623 	u8 opcode;
624 	const u8 *txbuf = op->data.buf.out;
625 	size_t n_tx = op->data.nbytes;
626 	unsigned int reg;
627 	unsigned int data;
628 	size_t write_len;
629 	int ret;
630 
631 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
632 	if (ret)
633 		return ret;
634 
635 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
636 		dev_err(&cqspi->pdev->dev,
637 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
638 			n_tx, txbuf);
639 		return -EINVAL;
640 	}
641 
642 	reg = cqspi_calc_rdreg(op);
643 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
644 
645 	if (op->cmd.dtr)
646 		opcode = op->cmd.opcode >> 8;
647 	else
648 		opcode = op->cmd.opcode;
649 
650 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
651 
652 	if (op->addr.nbytes) {
653 		reg |= BIT(CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
654 		reg |= ((op->addr.nbytes - 1) &
655 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
656 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
657 
658 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
659 	}
660 
661 	if (n_tx) {
662 		reg |= BIT(CQSPI_REG_CMDCTRL_WR_EN_LSB);
663 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
664 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
665 		data = 0;
666 		write_len = (n_tx > 4) ? 4 : n_tx;
667 		memcpy(&data, txbuf, write_len);
668 		txbuf += write_len;
669 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
670 
671 		if (n_tx > 4) {
672 			data = 0;
673 			write_len = n_tx - 4;
674 			memcpy(&data, txbuf, write_len);
675 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
676 		}
677 	}
678 
679 	ret = cqspi_exec_flash_cmd(cqspi, reg);
680 
681 	/* Reset CMD_CTRL Reg once command write completes */
682 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
683 
684 	return ret;
685 }
686 
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)687 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
688 			    const struct spi_mem_op *op)
689 {
690 	struct cqspi_st *cqspi = f_pdata->cqspi;
691 	void __iomem *reg_base = cqspi->iobase;
692 	unsigned int dummy_clk = 0;
693 	unsigned int reg;
694 	int ret;
695 	u8 opcode;
696 
697 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
698 	if (ret)
699 		return ret;
700 
701 	if (op->cmd.dtr)
702 		opcode = op->cmd.opcode >> 8;
703 	else
704 		opcode = op->cmd.opcode;
705 
706 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
707 	reg |= cqspi_calc_rdreg(op);
708 
709 	/* Setup dummy clock cycles */
710 	dummy_clk = cqspi_calc_dummy(op);
711 
712 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
713 		return -EOPNOTSUPP;
714 
715 	if (dummy_clk)
716 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
717 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
718 
719 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
720 
721 	/* Set address width */
722 	reg = readl(reg_base + CQSPI_REG_SIZE);
723 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
724 	reg |= (op->addr.nbytes - 1);
725 	writel(reg, reg_base + CQSPI_REG_SIZE);
726 	readl(reg_base + CQSPI_REG_SIZE); /* Flush posted write. */
727 	return 0;
728 }
729 
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)730 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
731 				       u8 *rxbuf, loff_t from_addr,
732 				       const size_t n_rx)
733 {
734 	struct cqspi_st *cqspi = f_pdata->cqspi;
735 	bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
736 	struct device *dev = &cqspi->pdev->dev;
737 	void __iomem *reg_base = cqspi->iobase;
738 	void __iomem *ahb_base = cqspi->ahb_base;
739 	unsigned int remaining = n_rx;
740 	unsigned int mod_bytes = n_rx % 4;
741 	unsigned int bytes_to_read = 0;
742 	u8 *rxbuf_end = rxbuf + n_rx;
743 	int ret = 0;
744 
745 	if (!refcount_read(&cqspi->refcount))
746 		return -ENODEV;
747 
748 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
749 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
750 
751 	/* Clear all interrupts. */
752 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
753 
754 	/*
755 	 * On SoCFPGA platform reading the SRAM is slow due to
756 	 * hardware limitation and causing read interrupt storm to CPU,
757 	 * so enabling only watermark interrupt to disable all read
758 	 * interrupts later as we want to run "bytes to read" loop with
759 	 * all the read interrupts disabled for max performance.
760 	 */
761 
762 	if (use_irq && cqspi->slow_sram)
763 		writel(CQSPI_IRQ_MASK_RD_SLOW_SRAM, reg_base + CQSPI_REG_IRQMASK);
764 	else if (use_irq)
765 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
766 	else
767 		writel(0, reg_base + CQSPI_REG_IRQMASK);
768 
769 	reinit_completion(&cqspi->transfer_complete);
770 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
771 	       reg_base + CQSPI_REG_INDIRECTRD);
772 	readl(reg_base + CQSPI_REG_INDIRECTRD); /* Flush posted write. */
773 
774 	while (remaining > 0) {
775 		ret = 0;
776 		if (use_irq &&
777 		    !wait_for_completion_timeout(&cqspi->transfer_complete,
778 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
779 			ret = -ETIMEDOUT;
780 
781 		/*
782 		 * Prevent lost interrupt and race condition by reinitializing early.
783 		 * A spurious wakeup and another wait cycle can occur here,
784 		 * which is preferable to waiting until timeout if interrupt is lost.
785 		 */
786 		if (use_irq)
787 			reinit_completion(&cqspi->transfer_complete);
788 
789 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
790 
791 		if (ret && bytes_to_read == 0) {
792 			dev_err(dev, "Indirect read timeout, no bytes\n");
793 			goto failrd;
794 		}
795 
796 		while (bytes_to_read != 0) {
797 			unsigned int word_remain = round_down(remaining, 4);
798 
799 			bytes_to_read *= cqspi->fifo_width;
800 			bytes_to_read = bytes_to_read > remaining ?
801 					remaining : bytes_to_read;
802 			bytes_to_read = round_down(bytes_to_read, 4);
803 			/* Read 4 byte word chunks then single bytes */
804 			if (bytes_to_read) {
805 				ioread32_rep(ahb_base, rxbuf,
806 					     (bytes_to_read / 4));
807 			} else if (!word_remain && mod_bytes) {
808 				unsigned int temp = ioread32(ahb_base);
809 
810 				bytes_to_read = mod_bytes;
811 				memcpy(rxbuf, &temp, min((unsigned int)
812 							 (rxbuf_end - rxbuf),
813 							 bytes_to_read));
814 			}
815 			rxbuf += bytes_to_read;
816 			remaining -= bytes_to_read;
817 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
818 		}
819 	}
820 
821 	/* Check indirect done status */
822 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
823 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
824 	if (ret) {
825 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
826 		goto failrd;
827 	}
828 
829 	/* Disable interrupt */
830 	writel(0, reg_base + CQSPI_REG_IRQMASK);
831 
832 	/* Clear indirect completion status */
833 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
834 
835 	return 0;
836 
837 failrd:
838 	/* Disable interrupt */
839 	writel(0, reg_base + CQSPI_REG_IRQMASK);
840 
841 	/* Cancel the indirect read */
842 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
843 	       reg_base + CQSPI_REG_INDIRECTRD);
844 	return ret;
845 }
846 
cqspi_device_reset(struct cqspi_st * cqspi)847 static void cqspi_device_reset(struct cqspi_st *cqspi)
848 {
849 	u32 reg;
850 
851 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
852 	reg |= CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK;
853 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
854 	/*
855 	 * NOTE: Delay timing implementation is derived from
856 	 * spi_nor_hw_reset()
857 	 */
858 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
859 	usleep_range(1, 5);
860 	writel(reg | CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
861 	usleep_range(100, 150);
862 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
863 	usleep_range(1000, 1200);
864 }
865 
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)866 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
867 {
868 	void __iomem *reg_base = cqspi->iobase;
869 	unsigned int reg;
870 
871 	reg = readl(reg_base + CQSPI_REG_CONFIG);
872 
873 	if (enable)
874 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
875 	else
876 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
877 
878 	writel(reg, reg_base + CQSPI_REG_CONFIG);
879 }
880 
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)881 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
882 					  u_char *rxbuf, loff_t from_addr,
883 					  size_t n_rx)
884 {
885 	struct cqspi_st *cqspi = f_pdata->cqspi;
886 	struct device *dev = &cqspi->pdev->dev;
887 	void __iomem *reg_base = cqspi->iobase;
888 	u32 reg, bytes_to_dma;
889 	loff_t addr = from_addr;
890 	void *buf = rxbuf;
891 	dma_addr_t dma_addr;
892 	u8 bytes_rem;
893 	int ret = 0;
894 
895 	bytes_rem = n_rx % 4;
896 	bytes_to_dma = (n_rx - bytes_rem);
897 
898 	if (!bytes_to_dma)
899 		goto nondmard;
900 
901 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
902 	if (ret)
903 		return ret;
904 
905 	cqspi_controller_enable(cqspi, 0);
906 
907 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
908 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
909 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
910 
911 	cqspi_controller_enable(cqspi, 1);
912 
913 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
914 	if (dma_mapping_error(dev, dma_addr)) {
915 		dev_err(dev, "dma mapping failed\n");
916 		return -ENOMEM;
917 	}
918 
919 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
920 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
921 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
922 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
923 
924 	/* Clear all interrupts. */
925 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
926 
927 	/* Enable DMA done interrupt */
928 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
929 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
930 
931 	/* Default DMA periph configuration */
932 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
933 
934 	/* Configure DMA Dst address */
935 	writel(lower_32_bits(dma_addr),
936 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
937 	writel(upper_32_bits(dma_addr),
938 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
939 
940 	/* Configure DMA Src address */
941 	writel(cqspi->trigger_address, reg_base +
942 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
943 
944 	/* Set DMA destination size */
945 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
946 
947 	/* Set DMA destination control */
948 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
949 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
950 
951 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
952 	       reg_base + CQSPI_REG_INDIRECTRD);
953 
954 	reinit_completion(&cqspi->transfer_complete);
955 
956 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
957 					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
958 		ret = -ETIMEDOUT;
959 		goto failrd;
960 	}
961 
962 	/* Disable DMA interrupt */
963 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
964 
965 	/* Clear indirect completion status */
966 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
967 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
968 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
969 
970 	cqspi_controller_enable(cqspi, 0);
971 
972 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
973 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
974 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
975 
976 	cqspi_controller_enable(cqspi, 1);
977 
978 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
979 					PM_OSPI_MUX_SEL_LINEAR);
980 	if (ret)
981 		return ret;
982 
983 nondmard:
984 	if (bytes_rem) {
985 		addr += bytes_to_dma;
986 		buf += bytes_to_dma;
987 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
988 						  bytes_rem);
989 		if (ret)
990 			return ret;
991 	}
992 
993 	return 0;
994 
995 failrd:
996 	/* Disable DMA interrupt */
997 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
998 
999 	/* Cancel the indirect read */
1000 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1001 	       reg_base + CQSPI_REG_INDIRECTRD);
1002 
1003 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
1004 
1005 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1006 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
1007 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1008 
1009 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
1010 
1011 	return ret;
1012 }
1013 
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1014 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
1015 			     const struct spi_mem_op *op)
1016 {
1017 	unsigned int reg;
1018 	int ret;
1019 	struct cqspi_st *cqspi = f_pdata->cqspi;
1020 	void __iomem *reg_base = cqspi->iobase;
1021 	u8 opcode;
1022 
1023 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
1024 	if (ret)
1025 		return ret;
1026 
1027 	if (op->cmd.dtr)
1028 		opcode = op->cmd.opcode >> 8;
1029 	else
1030 		opcode = op->cmd.opcode;
1031 
1032 	/* Set opcode. */
1033 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1034 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1035 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1036 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1037 	reg = cqspi_calc_rdreg(op);
1038 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1039 
1040 	/*
1041 	 * SPI NAND flashes require the address of the status register to be
1042 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
1043 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1044 	 * command in DTR mode.
1045 	 *
1046 	 * But this controller does not support address phase in the Read SR
1047 	 * command when doing auto-HW polling. So, disable write completion
1048 	 * polling on the controller's side. spinand and spi-nor will take
1049 	 * care of polling the status register.
1050 	 */
1051 	if (cqspi->wr_completion) {
1052 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1053 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1054 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1055 		/*
1056 		 * DAC mode require auto polling as flash needs to be polled
1057 		 * for write completion in case of bubble in SPI transaction
1058 		 * due to slow CPU/DMA master.
1059 		 */
1060 		cqspi->use_direct_mode_wr = false;
1061 	}
1062 
1063 	reg = readl(reg_base + CQSPI_REG_SIZE);
1064 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1065 	reg |= (op->addr.nbytes - 1);
1066 	writel(reg, reg_base + CQSPI_REG_SIZE);
1067 	readl(reg_base + CQSPI_REG_SIZE); /* Flush posted write. */
1068 	return 0;
1069 }
1070 
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)1071 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1072 					loff_t to_addr, const u8 *txbuf,
1073 					const size_t n_tx)
1074 {
1075 	struct cqspi_st *cqspi = f_pdata->cqspi;
1076 	struct device *dev = &cqspi->pdev->dev;
1077 	void __iomem *reg_base = cqspi->iobase;
1078 	unsigned int remaining = n_tx;
1079 	unsigned int write_bytes;
1080 	int ret;
1081 
1082 	if (!refcount_read(&cqspi->refcount))
1083 		return -ENODEV;
1084 
1085 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1086 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1087 
1088 	/* Clear all interrupts. */
1089 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1090 
1091 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1092 
1093 	reinit_completion(&cqspi->transfer_complete);
1094 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1095 	       reg_base + CQSPI_REG_INDIRECTWR);
1096 	readl(reg_base + CQSPI_REG_INDIRECTWR); /* Flush posted write. */
1097 
1098 	/*
1099 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1100 	 * Controller programming sequence, couple of cycles of
1101 	 * QSPI_REF_CLK delay is required for the above bit to
1102 	 * be internally synchronized by the QSPI module. Provide 5
1103 	 * cycles of delay.
1104 	 */
1105 	if (cqspi->wr_delay)
1106 		ndelay(cqspi->wr_delay);
1107 
1108 	/*
1109 	 * If a hazard exists between the APB and AHB interfaces, perform a
1110 	 * dummy readback from the controller to ensure synchronization.
1111 	 */
1112 	if (cqspi->apb_ahb_hazard)
1113 		readl(reg_base + CQSPI_REG_INDIRECTWR);
1114 
1115 	while (remaining > 0) {
1116 		size_t write_words, mod_bytes;
1117 
1118 		write_bytes = remaining;
1119 		write_words = write_bytes / 4;
1120 		mod_bytes = write_bytes % 4;
1121 		/* Write 4 bytes at a time then single bytes. */
1122 		if (write_words) {
1123 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1124 			txbuf += (write_words * 4);
1125 		}
1126 		if (mod_bytes) {
1127 			unsigned int temp = 0xFFFFFFFF;
1128 
1129 			memcpy(&temp, txbuf, mod_bytes);
1130 			iowrite32(temp, cqspi->ahb_base);
1131 			txbuf += mod_bytes;
1132 		}
1133 
1134 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1135 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1136 			dev_err(dev, "Indirect write timeout\n");
1137 			ret = -ETIMEDOUT;
1138 			goto failwr;
1139 		}
1140 
1141 		remaining -= write_bytes;
1142 
1143 		if (remaining > 0)
1144 			reinit_completion(&cqspi->transfer_complete);
1145 	}
1146 
1147 	/* Check indirect done status */
1148 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1149 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1150 	if (ret) {
1151 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1152 		goto failwr;
1153 	}
1154 
1155 	/* Disable interrupt. */
1156 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1157 
1158 	/* Clear indirect completion status */
1159 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1160 
1161 	cqspi_wait_idle(cqspi);
1162 
1163 	return 0;
1164 
1165 failwr:
1166 	/* Disable interrupt. */
1167 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1168 
1169 	/* Cancel the indirect write */
1170 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1171 	       reg_base + CQSPI_REG_INDIRECTWR);
1172 	return ret;
1173 }
1174 
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1175 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1176 {
1177 	struct cqspi_st *cqspi = f_pdata->cqspi;
1178 	void __iomem *reg_base = cqspi->iobase;
1179 	unsigned int chip_select = f_pdata->cs;
1180 	unsigned int reg;
1181 
1182 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1183 	if (cqspi->is_decoded_cs) {
1184 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1185 	} else {
1186 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1187 
1188 		/* Convert CS if without decoder.
1189 		 * CS0 to 4b'1110
1190 		 * CS1 to 4b'1101
1191 		 * CS2 to 4b'1011
1192 		 * CS3 to 4b'0111
1193 		 */
1194 		chip_select = 0xF & ~BIT(chip_select);
1195 	}
1196 
1197 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1198 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1199 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1200 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1201 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1202 }
1203 
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1204 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1205 					   const unsigned int ns_val)
1206 {
1207 	unsigned int ticks;
1208 
1209 	ticks = ref_clk_hz / 1000;	/* kHz */
1210 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1211 
1212 	return ticks;
1213 }
1214 
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1215 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1216 {
1217 	struct cqspi_st *cqspi = f_pdata->cqspi;
1218 	void __iomem *iobase = cqspi->iobase;
1219 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1220 	unsigned int tshsl, tchsh, tslch, tsd2d;
1221 	unsigned int reg;
1222 	unsigned int tsclk;
1223 
1224 	/* calculate the number of ref ticks for one sclk tick */
1225 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1226 
1227 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1228 	/* this particular value must be at least one sclk */
1229 	if (tshsl < tsclk)
1230 		tshsl = tsclk;
1231 
1232 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1233 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1234 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1235 
1236 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1237 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1238 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1239 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1240 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1241 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1242 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1243 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1244 	writel(reg, iobase + CQSPI_REG_DELAY);
1245 }
1246 
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1247 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1248 {
1249 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1250 	void __iomem *reg_base = cqspi->iobase;
1251 	u32 reg, div;
1252 
1253 	/* Recalculate the baudrate divisor based on QSPI specification. */
1254 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1255 
1256 	/* Maximum baud divisor */
1257 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1258 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1259 		dev_warn(&cqspi->pdev->dev,
1260 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1261 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1262 	}
1263 
1264 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1265 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1266 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1267 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1268 }
1269 
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1270 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1271 				   const bool bypass,
1272 				   const unsigned int delay)
1273 {
1274 	void __iomem *reg_base = cqspi->iobase;
1275 	unsigned int reg;
1276 
1277 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1278 
1279 	if (bypass)
1280 		reg |= BIT(CQSPI_REG_READCAPTURE_BYPASS_LSB);
1281 	else
1282 		reg &= ~BIT(CQSPI_REG_READCAPTURE_BYPASS_LSB);
1283 
1284 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1285 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1286 
1287 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1288 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1289 
1290 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1291 }
1292 
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1293 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1294 			    unsigned long sclk)
1295 {
1296 	struct cqspi_st *cqspi = f_pdata->cqspi;
1297 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1298 	int switch_ck = (cqspi->sclk != sclk);
1299 
1300 	if (switch_cs || switch_ck)
1301 		cqspi_controller_enable(cqspi, 0);
1302 
1303 	/* Switch chip select. */
1304 	if (switch_cs) {
1305 		cqspi->current_cs = f_pdata->cs;
1306 		cqspi_chipselect(f_pdata);
1307 	}
1308 
1309 	/* Setup baudrate divisor and delays */
1310 	if (switch_ck) {
1311 		cqspi->sclk = sclk;
1312 		cqspi_config_baudrate_div(cqspi);
1313 		cqspi_delay(f_pdata);
1314 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1315 				       f_pdata->read_delay);
1316 	}
1317 
1318 	if (switch_cs || switch_ck)
1319 		cqspi_controller_enable(cqspi, 1);
1320 }
1321 
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1322 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1323 			   const struct spi_mem_op *op)
1324 {
1325 	struct cqspi_st *cqspi = f_pdata->cqspi;
1326 	loff_t to = op->addr.val;
1327 	size_t len = op->data.nbytes;
1328 	const u_char *buf = op->data.buf.out;
1329 	int ret;
1330 
1331 	ret = cqspi_write_setup(f_pdata, op);
1332 	if (ret)
1333 		return ret;
1334 
1335 	/*
1336 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1337 	 * address (all 0s) with the read status register command in DTR mode.
1338 	 * But this controller does not support sending dummy address bytes to
1339 	 * the flash when it is polling the write completion register in DTR
1340 	 * mode. So, we can not use direct mode when in DTR mode for writing
1341 	 * data.
1342 	 */
1343 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1344 	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1345 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1346 		return cqspi_wait_idle(cqspi);
1347 	}
1348 
1349 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1350 }
1351 
cqspi_rx_dma_callback(void * param)1352 static void cqspi_rx_dma_callback(void *param)
1353 {
1354 	struct cqspi_st *cqspi = param;
1355 
1356 	complete(&cqspi->rx_dma_complete);
1357 }
1358 
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1359 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1360 				     u_char *buf, loff_t from, size_t len)
1361 {
1362 	struct cqspi_st *cqspi = f_pdata->cqspi;
1363 	struct device *dev = &cqspi->pdev->dev;
1364 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1365 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1366 	int ret = 0;
1367 	struct dma_async_tx_descriptor *tx;
1368 	dma_cookie_t cookie;
1369 	dma_addr_t dma_dst;
1370 	struct device *ddev;
1371 
1372 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1373 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1374 		return 0;
1375 	}
1376 
1377 	ddev = cqspi->rx_chan->device->dev;
1378 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1379 	if (dma_mapping_error(ddev, dma_dst)) {
1380 		dev_err(dev, "dma mapping failed\n");
1381 		return -ENOMEM;
1382 	}
1383 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1384 				       len, flags);
1385 	if (!tx) {
1386 		dev_err(dev, "device_prep_dma_memcpy error\n");
1387 		ret = -EIO;
1388 		goto err_unmap;
1389 	}
1390 
1391 	tx->callback = cqspi_rx_dma_callback;
1392 	tx->callback_param = cqspi;
1393 	cookie = tx->tx_submit(tx);
1394 	reinit_completion(&cqspi->rx_dma_complete);
1395 
1396 	ret = dma_submit_error(cookie);
1397 	if (ret) {
1398 		dev_err(dev, "dma_submit_error %d\n", cookie);
1399 		ret = -EIO;
1400 		goto err_unmap;
1401 	}
1402 
1403 	dma_async_issue_pending(cqspi->rx_chan);
1404 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1405 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1406 		dmaengine_terminate_sync(cqspi->rx_chan);
1407 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1408 		ret = -ETIMEDOUT;
1409 		goto err_unmap;
1410 	}
1411 
1412 err_unmap:
1413 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1414 
1415 	return ret;
1416 }
1417 
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1418 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1419 			  const struct spi_mem_op *op)
1420 {
1421 	struct cqspi_st *cqspi = f_pdata->cqspi;
1422 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1423 	loff_t from = op->addr.val;
1424 	size_t len = op->data.nbytes;
1425 	u_char *buf = op->data.buf.in;
1426 	u64 dma_align = (u64)(uintptr_t)buf;
1427 	int ret;
1428 
1429 	ret = cqspi_read_setup(f_pdata, op);
1430 	if (ret)
1431 		return ret;
1432 
1433 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1434 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1435 
1436 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1437 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1438 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1439 
1440 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1441 }
1442 
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1443 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1444 {
1445 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1446 	struct cqspi_flash_pdata *f_pdata;
1447 
1448 	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1449 	cqspi_configure(f_pdata, op->max_freq);
1450 
1451 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1452 	/*
1453 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1454 	 * which is unsupported on some flash devices during register
1455 	 * reads, prefer STIG mode for such small reads.
1456 	 */
1457 		if (!op->addr.nbytes ||
1458 		    (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1459 		     !cqspi->disable_stig_mode))
1460 			return cqspi_command_read(f_pdata, op);
1461 
1462 		return cqspi_read(f_pdata, op);
1463 	}
1464 
1465 	if (!op->addr.nbytes || !op->data.buf.out)
1466 		return cqspi_command_write(f_pdata, op);
1467 
1468 	return cqspi_write(f_pdata, op);
1469 }
1470 
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1471 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1472 {
1473 	int ret;
1474 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1475 	struct device *dev = &cqspi->pdev->dev;
1476 	const struct cqspi_driver_platdata *ddata = of_device_get_match_data(dev);
1477 
1478 	if (refcount_read(&cqspi->inflight_ops) == 0)
1479 		return -ENODEV;
1480 
1481 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
1482 		ret = pm_runtime_resume_and_get(dev);
1483 		if (ret) {
1484 			dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1485 			return ret;
1486 		}
1487 	}
1488 
1489 	if (!refcount_read(&cqspi->refcount))
1490 		return -EBUSY;
1491 
1492 	refcount_inc(&cqspi->inflight_ops);
1493 
1494 	if (!refcount_read(&cqspi->refcount)) {
1495 		if (refcount_read(&cqspi->inflight_ops))
1496 			refcount_dec(&cqspi->inflight_ops);
1497 		return -EBUSY;
1498 	}
1499 
1500 	ret = cqspi_mem_process(mem, op);
1501 
1502 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
1503 		pm_runtime_put_autosuspend(dev);
1504 
1505 	if (ret)
1506 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1507 
1508 	if (refcount_read(&cqspi->inflight_ops) > 1)
1509 		refcount_dec(&cqspi->inflight_ops);
1510 
1511 	return ret;
1512 }
1513 
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1514 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1515 				  const struct spi_mem_op *op)
1516 {
1517 	bool all_true, all_false;
1518 
1519 	/*
1520 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1521 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1522 	 */
1523 	all_true = op->cmd.dtr &&
1524 		   (!op->addr.nbytes || op->addr.dtr) &&
1525 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1526 		   (!op->data.nbytes || op->data.dtr);
1527 
1528 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1529 		    !op->data.dtr;
1530 
1531 	if (all_true) {
1532 		/* Right now we only support 8-8-8 DTR mode. */
1533 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1534 			return false;
1535 		if (op->addr.nbytes && op->addr.buswidth != 8)
1536 			return false;
1537 		if (op->data.nbytes && op->data.buswidth != 8)
1538 			return false;
1539 	} else if (!all_false) {
1540 		/* Mixed DTR modes are not supported. */
1541 		return false;
1542 	}
1543 
1544 	return spi_mem_default_supports_op(mem, op);
1545 }
1546 
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1547 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1548 				    struct cqspi_flash_pdata *f_pdata,
1549 				    struct device_node *np)
1550 {
1551 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1552 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1553 		return -ENXIO;
1554 	}
1555 
1556 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1557 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1558 		return -ENXIO;
1559 	}
1560 
1561 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1562 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1563 		return -ENXIO;
1564 	}
1565 
1566 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1567 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1568 		return -ENXIO;
1569 	}
1570 
1571 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1572 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1573 		return -ENXIO;
1574 	}
1575 
1576 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1577 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1578 		return -ENXIO;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
cqspi_of_get_pdata(struct cqspi_st * cqspi)1584 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1585 {
1586 	struct device *dev = &cqspi->pdev->dev;
1587 	struct device_node *np = dev->of_node;
1588 	u32 id[2];
1589 
1590 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1591 
1592 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1593 		/* Zero signals FIFO depth should be runtime detected. */
1594 		cqspi->fifo_depth = 0;
1595 	}
1596 
1597 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1598 		dev_err(dev, "couldn't determine fifo-width\n");
1599 		return -ENXIO;
1600 	}
1601 
1602 	if (of_property_read_u32(np, "cdns,trigger-address",
1603 				 &cqspi->trigger_address)) {
1604 		dev_err(dev, "couldn't determine trigger-address\n");
1605 		return -ENXIO;
1606 	}
1607 
1608 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1609 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1610 
1611 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1612 
1613 	if (!of_property_read_u32_array(np, "power-domains", id,
1614 					ARRAY_SIZE(id)))
1615 		cqspi->pd_dev_id = id[1];
1616 
1617 	return 0;
1618 }
1619 
cqspi_controller_init(struct cqspi_st * cqspi)1620 static void cqspi_controller_init(struct cqspi_st *cqspi)
1621 {
1622 	u32 reg;
1623 
1624 	/* Configure the remap address register, no remap */
1625 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1626 
1627 	/* Disable all interrupts. */
1628 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1629 
1630 	/* Configure the SRAM split to 1:1 . */
1631 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1632 
1633 	/* Load indirect trigger address. */
1634 	writel(cqspi->trigger_address,
1635 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1636 
1637 	/* Program read watermark -- 1/2 of the FIFO. */
1638 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1639 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1640 	/* Program write watermark -- 1/8 of the FIFO. */
1641 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1642 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1643 
1644 	/* Disable direct access controller */
1645 	if (!cqspi->use_direct_mode) {
1646 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1647 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1648 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1649 	}
1650 
1651 	/* Enable DMA interface */
1652 	if (cqspi->use_dma_read) {
1653 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1654 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1655 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1656 	}
1657 }
1658 
cqspi_controller_detect_fifo_depth(struct cqspi_st * cqspi)1659 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1660 {
1661 	struct device *dev = &cqspi->pdev->dev;
1662 	u32 reg, fifo_depth;
1663 
1664 	/*
1665 	 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1666 	 * the FIFO depth.
1667 	 */
1668 	writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1669 	reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1670 	fifo_depth = reg + 1;
1671 
1672 	/* FIFO depth of zero means no value from devicetree was provided. */
1673 	if (cqspi->fifo_depth == 0) {
1674 		cqspi->fifo_depth = fifo_depth;
1675 		dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1676 	} else if (fifo_depth != cqspi->fifo_depth) {
1677 		dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1678 			 fifo_depth, cqspi->fifo_depth);
1679 	}
1680 }
1681 
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1682 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1683 {
1684 	dma_cap_mask_t mask;
1685 
1686 	dma_cap_zero(mask);
1687 	dma_cap_set(DMA_MEMCPY, mask);
1688 
1689 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1690 	if (IS_ERR(cqspi->rx_chan)) {
1691 		int ret = PTR_ERR(cqspi->rx_chan);
1692 
1693 		cqspi->rx_chan = NULL;
1694 		if (ret == -ENODEV) {
1695 			/* DMA support is not mandatory */
1696 			dev_info(&cqspi->pdev->dev, "No Rx DMA available\n");
1697 			return 0;
1698 		}
1699 
1700 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1701 	}
1702 	init_completion(&cqspi->rx_dma_complete);
1703 
1704 	return 0;
1705 }
1706 
cqspi_get_name(struct spi_mem * mem)1707 static const char *cqspi_get_name(struct spi_mem *mem)
1708 {
1709 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1710 	struct device *dev = &cqspi->pdev->dev;
1711 
1712 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1713 			      spi_get_chipselect(mem->spi, 0));
1714 }
1715 
1716 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1717 	.exec_op = cqspi_exec_mem_op,
1718 	.get_name = cqspi_get_name,
1719 	.supports_op = cqspi_supports_mem_op,
1720 };
1721 
1722 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1723 	.dtr = true,
1724 	.per_op_freq = true,
1725 };
1726 
cqspi_setup_flash(struct cqspi_st * cqspi)1727 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1728 {
1729 	struct platform_device *pdev = cqspi->pdev;
1730 	struct device *dev = &pdev->dev;
1731 	struct cqspi_flash_pdata *f_pdata;
1732 	int ret, cs, max_cs = -1;
1733 
1734 	/* Get flash device data */
1735 	for_each_available_child_of_node_scoped(dev->of_node, np) {
1736 		ret = of_property_read_u32(np, "reg", &cs);
1737 		if (ret) {
1738 			dev_err(dev, "Couldn't determine chip select.\n");
1739 			return ret;
1740 		}
1741 
1742 		if (cs >= cqspi->num_chipselect) {
1743 			dev_err(dev, "Chip select %d out of range.\n", cs);
1744 			return -EINVAL;
1745 		}
1746 
1747 		max_cs = max_t(int, cs, max_cs);
1748 
1749 		f_pdata = &cqspi->f_pdata[cs];
1750 		f_pdata->cqspi = cqspi;
1751 		f_pdata->cs = cs;
1752 
1753 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1754 		if (ret)
1755 			return ret;
1756 	}
1757 
1758 	if (max_cs < 0) {
1759 		dev_err(dev, "No flash device declared\n");
1760 		return -ENODEV;
1761 	}
1762 
1763 	cqspi->num_chipselect = max_cs + 1;
1764 	return 0;
1765 }
1766 
cqspi_jh7110_clk_init(struct platform_device * pdev,struct cqspi_st * cqspi)1767 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1768 {
1769 	static struct clk_bulk_data qspiclk[] = {
1770 		{ .id = "apb" },
1771 		{ .id = "ahb" },
1772 	};
1773 
1774 	int ret = 0;
1775 
1776 	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1777 	if (ret) {
1778 		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1779 		return ret;
1780 	}
1781 
1782 	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1783 	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1784 
1785 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1786 	if (ret) {
1787 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1788 		return ret;
1789 	}
1790 
1791 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1792 	if (ret) {
1793 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1794 		goto disable_apb_clk;
1795 	}
1796 
1797 	cqspi->is_jh7110 = true;
1798 
1799 	return 0;
1800 
1801 disable_apb_clk:
1802 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1803 
1804 	return ret;
1805 }
1806 
cqspi_jh7110_disable_clk(struct platform_device * pdev,struct cqspi_st * cqspi)1807 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1808 {
1809 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1810 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1811 }
cqspi_probe(struct platform_device * pdev)1812 static int cqspi_probe(struct platform_device *pdev)
1813 {
1814 	const struct cqspi_driver_platdata *ddata;
1815 	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1816 	struct device *dev = &pdev->dev;
1817 	struct spi_controller *host;
1818 	struct resource *res_ahb;
1819 	struct cqspi_st *cqspi;
1820 	int ret;
1821 	int irq;
1822 
1823 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1824 	if (!host)
1825 		return -ENOMEM;
1826 
1827 	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1828 	host->mem_ops = &cqspi_mem_ops;
1829 	host->mem_caps = &cqspi_mem_caps;
1830 	host->dev.of_node = pdev->dev.of_node;
1831 
1832 	cqspi = spi_controller_get_devdata(host);
1833 
1834 	cqspi->pdev = pdev;
1835 	cqspi->host = host;
1836 	cqspi->is_jh7110 = false;
1837 	cqspi->ddata = ddata = of_device_get_match_data(dev);
1838 	platform_set_drvdata(pdev, cqspi);
1839 
1840 	/* Obtain configuration from OF. */
1841 	ret = cqspi_of_get_pdata(cqspi);
1842 	if (ret) {
1843 		dev_err(dev, "Cannot get mandatory OF data.\n");
1844 		return -ENODEV;
1845 	}
1846 
1847 	/* Obtain QSPI clock. */
1848 	cqspi->clk = devm_clk_get(dev, NULL);
1849 	if (IS_ERR(cqspi->clk)) {
1850 		dev_err(dev, "Cannot claim QSPI clock.\n");
1851 		ret = PTR_ERR(cqspi->clk);
1852 		return ret;
1853 	}
1854 
1855 	/* Obtain and remap controller address. */
1856 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1857 	if (IS_ERR(cqspi->iobase)) {
1858 		dev_err(dev, "Cannot remap controller address.\n");
1859 		ret = PTR_ERR(cqspi->iobase);
1860 		return ret;
1861 	}
1862 
1863 	/* Obtain and remap AHB address. */
1864 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1865 	if (IS_ERR(cqspi->ahb_base)) {
1866 		dev_err(dev, "Cannot remap AHB address.\n");
1867 		ret = PTR_ERR(cqspi->ahb_base);
1868 		return ret;
1869 	}
1870 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1871 	cqspi->ahb_size = resource_size(res_ahb);
1872 
1873 	init_completion(&cqspi->transfer_complete);
1874 
1875 	/* Obtain IRQ line. */
1876 	irq = platform_get_irq(pdev, 0);
1877 	if (irq < 0)
1878 		return -ENXIO;
1879 
1880 	ret = pm_runtime_set_active(dev);
1881 	if (ret)
1882 		return ret;
1883 
1884 
1885 	ret = clk_prepare_enable(cqspi->clk);
1886 	if (ret) {
1887 		dev_err(dev, "Cannot enable QSPI clock.\n");
1888 		goto probe_clk_failed;
1889 	}
1890 
1891 	/* Obtain QSPI reset control */
1892 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1893 	if (IS_ERR(rstc)) {
1894 		ret = PTR_ERR(rstc);
1895 		dev_err(dev, "Cannot get QSPI reset.\n");
1896 		goto probe_reset_failed;
1897 	}
1898 
1899 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1900 	if (IS_ERR(rstc_ocp)) {
1901 		ret = PTR_ERR(rstc_ocp);
1902 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1903 		goto probe_reset_failed;
1904 	}
1905 
1906 	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1907 		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1908 		if (IS_ERR(rstc_ref)) {
1909 			ret = PTR_ERR(rstc_ref);
1910 			dev_err(dev, "Cannot get QSPI REF reset.\n");
1911 			goto probe_reset_failed;
1912 		}
1913 		reset_control_assert(rstc_ref);
1914 		reset_control_deassert(rstc_ref);
1915 	}
1916 
1917 	reset_control_assert(rstc);
1918 	reset_control_deassert(rstc);
1919 
1920 	reset_control_assert(rstc_ocp);
1921 	reset_control_deassert(rstc_ocp);
1922 
1923 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1924 	host->max_speed_hz = cqspi->master_ref_clk_hz;
1925 
1926 	/* write completion is supported by default */
1927 	cqspi->wr_completion = true;
1928 
1929 	if (ddata) {
1930 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1931 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1932 						cqspi->master_ref_clk_hz);
1933 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1934 			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1935 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_QUAD)
1936 			host->mode_bits |= SPI_TX_QUAD;
1937 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1938 			cqspi->use_direct_mode = true;
1939 			cqspi->use_direct_mode_wr = true;
1940 		}
1941 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1942 			cqspi->use_dma_read = true;
1943 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1944 			cqspi->wr_completion = false;
1945 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1946 			cqspi->slow_sram = true;
1947 		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1948 			cqspi->apb_ahb_hazard = true;
1949 
1950 		if (ddata->jh7110_clk_init) {
1951 			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1952 			if (ret)
1953 				goto probe_reset_failed;
1954 		}
1955 		if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1956 			cqspi->disable_stig_mode = true;
1957 
1958 		if (ddata->quirks & CQSPI_DMA_SET_MASK) {
1959 			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1960 			if (ret)
1961 				goto probe_reset_failed;
1962 		}
1963 	}
1964 
1965 	refcount_set(&cqspi->refcount, 1);
1966 	refcount_set(&cqspi->inflight_ops, 1);
1967 
1968 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1969 			       pdev->name, cqspi);
1970 	if (ret) {
1971 		dev_err(dev, "Cannot request IRQ.\n");
1972 		goto probe_reset_failed;
1973 	}
1974 
1975 	cqspi_wait_idle(cqspi);
1976 	cqspi_controller_enable(cqspi, 0);
1977 	cqspi_controller_detect_fifo_depth(cqspi);
1978 	cqspi_controller_init(cqspi);
1979 	cqspi_controller_enable(cqspi, 1);
1980 	cqspi->current_cs = -1;
1981 	cqspi->sclk = 0;
1982 
1983 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
1984 		pm_runtime_enable(dev);
1985 		pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1986 		pm_runtime_use_autosuspend(dev);
1987 		pm_runtime_get_noresume(dev);
1988 	}
1989 
1990 	ret = cqspi_setup_flash(cqspi);
1991 	if (ret) {
1992 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1993 		goto probe_setup_failed;
1994 	}
1995 
1996 	host->num_chipselect = cqspi->num_chipselect;
1997 
1998 	if (ddata && (ddata->quirks & CQSPI_SUPPORT_DEVICE_RESET))
1999 		cqspi_device_reset(cqspi);
2000 
2001 	if (cqspi->use_direct_mode) {
2002 		ret = cqspi_request_mmap_dma(cqspi);
2003 		if (ret == -EPROBE_DEFER) {
2004 			dev_err_probe(&pdev->dev, ret, "Failed to request mmap DMA\n");
2005 			goto probe_setup_failed;
2006 		}
2007 	}
2008 
2009 	ret = spi_register_controller(host);
2010 	if (ret) {
2011 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
2012 		goto probe_setup_failed;
2013 	}
2014 
2015 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
2016 		pm_runtime_mark_last_busy(dev);
2017 		pm_runtime_put_autosuspend(dev);
2018 	}
2019 
2020 	return 0;
2021 probe_setup_failed:
2022 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
2023 		pm_runtime_disable(dev);
2024 	cqspi_controller_enable(cqspi, 0);
2025 probe_reset_failed:
2026 	if (cqspi->is_jh7110)
2027 		cqspi_jh7110_disable_clk(pdev, cqspi);
2028 
2029 	if (pm_runtime_get_sync(&pdev->dev) >= 0)
2030 		clk_disable_unprepare(cqspi->clk);
2031 probe_clk_failed:
2032 	return ret;
2033 }
2034 
cqspi_remove(struct platform_device * pdev)2035 static void cqspi_remove(struct platform_device *pdev)
2036 {
2037 	const struct cqspi_driver_platdata *ddata;
2038 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
2039 	struct device *dev = &pdev->dev;
2040 
2041 	ddata = of_device_get_match_data(dev);
2042 
2043 	refcount_set(&cqspi->refcount, 0);
2044 
2045 	if (!refcount_dec_and_test(&cqspi->inflight_ops))
2046 		cqspi_wait_idle(cqspi);
2047 
2048 	spi_unregister_controller(cqspi->host);
2049 	cqspi_controller_enable(cqspi, 0);
2050 
2051 	if (cqspi->rx_chan)
2052 		dma_release_channel(cqspi->rx_chan);
2053 
2054 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
2055 		if (pm_runtime_get_sync(&pdev->dev) >= 0)
2056 			clk_disable(cqspi->clk);
2057 
2058 	if (cqspi->is_jh7110)
2059 		cqspi_jh7110_disable_clk(pdev, cqspi);
2060 
2061 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
2062 		pm_runtime_put_sync(&pdev->dev);
2063 		pm_runtime_disable(&pdev->dev);
2064 	}
2065 }
2066 
cqspi_runtime_suspend(struct device * dev)2067 static int cqspi_runtime_suspend(struct device *dev)
2068 {
2069 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2070 
2071 	cqspi_controller_enable(cqspi, 0);
2072 	clk_disable_unprepare(cqspi->clk);
2073 	return 0;
2074 }
2075 
cqspi_runtime_resume(struct device * dev)2076 static int cqspi_runtime_resume(struct device *dev)
2077 {
2078 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2079 
2080 	clk_prepare_enable(cqspi->clk);
2081 	cqspi_wait_idle(cqspi);
2082 	cqspi_controller_enable(cqspi, 0);
2083 	cqspi_controller_init(cqspi);
2084 	cqspi_controller_enable(cqspi, 1);
2085 
2086 	cqspi->current_cs = -1;
2087 	cqspi->sclk = 0;
2088 	return 0;
2089 }
2090 
cqspi_suspend(struct device * dev)2091 static int cqspi_suspend(struct device *dev)
2092 {
2093 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2094 	int ret;
2095 
2096 	ret = spi_controller_suspend(cqspi->host);
2097 	if (ret)
2098 		return ret;
2099 
2100 	return pm_runtime_force_suspend(dev);
2101 }
2102 
cqspi_resume(struct device * dev)2103 static int cqspi_resume(struct device *dev)
2104 {
2105 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2106 	int ret;
2107 
2108 	ret = pm_runtime_force_resume(dev);
2109 	if (ret) {
2110 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2111 		return ret;
2112 	}
2113 
2114 	return spi_controller_resume(cqspi->host);
2115 }
2116 
2117 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2118 	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2119 	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2120 };
2121 
2122 static const struct cqspi_driver_platdata cdns_qspi = {
2123 	.quirks = CQSPI_DISABLE_DAC_MODE,
2124 };
2125 
2126 static const struct cqspi_driver_platdata k2g_qspi = {
2127 	.quirks = CQSPI_NEEDS_WR_DELAY,
2128 };
2129 
2130 static const struct cqspi_driver_platdata am654_ospi = {
2131 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL | CQSPI_SUPPORTS_QUAD,
2132 	.quirks = CQSPI_NEEDS_WR_DELAY,
2133 };
2134 
2135 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2136 	.quirks = CQSPI_DISABLE_DAC_MODE,
2137 };
2138 
2139 static const struct cqspi_driver_platdata socfpga_qspi = {
2140 	.quirks = CQSPI_DISABLE_DAC_MODE
2141 			| CQSPI_NO_SUPPORT_WR_COMPLETION
2142 			| CQSPI_SLOW_SRAM
2143 			| CQSPI_DISABLE_STIG_MODE
2144 			| CQSPI_DISABLE_RUNTIME_PM,
2145 };
2146 
2147 static const struct cqspi_driver_platdata versal_ospi = {
2148 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2149 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2150 			| CQSPI_DMA_SET_MASK,
2151 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2152 	.get_dma_status = cqspi_get_versal_dma_status,
2153 };
2154 
2155 static const struct cqspi_driver_platdata versal2_ospi = {
2156 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2157 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2158 			| CQSPI_DMA_SET_MASK
2159 			| CQSPI_SUPPORT_DEVICE_RESET,
2160 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2161 	.get_dma_status = cqspi_get_versal_dma_status,
2162 };
2163 
2164 static const struct cqspi_driver_platdata jh7110_qspi = {
2165 	.quirks = CQSPI_DISABLE_DAC_MODE,
2166 	.jh7110_clk_init = cqspi_jh7110_clk_init,
2167 };
2168 
2169 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2170 	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2171 };
2172 
2173 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2174 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2175 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2176 			CQSPI_RD_NO_IRQ,
2177 };
2178 
2179 static const struct of_device_id cqspi_dt_ids[] = {
2180 	{
2181 		.compatible = "cdns,qspi-nor",
2182 		.data = &cdns_qspi,
2183 	},
2184 	{
2185 		.compatible = "ti,k2g-qspi",
2186 		.data = &k2g_qspi,
2187 	},
2188 	{
2189 		.compatible = "ti,am654-ospi",
2190 		.data = &am654_ospi,
2191 	},
2192 	{
2193 		.compatible = "intel,lgm-qspi",
2194 		.data = &intel_lgm_qspi,
2195 	},
2196 	{
2197 		.compatible = "xlnx,versal-ospi-1.0",
2198 		.data = &versal_ospi,
2199 	},
2200 	{
2201 		.compatible = "intel,socfpga-qspi",
2202 		.data = &socfpga_qspi,
2203 	},
2204 	{
2205 		.compatible = "starfive,jh7110-qspi",
2206 		.data = &jh7110_qspi,
2207 	},
2208 	{
2209 		.compatible = "amd,pensando-elba-qspi",
2210 		.data = &pensando_cdns_qspi,
2211 	},
2212 	{
2213 		.compatible = "mobileye,eyeq5-ospi",
2214 		.data = &mobileye_eyeq5_ospi,
2215 	},
2216 	{
2217 		.compatible = "amd,versal2-ospi",
2218 		.data = &versal2_ospi,
2219 	},
2220 	{ /* end of table */ }
2221 };
2222 
2223 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2224 
2225 static struct platform_driver cqspi_platform_driver = {
2226 	.probe = cqspi_probe,
2227 	.remove = cqspi_remove,
2228 	.driver = {
2229 		.name = CQSPI_NAME,
2230 		.pm = pm_ptr(&cqspi_dev_pm_ops),
2231 		.of_match_table = cqspi_dt_ids,
2232 	},
2233 };
2234 
2235 module_platform_driver(cqspi_platform_driver);
2236 
2237 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2238 MODULE_LICENSE("GPL v2");
2239 MODULE_ALIAS("platform:" CQSPI_NAME);
2240 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2241 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2242 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2243 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2244 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2245