1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58
59 #include "workqueue_internal.h"
60
61 enum worker_pool_flags {
62 /*
63 * worker_pool flags
64 *
65 * A bound pool is either associated or disassociated with its CPU.
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 * be executing on any CPU. The pool behaves as an unbound one.
73 *
74 * Note that DISASSOCIATED should be flipped only while holding
75 * wq_pool_attach_mutex to avoid changing binding state while
76 * worker_attach_to_pool() is in progress.
77 *
78 * As there can only be one concurrent BH execution context per CPU, a
79 * BH pool is per-CPU and always DISASSOCIATED.
80 */
81 POOL_BH = 1 << 0, /* is a BH pool */
82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */
85 };
86
87 enum worker_flags {
88 /* worker flags */
89 WORKER_DIE = 1 << 1, /* die die die */
90 WORKER_IDLE = 1 << 2, /* is idle */
91 WORKER_PREP = 1 << 3, /* preparing to run works */
92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
94 WORKER_REBOUND = 1 << 8, /* worker was rebound */
95
96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
97 WORKER_UNBOUND | WORKER_REBOUND,
98 };
99
100 enum work_cancel_flags {
101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */
102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */
103 };
104
105 enum wq_internal_consts {
106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
107
108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
110
111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
113
114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
115 /* call for help after 10ms
116 (min two ticks) */
117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
118 CREATE_COOLDOWN = HZ, /* time to breath after fail */
119
120 /*
121 * Rescue workers are used only on emergencies and shared by
122 * all cpus. Give MIN_NICE.
123 */
124 RESCUER_NICE_LEVEL = MIN_NICE,
125 HIGHPRI_NICE_LEVEL = MIN_NICE,
126
127 WQ_NAME_LEN = 32,
128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130
131 /*
132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134 * msecs_to_jiffies() can't be an initializer.
135 */
136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS 10
138
139 /*
140 * Structure fields follow one of the following exclusion rules.
141 *
142 * I: Modifiable by initialization/destruction paths and read-only for
143 * everyone else.
144 *
145 * P: Preemption protected. Disabling preemption is enough and should
146 * only be modified and accessed from the local cpu.
147 *
148 * L: pool->lock protected. Access with pool->lock held.
149 *
150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151 * reads.
152 *
153 * K: Only modified by worker while holding pool->lock. Can be safely read by
154 * self, while holding pool->lock or from IRQ context if %current is the
155 * kworker.
156 *
157 * S: Only modified by worker self.
158 *
159 * A: wq_pool_attach_mutex protected.
160 *
161 * PL: wq_pool_mutex protected.
162 *
163 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
164 *
165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
166 *
167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
168 * RCU for reads.
169 *
170 * WQ: wq->mutex protected.
171 *
172 * WR: wq->mutex protected for writes. RCU protected for reads.
173 *
174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175 * with READ_ONCE() without locking.
176 *
177 * MD: wq_mayday_lock protected.
178 *
179 * WD: Used internally by the watchdog.
180 */
181
182 /* struct worker is defined in workqueue_internal.h */
183
184 struct worker_pool {
185 raw_spinlock_t lock; /* the pool lock */
186 int cpu; /* I: the associated cpu */
187 int node; /* I: the associated node ID */
188 int id; /* I: pool ID */
189 unsigned int flags; /* L: flags */
190
191 unsigned long watchdog_ts; /* L: watchdog timestamp */
192 bool cpu_stall; /* WD: stalled cpu bound pool */
193
194 /*
195 * The counter is incremented in a process context on the associated CPU
196 * w/ preemption disabled, and decremented or reset in the same context
197 * but w/ pool->lock held. The readers grab pool->lock and are
198 * guaranteed to see if the counter reached zero.
199 */
200 int nr_running;
201
202 struct list_head worklist; /* L: list of pending works */
203
204 int nr_workers; /* L: total number of workers */
205 int nr_idle; /* L: currently idle workers */
206
207 struct list_head idle_list; /* L: list of idle workers */
208 struct timer_list idle_timer; /* L: worker idle timeout */
209 struct work_struct idle_cull_work; /* L: worker idle cleanup */
210
211 struct timer_list mayday_timer; /* L: SOS timer for workers */
212
213 /* a workers is either on busy_hash or idle_list, or the manager */
214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 /* L: hash of busy workers */
216
217 struct worker *manager; /* L: purely informational */
218 struct list_head workers; /* A: attached workers */
219
220 struct ida worker_ida; /* worker IDs for task name */
221
222 struct workqueue_attrs *attrs; /* I: worker attributes */
223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
224 int refcnt; /* PL: refcnt for unbound pools */
225
226 /*
227 * Destruction of pool is RCU protected to allow dereferences
228 * from get_work_pool().
229 */
230 struct rcu_head rcu;
231 };
232
233 /*
234 * Per-pool_workqueue statistics. These can be monitored using
235 * tools/workqueue/wq_monitor.py.
236 */
237 enum pool_workqueue_stats {
238 PWQ_STAT_STARTED, /* work items started execution */
239 PWQ_STAT_COMPLETED, /* work items completed execution */
240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
244 PWQ_STAT_MAYDAY, /* maydays to rescuer */
245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
246
247 PWQ_NR_STATS,
248 };
249
250 /*
251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
252 * of work_struct->data are used for flags and the remaining high bits
253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
254 * number of flag bits.
255 */
256 struct pool_workqueue {
257 struct worker_pool *pool; /* I: the associated pool */
258 struct workqueue_struct *wq; /* I: the owning workqueue */
259 int work_color; /* L: current color */
260 int flush_color; /* L: flushing color */
261 int refcnt; /* L: reference count */
262 int nr_in_flight[WORK_NR_COLORS];
263 /* L: nr of in_flight works */
264 bool plugged; /* L: execution suspended */
265
266 /*
267 * nr_active management and WORK_STRUCT_INACTIVE:
268 *
269 * When pwq->nr_active >= max_active, new work item is queued to
270 * pwq->inactive_works instead of pool->worklist and marked with
271 * WORK_STRUCT_INACTIVE.
272 *
273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 * nr_active and all work items in pwq->inactive_works are marked with
275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 * in pwq->inactive_works. Some of them are ready to run in
277 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 * wq_barrier which is used for flush_work() and should not participate
279 * in nr_active. For non-barrier work item, it is marked with
280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 */
282 int nr_active; /* L: nr of active works */
283 struct list_head inactive_works; /* L: inactive works */
284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
285 struct list_head pwqs_node; /* WR: node on wq->pwqs */
286 struct list_head mayday_node; /* MD: node on wq->maydays */
287
288 u64 stats[PWQ_NR_STATS];
289
290 /*
291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 * RCU protected so that the first pwq can be determined without
294 * grabbing wq->mutex.
295 */
296 struct kthread_work release_work;
297 struct rcu_head rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299
300 /*
301 * Structure used to wait for workqueue flush.
302 */
303 struct wq_flusher {
304 struct list_head list; /* WQ: list of flushers */
305 int flush_color; /* WQ: flush color waiting for */
306 struct completion done; /* flush completion */
307 };
308
309 struct wq_device;
310
311 /*
312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314 * As sharing a single nr_active across multiple sockets can be very expensive,
315 * the counting and enforcement is per NUMA node.
316 *
317 * The following struct is used to enforce per-node max_active. When a pwq wants
318 * to start executing a work item, it should increment ->nr using
319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322 * round-robin order.
323 */
324 struct wq_node_nr_active {
325 int max; /* per-node max_active */
326 atomic_t nr; /* per-node nr_active */
327 raw_spinlock_t lock; /* nests inside pool locks */
328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
329 };
330
331 /*
332 * The externally visible workqueue. It relays the issued work items to
333 * the appropriate worker_pool through its pool_workqueues.
334 */
335 struct workqueue_struct {
336 struct list_head pwqs; /* WR: all pwqs of this wq */
337 struct list_head list; /* PR: list of all workqueues */
338
339 struct mutex mutex; /* protects this wq */
340 int work_color; /* WQ: current work color */
341 int flush_color; /* WQ: current flush color */
342 atomic_t nr_pwqs_to_flush; /* flush in progress */
343 struct wq_flusher *first_flusher; /* WQ: first flusher */
344 struct list_head flusher_queue; /* WQ: flush waiters */
345 struct list_head flusher_overflow; /* WQ: flush overflow list */
346
347 struct list_head maydays; /* MD: pwqs requesting rescue */
348 struct worker *rescuer; /* MD: rescue worker */
349
350 int nr_drainers; /* WQ: drain in progress */
351
352 /* See alloc_workqueue() function comment for info on min/max_active */
353 int max_active; /* WO: max active works */
354 int min_active; /* WO: min active works */
355 int saved_max_active; /* WQ: saved max_active */
356 int saved_min_active; /* WQ: saved min_active */
357
358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
360
361 #ifdef CONFIG_SYSFS
362 struct wq_device *wq_dev; /* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 char *lock_name;
366 struct lock_class_key key;
367 struct lockdep_map __lockdep_map;
368 struct lockdep_map *lockdep_map;
369 #endif
370 char name[WQ_NAME_LEN]; /* I: workqueue name */
371
372 /*
373 * Destruction of workqueue_struct is RCU protected to allow walking
374 * the workqueues list without grabbing wq_pool_mutex.
375 * This is used to dump all workqueues from sysrq.
376 */
377 struct rcu_head rcu;
378
379 /* hot fields used during command issue, aligned to cacheline */
380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384
385 /*
386 * Each pod type describes how CPUs should be grouped for unbound workqueues.
387 * See the comment above workqueue_attrs->affn_scope.
388 */
389 struct wq_pod_type {
390 int nr_pods; /* number of pods */
391 cpumask_var_t *pod_cpus; /* pod -> cpus */
392 int *pod_node; /* pod -> node */
393 int *cpu_pod; /* cpu -> pod */
394 };
395
396 struct work_offq_data {
397 u32 pool_id;
398 u32 disable;
399 u32 flags;
400 };
401
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 [WQ_AFFN_DFL] = "default",
404 [WQ_AFFN_CPU] = "cpu",
405 [WQ_AFFN_SMT] = "smt",
406 [WQ_AFFN_CACHE] = "cache",
407 [WQ_AFFN_NUMA] = "numa",
408 [WQ_AFFN_SYSTEM] = "system",
409 };
410
411 /*
412 * Per-cpu work items which run for longer than the following threshold are
413 * automatically considered CPU intensive and excluded from concurrency
414 * management to prevent them from noticeably delaying other per-cpu work items.
415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416 * The actual value is initialized in wq_cpu_intensive_thresh_init().
417 */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428
429 static bool wq_online; /* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431
432 static struct kmem_cache *pwq_cache;
433
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
439
440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445
446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
447 static bool workqueue_freezing; /* PL: have wqs started freezing? */
448
449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450 static cpumask_var_t wq_online_cpumask;
451
452 /* PL&A: allowable cpus for unbound wqs and work items */
453 static cpumask_var_t wq_unbound_cpumask;
454
455 /* PL: user requested unbound cpumask via sysfs */
456 static cpumask_var_t wq_requested_unbound_cpumask;
457
458 /* PL: isolated cpumask to be excluded from unbound cpumask */
459 static cpumask_var_t wq_isolated_cpumask;
460
461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
462 static struct cpumask wq_cmdline_cpumask __initdata;
463
464 /* CPU where unbound work was last round robin scheduled from this CPU */
465 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
466
467 /*
468 * Local execution of unbound work items is no longer guaranteed. The
469 * following always forces round-robin CPU selection on unbound work items
470 * to uncover usages which depend on it.
471 */
472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473 static bool wq_debug_force_rr_cpu = true;
474 #else
475 static bool wq_debug_force_rr_cpu = false;
476 #endif
477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
478
479 /* to raise softirq for the BH worker pools on other CPUs */
480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
481
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
484
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
487
488 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
489
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498
499 /*
500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501 * process context while holding a pool lock. Bounce to a dedicated kthread
502 * worker to avoid A-A deadlocks.
503 */
504 static struct kthread_worker *pwq_release_worker __ro_after_init;
505
506 struct workqueue_struct *system_wq __ro_after_init;
507 EXPORT_SYMBOL(system_wq);
508 struct workqueue_struct *system_highpri_wq __ro_after_init;
509 EXPORT_SYMBOL_GPL(system_highpri_wq);
510 struct workqueue_struct *system_long_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_long_wq);
512 struct workqueue_struct *system_unbound_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_unbound_wq);
514 struct workqueue_struct *system_freezable_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_freezable_wq);
516 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
520 struct workqueue_struct *system_bh_wq;
521 EXPORT_SYMBOL_GPL(system_bh_wq);
522 struct workqueue_struct *system_bh_highpri_wq;
523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
524
525 static int worker_thread(void *__worker);
526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
527 static void show_pwq(struct pool_workqueue *pwq);
528 static void show_one_worker_pool(struct worker_pool *pool);
529
530 #define CREATE_TRACE_POINTS
531 #include <trace/events/workqueue.h>
532
533 #define assert_rcu_or_pool_mutex() \
534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
535 !lockdep_is_held(&wq_pool_mutex), \
536 "RCU or wq_pool_mutex should be held")
537
538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
540 !lockdep_is_held(&wq->mutex) && \
541 !lockdep_is_held(&wq_pool_mutex), \
542 "RCU, wq->mutex or wq_pool_mutex should be held")
543
544 #define for_each_bh_worker_pool(pool, cpu) \
545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 (pool)++)
548
549 #define for_each_cpu_worker_pool(pool, cpu) \
550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552 (pool)++)
553
554 /**
555 * for_each_pool - iterate through all worker_pools in the system
556 * @pool: iteration cursor
557 * @pi: integer used for iteration
558 *
559 * This must be called either with wq_pool_mutex held or RCU read
560 * locked. If the pool needs to be used beyond the locking in effect, the
561 * caller is responsible for guaranteeing that the pool stays online.
562 *
563 * The if/else clause exists only for the lockdep assertion and can be
564 * ignored.
565 */
566 #define for_each_pool(pool, pi) \
567 idr_for_each_entry(&worker_pool_idr, pool, pi) \
568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
569 else
570
571 /**
572 * for_each_pool_worker - iterate through all workers of a worker_pool
573 * @worker: iteration cursor
574 * @pool: worker_pool to iterate workers of
575 *
576 * This must be called with wq_pool_attach_mutex.
577 *
578 * The if/else clause exists only for the lockdep assertion and can be
579 * ignored.
580 */
581 #define for_each_pool_worker(worker, pool) \
582 list_for_each_entry((worker), &(pool)->workers, node) \
583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584 else
585
586 /**
587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588 * @pwq: iteration cursor
589 * @wq: the target workqueue
590 *
591 * This must be called either with wq->mutex held or RCU read locked.
592 * If the pwq needs to be used beyond the locking in effect, the caller is
593 * responsible for guaranteeing that the pwq stays online.
594 *
595 * The if/else clause exists only for the lockdep assertion and can be
596 * ignored.
597 */
598 #define for_each_pwq(pwq, wq) \
599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
600 lockdep_is_held(&(wq->mutex)))
601
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
603
604 static const struct debug_obj_descr work_debug_descr;
605
work_debug_hint(void * addr)606 static void *work_debug_hint(void *addr)
607 {
608 return ((struct work_struct *) addr)->func;
609 }
610
work_is_static_object(void * addr)611 static bool work_is_static_object(void *addr)
612 {
613 struct work_struct *work = addr;
614
615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616 }
617
618 /*
619 * fixup_init is called when:
620 * - an active object is initialized
621 */
work_fixup_init(void * addr,enum debug_obj_state state)622 static bool work_fixup_init(void *addr, enum debug_obj_state state)
623 {
624 struct work_struct *work = addr;
625
626 switch (state) {
627 case ODEBUG_STATE_ACTIVE:
628 cancel_work_sync(work);
629 debug_object_init(work, &work_debug_descr);
630 return true;
631 default:
632 return false;
633 }
634 }
635
636 /*
637 * fixup_free is called when:
638 * - an active object is freed
639 */
work_fixup_free(void * addr,enum debug_obj_state state)640 static bool work_fixup_free(void *addr, enum debug_obj_state state)
641 {
642 struct work_struct *work = addr;
643
644 switch (state) {
645 case ODEBUG_STATE_ACTIVE:
646 cancel_work_sync(work);
647 debug_object_free(work, &work_debug_descr);
648 return true;
649 default:
650 return false;
651 }
652 }
653
654 static const struct debug_obj_descr work_debug_descr = {
655 .name = "work_struct",
656 .debug_hint = work_debug_hint,
657 .is_static_object = work_is_static_object,
658 .fixup_init = work_fixup_init,
659 .fixup_free = work_fixup_free,
660 };
661
debug_work_activate(struct work_struct * work)662 static inline void debug_work_activate(struct work_struct *work)
663 {
664 debug_object_activate(work, &work_debug_descr);
665 }
666
debug_work_deactivate(struct work_struct * work)667 static inline void debug_work_deactivate(struct work_struct *work)
668 {
669 debug_object_deactivate(work, &work_debug_descr);
670 }
671
__init_work(struct work_struct * work,int onstack)672 void __init_work(struct work_struct *work, int onstack)
673 {
674 if (onstack)
675 debug_object_init_on_stack(work, &work_debug_descr);
676 else
677 debug_object_init(work, &work_debug_descr);
678 }
679 EXPORT_SYMBOL_GPL(__init_work);
680
destroy_work_on_stack(struct work_struct * work)681 void destroy_work_on_stack(struct work_struct *work)
682 {
683 debug_object_free(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686
destroy_delayed_work_on_stack(struct delayed_work * work)687 void destroy_delayed_work_on_stack(struct delayed_work *work)
688 {
689 destroy_timer_on_stack(&work->timer);
690 debug_object_free(&work->work, &work_debug_descr);
691 }
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693
694 #else
debug_work_activate(struct work_struct * work)695 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)696 static inline void debug_work_deactivate(struct work_struct *work) { }
697 #endif
698
699 /**
700 * worker_pool_assign_id - allocate ID and assign it to @pool
701 * @pool: the pool pointer of interest
702 *
703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704 * successfully, -errno on failure.
705 */
worker_pool_assign_id(struct worker_pool * pool)706 static int worker_pool_assign_id(struct worker_pool *pool)
707 {
708 int ret;
709
710 lockdep_assert_held(&wq_pool_mutex);
711
712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 GFP_KERNEL);
714 if (ret >= 0) {
715 pool->id = ret;
716 return 0;
717 }
718 return ret;
719 }
720
721 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723 {
724 if (cpu >= 0)
725 return per_cpu_ptr(wq->cpu_pwq, cpu);
726 else
727 return &wq->dfl_pwq;
728 }
729
730 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732 {
733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 lockdep_is_held(&wq_pool_mutex) ||
735 lockdep_is_held(&wq->mutex));
736 }
737
738 /**
739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740 * @wq: workqueue of interest
741 *
742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744 * default pwq is always mapped to the pool with the current effective cpumask.
745 */
unbound_effective_cpumask(struct workqueue_struct * wq)746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747 {
748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749 }
750
work_color_to_flags(int color)751 static unsigned int work_color_to_flags(int color)
752 {
753 return color << WORK_STRUCT_COLOR_SHIFT;
754 }
755
get_work_color(unsigned long work_data)756 static int get_work_color(unsigned long work_data)
757 {
758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
760 }
761
work_next_color(int color)762 static int work_next_color(int color)
763 {
764 return (color + 1) % WORK_NR_COLORS;
765 }
766
pool_offq_flags(struct worker_pool * pool)767 static unsigned long pool_offq_flags(struct worker_pool *pool)
768 {
769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770 }
771
772 /*
773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774 * contain the pointer to the queued pwq. Once execution starts, the flag
775 * is cleared and the high bits contain OFFQ flags and pool ID.
776 *
777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778 * can be used to set the pwq, pool or clear work->data. These functions should
779 * only be called while the work is owned - ie. while the PENDING bit is set.
780 *
781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782 * corresponding to a work. Pool is available once the work has been
783 * queued anywhere after initialization until it is sync canceled. pwq is
784 * available only while the work item is queued.
785 */
set_work_data(struct work_struct * work,unsigned long data)786 static inline void set_work_data(struct work_struct *work, unsigned long data)
787 {
788 WARN_ON_ONCE(!work_pending(work));
789 atomic_long_set(&work->data, data | work_static(work));
790 }
791
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793 unsigned long flags)
794 {
795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 WORK_STRUCT_PWQ | flags);
797 }
798
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)799 static void set_work_pool_and_keep_pending(struct work_struct *work,
800 int pool_id, unsigned long flags)
801 {
802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 WORK_STRUCT_PENDING | flags);
804 }
805
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)806 static void set_work_pool_and_clear_pending(struct work_struct *work,
807 int pool_id, unsigned long flags)
808 {
809 /*
810 * The following wmb is paired with the implied mb in
811 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 * here are visible to and precede any updates by the next PENDING
813 * owner.
814 */
815 smp_wmb();
816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 flags);
818 /*
819 * The following mb guarantees that previous clear of a PENDING bit
820 * will not be reordered with any speculative LOADS or STORES from
821 * work->current_func, which is executed afterwards. This possible
822 * reordering can lead to a missed execution on attempt to queue
823 * the same @work. E.g. consider this case:
824 *
825 * CPU#0 CPU#1
826 * ---------------------------- --------------------------------
827 *
828 * 1 STORE event_indicated
829 * 2 queue_work_on() {
830 * 3 test_and_set_bit(PENDING)
831 * 4 } set_..._and_clear_pending() {
832 * 5 set_work_data() # clear bit
833 * 6 smp_mb()
834 * 7 work->current_func() {
835 * 8 LOAD event_indicated
836 * }
837 *
838 * Without an explicit full barrier speculative LOAD on line 8 can
839 * be executed before CPU#0 does STORE on line 1. If that happens,
840 * CPU#0 observes the PENDING bit is still set and new execution of
841 * a @work is not queued in a hope, that CPU#1 will eventually
842 * finish the queued @work. Meanwhile CPU#1 does not see
843 * event_indicated is set, because speculative LOAD was executed
844 * before actual STORE.
845 */
846 smp_mb();
847 }
848
work_struct_pwq(unsigned long data)849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850 {
851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852 }
853
get_work_pwq(struct work_struct * work)854 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855 {
856 unsigned long data = atomic_long_read(&work->data);
857
858 if (data & WORK_STRUCT_PWQ)
859 return work_struct_pwq(data);
860 else
861 return NULL;
862 }
863
864 /**
865 * get_work_pool - return the worker_pool a given work was associated with
866 * @work: the work item of interest
867 *
868 * Pools are created and destroyed under wq_pool_mutex, and allows read
869 * access under RCU read lock. As such, this function should be
870 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871 *
872 * All fields of the returned pool are accessible as long as the above
873 * mentioned locking is in effect. If the returned pool needs to be used
874 * beyond the critical section, the caller is responsible for ensuring the
875 * returned pool is and stays online.
876 *
877 * Return: The worker_pool @work was last associated with. %NULL if none.
878 */
get_work_pool(struct work_struct * work)879 static struct worker_pool *get_work_pool(struct work_struct *work)
880 {
881 unsigned long data = atomic_long_read(&work->data);
882 int pool_id;
883
884 assert_rcu_or_pool_mutex();
885
886 if (data & WORK_STRUCT_PWQ)
887 return work_struct_pwq(data)->pool;
888
889 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 if (pool_id == WORK_OFFQ_POOL_NONE)
891 return NULL;
892
893 return idr_find(&worker_pool_idr, pool_id);
894 }
895
shift_and_mask(unsigned long v,u32 shift,u32 bits)896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897 {
898 return (v >> shift) & ((1U << bits) - 1);
899 }
900
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902 {
903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904
905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 WORK_OFFQ_POOL_BITS);
907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 WORK_OFFQ_DISABLE_BITS);
909 offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910 }
911
work_offqd_pack_flags(struct work_offq_data * offqd)912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913 {
914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 ((unsigned long)offqd->flags);
916 }
917
918 /*
919 * Policy functions. These define the policies on how the global worker
920 * pools are managed. Unless noted otherwise, these functions assume that
921 * they're being called with pool->lock held.
922 */
923
924 /*
925 * Need to wake up a worker? Called from anything but currently
926 * running workers.
927 *
928 * Note that, because unbound workers never contribute to nr_running, this
929 * function will always return %true for unbound pools as long as the
930 * worklist isn't empty.
931 */
need_more_worker(struct worker_pool * pool)932 static bool need_more_worker(struct worker_pool *pool)
933 {
934 return !list_empty(&pool->worklist) && !pool->nr_running;
935 }
936
937 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)938 static bool may_start_working(struct worker_pool *pool)
939 {
940 return pool->nr_idle;
941 }
942
943 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)944 static bool keep_working(struct worker_pool *pool)
945 {
946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947 }
948
949 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)950 static bool need_to_create_worker(struct worker_pool *pool)
951 {
952 return need_more_worker(pool) && !may_start_working(pool);
953 }
954
955 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)956 static bool too_many_workers(struct worker_pool *pool)
957 {
958 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 int nr_busy = pool->nr_workers - nr_idle;
961
962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963 }
964
965 /**
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to set
969 *
970 * Set @flags in @worker->flags and adjust nr_running accordingly.
971 */
worker_set_flags(struct worker * worker,unsigned int flags)972 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973 {
974 struct worker_pool *pool = worker->pool;
975
976 lockdep_assert_held(&pool->lock);
977
978 /* If transitioning into NOT_RUNNING, adjust nr_running. */
979 if ((flags & WORKER_NOT_RUNNING) &&
980 !(worker->flags & WORKER_NOT_RUNNING)) {
981 pool->nr_running--;
982 }
983
984 worker->flags |= flags;
985 }
986
987 /**
988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989 * @worker: self
990 * @flags: flags to clear
991 *
992 * Clear @flags in @worker->flags and adjust nr_running accordingly.
993 */
worker_clr_flags(struct worker * worker,unsigned int flags)994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 struct worker_pool *pool = worker->pool;
997 unsigned int oflags = worker->flags;
998
999 lockdep_assert_held(&pool->lock);
1000
1001 worker->flags &= ~flags;
1002
1003 /*
1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1006 * of multiple flags, not a single flag.
1007 */
1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 if (!(worker->flags & WORKER_NOT_RUNNING))
1010 pool->nr_running++;
1011 }
1012
1013 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1014 static struct worker *first_idle_worker(struct worker_pool *pool)
1015 {
1016 if (unlikely(list_empty(&pool->idle_list)))
1017 return NULL;
1018
1019 return list_first_entry(&pool->idle_list, struct worker, entry);
1020 }
1021
1022 /**
1023 * worker_enter_idle - enter idle state
1024 * @worker: worker which is entering idle state
1025 *
1026 * @worker is entering idle state. Update stats and idle timer if
1027 * necessary.
1028 *
1029 * LOCKING:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
worker_enter_idle(struct worker * worker)1032 static void worker_enter_idle(struct worker *worker)
1033 {
1034 struct worker_pool *pool = worker->pool;
1035
1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 (worker->hentry.next || worker->hentry.pprev)))
1039 return;
1040
1041 /* can't use worker_set_flags(), also called from create_worker() */
1042 worker->flags |= WORKER_IDLE;
1043 pool->nr_idle++;
1044 worker->last_active = jiffies;
1045
1046 /* idle_list is LIFO */
1047 list_add(&worker->entry, &pool->idle_list);
1048
1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051
1052 /* Sanity check nr_running. */
1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054 }
1055
1056 /**
1057 * worker_leave_idle - leave idle state
1058 * @worker: worker which is leaving idle state
1059 *
1060 * @worker is leaving idle state. Update stats.
1061 *
1062 * LOCKING:
1063 * raw_spin_lock_irq(pool->lock).
1064 */
worker_leave_idle(struct worker * worker)1065 static void worker_leave_idle(struct worker *worker)
1066 {
1067 struct worker_pool *pool = worker->pool;
1068
1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 return;
1071 worker_clr_flags(worker, WORKER_IDLE);
1072 pool->nr_idle--;
1073 list_del_init(&worker->entry);
1074 }
1075
1076 /**
1077 * find_worker_executing_work - find worker which is executing a work
1078 * @pool: pool of interest
1079 * @work: work to find worker for
1080 *
1081 * Find a worker which is executing @work on @pool by searching
1082 * @pool->busy_hash which is keyed by the address of @work. For a worker
1083 * to match, its current execution should match the address of @work and
1084 * its work function. This is to avoid unwanted dependency between
1085 * unrelated work executions through a work item being recycled while still
1086 * being executed.
1087 *
1088 * This is a bit tricky. A work item may be freed once its execution
1089 * starts and nothing prevents the freed area from being recycled for
1090 * another work item. If the same work item address ends up being reused
1091 * before the original execution finishes, workqueue will identify the
1092 * recycled work item as currently executing and make it wait until the
1093 * current execution finishes, introducing an unwanted dependency.
1094 *
1095 * This function checks the work item address and work function to avoid
1096 * false positives. Note that this isn't complete as one may construct a
1097 * work function which can introduce dependency onto itself through a
1098 * recycled work item. Well, if somebody wants to shoot oneself in the
1099 * foot that badly, there's only so much we can do, and if such deadlock
1100 * actually occurs, it should be easy to locate the culprit work function.
1101 *
1102 * CONTEXT:
1103 * raw_spin_lock_irq(pool->lock).
1104 *
1105 * Return:
1106 * Pointer to worker which is executing @work if found, %NULL
1107 * otherwise.
1108 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1109 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 struct work_struct *work)
1111 {
1112 struct worker *worker;
1113
1114 hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 (unsigned long)work)
1116 if (worker->current_work == work &&
1117 worker->current_func == work->func)
1118 return worker;
1119
1120 return NULL;
1121 }
1122
1123 /**
1124 * move_linked_works - move linked works to a list
1125 * @work: start of series of works to be scheduled
1126 * @head: target list to append @work to
1127 * @nextp: out parameter for nested worklist walking
1128 *
1129 * Schedule linked works starting from @work to @head. Work series to be
1130 * scheduled starts at @work and includes any consecutive work with
1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132 * @nextp.
1133 *
1134 * CONTEXT:
1135 * raw_spin_lock_irq(pool->lock).
1136 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1137 static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 struct work_struct **nextp)
1139 {
1140 struct work_struct *n;
1141
1142 /*
1143 * Linked worklist will always end before the end of the list,
1144 * use NULL for list head.
1145 */
1146 list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 list_move_tail(&work->entry, head);
1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 break;
1150 }
1151
1152 /*
1153 * If we're already inside safe list traversal and have moved
1154 * multiple works to the scheduled queue, the next position
1155 * needs to be updated.
1156 */
1157 if (nextp)
1158 *nextp = n;
1159 }
1160
1161 /**
1162 * assign_work - assign a work item and its linked work items to a worker
1163 * @work: work to assign
1164 * @worker: worker to assign to
1165 * @nextp: out parameter for nested worklist walking
1166 *
1167 * Assign @work and its linked work items to @worker. If @work is already being
1168 * executed by another worker in the same pool, it'll be punted there.
1169 *
1170 * If @nextp is not NULL, it's updated to point to the next work of the last
1171 * scheduled work. This allows assign_work() to be nested inside
1172 * list_for_each_entry_safe().
1173 *
1174 * Returns %true if @work was successfully assigned to @worker. %false if @work
1175 * was punted to another worker already executing it.
1176 */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1177 static bool assign_work(struct work_struct *work, struct worker *worker,
1178 struct work_struct **nextp)
1179 {
1180 struct worker_pool *pool = worker->pool;
1181 struct worker *collision;
1182
1183 lockdep_assert_held(&pool->lock);
1184
1185 /*
1186 * A single work shouldn't be executed concurrently by multiple workers.
1187 * __queue_work() ensures that @work doesn't jump to a different pool
1188 * while still running in the previous pool. Here, we should ensure that
1189 * @work is not executed concurrently by multiple workers from the same
1190 * pool. Check whether anyone is already processing the work. If so,
1191 * defer the work to the currently executing one.
1192 */
1193 collision = find_worker_executing_work(pool, work);
1194 if (unlikely(collision)) {
1195 move_linked_works(work, &collision->scheduled, nextp);
1196 return false;
1197 }
1198
1199 move_linked_works(work, &worker->scheduled, nextp);
1200 return true;
1201 }
1202
bh_pool_irq_work(struct worker_pool * pool)1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204 {
1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206
1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208 }
1209
kick_bh_pool(struct worker_pool * pool)1210 static void kick_bh_pool(struct worker_pool *pool)
1211 {
1212 #ifdef CONFIG_SMP
1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 if (unlikely(pool->cpu != smp_processor_id() &&
1215 !(pool->flags & POOL_BH_DRAINING))) {
1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 return;
1218 }
1219 #endif
1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 raise_softirq_irqoff(HI_SOFTIRQ);
1222 else
1223 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224 }
1225
1226 /**
1227 * kick_pool - wake up an idle worker if necessary
1228 * @pool: pool to kick
1229 *
1230 * @pool may have pending work items. Wake up worker if necessary. Returns
1231 * whether a worker was woken up.
1232 */
kick_pool(struct worker_pool * pool)1233 static bool kick_pool(struct worker_pool *pool)
1234 {
1235 struct worker *worker = first_idle_worker(pool);
1236 struct task_struct *p;
1237
1238 lockdep_assert_held(&pool->lock);
1239
1240 if (!need_more_worker(pool) || !worker)
1241 return false;
1242
1243 if (pool->flags & POOL_BH) {
1244 kick_bh_pool(pool);
1245 return true;
1246 }
1247
1248 p = worker->task;
1249
1250 #ifdef CONFIG_SMP
1251 /*
1252 * Idle @worker is about to execute @work and waking up provides an
1253 * opportunity to migrate @worker at a lower cost by setting the task's
1254 * wake_cpu field. Let's see if we want to move @worker to improve
1255 * execution locality.
1256 *
1257 * We're waking the worker that went idle the latest and there's some
1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 * optimization and the race window is narrow, let's leave as-is for
1261 * now. If this becomes pronounced, we can skip over workers which are
1262 * still on cpu when picking an idle worker.
1263 *
1264 * If @pool has non-strict affinity, @worker might have ended up outside
1265 * its affinity scope. Repatriate.
1266 */
1267 if (!pool->attrs->affn_strict &&
1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 struct work_struct *work = list_first_entry(&pool->worklist,
1270 struct work_struct, entry);
1271 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272 cpu_online_mask);
1273 if (wake_cpu < nr_cpu_ids) {
1274 p->wake_cpu = wake_cpu;
1275 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276 }
1277 }
1278 #endif
1279 wake_up_process(p);
1280 return true;
1281 }
1282
1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284
1285 /*
1286 * Concurrency-managed per-cpu work items that hog CPU for longer than
1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288 * which prevents them from stalling other concurrency-managed work items. If a
1289 * work function keeps triggering this mechanism, it's likely that the work item
1290 * should be using an unbound workqueue instead.
1291 *
1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293 * and report them so that they can be examined and converted to use unbound
1294 * workqueues as appropriate. To avoid flooding the console, each violating work
1295 * function is tracked and reported with exponential backoff.
1296 */
1297 #define WCI_MAX_ENTS 128
1298
1299 struct wci_ent {
1300 work_func_t func;
1301 atomic64_t cnt;
1302 struct hlist_node hash_node;
1303 };
1304
1305 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306 static int wci_nr_ents;
1307 static DEFINE_RAW_SPINLOCK(wci_lock);
1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309
wci_find_ent(work_func_t func)1310 static struct wci_ent *wci_find_ent(work_func_t func)
1311 {
1312 struct wci_ent *ent;
1313
1314 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315 (unsigned long)func) {
1316 if (ent->func == func)
1317 return ent;
1318 }
1319 return NULL;
1320 }
1321
wq_cpu_intensive_report(work_func_t func)1322 static void wq_cpu_intensive_report(work_func_t func)
1323 {
1324 struct wci_ent *ent;
1325
1326 restart:
1327 ent = wci_find_ent(func);
1328 if (ent) {
1329 u64 cnt;
1330
1331 /*
1332 * Start reporting from the warning_thresh and back off
1333 * exponentially.
1334 */
1335 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336 if (wq_cpu_intensive_warning_thresh &&
1337 cnt >= wq_cpu_intensive_warning_thresh &&
1338 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 ent->func, wq_cpu_intensive_thresh_us,
1341 atomic64_read(&ent->cnt));
1342 return;
1343 }
1344
1345 /*
1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 * is exhausted, something went really wrong and we probably made enough
1348 * noise already.
1349 */
1350 if (wci_nr_ents >= WCI_MAX_ENTS)
1351 return;
1352
1353 raw_spin_lock(&wci_lock);
1354
1355 if (wci_nr_ents >= WCI_MAX_ENTS) {
1356 raw_spin_unlock(&wci_lock);
1357 return;
1358 }
1359
1360 if (wci_find_ent(func)) {
1361 raw_spin_unlock(&wci_lock);
1362 goto restart;
1363 }
1364
1365 ent = &wci_ents[wci_nr_ents++];
1366 ent->func = func;
1367 atomic64_set(&ent->cnt, 0);
1368 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369
1370 raw_spin_unlock(&wci_lock);
1371
1372 goto restart;
1373 }
1374
1375 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1376 static void wq_cpu_intensive_report(work_func_t func) {}
1377 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378
1379 /**
1380 * wq_worker_running - a worker is running again
1381 * @task: task waking up
1382 *
1383 * This function is called when a worker returns from schedule()
1384 */
wq_worker_running(struct task_struct * task)1385 void wq_worker_running(struct task_struct *task)
1386 {
1387 struct worker *worker = kthread_data(task);
1388
1389 if (!READ_ONCE(worker->sleeping))
1390 return;
1391
1392 /*
1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 * and the nr_running increment below, we may ruin the nr_running reset
1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 * pool. Protect against such race.
1397 */
1398 preempt_disable();
1399 if (!(worker->flags & WORKER_NOT_RUNNING))
1400 worker->pool->nr_running++;
1401 preempt_enable();
1402
1403 /*
1404 * CPU intensive auto-detection cares about how long a work item hogged
1405 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406 */
1407 worker->current_at = worker->task->se.sum_exec_runtime;
1408
1409 WRITE_ONCE(worker->sleeping, 0);
1410 }
1411
1412 /**
1413 * wq_worker_sleeping - a worker is going to sleep
1414 * @task: task going to sleep
1415 *
1416 * This function is called from schedule() when a busy worker is
1417 * going to sleep.
1418 */
wq_worker_sleeping(struct task_struct * task)1419 void wq_worker_sleeping(struct task_struct *task)
1420 {
1421 struct worker *worker = kthread_data(task);
1422 struct worker_pool *pool;
1423
1424 /*
1425 * Rescuers, which may not have all the fields set up like normal
1426 * workers, also reach here, let's not access anything before
1427 * checking NOT_RUNNING.
1428 */
1429 if (worker->flags & WORKER_NOT_RUNNING)
1430 return;
1431
1432 pool = worker->pool;
1433
1434 /* Return if preempted before wq_worker_running() was reached */
1435 if (READ_ONCE(worker->sleeping))
1436 return;
1437
1438 WRITE_ONCE(worker->sleeping, 1);
1439 raw_spin_lock_irq(&pool->lock);
1440
1441 /*
1442 * Recheck in case unbind_workers() preempted us. We don't
1443 * want to decrement nr_running after the worker is unbound
1444 * and nr_running has been reset.
1445 */
1446 if (worker->flags & WORKER_NOT_RUNNING) {
1447 raw_spin_unlock_irq(&pool->lock);
1448 return;
1449 }
1450
1451 pool->nr_running--;
1452 if (kick_pool(pool))
1453 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454
1455 raw_spin_unlock_irq(&pool->lock);
1456 }
1457
1458 /**
1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460 * @task: task currently running
1461 *
1462 * Called from sched_tick(). We're in the IRQ context and the current
1463 * worker's fields which follow the 'K' locking rule can be accessed safely.
1464 */
wq_worker_tick(struct task_struct * task)1465 void wq_worker_tick(struct task_struct *task)
1466 {
1467 struct worker *worker = kthread_data(task);
1468 struct pool_workqueue *pwq = worker->current_pwq;
1469 struct worker_pool *pool = worker->pool;
1470
1471 if (!pwq)
1472 return;
1473
1474 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475
1476 if (!wq_cpu_intensive_thresh_us)
1477 return;
1478
1479 /*
1480 * If the current worker is concurrency managed and hogged the CPU for
1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483 *
1484 * Set @worker->sleeping means that @worker is in the process of
1485 * switching out voluntarily and won't be contributing to
1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 * We probably want to make this prettier in the future.
1490 */
1491 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492 worker->task->se.sum_exec_runtime - worker->current_at <
1493 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494 return;
1495
1496 raw_spin_lock(&pool->lock);
1497
1498 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499 wq_cpu_intensive_report(worker->current_func);
1500 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501
1502 if (kick_pool(pool))
1503 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504
1505 raw_spin_unlock(&pool->lock);
1506 }
1507
1508 /**
1509 * wq_worker_last_func - retrieve worker's last work function
1510 * @task: Task to retrieve last work function of.
1511 *
1512 * Determine the last function a worker executed. This is called from
1513 * the scheduler to get a worker's last known identity.
1514 *
1515 * CONTEXT:
1516 * raw_spin_lock_irq(rq->lock)
1517 *
1518 * This function is called during schedule() when a kworker is going
1519 * to sleep. It's used by psi to identify aggregation workers during
1520 * dequeuing, to allow periodic aggregation to shut-off when that
1521 * worker is the last task in the system or cgroup to go to sleep.
1522 *
1523 * As this function doesn't involve any workqueue-related locking, it
1524 * only returns stable values when called from inside the scheduler's
1525 * queuing and dequeuing paths, when @task, which must be a kworker,
1526 * is guaranteed to not be processing any works.
1527 *
1528 * Return:
1529 * The last work function %current executed as a worker, NULL if it
1530 * hasn't executed any work yet.
1531 */
wq_worker_last_func(struct task_struct * task)1532 work_func_t wq_worker_last_func(struct task_struct *task)
1533 {
1534 struct worker *worker = kthread_data(task);
1535
1536 return worker->last_func;
1537 }
1538
1539 /**
1540 * wq_node_nr_active - Determine wq_node_nr_active to use
1541 * @wq: workqueue of interest
1542 * @node: NUMA node, can be %NUMA_NO_NODE
1543 *
1544 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545 *
1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547 *
1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549 *
1550 * - Otherwise, node_nr_active[@node].
1551 */
wq_node_nr_active(struct workqueue_struct * wq,int node)1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553 int node)
1554 {
1555 if (!(wq->flags & WQ_UNBOUND))
1556 return NULL;
1557
1558 if (node == NUMA_NO_NODE)
1559 node = nr_node_ids;
1560
1561 return wq->node_nr_active[node];
1562 }
1563
1564 /**
1565 * wq_update_node_max_active - Update per-node max_actives to use
1566 * @wq: workqueue to update
1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568 *
1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570 * distributed among nodes according to the proportions of numbers of online
1571 * cpus. The result is always between @wq->min_active and max_active.
1572 */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574 {
1575 struct cpumask *effective = unbound_effective_cpumask(wq);
1576 int min_active = READ_ONCE(wq->min_active);
1577 int max_active = READ_ONCE(wq->max_active);
1578 int total_cpus, node;
1579
1580 lockdep_assert_held(&wq->mutex);
1581
1582 if (!wq_topo_initialized)
1583 return;
1584
1585 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586 off_cpu = -1;
1587
1588 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589 if (off_cpu >= 0)
1590 total_cpus--;
1591
1592 /* If all CPUs of the wq get offline, use the default values */
1593 if (unlikely(!total_cpus)) {
1594 for_each_node(node)
1595 wq_node_nr_active(wq, node)->max = min_active;
1596
1597 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598 return;
1599 }
1600
1601 for_each_node(node) {
1602 int node_cpus;
1603
1604 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606 node_cpus--;
1607
1608 wq_node_nr_active(wq, node)->max =
1609 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610 min_active, max_active);
1611 }
1612
1613 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614 }
1615
1616 /**
1617 * get_pwq - get an extra reference on the specified pool_workqueue
1618 * @pwq: pool_workqueue to get
1619 *
1620 * Obtain an extra reference on @pwq. The caller should guarantee that
1621 * @pwq has positive refcnt and be holding the matching pool->lock.
1622 */
get_pwq(struct pool_workqueue * pwq)1623 static void get_pwq(struct pool_workqueue *pwq)
1624 {
1625 lockdep_assert_held(&pwq->pool->lock);
1626 WARN_ON_ONCE(pwq->refcnt <= 0);
1627 pwq->refcnt++;
1628 }
1629
1630 /**
1631 * put_pwq - put a pool_workqueue reference
1632 * @pwq: pool_workqueue to put
1633 *
1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1635 * destruction. The caller should be holding the matching pool->lock.
1636 */
put_pwq(struct pool_workqueue * pwq)1637 static void put_pwq(struct pool_workqueue *pwq)
1638 {
1639 lockdep_assert_held(&pwq->pool->lock);
1640 if (likely(--pwq->refcnt))
1641 return;
1642 /*
1643 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 * kthread_worker to avoid A-A deadlocks.
1645 */
1646 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647 }
1648
1649 /**
1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651 * @pwq: pool_workqueue to put (can be %NULL)
1652 *
1653 * put_pwq() with locking. This function also allows %NULL @pwq.
1654 */
put_pwq_unlocked(struct pool_workqueue * pwq)1655 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656 {
1657 if (pwq) {
1658 /*
1659 * As both pwqs and pools are RCU protected, the
1660 * following lock operations are safe.
1661 */
1662 raw_spin_lock_irq(&pwq->pool->lock);
1663 put_pwq(pwq);
1664 raw_spin_unlock_irq(&pwq->pool->lock);
1665 }
1666 }
1667
pwq_is_empty(struct pool_workqueue * pwq)1668 static bool pwq_is_empty(struct pool_workqueue *pwq)
1669 {
1670 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671 }
1672
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1673 static void __pwq_activate_work(struct pool_workqueue *pwq,
1674 struct work_struct *work)
1675 {
1676 unsigned long *wdb = work_data_bits(work);
1677
1678 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679 trace_workqueue_activate_work(work);
1680 if (list_empty(&pwq->pool->worklist))
1681 pwq->pool->watchdog_ts = jiffies;
1682 move_linked_works(work, &pwq->pool->worklist, NULL);
1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684 }
1685
tryinc_node_nr_active(struct wq_node_nr_active * nna)1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1687 {
1688 int max = READ_ONCE(nna->max);
1689
1690 while (true) {
1691 int old, tmp;
1692
1693 old = atomic_read(&nna->nr);
1694 if (old >= max)
1695 return false;
1696 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1697 if (tmp == old)
1698 return true;
1699 }
1700 }
1701
1702 /**
1703 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1704 * @pwq: pool_workqueue of interest
1705 * @fill: max_active may have increased, try to increase concurrency level
1706 *
1707 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1708 * successfully obtained. %false otherwise.
1709 */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1710 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1711 {
1712 struct workqueue_struct *wq = pwq->wq;
1713 struct worker_pool *pool = pwq->pool;
1714 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1715 bool obtained = false;
1716
1717 lockdep_assert_held(&pool->lock);
1718
1719 if (!nna) {
1720 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1721 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1722 goto out;
1723 }
1724
1725 if (unlikely(pwq->plugged))
1726 return false;
1727
1728 /*
1729 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1730 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1731 * concurrency level. Don't jump the line.
1732 *
1733 * We need to ignore the pending test after max_active has increased as
1734 * pwq_dec_nr_active() can only maintain the concurrency level but not
1735 * increase it. This is indicated by @fill.
1736 */
1737 if (!list_empty(&pwq->pending_node) && likely(!fill))
1738 goto out;
1739
1740 obtained = tryinc_node_nr_active(nna);
1741 if (obtained)
1742 goto out;
1743
1744 /*
1745 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1746 * and try again. The smp_mb() is paired with the implied memory barrier
1747 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1748 * we see the decremented $nna->nr or they see non-empty
1749 * $nna->pending_pwqs.
1750 */
1751 raw_spin_lock(&nna->lock);
1752
1753 if (list_empty(&pwq->pending_node))
1754 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1755 else if (likely(!fill))
1756 goto out_unlock;
1757
1758 smp_mb();
1759
1760 obtained = tryinc_node_nr_active(nna);
1761
1762 /*
1763 * If @fill, @pwq might have already been pending. Being spuriously
1764 * pending in cold paths doesn't affect anything. Let's leave it be.
1765 */
1766 if (obtained && likely(!fill))
1767 list_del_init(&pwq->pending_node);
1768
1769 out_unlock:
1770 raw_spin_unlock(&nna->lock);
1771 out:
1772 if (obtained)
1773 pwq->nr_active++;
1774 return obtained;
1775 }
1776
1777 /**
1778 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1779 * @pwq: pool_workqueue of interest
1780 * @fill: max_active may have increased, try to increase concurrency level
1781 *
1782 * Activate the first inactive work item of @pwq if available and allowed by
1783 * max_active limit.
1784 *
1785 * Returns %true if an inactive work item has been activated. %false if no
1786 * inactive work item is found or max_active limit is reached.
1787 */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1788 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1789 {
1790 struct work_struct *work =
1791 list_first_entry_or_null(&pwq->inactive_works,
1792 struct work_struct, entry);
1793
1794 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1795 __pwq_activate_work(pwq, work);
1796 return true;
1797 } else {
1798 return false;
1799 }
1800 }
1801
1802 /**
1803 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1804 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1805 *
1806 * This function should only be called for ordered workqueues where only the
1807 * oldest pwq is unplugged, the others are plugged to suspend execution to
1808 * ensure proper work item ordering::
1809 *
1810 * dfl_pwq --------------+ [P] - plugged
1811 * |
1812 * v
1813 * pwqs -> A -> B [P] -> C [P] (newest)
1814 * | | |
1815 * 1 3 5
1816 * | | |
1817 * 2 4 6
1818 *
1819 * When the oldest pwq is drained and removed, this function should be called
1820 * to unplug the next oldest one to start its work item execution. Note that
1821 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1822 * the list is the oldest.
1823 */
unplug_oldest_pwq(struct workqueue_struct * wq)1824 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1825 {
1826 struct pool_workqueue *pwq;
1827
1828 lockdep_assert_held(&wq->mutex);
1829
1830 /* Caller should make sure that pwqs isn't empty before calling */
1831 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1832 pwqs_node);
1833 raw_spin_lock_irq(&pwq->pool->lock);
1834 if (pwq->plugged) {
1835 pwq->plugged = false;
1836 if (pwq_activate_first_inactive(pwq, true))
1837 kick_pool(pwq->pool);
1838 }
1839 raw_spin_unlock_irq(&pwq->pool->lock);
1840 }
1841
1842 /**
1843 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1844 * @nna: wq_node_nr_active to activate a pending pwq for
1845 * @caller_pool: worker_pool the caller is locking
1846 *
1847 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1848 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1849 */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1850 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1851 struct worker_pool *caller_pool)
1852 {
1853 struct worker_pool *locked_pool = caller_pool;
1854 struct pool_workqueue *pwq;
1855 struct work_struct *work;
1856
1857 lockdep_assert_held(&caller_pool->lock);
1858
1859 raw_spin_lock(&nna->lock);
1860 retry:
1861 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1862 struct pool_workqueue, pending_node);
1863 if (!pwq)
1864 goto out_unlock;
1865
1866 /*
1867 * If @pwq is for a different pool than @locked_pool, we need to lock
1868 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1869 * / lock dance. For that, we also need to release @nna->lock as it's
1870 * nested inside pool locks.
1871 */
1872 if (pwq->pool != locked_pool) {
1873 raw_spin_unlock(&locked_pool->lock);
1874 locked_pool = pwq->pool;
1875 if (!raw_spin_trylock(&locked_pool->lock)) {
1876 raw_spin_unlock(&nna->lock);
1877 raw_spin_lock(&locked_pool->lock);
1878 raw_spin_lock(&nna->lock);
1879 goto retry;
1880 }
1881 }
1882
1883 /*
1884 * $pwq may not have any inactive work items due to e.g. cancellations.
1885 * Drop it from pending_pwqs and see if there's another one.
1886 */
1887 work = list_first_entry_or_null(&pwq->inactive_works,
1888 struct work_struct, entry);
1889 if (!work) {
1890 list_del_init(&pwq->pending_node);
1891 goto retry;
1892 }
1893
1894 /*
1895 * Acquire an nr_active count and activate the inactive work item. If
1896 * $pwq still has inactive work items, rotate it to the end of the
1897 * pending_pwqs so that we round-robin through them. This means that
1898 * inactive work items are not activated in queueing order which is fine
1899 * given that there has never been any ordering across different pwqs.
1900 */
1901 if (likely(tryinc_node_nr_active(nna))) {
1902 pwq->nr_active++;
1903 __pwq_activate_work(pwq, work);
1904
1905 if (list_empty(&pwq->inactive_works))
1906 list_del_init(&pwq->pending_node);
1907 else
1908 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1909
1910 /* if activating a foreign pool, make sure it's running */
1911 if (pwq->pool != caller_pool)
1912 kick_pool(pwq->pool);
1913 }
1914
1915 out_unlock:
1916 raw_spin_unlock(&nna->lock);
1917 if (locked_pool != caller_pool) {
1918 raw_spin_unlock(&locked_pool->lock);
1919 raw_spin_lock(&caller_pool->lock);
1920 }
1921 }
1922
1923 /**
1924 * pwq_dec_nr_active - Retire an active count
1925 * @pwq: pool_workqueue of interest
1926 *
1927 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1928 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1929 */
pwq_dec_nr_active(struct pool_workqueue * pwq)1930 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1931 {
1932 struct worker_pool *pool = pwq->pool;
1933 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1934
1935 lockdep_assert_held(&pool->lock);
1936
1937 /*
1938 * @pwq->nr_active should be decremented for both percpu and unbound
1939 * workqueues.
1940 */
1941 pwq->nr_active--;
1942
1943 /*
1944 * For a percpu workqueue, it's simple. Just need to kick the first
1945 * inactive work item on @pwq itself.
1946 */
1947 if (!nna) {
1948 pwq_activate_first_inactive(pwq, false);
1949 return;
1950 }
1951
1952 /*
1953 * If @pwq is for an unbound workqueue, it's more complicated because
1954 * multiple pwqs and pools may be sharing the nr_active count. When a
1955 * pwq needs to wait for an nr_active count, it puts itself on
1956 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1957 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1958 * guarantee that either we see non-empty pending_pwqs or they see
1959 * decremented $nna->nr.
1960 *
1961 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1962 * max_active gets updated. However, it is guaranteed to be equal to or
1963 * larger than @pwq->wq->min_active which is above zero unless freezing.
1964 * This maintains the forward progress guarantee.
1965 */
1966 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1967 return;
1968
1969 if (!list_empty(&nna->pending_pwqs))
1970 node_activate_pending_pwq(nna, pool);
1971 }
1972
1973 /**
1974 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1975 * @pwq: pwq of interest
1976 * @work_data: work_data of work which left the queue
1977 *
1978 * A work either has completed or is removed from pending queue,
1979 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1980 *
1981 * NOTE:
1982 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1983 * and thus should be called after all other state updates for the in-flight
1984 * work item is complete.
1985 *
1986 * CONTEXT:
1987 * raw_spin_lock_irq(pool->lock).
1988 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1989 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1990 {
1991 int color = get_work_color(work_data);
1992
1993 if (!(work_data & WORK_STRUCT_INACTIVE))
1994 pwq_dec_nr_active(pwq);
1995
1996 pwq->nr_in_flight[color]--;
1997
1998 /* is flush in progress and are we at the flushing tip? */
1999 if (likely(pwq->flush_color != color))
2000 goto out_put;
2001
2002 /* are there still in-flight works? */
2003 if (pwq->nr_in_flight[color])
2004 goto out_put;
2005
2006 /* this pwq is done, clear flush_color */
2007 pwq->flush_color = -1;
2008
2009 /*
2010 * If this was the last pwq, wake up the first flusher. It
2011 * will handle the rest.
2012 */
2013 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2014 complete(&pwq->wq->first_flusher->done);
2015 out_put:
2016 put_pwq(pwq);
2017 }
2018
2019 /**
2020 * try_to_grab_pending - steal work item from worklist and disable irq
2021 * @work: work item to steal
2022 * @cflags: %WORK_CANCEL_ flags
2023 * @irq_flags: place to store irq state
2024 *
2025 * Try to grab PENDING bit of @work. This function can handle @work in any
2026 * stable state - idle, on timer or on worklist.
2027 *
2028 * Return:
2029 *
2030 * ======== ================================================================
2031 * 1 if @work was pending and we successfully stole PENDING
2032 * 0 if @work was idle and we claimed PENDING
2033 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
2034 * ======== ================================================================
2035 *
2036 * Note:
2037 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
2038 * interrupted while holding PENDING and @work off queue, irq must be
2039 * disabled on entry. This, combined with delayed_work->timer being
2040 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2041 *
2042 * On successful return, >= 0, irq is disabled and the caller is
2043 * responsible for releasing it using local_irq_restore(*@irq_flags).
2044 *
2045 * This function is safe to call from any context including IRQ handler.
2046 */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2047 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2048 unsigned long *irq_flags)
2049 {
2050 struct worker_pool *pool;
2051 struct pool_workqueue *pwq;
2052
2053 local_irq_save(*irq_flags);
2054
2055 /* try to steal the timer if it exists */
2056 if (cflags & WORK_CANCEL_DELAYED) {
2057 struct delayed_work *dwork = to_delayed_work(work);
2058
2059 /*
2060 * dwork->timer is irqsafe. If del_timer() fails, it's
2061 * guaranteed that the timer is not queued anywhere and not
2062 * running on the local CPU.
2063 */
2064 if (likely(del_timer(&dwork->timer)))
2065 return 1;
2066 }
2067
2068 /* try to claim PENDING the normal way */
2069 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2070 return 0;
2071
2072 rcu_read_lock();
2073 /*
2074 * The queueing is in progress, or it is already queued. Try to
2075 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2076 */
2077 pool = get_work_pool(work);
2078 if (!pool)
2079 goto fail;
2080
2081 raw_spin_lock(&pool->lock);
2082 /*
2083 * work->data is guaranteed to point to pwq only while the work
2084 * item is queued on pwq->wq, and both updating work->data to point
2085 * to pwq on queueing and to pool on dequeueing are done under
2086 * pwq->pool->lock. This in turn guarantees that, if work->data
2087 * points to pwq which is associated with a locked pool, the work
2088 * item is currently queued on that pool.
2089 */
2090 pwq = get_work_pwq(work);
2091 if (pwq && pwq->pool == pool) {
2092 unsigned long work_data = *work_data_bits(work);
2093
2094 debug_work_deactivate(work);
2095
2096 /*
2097 * A cancelable inactive work item must be in the
2098 * pwq->inactive_works since a queued barrier can't be
2099 * canceled (see the comments in insert_wq_barrier()).
2100 *
2101 * An inactive work item cannot be deleted directly because
2102 * it might have linked barrier work items which, if left
2103 * on the inactive_works list, will confuse pwq->nr_active
2104 * management later on and cause stall. Move the linked
2105 * barrier work items to the worklist when deleting the grabbed
2106 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2107 * it doesn't participate in nr_active management in later
2108 * pwq_dec_nr_in_flight().
2109 */
2110 if (work_data & WORK_STRUCT_INACTIVE)
2111 move_linked_works(work, &pwq->pool->worklist, NULL);
2112
2113 list_del_init(&work->entry);
2114
2115 /*
2116 * work->data points to pwq iff queued. Let's point to pool. As
2117 * this destroys work->data needed by the next step, stash it.
2118 */
2119 set_work_pool_and_keep_pending(work, pool->id,
2120 pool_offq_flags(pool));
2121
2122 /* must be the last step, see the function comment */
2123 pwq_dec_nr_in_flight(pwq, work_data);
2124
2125 raw_spin_unlock(&pool->lock);
2126 rcu_read_unlock();
2127 return 1;
2128 }
2129 raw_spin_unlock(&pool->lock);
2130 fail:
2131 rcu_read_unlock();
2132 local_irq_restore(*irq_flags);
2133 return -EAGAIN;
2134 }
2135
2136 /**
2137 * work_grab_pending - steal work item from worklist and disable irq
2138 * @work: work item to steal
2139 * @cflags: %WORK_CANCEL_ flags
2140 * @irq_flags: place to store IRQ state
2141 *
2142 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2143 * or on worklist.
2144 *
2145 * Can be called from any context. IRQ is disabled on return with IRQ state
2146 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2147 * local_irq_restore().
2148 *
2149 * Returns %true if @work was pending. %false if idle.
2150 */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2151 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2152 unsigned long *irq_flags)
2153 {
2154 int ret;
2155
2156 while (true) {
2157 ret = try_to_grab_pending(work, cflags, irq_flags);
2158 if (ret >= 0)
2159 return ret;
2160 cpu_relax();
2161 }
2162 }
2163
2164 /**
2165 * insert_work - insert a work into a pool
2166 * @pwq: pwq @work belongs to
2167 * @work: work to insert
2168 * @head: insertion point
2169 * @extra_flags: extra WORK_STRUCT_* flags to set
2170 *
2171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
2172 * work_struct flags.
2173 *
2174 * CONTEXT:
2175 * raw_spin_lock_irq(pool->lock).
2176 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2177 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2178 struct list_head *head, unsigned int extra_flags)
2179 {
2180 debug_work_activate(work);
2181
2182 /* record the work call stack in order to print it in KASAN reports */
2183 kasan_record_aux_stack_noalloc(work);
2184
2185 /* we own @work, set data and link */
2186 set_work_pwq(work, pwq, extra_flags);
2187 list_add_tail(&work->entry, head);
2188 get_pwq(pwq);
2189 }
2190
2191 /*
2192 * Test whether @work is being queued from another work executing on the
2193 * same workqueue.
2194 */
is_chained_work(struct workqueue_struct * wq)2195 static bool is_chained_work(struct workqueue_struct *wq)
2196 {
2197 struct worker *worker;
2198
2199 worker = current_wq_worker();
2200 /*
2201 * Return %true iff I'm a worker executing a work item on @wq. If
2202 * I'm @worker, it's safe to dereference it without locking.
2203 */
2204 return worker && worker->current_pwq->wq == wq;
2205 }
2206
2207 /*
2208 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2209 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2210 * avoid perturbing sensitive tasks.
2211 */
wq_select_unbound_cpu(int cpu)2212 static int wq_select_unbound_cpu(int cpu)
2213 {
2214 int new_cpu;
2215
2216 if (likely(!wq_debug_force_rr_cpu)) {
2217 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2218 return cpu;
2219 } else {
2220 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2221 }
2222
2223 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2224 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2225 if (unlikely(new_cpu >= nr_cpu_ids)) {
2226 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2227 if (unlikely(new_cpu >= nr_cpu_ids))
2228 return cpu;
2229 }
2230 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2231
2232 return new_cpu;
2233 }
2234
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2235 static void __queue_work(int cpu, struct workqueue_struct *wq,
2236 struct work_struct *work)
2237 {
2238 struct pool_workqueue *pwq;
2239 struct worker_pool *last_pool, *pool;
2240 unsigned int work_flags;
2241 unsigned int req_cpu = cpu;
2242
2243 /*
2244 * While a work item is PENDING && off queue, a task trying to
2245 * steal the PENDING will busy-loop waiting for it to either get
2246 * queued or lose PENDING. Grabbing PENDING and queueing should
2247 * happen with IRQ disabled.
2248 */
2249 lockdep_assert_irqs_disabled();
2250
2251 /*
2252 * For a draining wq, only works from the same workqueue are
2253 * allowed. The __WQ_DESTROYING helps to spot the issue that
2254 * queues a new work item to a wq after destroy_workqueue(wq).
2255 */
2256 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2257 WARN_ON_ONCE(!is_chained_work(wq))))
2258 return;
2259 rcu_read_lock();
2260 retry:
2261 /* pwq which will be used unless @work is executing elsewhere */
2262 if (req_cpu == WORK_CPU_UNBOUND) {
2263 if (wq->flags & WQ_UNBOUND)
2264 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2265 else
2266 cpu = raw_smp_processor_id();
2267 }
2268
2269 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2270 pool = pwq->pool;
2271
2272 /*
2273 * If @work was previously on a different pool, it might still be
2274 * running there, in which case the work needs to be queued on that
2275 * pool to guarantee non-reentrancy.
2276 *
2277 * For ordered workqueue, work items must be queued on the newest pwq
2278 * for accurate order management. Guaranteed order also guarantees
2279 * non-reentrancy. See the comments above unplug_oldest_pwq().
2280 */
2281 last_pool = get_work_pool(work);
2282 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2283 struct worker *worker;
2284
2285 raw_spin_lock(&last_pool->lock);
2286
2287 worker = find_worker_executing_work(last_pool, work);
2288
2289 if (worker && worker->current_pwq->wq == wq) {
2290 pwq = worker->current_pwq;
2291 pool = pwq->pool;
2292 WARN_ON_ONCE(pool != last_pool);
2293 } else {
2294 /* meh... not running there, queue here */
2295 raw_spin_unlock(&last_pool->lock);
2296 raw_spin_lock(&pool->lock);
2297 }
2298 } else {
2299 raw_spin_lock(&pool->lock);
2300 }
2301
2302 /*
2303 * pwq is determined and locked. For unbound pools, we could have raced
2304 * with pwq release and it could already be dead. If its refcnt is zero,
2305 * repeat pwq selection. Note that unbound pwqs never die without
2306 * another pwq replacing it in cpu_pwq or while work items are executing
2307 * on it, so the retrying is guaranteed to make forward-progress.
2308 */
2309 if (unlikely(!pwq->refcnt)) {
2310 if (wq->flags & WQ_UNBOUND) {
2311 raw_spin_unlock(&pool->lock);
2312 cpu_relax();
2313 goto retry;
2314 }
2315 /* oops */
2316 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2317 wq->name, cpu);
2318 }
2319
2320 /* pwq determined, queue */
2321 trace_workqueue_queue_work(req_cpu, pwq, work);
2322
2323 if (WARN_ON(!list_empty(&work->entry)))
2324 goto out;
2325
2326 pwq->nr_in_flight[pwq->work_color]++;
2327 work_flags = work_color_to_flags(pwq->work_color);
2328
2329 /*
2330 * Limit the number of concurrently active work items to max_active.
2331 * @work must also queue behind existing inactive work items to maintain
2332 * ordering when max_active changes. See wq_adjust_max_active().
2333 */
2334 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2335 if (list_empty(&pool->worklist))
2336 pool->watchdog_ts = jiffies;
2337
2338 trace_workqueue_activate_work(work);
2339 insert_work(pwq, work, &pool->worklist, work_flags);
2340 kick_pool(pool);
2341 } else {
2342 work_flags |= WORK_STRUCT_INACTIVE;
2343 insert_work(pwq, work, &pwq->inactive_works, work_flags);
2344 }
2345
2346 out:
2347 raw_spin_unlock(&pool->lock);
2348 rcu_read_unlock();
2349 }
2350
clear_pending_if_disabled(struct work_struct * work)2351 static bool clear_pending_if_disabled(struct work_struct *work)
2352 {
2353 unsigned long data = *work_data_bits(work);
2354 struct work_offq_data offqd;
2355
2356 if (likely((data & WORK_STRUCT_PWQ) ||
2357 !(data & WORK_OFFQ_DISABLE_MASK)))
2358 return false;
2359
2360 work_offqd_unpack(&offqd, data);
2361 set_work_pool_and_clear_pending(work, offqd.pool_id,
2362 work_offqd_pack_flags(&offqd));
2363 return true;
2364 }
2365
2366 /**
2367 * queue_work_on - queue work on specific cpu
2368 * @cpu: CPU number to execute work on
2369 * @wq: workqueue to use
2370 * @work: work to queue
2371 *
2372 * We queue the work to a specific CPU, the caller must ensure it
2373 * can't go away. Callers that fail to ensure that the specified
2374 * CPU cannot go away will execute on a randomly chosen CPU.
2375 * But note well that callers specifying a CPU that never has been
2376 * online will get a splat.
2377 *
2378 * Return: %false if @work was already on a queue, %true otherwise.
2379 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2380 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2381 struct work_struct *work)
2382 {
2383 bool ret = false;
2384 unsigned long irq_flags;
2385
2386 local_irq_save(irq_flags);
2387
2388 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2389 !clear_pending_if_disabled(work)) {
2390 __queue_work(cpu, wq, work);
2391 ret = true;
2392 }
2393
2394 local_irq_restore(irq_flags);
2395 return ret;
2396 }
2397 EXPORT_SYMBOL(queue_work_on);
2398
2399 /**
2400 * select_numa_node_cpu - Select a CPU based on NUMA node
2401 * @node: NUMA node ID that we want to select a CPU from
2402 *
2403 * This function will attempt to find a "random" cpu available on a given
2404 * node. If there are no CPUs available on the given node it will return
2405 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2406 * available CPU if we need to schedule this work.
2407 */
select_numa_node_cpu(int node)2408 static int select_numa_node_cpu(int node)
2409 {
2410 int cpu;
2411
2412 /* Delay binding to CPU if node is not valid or online */
2413 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2414 return WORK_CPU_UNBOUND;
2415
2416 /* Use local node/cpu if we are already there */
2417 cpu = raw_smp_processor_id();
2418 if (node == cpu_to_node(cpu))
2419 return cpu;
2420
2421 /* Use "random" otherwise know as "first" online CPU of node */
2422 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2423
2424 /* If CPU is valid return that, otherwise just defer */
2425 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2426 }
2427
2428 /**
2429 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2430 * @node: NUMA node that we are targeting the work for
2431 * @wq: workqueue to use
2432 * @work: work to queue
2433 *
2434 * We queue the work to a "random" CPU within a given NUMA node. The basic
2435 * idea here is to provide a way to somehow associate work with a given
2436 * NUMA node.
2437 *
2438 * This function will only make a best effort attempt at getting this onto
2439 * the right NUMA node. If no node is requested or the requested node is
2440 * offline then we just fall back to standard queue_work behavior.
2441 *
2442 * Currently the "random" CPU ends up being the first available CPU in the
2443 * intersection of cpu_online_mask and the cpumask of the node, unless we
2444 * are running on the node. In that case we just use the current CPU.
2445 *
2446 * Return: %false if @work was already on a queue, %true otherwise.
2447 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2448 bool queue_work_node(int node, struct workqueue_struct *wq,
2449 struct work_struct *work)
2450 {
2451 unsigned long irq_flags;
2452 bool ret = false;
2453
2454 /*
2455 * This current implementation is specific to unbound workqueues.
2456 * Specifically we only return the first available CPU for a given
2457 * node instead of cycling through individual CPUs within the node.
2458 *
2459 * If this is used with a per-cpu workqueue then the logic in
2460 * workqueue_select_cpu_near would need to be updated to allow for
2461 * some round robin type logic.
2462 */
2463 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2464
2465 local_irq_save(irq_flags);
2466
2467 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2468 !clear_pending_if_disabled(work)) {
2469 int cpu = select_numa_node_cpu(node);
2470
2471 __queue_work(cpu, wq, work);
2472 ret = true;
2473 }
2474
2475 local_irq_restore(irq_flags);
2476 return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(queue_work_node);
2479
delayed_work_timer_fn(struct timer_list * t)2480 void delayed_work_timer_fn(struct timer_list *t)
2481 {
2482 struct delayed_work *dwork = from_timer(dwork, t, timer);
2483
2484 /* should have been called from irqsafe timer with irq already off */
2485 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2486 }
2487 EXPORT_SYMBOL(delayed_work_timer_fn);
2488
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2489 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2490 struct delayed_work *dwork, unsigned long delay)
2491 {
2492 struct timer_list *timer = &dwork->timer;
2493 struct work_struct *work = &dwork->work;
2494
2495 WARN_ON_ONCE(!wq);
2496 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2497 WARN_ON_ONCE(timer_pending(timer));
2498 WARN_ON_ONCE(!list_empty(&work->entry));
2499
2500 /*
2501 * If @delay is 0, queue @dwork->work immediately. This is for
2502 * both optimization and correctness. The earliest @timer can
2503 * expire is on the closest next tick and delayed_work users depend
2504 * on that there's no such delay when @delay is 0.
2505 */
2506 if (!delay) {
2507 __queue_work(cpu, wq, &dwork->work);
2508 return;
2509 }
2510
2511 dwork->wq = wq;
2512 dwork->cpu = cpu;
2513 timer->expires = jiffies + delay;
2514
2515 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2516 /* If the current cpu is a housekeeping cpu, use it. */
2517 cpu = smp_processor_id();
2518 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2519 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2520 add_timer_on(timer, cpu);
2521 } else {
2522 if (likely(cpu == WORK_CPU_UNBOUND))
2523 add_timer_global(timer);
2524 else
2525 add_timer_on(timer, cpu);
2526 }
2527 }
2528
2529 /**
2530 * queue_delayed_work_on - queue work on specific CPU after delay
2531 * @cpu: CPU number to execute work on
2532 * @wq: workqueue to use
2533 * @dwork: work to queue
2534 * @delay: number of jiffies to wait before queueing
2535 *
2536 * Return: %false if @work was already on a queue, %true otherwise. If
2537 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2538 * execution.
2539 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2540 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2541 struct delayed_work *dwork, unsigned long delay)
2542 {
2543 struct work_struct *work = &dwork->work;
2544 bool ret = false;
2545 unsigned long irq_flags;
2546
2547 /* read the comment in __queue_work() */
2548 local_irq_save(irq_flags);
2549
2550 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2551 !clear_pending_if_disabled(work)) {
2552 __queue_delayed_work(cpu, wq, dwork, delay);
2553 ret = true;
2554 }
2555
2556 local_irq_restore(irq_flags);
2557 return ret;
2558 }
2559 EXPORT_SYMBOL(queue_delayed_work_on);
2560
2561 /**
2562 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2563 * @cpu: CPU number to execute work on
2564 * @wq: workqueue to use
2565 * @dwork: work to queue
2566 * @delay: number of jiffies to wait before queueing
2567 *
2568 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2569 * modify @dwork's timer so that it expires after @delay. If @delay is
2570 * zero, @work is guaranteed to be scheduled immediately regardless of its
2571 * current state.
2572 *
2573 * Return: %false if @dwork was idle and queued, %true if @dwork was
2574 * pending and its timer was modified.
2575 *
2576 * This function is safe to call from any context including IRQ handler.
2577 * See try_to_grab_pending() for details.
2578 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2579 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2580 struct delayed_work *dwork, unsigned long delay)
2581 {
2582 unsigned long irq_flags;
2583 bool ret;
2584
2585 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2586
2587 if (!clear_pending_if_disabled(&dwork->work))
2588 __queue_delayed_work(cpu, wq, dwork, delay);
2589
2590 local_irq_restore(irq_flags);
2591 return ret;
2592 }
2593 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2594
rcu_work_rcufn(struct rcu_head * rcu)2595 static void rcu_work_rcufn(struct rcu_head *rcu)
2596 {
2597 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2598
2599 /* read the comment in __queue_work() */
2600 local_irq_disable();
2601 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2602 local_irq_enable();
2603 }
2604
2605 /**
2606 * queue_rcu_work - queue work after a RCU grace period
2607 * @wq: workqueue to use
2608 * @rwork: work to queue
2609 *
2610 * Return: %false if @rwork was already pending, %true otherwise. Note
2611 * that a full RCU grace period is guaranteed only after a %true return.
2612 * While @rwork is guaranteed to be executed after a %false return, the
2613 * execution may happen before a full RCU grace period has passed.
2614 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2615 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2616 {
2617 struct work_struct *work = &rwork->work;
2618
2619 /*
2620 * rcu_work can't be canceled or disabled. Warn if the user reached
2621 * inside @rwork and disabled the inner work.
2622 */
2623 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2624 !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2625 rwork->wq = wq;
2626 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2627 return true;
2628 }
2629
2630 return false;
2631 }
2632 EXPORT_SYMBOL(queue_rcu_work);
2633
alloc_worker(int node)2634 static struct worker *alloc_worker(int node)
2635 {
2636 struct worker *worker;
2637
2638 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2639 if (worker) {
2640 INIT_LIST_HEAD(&worker->entry);
2641 INIT_LIST_HEAD(&worker->scheduled);
2642 INIT_LIST_HEAD(&worker->node);
2643 /* on creation a worker is in !idle && prep state */
2644 worker->flags = WORKER_PREP;
2645 }
2646 return worker;
2647 }
2648
pool_allowed_cpus(struct worker_pool * pool)2649 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2650 {
2651 if (pool->cpu < 0 && pool->attrs->affn_strict)
2652 return pool->attrs->__pod_cpumask;
2653 else
2654 return pool->attrs->cpumask;
2655 }
2656
2657 /**
2658 * worker_attach_to_pool() - attach a worker to a pool
2659 * @worker: worker to be attached
2660 * @pool: the target pool
2661 *
2662 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2663 * cpu-binding of @worker are kept coordinated with the pool across
2664 * cpu-[un]hotplugs.
2665 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2666 static void worker_attach_to_pool(struct worker *worker,
2667 struct worker_pool *pool)
2668 {
2669 mutex_lock(&wq_pool_attach_mutex);
2670
2671 /*
2672 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2673 * across this function. See the comments above the flag definition for
2674 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2675 */
2676 if (pool->flags & POOL_DISASSOCIATED) {
2677 worker->flags |= WORKER_UNBOUND;
2678 } else {
2679 WARN_ON_ONCE(pool->flags & POOL_BH);
2680 kthread_set_per_cpu(worker->task, pool->cpu);
2681 }
2682
2683 if (worker->rescue_wq)
2684 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2685
2686 list_add_tail(&worker->node, &pool->workers);
2687 worker->pool = pool;
2688
2689 mutex_unlock(&wq_pool_attach_mutex);
2690 }
2691
unbind_worker(struct worker * worker)2692 static void unbind_worker(struct worker *worker)
2693 {
2694 lockdep_assert_held(&wq_pool_attach_mutex);
2695
2696 kthread_set_per_cpu(worker->task, -1);
2697 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2698 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2699 else
2700 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2701 }
2702
2703
detach_worker(struct worker * worker)2704 static void detach_worker(struct worker *worker)
2705 {
2706 lockdep_assert_held(&wq_pool_attach_mutex);
2707
2708 unbind_worker(worker);
2709 list_del(&worker->node);
2710 }
2711
2712 /**
2713 * worker_detach_from_pool() - detach a worker from its pool
2714 * @worker: worker which is attached to its pool
2715 *
2716 * Undo the attaching which had been done in worker_attach_to_pool(). The
2717 * caller worker shouldn't access to the pool after detached except it has
2718 * other reference to the pool.
2719 */
worker_detach_from_pool(struct worker * worker)2720 static void worker_detach_from_pool(struct worker *worker)
2721 {
2722 struct worker_pool *pool = worker->pool;
2723
2724 /* there is one permanent BH worker per CPU which should never detach */
2725 WARN_ON_ONCE(pool->flags & POOL_BH);
2726
2727 mutex_lock(&wq_pool_attach_mutex);
2728 detach_worker(worker);
2729 worker->pool = NULL;
2730 mutex_unlock(&wq_pool_attach_mutex);
2731
2732 /* clear leftover flags without pool->lock after it is detached */
2733 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2734 }
2735
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2736 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2737 struct worker_pool *pool)
2738 {
2739 if (worker->rescue_wq)
2740 return scnprintf(buf, size, "kworker/R-%s",
2741 worker->rescue_wq->name);
2742
2743 if (pool) {
2744 if (pool->cpu >= 0)
2745 return scnprintf(buf, size, "kworker/%d:%d%s",
2746 pool->cpu, worker->id,
2747 pool->attrs->nice < 0 ? "H" : "");
2748 else
2749 return scnprintf(buf, size, "kworker/u%d:%d",
2750 pool->id, worker->id);
2751 } else {
2752 return scnprintf(buf, size, "kworker/dying");
2753 }
2754 }
2755
2756 /**
2757 * create_worker - create a new workqueue worker
2758 * @pool: pool the new worker will belong to
2759 *
2760 * Create and start a new worker which is attached to @pool.
2761 *
2762 * CONTEXT:
2763 * Might sleep. Does GFP_KERNEL allocations.
2764 *
2765 * Return:
2766 * Pointer to the newly created worker.
2767 */
create_worker(struct worker_pool * pool)2768 static struct worker *create_worker(struct worker_pool *pool)
2769 {
2770 struct worker *worker;
2771 int id;
2772
2773 /* ID is needed to determine kthread name */
2774 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2775 if (id < 0) {
2776 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2777 ERR_PTR(id));
2778 return NULL;
2779 }
2780
2781 worker = alloc_worker(pool->node);
2782 if (!worker) {
2783 pr_err_once("workqueue: Failed to allocate a worker\n");
2784 goto fail;
2785 }
2786
2787 worker->id = id;
2788
2789 if (!(pool->flags & POOL_BH)) {
2790 char id_buf[WORKER_ID_LEN];
2791
2792 format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2793 worker->task = kthread_create_on_node(worker_thread, worker,
2794 pool->node, "%s", id_buf);
2795 if (IS_ERR(worker->task)) {
2796 if (PTR_ERR(worker->task) == -EINTR) {
2797 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2798 id_buf);
2799 } else {
2800 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2801 worker->task);
2802 }
2803 goto fail;
2804 }
2805
2806 set_user_nice(worker->task, pool->attrs->nice);
2807 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2808 }
2809
2810 /* successful, attach the worker to the pool */
2811 worker_attach_to_pool(worker, pool);
2812
2813 /* start the newly created worker */
2814 raw_spin_lock_irq(&pool->lock);
2815
2816 worker->pool->nr_workers++;
2817 worker_enter_idle(worker);
2818
2819 /*
2820 * @worker is waiting on a completion in kthread() and will trigger hung
2821 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2822 * wake it up explicitly.
2823 */
2824 if (worker->task)
2825 wake_up_process(worker->task);
2826
2827 raw_spin_unlock_irq(&pool->lock);
2828
2829 return worker;
2830
2831 fail:
2832 ida_free(&pool->worker_ida, id);
2833 kfree(worker);
2834 return NULL;
2835 }
2836
detach_dying_workers(struct list_head * cull_list)2837 static void detach_dying_workers(struct list_head *cull_list)
2838 {
2839 struct worker *worker;
2840
2841 list_for_each_entry(worker, cull_list, entry)
2842 detach_worker(worker);
2843 }
2844
reap_dying_workers(struct list_head * cull_list)2845 static void reap_dying_workers(struct list_head *cull_list)
2846 {
2847 struct worker *worker, *tmp;
2848
2849 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2850 list_del_init(&worker->entry);
2851 kthread_stop_put(worker->task);
2852 kfree(worker);
2853 }
2854 }
2855
2856 /**
2857 * set_worker_dying - Tag a worker for destruction
2858 * @worker: worker to be destroyed
2859 * @list: transfer worker away from its pool->idle_list and into list
2860 *
2861 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2862 * should be idle.
2863 *
2864 * CONTEXT:
2865 * raw_spin_lock_irq(pool->lock).
2866 */
set_worker_dying(struct worker * worker,struct list_head * list)2867 static void set_worker_dying(struct worker *worker, struct list_head *list)
2868 {
2869 struct worker_pool *pool = worker->pool;
2870
2871 lockdep_assert_held(&pool->lock);
2872 lockdep_assert_held(&wq_pool_attach_mutex);
2873
2874 /* sanity check frenzy */
2875 if (WARN_ON(worker->current_work) ||
2876 WARN_ON(!list_empty(&worker->scheduled)) ||
2877 WARN_ON(!(worker->flags & WORKER_IDLE)))
2878 return;
2879
2880 pool->nr_workers--;
2881 pool->nr_idle--;
2882
2883 worker->flags |= WORKER_DIE;
2884
2885 list_move(&worker->entry, list);
2886
2887 /* get an extra task struct reference for later kthread_stop_put() */
2888 get_task_struct(worker->task);
2889 }
2890
2891 /**
2892 * idle_worker_timeout - check if some idle workers can now be deleted.
2893 * @t: The pool's idle_timer that just expired
2894 *
2895 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2896 * worker_leave_idle(), as a worker flicking between idle and active while its
2897 * pool is at the too_many_workers() tipping point would cause too much timer
2898 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2899 * it expire and re-evaluate things from there.
2900 */
idle_worker_timeout(struct timer_list * t)2901 static void idle_worker_timeout(struct timer_list *t)
2902 {
2903 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2904 bool do_cull = false;
2905
2906 if (work_pending(&pool->idle_cull_work))
2907 return;
2908
2909 raw_spin_lock_irq(&pool->lock);
2910
2911 if (too_many_workers(pool)) {
2912 struct worker *worker;
2913 unsigned long expires;
2914
2915 /* idle_list is kept in LIFO order, check the last one */
2916 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2917 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2918 do_cull = !time_before(jiffies, expires);
2919
2920 if (!do_cull)
2921 mod_timer(&pool->idle_timer, expires);
2922 }
2923 raw_spin_unlock_irq(&pool->lock);
2924
2925 if (do_cull)
2926 queue_work(system_unbound_wq, &pool->idle_cull_work);
2927 }
2928
2929 /**
2930 * idle_cull_fn - cull workers that have been idle for too long.
2931 * @work: the pool's work for handling these idle workers
2932 *
2933 * This goes through a pool's idle workers and gets rid of those that have been
2934 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2935 *
2936 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2937 * culled, so this also resets worker affinity. This requires a sleepable
2938 * context, hence the split between timer callback and work item.
2939 */
idle_cull_fn(struct work_struct * work)2940 static void idle_cull_fn(struct work_struct *work)
2941 {
2942 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2943 LIST_HEAD(cull_list);
2944
2945 /*
2946 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2947 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2948 * This is required as a previously-preempted worker could run after
2949 * set_worker_dying() has happened but before detach_dying_workers() did.
2950 */
2951 mutex_lock(&wq_pool_attach_mutex);
2952 raw_spin_lock_irq(&pool->lock);
2953
2954 while (too_many_workers(pool)) {
2955 struct worker *worker;
2956 unsigned long expires;
2957
2958 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2959 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2960
2961 if (time_before(jiffies, expires)) {
2962 mod_timer(&pool->idle_timer, expires);
2963 break;
2964 }
2965
2966 set_worker_dying(worker, &cull_list);
2967 }
2968
2969 raw_spin_unlock_irq(&pool->lock);
2970 detach_dying_workers(&cull_list);
2971 mutex_unlock(&wq_pool_attach_mutex);
2972
2973 reap_dying_workers(&cull_list);
2974 }
2975
send_mayday(struct work_struct * work)2976 static void send_mayday(struct work_struct *work)
2977 {
2978 struct pool_workqueue *pwq = get_work_pwq(work);
2979 struct workqueue_struct *wq = pwq->wq;
2980
2981 lockdep_assert_held(&wq_mayday_lock);
2982
2983 if (!wq->rescuer)
2984 return;
2985
2986 /* mayday mayday mayday */
2987 if (list_empty(&pwq->mayday_node)) {
2988 /*
2989 * If @pwq is for an unbound wq, its base ref may be put at
2990 * any time due to an attribute change. Pin @pwq until the
2991 * rescuer is done with it.
2992 */
2993 get_pwq(pwq);
2994 list_add_tail(&pwq->mayday_node, &wq->maydays);
2995 wake_up_process(wq->rescuer->task);
2996 pwq->stats[PWQ_STAT_MAYDAY]++;
2997 }
2998 }
2999
pool_mayday_timeout(struct timer_list * t)3000 static void pool_mayday_timeout(struct timer_list *t)
3001 {
3002 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3003 struct work_struct *work;
3004
3005 raw_spin_lock_irq(&pool->lock);
3006 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
3007
3008 if (need_to_create_worker(pool)) {
3009 /*
3010 * We've been trying to create a new worker but
3011 * haven't been successful. We might be hitting an
3012 * allocation deadlock. Send distress signals to
3013 * rescuers.
3014 */
3015 list_for_each_entry(work, &pool->worklist, entry)
3016 send_mayday(work);
3017 }
3018
3019 raw_spin_unlock(&wq_mayday_lock);
3020 raw_spin_unlock_irq(&pool->lock);
3021
3022 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3023 }
3024
3025 /**
3026 * maybe_create_worker - create a new worker if necessary
3027 * @pool: pool to create a new worker for
3028 *
3029 * Create a new worker for @pool if necessary. @pool is guaranteed to
3030 * have at least one idle worker on return from this function. If
3031 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3032 * sent to all rescuers with works scheduled on @pool to resolve
3033 * possible allocation deadlock.
3034 *
3035 * On return, need_to_create_worker() is guaranteed to be %false and
3036 * may_start_working() %true.
3037 *
3038 * LOCKING:
3039 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3040 * multiple times. Does GFP_KERNEL allocations. Called only from
3041 * manager.
3042 */
maybe_create_worker(struct worker_pool * pool)3043 static void maybe_create_worker(struct worker_pool *pool)
3044 __releases(&pool->lock)
3045 __acquires(&pool->lock)
3046 {
3047 restart:
3048 raw_spin_unlock_irq(&pool->lock);
3049
3050 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3051 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3052
3053 while (true) {
3054 if (create_worker(pool) || !need_to_create_worker(pool))
3055 break;
3056
3057 schedule_timeout_interruptible(CREATE_COOLDOWN);
3058
3059 if (!need_to_create_worker(pool))
3060 break;
3061 }
3062
3063 del_timer_sync(&pool->mayday_timer);
3064 raw_spin_lock_irq(&pool->lock);
3065 /*
3066 * This is necessary even after a new worker was just successfully
3067 * created as @pool->lock was dropped and the new worker might have
3068 * already become busy.
3069 */
3070 if (need_to_create_worker(pool))
3071 goto restart;
3072 }
3073
3074 /**
3075 * manage_workers - manage worker pool
3076 * @worker: self
3077 *
3078 * Assume the manager role and manage the worker pool @worker belongs
3079 * to. At any given time, there can be only zero or one manager per
3080 * pool. The exclusion is handled automatically by this function.
3081 *
3082 * The caller can safely start processing works on false return. On
3083 * true return, it's guaranteed that need_to_create_worker() is false
3084 * and may_start_working() is true.
3085 *
3086 * CONTEXT:
3087 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3088 * multiple times. Does GFP_KERNEL allocations.
3089 *
3090 * Return:
3091 * %false if the pool doesn't need management and the caller can safely
3092 * start processing works, %true if management function was performed and
3093 * the conditions that the caller verified before calling the function may
3094 * no longer be true.
3095 */
manage_workers(struct worker * worker)3096 static bool manage_workers(struct worker *worker)
3097 {
3098 struct worker_pool *pool = worker->pool;
3099
3100 if (pool->flags & POOL_MANAGER_ACTIVE)
3101 return false;
3102
3103 pool->flags |= POOL_MANAGER_ACTIVE;
3104 pool->manager = worker;
3105
3106 maybe_create_worker(pool);
3107
3108 pool->manager = NULL;
3109 pool->flags &= ~POOL_MANAGER_ACTIVE;
3110 rcuwait_wake_up(&manager_wait);
3111 return true;
3112 }
3113
3114 /**
3115 * process_one_work - process single work
3116 * @worker: self
3117 * @work: work to process
3118 *
3119 * Process @work. This function contains all the logics necessary to
3120 * process a single work including synchronization against and
3121 * interaction with other workers on the same cpu, queueing and
3122 * flushing. As long as context requirement is met, any worker can
3123 * call this function to process a work.
3124 *
3125 * CONTEXT:
3126 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3127 */
process_one_work(struct worker * worker,struct work_struct * work)3128 static void process_one_work(struct worker *worker, struct work_struct *work)
3129 __releases(&pool->lock)
3130 __acquires(&pool->lock)
3131 {
3132 struct pool_workqueue *pwq = get_work_pwq(work);
3133 struct worker_pool *pool = worker->pool;
3134 unsigned long work_data;
3135 int lockdep_start_depth, rcu_start_depth;
3136 bool bh_draining = pool->flags & POOL_BH_DRAINING;
3137 #ifdef CONFIG_LOCKDEP
3138 /*
3139 * It is permissible to free the struct work_struct from
3140 * inside the function that is called from it, this we need to
3141 * take into account for lockdep too. To avoid bogus "held
3142 * lock freed" warnings as well as problems when looking into
3143 * work->lockdep_map, make a copy and use that here.
3144 */
3145 struct lockdep_map lockdep_map;
3146
3147 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3148 #endif
3149 /* ensure we're on the correct CPU */
3150 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3151 raw_smp_processor_id() != pool->cpu);
3152
3153 /* claim and dequeue */
3154 debug_work_deactivate(work);
3155 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3156 worker->current_work = work;
3157 worker->current_func = work->func;
3158 worker->current_pwq = pwq;
3159 if (worker->task)
3160 worker->current_at = worker->task->se.sum_exec_runtime;
3161 work_data = *work_data_bits(work);
3162 worker->current_color = get_work_color(work_data);
3163
3164 /*
3165 * Record wq name for cmdline and debug reporting, may get
3166 * overridden through set_worker_desc().
3167 */
3168 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3169
3170 list_del_init(&work->entry);
3171
3172 /*
3173 * CPU intensive works don't participate in concurrency management.
3174 * They're the scheduler's responsibility. This takes @worker out
3175 * of concurrency management and the next code block will chain
3176 * execution of the pending work items.
3177 */
3178 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3179 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3180
3181 /*
3182 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3183 * since nr_running would always be >= 1 at this point. This is used to
3184 * chain execution of the pending work items for WORKER_NOT_RUNNING
3185 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3186 */
3187 kick_pool(pool);
3188
3189 /*
3190 * Record the last pool and clear PENDING which should be the last
3191 * update to @work. Also, do this inside @pool->lock so that
3192 * PENDING and queued state changes happen together while IRQ is
3193 * disabled.
3194 */
3195 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3196
3197 pwq->stats[PWQ_STAT_STARTED]++;
3198 raw_spin_unlock_irq(&pool->lock);
3199
3200 rcu_start_depth = rcu_preempt_depth();
3201 lockdep_start_depth = lockdep_depth(current);
3202 /* see drain_dead_softirq_workfn() */
3203 if (!bh_draining)
3204 lock_map_acquire(pwq->wq->lockdep_map);
3205 lock_map_acquire(&lockdep_map);
3206 /*
3207 * Strictly speaking we should mark the invariant state without holding
3208 * any locks, that is, before these two lock_map_acquire()'s.
3209 *
3210 * However, that would result in:
3211 *
3212 * A(W1)
3213 * WFC(C)
3214 * A(W1)
3215 * C(C)
3216 *
3217 * Which would create W1->C->W1 dependencies, even though there is no
3218 * actual deadlock possible. There are two solutions, using a
3219 * read-recursive acquire on the work(queue) 'locks', but this will then
3220 * hit the lockdep limitation on recursive locks, or simply discard
3221 * these locks.
3222 *
3223 * AFAICT there is no possible deadlock scenario between the
3224 * flush_work() and complete() primitives (except for single-threaded
3225 * workqueues), so hiding them isn't a problem.
3226 */
3227 lockdep_invariant_state(true);
3228 trace_workqueue_execute_start(work);
3229 worker->current_func(work);
3230 /*
3231 * While we must be careful to not use "work" after this, the trace
3232 * point will only record its address.
3233 */
3234 trace_workqueue_execute_end(work, worker->current_func);
3235 pwq->stats[PWQ_STAT_COMPLETED]++;
3236 lock_map_release(&lockdep_map);
3237 if (!bh_draining)
3238 lock_map_release(pwq->wq->lockdep_map);
3239
3240 if (unlikely((worker->task && in_atomic()) ||
3241 lockdep_depth(current) != lockdep_start_depth ||
3242 rcu_preempt_depth() != rcu_start_depth)) {
3243 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3244 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3245 current->comm, task_pid_nr(current), preempt_count(),
3246 lockdep_start_depth, lockdep_depth(current),
3247 rcu_start_depth, rcu_preempt_depth(),
3248 worker->current_func);
3249 debug_show_held_locks(current);
3250 dump_stack();
3251 }
3252
3253 /*
3254 * The following prevents a kworker from hogging CPU on !PREEMPTION
3255 * kernels, where a requeueing work item waiting for something to
3256 * happen could deadlock with stop_machine as such work item could
3257 * indefinitely requeue itself while all other CPUs are trapped in
3258 * stop_machine. At the same time, report a quiescent RCU state so
3259 * the same condition doesn't freeze RCU.
3260 */
3261 if (worker->task)
3262 cond_resched();
3263
3264 raw_spin_lock_irq(&pool->lock);
3265
3266 /*
3267 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3268 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3269 * wq_cpu_intensive_thresh_us. Clear it.
3270 */
3271 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3272
3273 /* tag the worker for identification in schedule() */
3274 worker->last_func = worker->current_func;
3275
3276 /* we're done with it, release */
3277 hash_del(&worker->hentry);
3278 worker->current_work = NULL;
3279 worker->current_func = NULL;
3280 worker->current_pwq = NULL;
3281 worker->current_color = INT_MAX;
3282
3283 /* must be the last step, see the function comment */
3284 pwq_dec_nr_in_flight(pwq, work_data);
3285 }
3286
3287 /**
3288 * process_scheduled_works - process scheduled works
3289 * @worker: self
3290 *
3291 * Process all scheduled works. Please note that the scheduled list
3292 * may change while processing a work, so this function repeatedly
3293 * fetches a work from the top and executes it.
3294 *
3295 * CONTEXT:
3296 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3297 * multiple times.
3298 */
process_scheduled_works(struct worker * worker)3299 static void process_scheduled_works(struct worker *worker)
3300 {
3301 struct work_struct *work;
3302 bool first = true;
3303
3304 while ((work = list_first_entry_or_null(&worker->scheduled,
3305 struct work_struct, entry))) {
3306 if (first) {
3307 worker->pool->watchdog_ts = jiffies;
3308 first = false;
3309 }
3310 process_one_work(worker, work);
3311 }
3312 }
3313
set_pf_worker(bool val)3314 static void set_pf_worker(bool val)
3315 {
3316 mutex_lock(&wq_pool_attach_mutex);
3317 if (val)
3318 current->flags |= PF_WQ_WORKER;
3319 else
3320 current->flags &= ~PF_WQ_WORKER;
3321 mutex_unlock(&wq_pool_attach_mutex);
3322 }
3323
3324 /**
3325 * worker_thread - the worker thread function
3326 * @__worker: self
3327 *
3328 * The worker thread function. All workers belong to a worker_pool -
3329 * either a per-cpu one or dynamic unbound one. These workers process all
3330 * work items regardless of their specific target workqueue. The only
3331 * exception is work items which belong to workqueues with a rescuer which
3332 * will be explained in rescuer_thread().
3333 *
3334 * Return: 0
3335 */
worker_thread(void * __worker)3336 static int worker_thread(void *__worker)
3337 {
3338 struct worker *worker = __worker;
3339 struct worker_pool *pool = worker->pool;
3340
3341 /* tell the scheduler that this is a workqueue worker */
3342 set_pf_worker(true);
3343 woke_up:
3344 raw_spin_lock_irq(&pool->lock);
3345
3346 /* am I supposed to die? */
3347 if (unlikely(worker->flags & WORKER_DIE)) {
3348 raw_spin_unlock_irq(&pool->lock);
3349 set_pf_worker(false);
3350 /*
3351 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3352 * shouldn't be accessed, reset it to NULL in case otherwise.
3353 */
3354 worker->pool = NULL;
3355 ida_free(&pool->worker_ida, worker->id);
3356 return 0;
3357 }
3358
3359 worker_leave_idle(worker);
3360 recheck:
3361 /* no more worker necessary? */
3362 if (!need_more_worker(pool))
3363 goto sleep;
3364
3365 /* do we need to manage? */
3366 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3367 goto recheck;
3368
3369 /*
3370 * ->scheduled list can only be filled while a worker is
3371 * preparing to process a work or actually processing it.
3372 * Make sure nobody diddled with it while I was sleeping.
3373 */
3374 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3375
3376 /*
3377 * Finish PREP stage. We're guaranteed to have at least one idle
3378 * worker or that someone else has already assumed the manager
3379 * role. This is where @worker starts participating in concurrency
3380 * management if applicable and concurrency management is restored
3381 * after being rebound. See rebind_workers() for details.
3382 */
3383 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3384
3385 do {
3386 struct work_struct *work =
3387 list_first_entry(&pool->worklist,
3388 struct work_struct, entry);
3389
3390 if (assign_work(work, worker, NULL))
3391 process_scheduled_works(worker);
3392 } while (keep_working(pool));
3393
3394 worker_set_flags(worker, WORKER_PREP);
3395 sleep:
3396 /*
3397 * pool->lock is held and there's no work to process and no need to
3398 * manage, sleep. Workers are woken up only while holding
3399 * pool->lock or from local cpu, so setting the current state
3400 * before releasing pool->lock is enough to prevent losing any
3401 * event.
3402 */
3403 worker_enter_idle(worker);
3404 __set_current_state(TASK_IDLE);
3405 raw_spin_unlock_irq(&pool->lock);
3406 schedule();
3407 goto woke_up;
3408 }
3409
3410 /**
3411 * rescuer_thread - the rescuer thread function
3412 * @__rescuer: self
3413 *
3414 * Workqueue rescuer thread function. There's one rescuer for each
3415 * workqueue which has WQ_MEM_RECLAIM set.
3416 *
3417 * Regular work processing on a pool may block trying to create a new
3418 * worker which uses GFP_KERNEL allocation which has slight chance of
3419 * developing into deadlock if some works currently on the same queue
3420 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3421 * the problem rescuer solves.
3422 *
3423 * When such condition is possible, the pool summons rescuers of all
3424 * workqueues which have works queued on the pool and let them process
3425 * those works so that forward progress can be guaranteed.
3426 *
3427 * This should happen rarely.
3428 *
3429 * Return: 0
3430 */
rescuer_thread(void * __rescuer)3431 static int rescuer_thread(void *__rescuer)
3432 {
3433 struct worker *rescuer = __rescuer;
3434 struct workqueue_struct *wq = rescuer->rescue_wq;
3435 bool should_stop;
3436
3437 set_user_nice(current, RESCUER_NICE_LEVEL);
3438
3439 /*
3440 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3441 * doesn't participate in concurrency management.
3442 */
3443 set_pf_worker(true);
3444 repeat:
3445 set_current_state(TASK_IDLE);
3446
3447 /*
3448 * By the time the rescuer is requested to stop, the workqueue
3449 * shouldn't have any work pending, but @wq->maydays may still have
3450 * pwq(s) queued. This can happen by non-rescuer workers consuming
3451 * all the work items before the rescuer got to them. Go through
3452 * @wq->maydays processing before acting on should_stop so that the
3453 * list is always empty on exit.
3454 */
3455 should_stop = kthread_should_stop();
3456
3457 /* see whether any pwq is asking for help */
3458 raw_spin_lock_irq(&wq_mayday_lock);
3459
3460 while (!list_empty(&wq->maydays)) {
3461 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3462 struct pool_workqueue, mayday_node);
3463 struct worker_pool *pool = pwq->pool;
3464 struct work_struct *work, *n;
3465
3466 __set_current_state(TASK_RUNNING);
3467 list_del_init(&pwq->mayday_node);
3468
3469 raw_spin_unlock_irq(&wq_mayday_lock);
3470
3471 worker_attach_to_pool(rescuer, pool);
3472
3473 raw_spin_lock_irq(&pool->lock);
3474
3475 /*
3476 * Slurp in all works issued via this workqueue and
3477 * process'em.
3478 */
3479 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3480 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3481 if (get_work_pwq(work) == pwq &&
3482 assign_work(work, rescuer, &n))
3483 pwq->stats[PWQ_STAT_RESCUED]++;
3484 }
3485
3486 if (!list_empty(&rescuer->scheduled)) {
3487 process_scheduled_works(rescuer);
3488
3489 /*
3490 * The above execution of rescued work items could
3491 * have created more to rescue through
3492 * pwq_activate_first_inactive() or chained
3493 * queueing. Let's put @pwq back on mayday list so
3494 * that such back-to-back work items, which may be
3495 * being used to relieve memory pressure, don't
3496 * incur MAYDAY_INTERVAL delay inbetween.
3497 */
3498 if (pwq->nr_active && need_to_create_worker(pool)) {
3499 raw_spin_lock(&wq_mayday_lock);
3500 /*
3501 * Queue iff we aren't racing destruction
3502 * and somebody else hasn't queued it already.
3503 */
3504 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3505 get_pwq(pwq);
3506 list_add_tail(&pwq->mayday_node, &wq->maydays);
3507 }
3508 raw_spin_unlock(&wq_mayday_lock);
3509 }
3510 }
3511
3512 /*
3513 * Put the reference grabbed by send_mayday(). @pool won't
3514 * go away while we're still attached to it.
3515 */
3516 put_pwq(pwq);
3517
3518 /*
3519 * Leave this pool. Notify regular workers; otherwise, we end up
3520 * with 0 concurrency and stalling the execution.
3521 */
3522 kick_pool(pool);
3523
3524 raw_spin_unlock_irq(&pool->lock);
3525
3526 worker_detach_from_pool(rescuer);
3527
3528 raw_spin_lock_irq(&wq_mayday_lock);
3529 }
3530
3531 raw_spin_unlock_irq(&wq_mayday_lock);
3532
3533 if (should_stop) {
3534 __set_current_state(TASK_RUNNING);
3535 set_pf_worker(false);
3536 return 0;
3537 }
3538
3539 /* rescuers should never participate in concurrency management */
3540 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3541 schedule();
3542 goto repeat;
3543 }
3544
bh_worker(struct worker * worker)3545 static void bh_worker(struct worker *worker)
3546 {
3547 struct worker_pool *pool = worker->pool;
3548 int nr_restarts = BH_WORKER_RESTARTS;
3549 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3550
3551 raw_spin_lock_irq(&pool->lock);
3552 worker_leave_idle(worker);
3553
3554 /*
3555 * This function follows the structure of worker_thread(). See there for
3556 * explanations on each step.
3557 */
3558 if (!need_more_worker(pool))
3559 goto done;
3560
3561 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3562 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3563
3564 do {
3565 struct work_struct *work =
3566 list_first_entry(&pool->worklist,
3567 struct work_struct, entry);
3568
3569 if (assign_work(work, worker, NULL))
3570 process_scheduled_works(worker);
3571 } while (keep_working(pool) &&
3572 --nr_restarts && time_before(jiffies, end));
3573
3574 worker_set_flags(worker, WORKER_PREP);
3575 done:
3576 worker_enter_idle(worker);
3577 kick_pool(pool);
3578 raw_spin_unlock_irq(&pool->lock);
3579 }
3580
3581 /*
3582 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3583 *
3584 * This is currently called from tasklet[_hi]action() and thus is also called
3585 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3586 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3587 * can be dropped.
3588 *
3589 * After full conversion, we'll add worker->softirq_action, directly use the
3590 * softirq action and obtain the worker pointer from the softirq_action pointer.
3591 */
workqueue_softirq_action(bool highpri)3592 void workqueue_softirq_action(bool highpri)
3593 {
3594 struct worker_pool *pool =
3595 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3596 if (need_more_worker(pool))
3597 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3598 }
3599
3600 struct wq_drain_dead_softirq_work {
3601 struct work_struct work;
3602 struct worker_pool *pool;
3603 struct completion done;
3604 };
3605
drain_dead_softirq_workfn(struct work_struct * work)3606 static void drain_dead_softirq_workfn(struct work_struct *work)
3607 {
3608 struct wq_drain_dead_softirq_work *dead_work =
3609 container_of(work, struct wq_drain_dead_softirq_work, work);
3610 struct worker_pool *pool = dead_work->pool;
3611 bool repeat;
3612
3613 /*
3614 * @pool's CPU is dead and we want to execute its still pending work
3615 * items from this BH work item which is running on a different CPU. As
3616 * its CPU is dead, @pool can't be kicked and, as work execution path
3617 * will be nested, a lockdep annotation needs to be suppressed. Mark
3618 * @pool with %POOL_BH_DRAINING for the special treatments.
3619 */
3620 raw_spin_lock_irq(&pool->lock);
3621 pool->flags |= POOL_BH_DRAINING;
3622 raw_spin_unlock_irq(&pool->lock);
3623
3624 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3625
3626 raw_spin_lock_irq(&pool->lock);
3627 pool->flags &= ~POOL_BH_DRAINING;
3628 repeat = need_more_worker(pool);
3629 raw_spin_unlock_irq(&pool->lock);
3630
3631 /*
3632 * bh_worker() might hit consecutive execution limit and bail. If there
3633 * still are pending work items, reschedule self and return so that we
3634 * don't hog this CPU's BH.
3635 */
3636 if (repeat) {
3637 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3638 queue_work(system_bh_highpri_wq, work);
3639 else
3640 queue_work(system_bh_wq, work);
3641 } else {
3642 complete(&dead_work->done);
3643 }
3644 }
3645
3646 /*
3647 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3648 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3649 * have to worry about draining overlapping with CPU coming back online or
3650 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3651 * on). Let's keep it simple and drain them synchronously. These are BH work
3652 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3653 */
workqueue_softirq_dead(unsigned int cpu)3654 void workqueue_softirq_dead(unsigned int cpu)
3655 {
3656 int i;
3657
3658 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3659 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3660 struct wq_drain_dead_softirq_work dead_work;
3661
3662 if (!need_more_worker(pool))
3663 continue;
3664
3665 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3666 dead_work.pool = pool;
3667 init_completion(&dead_work.done);
3668
3669 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3670 queue_work(system_bh_highpri_wq, &dead_work.work);
3671 else
3672 queue_work(system_bh_wq, &dead_work.work);
3673
3674 wait_for_completion(&dead_work.done);
3675 destroy_work_on_stack(&dead_work.work);
3676 }
3677 }
3678
3679 /**
3680 * check_flush_dependency - check for flush dependency sanity
3681 * @target_wq: workqueue being flushed
3682 * @target_work: work item being flushed (NULL for workqueue flushes)
3683 *
3684 * %current is trying to flush the whole @target_wq or @target_work on it.
3685 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3686 * reclaiming memory or running on a workqueue which doesn't have
3687 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3688 * a deadlock.
3689 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)3690 static void check_flush_dependency(struct workqueue_struct *target_wq,
3691 struct work_struct *target_work)
3692 {
3693 work_func_t target_func = target_work ? target_work->func : NULL;
3694 struct worker *worker;
3695
3696 if (target_wq->flags & WQ_MEM_RECLAIM)
3697 return;
3698
3699 worker = current_wq_worker();
3700
3701 WARN_ONCE(current->flags & PF_MEMALLOC,
3702 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3703 current->pid, current->comm, target_wq->name, target_func);
3704 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3705 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3706 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3707 worker->current_pwq->wq->name, worker->current_func,
3708 target_wq->name, target_func);
3709 }
3710
3711 struct wq_barrier {
3712 struct work_struct work;
3713 struct completion done;
3714 struct task_struct *task; /* purely informational */
3715 };
3716
wq_barrier_func(struct work_struct * work)3717 static void wq_barrier_func(struct work_struct *work)
3718 {
3719 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3720 complete(&barr->done);
3721 }
3722
3723 /**
3724 * insert_wq_barrier - insert a barrier work
3725 * @pwq: pwq to insert barrier into
3726 * @barr: wq_barrier to insert
3727 * @target: target work to attach @barr to
3728 * @worker: worker currently executing @target, NULL if @target is not executing
3729 *
3730 * @barr is linked to @target such that @barr is completed only after
3731 * @target finishes execution. Please note that the ordering
3732 * guarantee is observed only with respect to @target and on the local
3733 * cpu.
3734 *
3735 * Currently, a queued barrier can't be canceled. This is because
3736 * try_to_grab_pending() can't determine whether the work to be
3737 * grabbed is at the head of the queue and thus can't clear LINKED
3738 * flag of the previous work while there must be a valid next work
3739 * after a work with LINKED flag set.
3740 *
3741 * Note that when @worker is non-NULL, @target may be modified
3742 * underneath us, so we can't reliably determine pwq from @target.
3743 *
3744 * CONTEXT:
3745 * raw_spin_lock_irq(pool->lock).
3746 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3747 static void insert_wq_barrier(struct pool_workqueue *pwq,
3748 struct wq_barrier *barr,
3749 struct work_struct *target, struct worker *worker)
3750 {
3751 static __maybe_unused struct lock_class_key bh_key, thr_key;
3752 unsigned int work_flags = 0;
3753 unsigned int work_color;
3754 struct list_head *head;
3755
3756 /*
3757 * debugobject calls are safe here even with pool->lock locked
3758 * as we know for sure that this will not trigger any of the
3759 * checks and call back into the fixup functions where we
3760 * might deadlock.
3761 *
3762 * BH and threaded workqueues need separate lockdep keys to avoid
3763 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3764 * usage".
3765 */
3766 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3767 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3768 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3769
3770 init_completion_map(&barr->done, &target->lockdep_map);
3771
3772 barr->task = current;
3773
3774 /* The barrier work item does not participate in nr_active. */
3775 work_flags |= WORK_STRUCT_INACTIVE;
3776
3777 /*
3778 * If @target is currently being executed, schedule the
3779 * barrier to the worker; otherwise, put it after @target.
3780 */
3781 if (worker) {
3782 head = worker->scheduled.next;
3783 work_color = worker->current_color;
3784 } else {
3785 unsigned long *bits = work_data_bits(target);
3786
3787 head = target->entry.next;
3788 /* there can already be other linked works, inherit and set */
3789 work_flags |= *bits & WORK_STRUCT_LINKED;
3790 work_color = get_work_color(*bits);
3791 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3792 }
3793
3794 pwq->nr_in_flight[work_color]++;
3795 work_flags |= work_color_to_flags(work_color);
3796
3797 insert_work(pwq, &barr->work, head, work_flags);
3798 }
3799
3800 /**
3801 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3802 * @wq: workqueue being flushed
3803 * @flush_color: new flush color, < 0 for no-op
3804 * @work_color: new work color, < 0 for no-op
3805 *
3806 * Prepare pwqs for workqueue flushing.
3807 *
3808 * If @flush_color is non-negative, flush_color on all pwqs should be
3809 * -1. If no pwq has in-flight commands at the specified color, all
3810 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3811 * has in flight commands, its pwq->flush_color is set to
3812 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3813 * wakeup logic is armed and %true is returned.
3814 *
3815 * The caller should have initialized @wq->first_flusher prior to
3816 * calling this function with non-negative @flush_color. If
3817 * @flush_color is negative, no flush color update is done and %false
3818 * is returned.
3819 *
3820 * If @work_color is non-negative, all pwqs should have the same
3821 * work_color which is previous to @work_color and all will be
3822 * advanced to @work_color.
3823 *
3824 * CONTEXT:
3825 * mutex_lock(wq->mutex).
3826 *
3827 * Return:
3828 * %true if @flush_color >= 0 and there's something to flush. %false
3829 * otherwise.
3830 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3831 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3832 int flush_color, int work_color)
3833 {
3834 bool wait = false;
3835 struct pool_workqueue *pwq;
3836
3837 if (flush_color >= 0) {
3838 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3839 atomic_set(&wq->nr_pwqs_to_flush, 1);
3840 }
3841
3842 for_each_pwq(pwq, wq) {
3843 struct worker_pool *pool = pwq->pool;
3844
3845 raw_spin_lock_irq(&pool->lock);
3846
3847 if (flush_color >= 0) {
3848 WARN_ON_ONCE(pwq->flush_color != -1);
3849
3850 if (pwq->nr_in_flight[flush_color]) {
3851 pwq->flush_color = flush_color;
3852 atomic_inc(&wq->nr_pwqs_to_flush);
3853 wait = true;
3854 }
3855 }
3856
3857 if (work_color >= 0) {
3858 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3859 pwq->work_color = work_color;
3860 }
3861
3862 raw_spin_unlock_irq(&pool->lock);
3863 }
3864
3865 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3866 complete(&wq->first_flusher->done);
3867
3868 return wait;
3869 }
3870
touch_wq_lockdep_map(struct workqueue_struct * wq)3871 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3872 {
3873 #ifdef CONFIG_LOCKDEP
3874 if (unlikely(!wq->lockdep_map))
3875 return;
3876
3877 if (wq->flags & WQ_BH)
3878 local_bh_disable();
3879
3880 lock_map_acquire(wq->lockdep_map);
3881 lock_map_release(wq->lockdep_map);
3882
3883 if (wq->flags & WQ_BH)
3884 local_bh_enable();
3885 #endif
3886 }
3887
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3888 static void touch_work_lockdep_map(struct work_struct *work,
3889 struct workqueue_struct *wq)
3890 {
3891 #ifdef CONFIG_LOCKDEP
3892 if (wq->flags & WQ_BH)
3893 local_bh_disable();
3894
3895 lock_map_acquire(&work->lockdep_map);
3896 lock_map_release(&work->lockdep_map);
3897
3898 if (wq->flags & WQ_BH)
3899 local_bh_enable();
3900 #endif
3901 }
3902
3903 /**
3904 * __flush_workqueue - ensure that any scheduled work has run to completion.
3905 * @wq: workqueue to flush
3906 *
3907 * This function sleeps until all work items which were queued on entry
3908 * have finished execution, but it is not livelocked by new incoming ones.
3909 */
__flush_workqueue(struct workqueue_struct * wq)3910 void __flush_workqueue(struct workqueue_struct *wq)
3911 {
3912 struct wq_flusher this_flusher = {
3913 .list = LIST_HEAD_INIT(this_flusher.list),
3914 .flush_color = -1,
3915 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3916 };
3917 int next_color;
3918
3919 if (WARN_ON(!wq_online))
3920 return;
3921
3922 touch_wq_lockdep_map(wq);
3923
3924 mutex_lock(&wq->mutex);
3925
3926 /*
3927 * Start-to-wait phase
3928 */
3929 next_color = work_next_color(wq->work_color);
3930
3931 if (next_color != wq->flush_color) {
3932 /*
3933 * Color space is not full. The current work_color
3934 * becomes our flush_color and work_color is advanced
3935 * by one.
3936 */
3937 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3938 this_flusher.flush_color = wq->work_color;
3939 wq->work_color = next_color;
3940
3941 if (!wq->first_flusher) {
3942 /* no flush in progress, become the first flusher */
3943 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3944
3945 wq->first_flusher = &this_flusher;
3946
3947 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3948 wq->work_color)) {
3949 /* nothing to flush, done */
3950 wq->flush_color = next_color;
3951 wq->first_flusher = NULL;
3952 goto out_unlock;
3953 }
3954 } else {
3955 /* wait in queue */
3956 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3957 list_add_tail(&this_flusher.list, &wq->flusher_queue);
3958 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3959 }
3960 } else {
3961 /*
3962 * Oops, color space is full, wait on overflow queue.
3963 * The next flush completion will assign us
3964 * flush_color and transfer to flusher_queue.
3965 */
3966 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3967 }
3968
3969 check_flush_dependency(wq, NULL);
3970
3971 mutex_unlock(&wq->mutex);
3972
3973 wait_for_completion(&this_flusher.done);
3974
3975 /*
3976 * Wake-up-and-cascade phase
3977 *
3978 * First flushers are responsible for cascading flushes and
3979 * handling overflow. Non-first flushers can simply return.
3980 */
3981 if (READ_ONCE(wq->first_flusher) != &this_flusher)
3982 return;
3983
3984 mutex_lock(&wq->mutex);
3985
3986 /* we might have raced, check again with mutex held */
3987 if (wq->first_flusher != &this_flusher)
3988 goto out_unlock;
3989
3990 WRITE_ONCE(wq->first_flusher, NULL);
3991
3992 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3993 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3994
3995 while (true) {
3996 struct wq_flusher *next, *tmp;
3997
3998 /* complete all the flushers sharing the current flush color */
3999 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4000 if (next->flush_color != wq->flush_color)
4001 break;
4002 list_del_init(&next->list);
4003 complete(&next->done);
4004 }
4005
4006 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4007 wq->flush_color != work_next_color(wq->work_color));
4008
4009 /* this flush_color is finished, advance by one */
4010 wq->flush_color = work_next_color(wq->flush_color);
4011
4012 /* one color has been freed, handle overflow queue */
4013 if (!list_empty(&wq->flusher_overflow)) {
4014 /*
4015 * Assign the same color to all overflowed
4016 * flushers, advance work_color and append to
4017 * flusher_queue. This is the start-to-wait
4018 * phase for these overflowed flushers.
4019 */
4020 list_for_each_entry(tmp, &wq->flusher_overflow, list)
4021 tmp->flush_color = wq->work_color;
4022
4023 wq->work_color = work_next_color(wq->work_color);
4024
4025 list_splice_tail_init(&wq->flusher_overflow,
4026 &wq->flusher_queue);
4027 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4028 }
4029
4030 if (list_empty(&wq->flusher_queue)) {
4031 WARN_ON_ONCE(wq->flush_color != wq->work_color);
4032 break;
4033 }
4034
4035 /*
4036 * Need to flush more colors. Make the next flusher
4037 * the new first flusher and arm pwqs.
4038 */
4039 WARN_ON_ONCE(wq->flush_color == wq->work_color);
4040 WARN_ON_ONCE(wq->flush_color != next->flush_color);
4041
4042 list_del_init(&next->list);
4043 wq->first_flusher = next;
4044
4045 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4046 break;
4047
4048 /*
4049 * Meh... this color is already done, clear first
4050 * flusher and repeat cascading.
4051 */
4052 wq->first_flusher = NULL;
4053 }
4054
4055 out_unlock:
4056 mutex_unlock(&wq->mutex);
4057 }
4058 EXPORT_SYMBOL(__flush_workqueue);
4059
4060 /**
4061 * drain_workqueue - drain a workqueue
4062 * @wq: workqueue to drain
4063 *
4064 * Wait until the workqueue becomes empty. While draining is in progress,
4065 * only chain queueing is allowed. IOW, only currently pending or running
4066 * work items on @wq can queue further work items on it. @wq is flushed
4067 * repeatedly until it becomes empty. The number of flushing is determined
4068 * by the depth of chaining and should be relatively short. Whine if it
4069 * takes too long.
4070 */
drain_workqueue(struct workqueue_struct * wq)4071 void drain_workqueue(struct workqueue_struct *wq)
4072 {
4073 unsigned int flush_cnt = 0;
4074 struct pool_workqueue *pwq;
4075
4076 /*
4077 * __queue_work() needs to test whether there are drainers, is much
4078 * hotter than drain_workqueue() and already looks at @wq->flags.
4079 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4080 */
4081 mutex_lock(&wq->mutex);
4082 if (!wq->nr_drainers++)
4083 wq->flags |= __WQ_DRAINING;
4084 mutex_unlock(&wq->mutex);
4085 reflush:
4086 __flush_workqueue(wq);
4087
4088 mutex_lock(&wq->mutex);
4089
4090 for_each_pwq(pwq, wq) {
4091 bool drained;
4092
4093 raw_spin_lock_irq(&pwq->pool->lock);
4094 drained = pwq_is_empty(pwq);
4095 raw_spin_unlock_irq(&pwq->pool->lock);
4096
4097 if (drained)
4098 continue;
4099
4100 if (++flush_cnt == 10 ||
4101 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4102 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4103 wq->name, __func__, flush_cnt);
4104
4105 mutex_unlock(&wq->mutex);
4106 goto reflush;
4107 }
4108
4109 if (!--wq->nr_drainers)
4110 wq->flags &= ~__WQ_DRAINING;
4111 mutex_unlock(&wq->mutex);
4112 }
4113 EXPORT_SYMBOL_GPL(drain_workqueue);
4114
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4115 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4116 bool from_cancel)
4117 {
4118 struct worker *worker = NULL;
4119 struct worker_pool *pool;
4120 struct pool_workqueue *pwq;
4121 struct workqueue_struct *wq;
4122
4123 rcu_read_lock();
4124 pool = get_work_pool(work);
4125 if (!pool) {
4126 rcu_read_unlock();
4127 return false;
4128 }
4129
4130 raw_spin_lock_irq(&pool->lock);
4131 /* see the comment in try_to_grab_pending() with the same code */
4132 pwq = get_work_pwq(work);
4133 if (pwq) {
4134 if (unlikely(pwq->pool != pool))
4135 goto already_gone;
4136 } else {
4137 worker = find_worker_executing_work(pool, work);
4138 if (!worker)
4139 goto already_gone;
4140 pwq = worker->current_pwq;
4141 }
4142
4143 wq = pwq->wq;
4144 check_flush_dependency(wq, work);
4145
4146 insert_wq_barrier(pwq, barr, work, worker);
4147 raw_spin_unlock_irq(&pool->lock);
4148
4149 touch_work_lockdep_map(work, wq);
4150
4151 /*
4152 * Force a lock recursion deadlock when using flush_work() inside a
4153 * single-threaded or rescuer equipped workqueue.
4154 *
4155 * For single threaded workqueues the deadlock happens when the work
4156 * is after the work issuing the flush_work(). For rescuer equipped
4157 * workqueues the deadlock happens when the rescuer stalls, blocking
4158 * forward progress.
4159 */
4160 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4161 touch_wq_lockdep_map(wq);
4162
4163 rcu_read_unlock();
4164 return true;
4165 already_gone:
4166 raw_spin_unlock_irq(&pool->lock);
4167 rcu_read_unlock();
4168 return false;
4169 }
4170
__flush_work(struct work_struct * work,bool from_cancel)4171 static bool __flush_work(struct work_struct *work, bool from_cancel)
4172 {
4173 struct wq_barrier barr;
4174
4175 if (WARN_ON(!wq_online))
4176 return false;
4177
4178 if (WARN_ON(!work->func))
4179 return false;
4180
4181 if (!start_flush_work(work, &barr, from_cancel))
4182 return false;
4183
4184 /*
4185 * start_flush_work() returned %true. If @from_cancel is set, we know
4186 * that @work must have been executing during start_flush_work() and
4187 * can't currently be queued. Its data must contain OFFQ bits. If @work
4188 * was queued on a BH workqueue, we also know that it was running in the
4189 * BH context and thus can be busy-waited.
4190 */
4191 if (from_cancel) {
4192 unsigned long data = *work_data_bits(work);
4193
4194 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4195 (data & WORK_OFFQ_BH)) {
4196 /*
4197 * On RT, prevent a live lock when %current preempted
4198 * soft interrupt processing or prevents ksoftirqd from
4199 * running by keeping flipping BH. If the BH work item
4200 * runs on a different CPU then this has no effect other
4201 * than doing the BH disable/enable dance for nothing.
4202 * This is copied from
4203 * kernel/softirq.c::tasklet_unlock_spin_wait().
4204 */
4205 while (!try_wait_for_completion(&barr.done)) {
4206 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4207 local_bh_disable();
4208 local_bh_enable();
4209 } else {
4210 cpu_relax();
4211 }
4212 }
4213 goto out_destroy;
4214 }
4215 }
4216
4217 wait_for_completion(&barr.done);
4218
4219 out_destroy:
4220 destroy_work_on_stack(&barr.work);
4221 return true;
4222 }
4223
4224 /**
4225 * flush_work - wait for a work to finish executing the last queueing instance
4226 * @work: the work to flush
4227 *
4228 * Wait until @work has finished execution. @work is guaranteed to be idle
4229 * on return if it hasn't been requeued since flush started.
4230 *
4231 * Return:
4232 * %true if flush_work() waited for the work to finish execution,
4233 * %false if it was already idle.
4234 */
flush_work(struct work_struct * work)4235 bool flush_work(struct work_struct *work)
4236 {
4237 might_sleep();
4238 return __flush_work(work, false);
4239 }
4240 EXPORT_SYMBOL_GPL(flush_work);
4241
4242 /**
4243 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4244 * @dwork: the delayed work to flush
4245 *
4246 * Delayed timer is cancelled and the pending work is queued for
4247 * immediate execution. Like flush_work(), this function only
4248 * considers the last queueing instance of @dwork.
4249 *
4250 * Return:
4251 * %true if flush_work() waited for the work to finish execution,
4252 * %false if it was already idle.
4253 */
flush_delayed_work(struct delayed_work * dwork)4254 bool flush_delayed_work(struct delayed_work *dwork)
4255 {
4256 local_irq_disable();
4257 if (del_timer_sync(&dwork->timer))
4258 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
4259 local_irq_enable();
4260 return flush_work(&dwork->work);
4261 }
4262 EXPORT_SYMBOL(flush_delayed_work);
4263
4264 /**
4265 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4266 * @rwork: the rcu work to flush
4267 *
4268 * Return:
4269 * %true if flush_rcu_work() waited for the work to finish execution,
4270 * %false if it was already idle.
4271 */
flush_rcu_work(struct rcu_work * rwork)4272 bool flush_rcu_work(struct rcu_work *rwork)
4273 {
4274 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4275 rcu_barrier();
4276 flush_work(&rwork->work);
4277 return true;
4278 } else {
4279 return flush_work(&rwork->work);
4280 }
4281 }
4282 EXPORT_SYMBOL(flush_rcu_work);
4283
work_offqd_disable(struct work_offq_data * offqd)4284 static void work_offqd_disable(struct work_offq_data *offqd)
4285 {
4286 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4287
4288 if (likely(offqd->disable < max))
4289 offqd->disable++;
4290 else
4291 WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4292 }
4293
work_offqd_enable(struct work_offq_data * offqd)4294 static void work_offqd_enable(struct work_offq_data *offqd)
4295 {
4296 if (likely(offqd->disable > 0))
4297 offqd->disable--;
4298 else
4299 WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4300 }
4301
__cancel_work(struct work_struct * work,u32 cflags)4302 static bool __cancel_work(struct work_struct *work, u32 cflags)
4303 {
4304 struct work_offq_data offqd;
4305 unsigned long irq_flags;
4306 int ret;
4307
4308 ret = work_grab_pending(work, cflags, &irq_flags);
4309
4310 work_offqd_unpack(&offqd, *work_data_bits(work));
4311
4312 if (cflags & WORK_CANCEL_DISABLE)
4313 work_offqd_disable(&offqd);
4314
4315 set_work_pool_and_clear_pending(work, offqd.pool_id,
4316 work_offqd_pack_flags(&offqd));
4317 local_irq_restore(irq_flags);
4318 return ret;
4319 }
4320
__cancel_work_sync(struct work_struct * work,u32 cflags)4321 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4322 {
4323 bool ret;
4324
4325 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4326
4327 if (*work_data_bits(work) & WORK_OFFQ_BH)
4328 WARN_ON_ONCE(in_hardirq());
4329 else
4330 might_sleep();
4331
4332 /*
4333 * Skip __flush_work() during early boot when we know that @work isn't
4334 * executing. This allows canceling during early boot.
4335 */
4336 if (wq_online)
4337 __flush_work(work, true);
4338
4339 if (!(cflags & WORK_CANCEL_DISABLE))
4340 enable_work(work);
4341
4342 return ret;
4343 }
4344
4345 /*
4346 * See cancel_delayed_work()
4347 */
cancel_work(struct work_struct * work)4348 bool cancel_work(struct work_struct *work)
4349 {
4350 return __cancel_work(work, 0);
4351 }
4352 EXPORT_SYMBOL(cancel_work);
4353
4354 /**
4355 * cancel_work_sync - cancel a work and wait for it to finish
4356 * @work: the work to cancel
4357 *
4358 * Cancel @work and wait for its execution to finish. This function can be used
4359 * even if the work re-queues itself or migrates to another workqueue. On return
4360 * from this function, @work is guaranteed to be not pending or executing on any
4361 * CPU as long as there aren't racing enqueues.
4362 *
4363 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4364 * Use cancel_delayed_work_sync() instead.
4365 *
4366 * Must be called from a sleepable context if @work was last queued on a non-BH
4367 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4368 * if @work was last queued on a BH workqueue.
4369 *
4370 * Returns %true if @work was pending, %false otherwise.
4371 */
cancel_work_sync(struct work_struct * work)4372 bool cancel_work_sync(struct work_struct *work)
4373 {
4374 return __cancel_work_sync(work, 0);
4375 }
4376 EXPORT_SYMBOL_GPL(cancel_work_sync);
4377
4378 /**
4379 * cancel_delayed_work - cancel a delayed work
4380 * @dwork: delayed_work to cancel
4381 *
4382 * Kill off a pending delayed_work.
4383 *
4384 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4385 * pending.
4386 *
4387 * Note:
4388 * The work callback function may still be running on return, unless
4389 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4390 * use cancel_delayed_work_sync() to wait on it.
4391 *
4392 * This function is safe to call from any context including IRQ handler.
4393 */
cancel_delayed_work(struct delayed_work * dwork)4394 bool cancel_delayed_work(struct delayed_work *dwork)
4395 {
4396 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4397 }
4398 EXPORT_SYMBOL(cancel_delayed_work);
4399
4400 /**
4401 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4402 * @dwork: the delayed work cancel
4403 *
4404 * This is cancel_work_sync() for delayed works.
4405 *
4406 * Return:
4407 * %true if @dwork was pending, %false otherwise.
4408 */
cancel_delayed_work_sync(struct delayed_work * dwork)4409 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4410 {
4411 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4412 }
4413 EXPORT_SYMBOL(cancel_delayed_work_sync);
4414
4415 /**
4416 * disable_work - Disable and cancel a work item
4417 * @work: work item to disable
4418 *
4419 * Disable @work by incrementing its disable count and cancel it if currently
4420 * pending. As long as the disable count is non-zero, any attempt to queue @work
4421 * will fail and return %false. The maximum supported disable depth is 2 to the
4422 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4423 *
4424 * Can be called from any context. Returns %true if @work was pending, %false
4425 * otherwise.
4426 */
disable_work(struct work_struct * work)4427 bool disable_work(struct work_struct *work)
4428 {
4429 return __cancel_work(work, WORK_CANCEL_DISABLE);
4430 }
4431 EXPORT_SYMBOL_GPL(disable_work);
4432
4433 /**
4434 * disable_work_sync - Disable, cancel and drain a work item
4435 * @work: work item to disable
4436 *
4437 * Similar to disable_work() but also wait for @work to finish if currently
4438 * executing.
4439 *
4440 * Must be called from a sleepable context if @work was last queued on a non-BH
4441 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4442 * if @work was last queued on a BH workqueue.
4443 *
4444 * Returns %true if @work was pending, %false otherwise.
4445 */
disable_work_sync(struct work_struct * work)4446 bool disable_work_sync(struct work_struct *work)
4447 {
4448 return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4449 }
4450 EXPORT_SYMBOL_GPL(disable_work_sync);
4451
4452 /**
4453 * enable_work - Enable a work item
4454 * @work: work item to enable
4455 *
4456 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4457 * only be queued if its disable count is 0.
4458 *
4459 * Can be called from any context. Returns %true if the disable count reached 0.
4460 * Otherwise, %false.
4461 */
enable_work(struct work_struct * work)4462 bool enable_work(struct work_struct *work)
4463 {
4464 struct work_offq_data offqd;
4465 unsigned long irq_flags;
4466
4467 work_grab_pending(work, 0, &irq_flags);
4468
4469 work_offqd_unpack(&offqd, *work_data_bits(work));
4470 work_offqd_enable(&offqd);
4471 set_work_pool_and_clear_pending(work, offqd.pool_id,
4472 work_offqd_pack_flags(&offqd));
4473 local_irq_restore(irq_flags);
4474
4475 return !offqd.disable;
4476 }
4477 EXPORT_SYMBOL_GPL(enable_work);
4478
4479 /**
4480 * disable_delayed_work - Disable and cancel a delayed work item
4481 * @dwork: delayed work item to disable
4482 *
4483 * disable_work() for delayed work items.
4484 */
disable_delayed_work(struct delayed_work * dwork)4485 bool disable_delayed_work(struct delayed_work *dwork)
4486 {
4487 return __cancel_work(&dwork->work,
4488 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4489 }
4490 EXPORT_SYMBOL_GPL(disable_delayed_work);
4491
4492 /**
4493 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4494 * @dwork: delayed work item to disable
4495 *
4496 * disable_work_sync() for delayed work items.
4497 */
disable_delayed_work_sync(struct delayed_work * dwork)4498 bool disable_delayed_work_sync(struct delayed_work *dwork)
4499 {
4500 return __cancel_work_sync(&dwork->work,
4501 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4502 }
4503 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4504
4505 /**
4506 * enable_delayed_work - Enable a delayed work item
4507 * @dwork: delayed work item to enable
4508 *
4509 * enable_work() for delayed work items.
4510 */
enable_delayed_work(struct delayed_work * dwork)4511 bool enable_delayed_work(struct delayed_work *dwork)
4512 {
4513 return enable_work(&dwork->work);
4514 }
4515 EXPORT_SYMBOL_GPL(enable_delayed_work);
4516
4517 /**
4518 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4519 * @func: the function to call
4520 *
4521 * schedule_on_each_cpu() executes @func on each online CPU using the
4522 * system workqueue and blocks until all CPUs have completed.
4523 * schedule_on_each_cpu() is very slow.
4524 *
4525 * Return:
4526 * 0 on success, -errno on failure.
4527 */
schedule_on_each_cpu(work_func_t func)4528 int schedule_on_each_cpu(work_func_t func)
4529 {
4530 int cpu;
4531 struct work_struct __percpu *works;
4532
4533 works = alloc_percpu(struct work_struct);
4534 if (!works)
4535 return -ENOMEM;
4536
4537 cpus_read_lock();
4538
4539 for_each_online_cpu(cpu) {
4540 struct work_struct *work = per_cpu_ptr(works, cpu);
4541
4542 INIT_WORK(work, func);
4543 schedule_work_on(cpu, work);
4544 }
4545
4546 for_each_online_cpu(cpu)
4547 flush_work(per_cpu_ptr(works, cpu));
4548
4549 cpus_read_unlock();
4550 free_percpu(works);
4551 return 0;
4552 }
4553
4554 /**
4555 * execute_in_process_context - reliably execute the routine with user context
4556 * @fn: the function to execute
4557 * @ew: guaranteed storage for the execute work structure (must
4558 * be available when the work executes)
4559 *
4560 * Executes the function immediately if process context is available,
4561 * otherwise schedules the function for delayed execution.
4562 *
4563 * Return: 0 - function was executed
4564 * 1 - function was scheduled for execution
4565 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4566 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4567 {
4568 if (!in_interrupt()) {
4569 fn(&ew->work);
4570 return 0;
4571 }
4572
4573 INIT_WORK(&ew->work, fn);
4574 schedule_work(&ew->work);
4575
4576 return 1;
4577 }
4578 EXPORT_SYMBOL_GPL(execute_in_process_context);
4579
4580 /**
4581 * free_workqueue_attrs - free a workqueue_attrs
4582 * @attrs: workqueue_attrs to free
4583 *
4584 * Undo alloc_workqueue_attrs().
4585 */
free_workqueue_attrs(struct workqueue_attrs * attrs)4586 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4587 {
4588 if (attrs) {
4589 free_cpumask_var(attrs->cpumask);
4590 free_cpumask_var(attrs->__pod_cpumask);
4591 kfree(attrs);
4592 }
4593 }
4594
4595 /**
4596 * alloc_workqueue_attrs - allocate a workqueue_attrs
4597 *
4598 * Allocate a new workqueue_attrs, initialize with default settings and
4599 * return it.
4600 *
4601 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4602 */
alloc_workqueue_attrs(void)4603 struct workqueue_attrs *alloc_workqueue_attrs(void)
4604 {
4605 struct workqueue_attrs *attrs;
4606
4607 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4608 if (!attrs)
4609 goto fail;
4610 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4611 goto fail;
4612 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4613 goto fail;
4614
4615 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4616 attrs->affn_scope = WQ_AFFN_DFL;
4617 return attrs;
4618 fail:
4619 free_workqueue_attrs(attrs);
4620 return NULL;
4621 }
4622
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4623 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4624 const struct workqueue_attrs *from)
4625 {
4626 to->nice = from->nice;
4627 cpumask_copy(to->cpumask, from->cpumask);
4628 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4629 to->affn_strict = from->affn_strict;
4630
4631 /*
4632 * Unlike hash and equality test, copying shouldn't ignore wq-only
4633 * fields as copying is used for both pool and wq attrs. Instead,
4634 * get_unbound_pool() explicitly clears the fields.
4635 */
4636 to->affn_scope = from->affn_scope;
4637 to->ordered = from->ordered;
4638 }
4639
4640 /*
4641 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4642 * comments in 'struct workqueue_attrs' definition.
4643 */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4644 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4645 {
4646 attrs->affn_scope = WQ_AFFN_NR_TYPES;
4647 attrs->ordered = false;
4648 if (attrs->affn_strict)
4649 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4650 }
4651
4652 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4653 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4654 {
4655 u32 hash = 0;
4656
4657 hash = jhash_1word(attrs->nice, hash);
4658 hash = jhash_1word(attrs->affn_strict, hash);
4659 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4660 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4661 if (!attrs->affn_strict)
4662 hash = jhash(cpumask_bits(attrs->cpumask),
4663 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4664 return hash;
4665 }
4666
4667 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4668 static bool wqattrs_equal(const struct workqueue_attrs *a,
4669 const struct workqueue_attrs *b)
4670 {
4671 if (a->nice != b->nice)
4672 return false;
4673 if (a->affn_strict != b->affn_strict)
4674 return false;
4675 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4676 return false;
4677 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4678 return false;
4679 return true;
4680 }
4681
4682 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4683 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4684 const cpumask_t *unbound_cpumask)
4685 {
4686 /*
4687 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4688 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4689 * @unbound_cpumask.
4690 */
4691 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4692 if (unlikely(cpumask_empty(attrs->cpumask)))
4693 cpumask_copy(attrs->cpumask, unbound_cpumask);
4694 }
4695
4696 /* find wq_pod_type to use for @attrs */
4697 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4698 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4699 {
4700 enum wq_affn_scope scope;
4701 struct wq_pod_type *pt;
4702
4703 /* to synchronize access to wq_affn_dfl */
4704 lockdep_assert_held(&wq_pool_mutex);
4705
4706 if (attrs->affn_scope == WQ_AFFN_DFL)
4707 scope = wq_affn_dfl;
4708 else
4709 scope = attrs->affn_scope;
4710
4711 pt = &wq_pod_types[scope];
4712
4713 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4714 likely(pt->nr_pods))
4715 return pt;
4716
4717 /*
4718 * Before workqueue_init_topology(), only SYSTEM is available which is
4719 * initialized in workqueue_init_early().
4720 */
4721 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4722 BUG_ON(!pt->nr_pods);
4723 return pt;
4724 }
4725
4726 /**
4727 * init_worker_pool - initialize a newly zalloc'd worker_pool
4728 * @pool: worker_pool to initialize
4729 *
4730 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
4731 *
4732 * Return: 0 on success, -errno on failure. Even on failure, all fields
4733 * inside @pool proper are initialized and put_unbound_pool() can be called
4734 * on @pool safely to release it.
4735 */
init_worker_pool(struct worker_pool * pool)4736 static int init_worker_pool(struct worker_pool *pool)
4737 {
4738 raw_spin_lock_init(&pool->lock);
4739 pool->id = -1;
4740 pool->cpu = -1;
4741 pool->node = NUMA_NO_NODE;
4742 pool->flags |= POOL_DISASSOCIATED;
4743 pool->watchdog_ts = jiffies;
4744 INIT_LIST_HEAD(&pool->worklist);
4745 INIT_LIST_HEAD(&pool->idle_list);
4746 hash_init(pool->busy_hash);
4747
4748 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4749 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4750
4751 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4752
4753 INIT_LIST_HEAD(&pool->workers);
4754
4755 ida_init(&pool->worker_ida);
4756 INIT_HLIST_NODE(&pool->hash_node);
4757 pool->refcnt = 1;
4758
4759 /* shouldn't fail above this point */
4760 pool->attrs = alloc_workqueue_attrs();
4761 if (!pool->attrs)
4762 return -ENOMEM;
4763
4764 wqattrs_clear_for_pool(pool->attrs);
4765
4766 return 0;
4767 }
4768
4769 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4770 static void wq_init_lockdep(struct workqueue_struct *wq)
4771 {
4772 char *lock_name;
4773
4774 lockdep_register_key(&wq->key);
4775 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4776 if (!lock_name)
4777 lock_name = wq->name;
4778
4779 wq->lock_name = lock_name;
4780 wq->lockdep_map = &wq->__lockdep_map;
4781 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4782 }
4783
wq_unregister_lockdep(struct workqueue_struct * wq)4784 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4785 {
4786 if (wq->lockdep_map != &wq->__lockdep_map)
4787 return;
4788
4789 lockdep_unregister_key(&wq->key);
4790 }
4791
wq_free_lockdep(struct workqueue_struct * wq)4792 static void wq_free_lockdep(struct workqueue_struct *wq)
4793 {
4794 if (wq->lockdep_map != &wq->__lockdep_map)
4795 return;
4796
4797 if (wq->lock_name != wq->name)
4798 kfree(wq->lock_name);
4799 }
4800 #else
wq_init_lockdep(struct workqueue_struct * wq)4801 static void wq_init_lockdep(struct workqueue_struct *wq)
4802 {
4803 }
4804
wq_unregister_lockdep(struct workqueue_struct * wq)4805 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4806 {
4807 }
4808
wq_free_lockdep(struct workqueue_struct * wq)4809 static void wq_free_lockdep(struct workqueue_struct *wq)
4810 {
4811 }
4812 #endif
4813
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4814 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4815 {
4816 int node;
4817
4818 for_each_node(node) {
4819 kfree(nna_ar[node]);
4820 nna_ar[node] = NULL;
4821 }
4822
4823 kfree(nna_ar[nr_node_ids]);
4824 nna_ar[nr_node_ids] = NULL;
4825 }
4826
init_node_nr_active(struct wq_node_nr_active * nna)4827 static void init_node_nr_active(struct wq_node_nr_active *nna)
4828 {
4829 nna->max = WQ_DFL_MIN_ACTIVE;
4830 atomic_set(&nna->nr, 0);
4831 raw_spin_lock_init(&nna->lock);
4832 INIT_LIST_HEAD(&nna->pending_pwqs);
4833 }
4834
4835 /*
4836 * Each node's nr_active counter will be accessed mostly from its own node and
4837 * should be allocated in the node.
4838 */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4839 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4840 {
4841 struct wq_node_nr_active *nna;
4842 int node;
4843
4844 for_each_node(node) {
4845 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4846 if (!nna)
4847 goto err_free;
4848 init_node_nr_active(nna);
4849 nna_ar[node] = nna;
4850 }
4851
4852 /* [nr_node_ids] is used as the fallback */
4853 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4854 if (!nna)
4855 goto err_free;
4856 init_node_nr_active(nna);
4857 nna_ar[nr_node_ids] = nna;
4858
4859 return 0;
4860
4861 err_free:
4862 free_node_nr_active(nna_ar);
4863 return -ENOMEM;
4864 }
4865
rcu_free_wq(struct rcu_head * rcu)4866 static void rcu_free_wq(struct rcu_head *rcu)
4867 {
4868 struct workqueue_struct *wq =
4869 container_of(rcu, struct workqueue_struct, rcu);
4870
4871 if (wq->flags & WQ_UNBOUND)
4872 free_node_nr_active(wq->node_nr_active);
4873
4874 wq_free_lockdep(wq);
4875 free_percpu(wq->cpu_pwq);
4876 free_workqueue_attrs(wq->unbound_attrs);
4877 kfree(wq);
4878 }
4879
rcu_free_pool(struct rcu_head * rcu)4880 static void rcu_free_pool(struct rcu_head *rcu)
4881 {
4882 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4883
4884 ida_destroy(&pool->worker_ida);
4885 free_workqueue_attrs(pool->attrs);
4886 kfree(pool);
4887 }
4888
4889 /**
4890 * put_unbound_pool - put a worker_pool
4891 * @pool: worker_pool to put
4892 *
4893 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
4894 * safe manner. get_unbound_pool() calls this function on its failure path
4895 * and this function should be able to release pools which went through,
4896 * successfully or not, init_worker_pool().
4897 *
4898 * Should be called with wq_pool_mutex held.
4899 */
put_unbound_pool(struct worker_pool * pool)4900 static void put_unbound_pool(struct worker_pool *pool)
4901 {
4902 struct worker *worker;
4903 LIST_HEAD(cull_list);
4904
4905 lockdep_assert_held(&wq_pool_mutex);
4906
4907 if (--pool->refcnt)
4908 return;
4909
4910 /* sanity checks */
4911 if (WARN_ON(!(pool->cpu < 0)) ||
4912 WARN_ON(!list_empty(&pool->worklist)))
4913 return;
4914
4915 /* release id and unhash */
4916 if (pool->id >= 0)
4917 idr_remove(&worker_pool_idr, pool->id);
4918 hash_del(&pool->hash_node);
4919
4920 /*
4921 * Become the manager and destroy all workers. This prevents
4922 * @pool's workers from blocking on attach_mutex. We're the last
4923 * manager and @pool gets freed with the flag set.
4924 *
4925 * Having a concurrent manager is quite unlikely to happen as we can
4926 * only get here with
4927 * pwq->refcnt == pool->refcnt == 0
4928 * which implies no work queued to the pool, which implies no worker can
4929 * become the manager. However a worker could have taken the role of
4930 * manager before the refcnts dropped to 0, since maybe_create_worker()
4931 * drops pool->lock
4932 */
4933 while (true) {
4934 rcuwait_wait_event(&manager_wait,
4935 !(pool->flags & POOL_MANAGER_ACTIVE),
4936 TASK_UNINTERRUPTIBLE);
4937
4938 mutex_lock(&wq_pool_attach_mutex);
4939 raw_spin_lock_irq(&pool->lock);
4940 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4941 pool->flags |= POOL_MANAGER_ACTIVE;
4942 break;
4943 }
4944 raw_spin_unlock_irq(&pool->lock);
4945 mutex_unlock(&wq_pool_attach_mutex);
4946 }
4947
4948 while ((worker = first_idle_worker(pool)))
4949 set_worker_dying(worker, &cull_list);
4950 WARN_ON(pool->nr_workers || pool->nr_idle);
4951 raw_spin_unlock_irq(&pool->lock);
4952
4953 detach_dying_workers(&cull_list);
4954
4955 mutex_unlock(&wq_pool_attach_mutex);
4956
4957 reap_dying_workers(&cull_list);
4958
4959 /* shut down the timers */
4960 del_timer_sync(&pool->idle_timer);
4961 cancel_work_sync(&pool->idle_cull_work);
4962 del_timer_sync(&pool->mayday_timer);
4963
4964 /* RCU protected to allow dereferences from get_work_pool() */
4965 call_rcu(&pool->rcu, rcu_free_pool);
4966 }
4967
4968 /**
4969 * get_unbound_pool - get a worker_pool with the specified attributes
4970 * @attrs: the attributes of the worker_pool to get
4971 *
4972 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4973 * reference count and return it. If there already is a matching
4974 * worker_pool, it will be used; otherwise, this function attempts to
4975 * create a new one.
4976 *
4977 * Should be called with wq_pool_mutex held.
4978 *
4979 * Return: On success, a worker_pool with the same attributes as @attrs.
4980 * On failure, %NULL.
4981 */
get_unbound_pool(const struct workqueue_attrs * attrs)4982 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4983 {
4984 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4985 u32 hash = wqattrs_hash(attrs);
4986 struct worker_pool *pool;
4987 int pod, node = NUMA_NO_NODE;
4988
4989 lockdep_assert_held(&wq_pool_mutex);
4990
4991 /* do we already have a matching pool? */
4992 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4993 if (wqattrs_equal(pool->attrs, attrs)) {
4994 pool->refcnt++;
4995 return pool;
4996 }
4997 }
4998
4999 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5000 for (pod = 0; pod < pt->nr_pods; pod++) {
5001 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5002 node = pt->pod_node[pod];
5003 break;
5004 }
5005 }
5006
5007 /* nope, create a new one */
5008 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5009 if (!pool || init_worker_pool(pool) < 0)
5010 goto fail;
5011
5012 pool->node = node;
5013 copy_workqueue_attrs(pool->attrs, attrs);
5014 wqattrs_clear_for_pool(pool->attrs);
5015
5016 if (worker_pool_assign_id(pool) < 0)
5017 goto fail;
5018
5019 /* create and start the initial worker */
5020 if (wq_online && !create_worker(pool))
5021 goto fail;
5022
5023 /* install */
5024 hash_add(unbound_pool_hash, &pool->hash_node, hash);
5025
5026 return pool;
5027 fail:
5028 if (pool)
5029 put_unbound_pool(pool);
5030 return NULL;
5031 }
5032
5033 /*
5034 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5035 * refcnt and needs to be destroyed.
5036 */
pwq_release_workfn(struct kthread_work * work)5037 static void pwq_release_workfn(struct kthread_work *work)
5038 {
5039 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5040 release_work);
5041 struct workqueue_struct *wq = pwq->wq;
5042 struct worker_pool *pool = pwq->pool;
5043 bool is_last = false;
5044
5045 /*
5046 * When @pwq is not linked, it doesn't hold any reference to the
5047 * @wq, and @wq is invalid to access.
5048 */
5049 if (!list_empty(&pwq->pwqs_node)) {
5050 mutex_lock(&wq->mutex);
5051 list_del_rcu(&pwq->pwqs_node);
5052 is_last = list_empty(&wq->pwqs);
5053
5054 /*
5055 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5056 */
5057 if (!is_last && (wq->flags & __WQ_ORDERED))
5058 unplug_oldest_pwq(wq);
5059
5060 mutex_unlock(&wq->mutex);
5061 }
5062
5063 if (wq->flags & WQ_UNBOUND) {
5064 mutex_lock(&wq_pool_mutex);
5065 put_unbound_pool(pool);
5066 mutex_unlock(&wq_pool_mutex);
5067 }
5068
5069 if (!list_empty(&pwq->pending_node)) {
5070 struct wq_node_nr_active *nna =
5071 wq_node_nr_active(pwq->wq, pwq->pool->node);
5072
5073 raw_spin_lock_irq(&nna->lock);
5074 list_del_init(&pwq->pending_node);
5075 raw_spin_unlock_irq(&nna->lock);
5076 }
5077
5078 kfree_rcu(pwq, rcu);
5079
5080 /*
5081 * If we're the last pwq going away, @wq is already dead and no one
5082 * is gonna access it anymore. Schedule RCU free.
5083 */
5084 if (is_last) {
5085 wq_unregister_lockdep(wq);
5086 call_rcu(&wq->rcu, rcu_free_wq);
5087 }
5088 }
5089
5090 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5091 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5092 struct worker_pool *pool)
5093 {
5094 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5095
5096 memset(pwq, 0, sizeof(*pwq));
5097
5098 pwq->pool = pool;
5099 pwq->wq = wq;
5100 pwq->flush_color = -1;
5101 pwq->refcnt = 1;
5102 INIT_LIST_HEAD(&pwq->inactive_works);
5103 INIT_LIST_HEAD(&pwq->pending_node);
5104 INIT_LIST_HEAD(&pwq->pwqs_node);
5105 INIT_LIST_HEAD(&pwq->mayday_node);
5106 kthread_init_work(&pwq->release_work, pwq_release_workfn);
5107 }
5108
5109 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5110 static void link_pwq(struct pool_workqueue *pwq)
5111 {
5112 struct workqueue_struct *wq = pwq->wq;
5113
5114 lockdep_assert_held(&wq->mutex);
5115
5116 /* may be called multiple times, ignore if already linked */
5117 if (!list_empty(&pwq->pwqs_node))
5118 return;
5119
5120 /* set the matching work_color */
5121 pwq->work_color = wq->work_color;
5122
5123 /* link in @pwq */
5124 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5125 }
5126
5127 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5128 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5129 const struct workqueue_attrs *attrs)
5130 {
5131 struct worker_pool *pool;
5132 struct pool_workqueue *pwq;
5133
5134 lockdep_assert_held(&wq_pool_mutex);
5135
5136 pool = get_unbound_pool(attrs);
5137 if (!pool)
5138 return NULL;
5139
5140 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5141 if (!pwq) {
5142 put_unbound_pool(pool);
5143 return NULL;
5144 }
5145
5146 init_pwq(pwq, wq, pool);
5147 return pwq;
5148 }
5149
apply_wqattrs_lock(void)5150 static void apply_wqattrs_lock(void)
5151 {
5152 mutex_lock(&wq_pool_mutex);
5153 }
5154
apply_wqattrs_unlock(void)5155 static void apply_wqattrs_unlock(void)
5156 {
5157 mutex_unlock(&wq_pool_mutex);
5158 }
5159
5160 /**
5161 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5162 * @attrs: the wq_attrs of the default pwq of the target workqueue
5163 * @cpu: the target CPU
5164 *
5165 * Calculate the cpumask a workqueue with @attrs should use on @pod.
5166 * The result is stored in @attrs->__pod_cpumask.
5167 *
5168 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5169 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5170 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5171 *
5172 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5173 */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5174 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5175 {
5176 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5177 int pod = pt->cpu_pod[cpu];
5178
5179 /* calculate possible CPUs in @pod that @attrs wants */
5180 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5181 /* does @pod have any online CPUs @attrs wants? */
5182 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5183 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5184 return;
5185 }
5186 }
5187
5188 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5189 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5190 int cpu, struct pool_workqueue *pwq)
5191 {
5192 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5193 struct pool_workqueue *old_pwq;
5194
5195 lockdep_assert_held(&wq_pool_mutex);
5196 lockdep_assert_held(&wq->mutex);
5197
5198 /* link_pwq() can handle duplicate calls */
5199 link_pwq(pwq);
5200
5201 old_pwq = rcu_access_pointer(*slot);
5202 rcu_assign_pointer(*slot, pwq);
5203 return old_pwq;
5204 }
5205
5206 /* context to store the prepared attrs & pwqs before applying */
5207 struct apply_wqattrs_ctx {
5208 struct workqueue_struct *wq; /* target workqueue */
5209 struct workqueue_attrs *attrs; /* attrs to apply */
5210 struct list_head list; /* queued for batching commit */
5211 struct pool_workqueue *dfl_pwq;
5212 struct pool_workqueue *pwq_tbl[];
5213 };
5214
5215 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5216 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5217 {
5218 if (ctx) {
5219 int cpu;
5220
5221 for_each_possible_cpu(cpu)
5222 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5223 put_pwq_unlocked(ctx->dfl_pwq);
5224
5225 free_workqueue_attrs(ctx->attrs);
5226
5227 kfree(ctx);
5228 }
5229 }
5230
5231 /* allocate the attrs and pwqs for later installation */
5232 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5233 apply_wqattrs_prepare(struct workqueue_struct *wq,
5234 const struct workqueue_attrs *attrs,
5235 const cpumask_var_t unbound_cpumask)
5236 {
5237 struct apply_wqattrs_ctx *ctx;
5238 struct workqueue_attrs *new_attrs;
5239 int cpu;
5240
5241 lockdep_assert_held(&wq_pool_mutex);
5242
5243 if (WARN_ON(attrs->affn_scope < 0 ||
5244 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5245 return ERR_PTR(-EINVAL);
5246
5247 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5248
5249 new_attrs = alloc_workqueue_attrs();
5250 if (!ctx || !new_attrs)
5251 goto out_free;
5252
5253 /*
5254 * If something goes wrong during CPU up/down, we'll fall back to
5255 * the default pwq covering whole @attrs->cpumask. Always create
5256 * it even if we don't use it immediately.
5257 */
5258 copy_workqueue_attrs(new_attrs, attrs);
5259 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5260 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5261 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5262 if (!ctx->dfl_pwq)
5263 goto out_free;
5264
5265 for_each_possible_cpu(cpu) {
5266 if (new_attrs->ordered) {
5267 ctx->dfl_pwq->refcnt++;
5268 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5269 } else {
5270 wq_calc_pod_cpumask(new_attrs, cpu);
5271 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5272 if (!ctx->pwq_tbl[cpu])
5273 goto out_free;
5274 }
5275 }
5276
5277 /* save the user configured attrs and sanitize it. */
5278 copy_workqueue_attrs(new_attrs, attrs);
5279 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5280 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5281 ctx->attrs = new_attrs;
5282
5283 /*
5284 * For initialized ordered workqueues, there should only be one pwq
5285 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5286 * of newly queued work items until execution of older work items in
5287 * the old pwq's have completed.
5288 */
5289 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5290 ctx->dfl_pwq->plugged = true;
5291
5292 ctx->wq = wq;
5293 return ctx;
5294
5295 out_free:
5296 free_workqueue_attrs(new_attrs);
5297 apply_wqattrs_cleanup(ctx);
5298 return ERR_PTR(-ENOMEM);
5299 }
5300
5301 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5302 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5303 {
5304 int cpu;
5305
5306 /* all pwqs have been created successfully, let's install'em */
5307 mutex_lock(&ctx->wq->mutex);
5308
5309 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5310
5311 /* save the previous pwqs and install the new ones */
5312 for_each_possible_cpu(cpu)
5313 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5314 ctx->pwq_tbl[cpu]);
5315 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5316
5317 /* update node_nr_active->max */
5318 wq_update_node_max_active(ctx->wq, -1);
5319
5320 /* rescuer needs to respect wq cpumask changes */
5321 if (ctx->wq->rescuer)
5322 set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5323 unbound_effective_cpumask(ctx->wq));
5324
5325 mutex_unlock(&ctx->wq->mutex);
5326 }
5327
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5328 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5329 const struct workqueue_attrs *attrs)
5330 {
5331 struct apply_wqattrs_ctx *ctx;
5332
5333 /* only unbound workqueues can change attributes */
5334 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5335 return -EINVAL;
5336
5337 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5338 if (IS_ERR(ctx))
5339 return PTR_ERR(ctx);
5340
5341 /* the ctx has been prepared successfully, let's commit it */
5342 apply_wqattrs_commit(ctx);
5343 apply_wqattrs_cleanup(ctx);
5344
5345 return 0;
5346 }
5347
5348 /**
5349 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5350 * @wq: the target workqueue
5351 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5352 *
5353 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5354 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5355 * work items are affine to the pod it was issued on. Older pwqs are released as
5356 * in-flight work items finish. Note that a work item which repeatedly requeues
5357 * itself back-to-back will stay on its current pwq.
5358 *
5359 * Performs GFP_KERNEL allocations.
5360 *
5361 * Return: 0 on success and -errno on failure.
5362 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5363 int apply_workqueue_attrs(struct workqueue_struct *wq,
5364 const struct workqueue_attrs *attrs)
5365 {
5366 int ret;
5367
5368 mutex_lock(&wq_pool_mutex);
5369 ret = apply_workqueue_attrs_locked(wq, attrs);
5370 mutex_unlock(&wq_pool_mutex);
5371
5372 return ret;
5373 }
5374
5375 /**
5376 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5377 * @wq: the target workqueue
5378 * @cpu: the CPU to update the pwq slot for
5379 *
5380 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5381 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged.
5382 *
5383 *
5384 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5385 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5386 *
5387 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5388 * with a cpumask spanning multiple pods, the workers which were already
5389 * executing the work items for the workqueue will lose their CPU affinity and
5390 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5391 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5392 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5393 */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5394 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5395 {
5396 struct pool_workqueue *old_pwq = NULL, *pwq;
5397 struct workqueue_attrs *target_attrs;
5398
5399 lockdep_assert_held(&wq_pool_mutex);
5400
5401 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5402 return;
5403
5404 /*
5405 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5406 * Let's use a preallocated one. The following buf is protected by
5407 * CPU hotplug exclusion.
5408 */
5409 target_attrs = unbound_wq_update_pwq_attrs_buf;
5410
5411 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5412 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5413
5414 /* nothing to do if the target cpumask matches the current pwq */
5415 wq_calc_pod_cpumask(target_attrs, cpu);
5416 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5417 return;
5418
5419 /* create a new pwq */
5420 pwq = alloc_unbound_pwq(wq, target_attrs);
5421 if (!pwq) {
5422 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5423 wq->name);
5424 goto use_dfl_pwq;
5425 }
5426
5427 /* Install the new pwq. */
5428 mutex_lock(&wq->mutex);
5429 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5430 goto out_unlock;
5431
5432 use_dfl_pwq:
5433 mutex_lock(&wq->mutex);
5434 pwq = unbound_pwq(wq, -1);
5435 raw_spin_lock_irq(&pwq->pool->lock);
5436 get_pwq(pwq);
5437 raw_spin_unlock_irq(&pwq->pool->lock);
5438 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5439 out_unlock:
5440 mutex_unlock(&wq->mutex);
5441 put_pwq_unlocked(old_pwq);
5442 }
5443
alloc_and_link_pwqs(struct workqueue_struct * wq)5444 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5445 {
5446 bool highpri = wq->flags & WQ_HIGHPRI;
5447 int cpu, ret;
5448
5449 lockdep_assert_held(&wq_pool_mutex);
5450
5451 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5452 if (!wq->cpu_pwq)
5453 goto enomem;
5454
5455 if (!(wq->flags & WQ_UNBOUND)) {
5456 struct worker_pool __percpu *pools;
5457
5458 if (wq->flags & WQ_BH)
5459 pools = bh_worker_pools;
5460 else
5461 pools = cpu_worker_pools;
5462
5463 for_each_possible_cpu(cpu) {
5464 struct pool_workqueue **pwq_p;
5465 struct worker_pool *pool;
5466
5467 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5468 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5469
5470 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5471 pool->node);
5472 if (!*pwq_p)
5473 goto enomem;
5474
5475 init_pwq(*pwq_p, wq, pool);
5476
5477 mutex_lock(&wq->mutex);
5478 link_pwq(*pwq_p);
5479 mutex_unlock(&wq->mutex);
5480 }
5481 return 0;
5482 }
5483
5484 if (wq->flags & __WQ_ORDERED) {
5485 struct pool_workqueue *dfl_pwq;
5486
5487 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5488 /* there should only be single pwq for ordering guarantee */
5489 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5490 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5491 wq->pwqs.prev != &dfl_pwq->pwqs_node),
5492 "ordering guarantee broken for workqueue %s\n", wq->name);
5493 } else {
5494 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5495 }
5496
5497 return ret;
5498
5499 enomem:
5500 if (wq->cpu_pwq) {
5501 for_each_possible_cpu(cpu) {
5502 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5503
5504 if (pwq)
5505 kmem_cache_free(pwq_cache, pwq);
5506 }
5507 free_percpu(wq->cpu_pwq);
5508 wq->cpu_pwq = NULL;
5509 }
5510 return -ENOMEM;
5511 }
5512
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5513 static int wq_clamp_max_active(int max_active, unsigned int flags,
5514 const char *name)
5515 {
5516 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5517 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5518 max_active, name, 1, WQ_MAX_ACTIVE);
5519
5520 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5521 }
5522
5523 /*
5524 * Workqueues which may be used during memory reclaim should have a rescuer
5525 * to guarantee forward progress.
5526 */
init_rescuer(struct workqueue_struct * wq)5527 static int init_rescuer(struct workqueue_struct *wq)
5528 {
5529 struct worker *rescuer;
5530 char id_buf[WORKER_ID_LEN];
5531 int ret;
5532
5533 lockdep_assert_held(&wq_pool_mutex);
5534
5535 if (!(wq->flags & WQ_MEM_RECLAIM))
5536 return 0;
5537
5538 rescuer = alloc_worker(NUMA_NO_NODE);
5539 if (!rescuer) {
5540 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5541 wq->name);
5542 return -ENOMEM;
5543 }
5544
5545 rescuer->rescue_wq = wq;
5546 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5547
5548 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5549 if (IS_ERR(rescuer->task)) {
5550 ret = PTR_ERR(rescuer->task);
5551 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5552 wq->name, ERR_PTR(ret));
5553 kfree(rescuer);
5554 return ret;
5555 }
5556
5557 wq->rescuer = rescuer;
5558 if (wq->flags & WQ_UNBOUND)
5559 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5560 else
5561 kthread_bind_mask(rescuer->task, cpu_possible_mask);
5562 wake_up_process(rescuer->task);
5563
5564 return 0;
5565 }
5566
5567 /**
5568 * wq_adjust_max_active - update a wq's max_active to the current setting
5569 * @wq: target workqueue
5570 *
5571 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5572 * activate inactive work items accordingly. If @wq is freezing, clear
5573 * @wq->max_active to zero.
5574 */
wq_adjust_max_active(struct workqueue_struct * wq)5575 static void wq_adjust_max_active(struct workqueue_struct *wq)
5576 {
5577 bool activated;
5578 int new_max, new_min;
5579
5580 lockdep_assert_held(&wq->mutex);
5581
5582 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5583 new_max = 0;
5584 new_min = 0;
5585 } else {
5586 new_max = wq->saved_max_active;
5587 new_min = wq->saved_min_active;
5588 }
5589
5590 if (wq->max_active == new_max && wq->min_active == new_min)
5591 return;
5592
5593 /*
5594 * Update @wq->max/min_active and then kick inactive work items if more
5595 * active work items are allowed. This doesn't break work item ordering
5596 * because new work items are always queued behind existing inactive
5597 * work items if there are any.
5598 */
5599 WRITE_ONCE(wq->max_active, new_max);
5600 WRITE_ONCE(wq->min_active, new_min);
5601
5602 if (wq->flags & WQ_UNBOUND)
5603 wq_update_node_max_active(wq, -1);
5604
5605 if (new_max == 0)
5606 return;
5607
5608 /*
5609 * Round-robin through pwq's activating the first inactive work item
5610 * until max_active is filled.
5611 */
5612 do {
5613 struct pool_workqueue *pwq;
5614
5615 activated = false;
5616 for_each_pwq(pwq, wq) {
5617 unsigned long irq_flags;
5618
5619 /* can be called during early boot w/ irq disabled */
5620 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5621 if (pwq_activate_first_inactive(pwq, true)) {
5622 activated = true;
5623 kick_pool(pwq->pool);
5624 }
5625 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5626 }
5627 } while (activated);
5628 }
5629
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5630 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5631 unsigned int flags,
5632 int max_active, va_list args)
5633 {
5634 struct workqueue_struct *wq;
5635 size_t wq_size;
5636 int name_len;
5637
5638 if (flags & WQ_BH) {
5639 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5640 return NULL;
5641 if (WARN_ON_ONCE(max_active))
5642 return NULL;
5643 }
5644
5645 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5646 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5647 flags |= WQ_UNBOUND;
5648
5649 /* allocate wq and format name */
5650 if (flags & WQ_UNBOUND)
5651 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5652 else
5653 wq_size = sizeof(*wq);
5654
5655 wq = kzalloc(wq_size, GFP_KERNEL);
5656 if (!wq)
5657 return NULL;
5658
5659 if (flags & WQ_UNBOUND) {
5660 wq->unbound_attrs = alloc_workqueue_attrs();
5661 if (!wq->unbound_attrs)
5662 goto err_free_wq;
5663 }
5664
5665 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5666
5667 if (name_len >= WQ_NAME_LEN)
5668 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5669 wq->name);
5670
5671 if (flags & WQ_BH) {
5672 /*
5673 * BH workqueues always share a single execution context per CPU
5674 * and don't impose any max_active limit.
5675 */
5676 max_active = INT_MAX;
5677 } else {
5678 max_active = max_active ?: WQ_DFL_ACTIVE;
5679 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5680 }
5681
5682 /* init wq */
5683 wq->flags = flags;
5684 wq->max_active = max_active;
5685 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5686 wq->saved_max_active = wq->max_active;
5687 wq->saved_min_active = wq->min_active;
5688 mutex_init(&wq->mutex);
5689 atomic_set(&wq->nr_pwqs_to_flush, 0);
5690 INIT_LIST_HEAD(&wq->pwqs);
5691 INIT_LIST_HEAD(&wq->flusher_queue);
5692 INIT_LIST_HEAD(&wq->flusher_overflow);
5693 INIT_LIST_HEAD(&wq->maydays);
5694
5695 INIT_LIST_HEAD(&wq->list);
5696
5697 if (flags & WQ_UNBOUND) {
5698 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5699 goto err_free_wq;
5700 }
5701
5702 /*
5703 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5704 * and the global freeze state.
5705 */
5706 apply_wqattrs_lock();
5707
5708 if (alloc_and_link_pwqs(wq) < 0)
5709 goto err_unlock_free_node_nr_active;
5710
5711 mutex_lock(&wq->mutex);
5712 wq_adjust_max_active(wq);
5713 mutex_unlock(&wq->mutex);
5714
5715 list_add_tail_rcu(&wq->list, &workqueues);
5716
5717 if (wq_online && init_rescuer(wq) < 0)
5718 goto err_unlock_destroy;
5719
5720 apply_wqattrs_unlock();
5721
5722 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5723 goto err_destroy;
5724
5725 return wq;
5726
5727 err_unlock_free_node_nr_active:
5728 apply_wqattrs_unlock();
5729 /*
5730 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5731 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5732 * completes before calling kfree(wq).
5733 */
5734 if (wq->flags & WQ_UNBOUND) {
5735 kthread_flush_worker(pwq_release_worker);
5736 free_node_nr_active(wq->node_nr_active);
5737 }
5738 err_free_wq:
5739 free_workqueue_attrs(wq->unbound_attrs);
5740 kfree(wq);
5741 return NULL;
5742 err_unlock_destroy:
5743 apply_wqattrs_unlock();
5744 err_destroy:
5745 destroy_workqueue(wq);
5746 return NULL;
5747 }
5748
5749 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)5750 struct workqueue_struct *alloc_workqueue(const char *fmt,
5751 unsigned int flags,
5752 int max_active, ...)
5753 {
5754 struct workqueue_struct *wq;
5755 va_list args;
5756
5757 va_start(args, max_active);
5758 wq = __alloc_workqueue(fmt, flags, max_active, args);
5759 va_end(args);
5760 if (!wq)
5761 return NULL;
5762
5763 wq_init_lockdep(wq);
5764
5765 return wq;
5766 }
5767 EXPORT_SYMBOL_GPL(alloc_workqueue);
5768
5769 #ifdef CONFIG_LOCKDEP
5770 __printf(1, 5)
5771 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5772 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5773 int max_active, struct lockdep_map *lockdep_map, ...)
5774 {
5775 struct workqueue_struct *wq;
5776 va_list args;
5777
5778 va_start(args, lockdep_map);
5779 wq = __alloc_workqueue(fmt, flags, max_active, args);
5780 va_end(args);
5781 if (!wq)
5782 return NULL;
5783
5784 wq->lockdep_map = lockdep_map;
5785
5786 return wq;
5787 }
5788 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5789 #endif
5790
pwq_busy(struct pool_workqueue * pwq)5791 static bool pwq_busy(struct pool_workqueue *pwq)
5792 {
5793 int i;
5794
5795 for (i = 0; i < WORK_NR_COLORS; i++)
5796 if (pwq->nr_in_flight[i])
5797 return true;
5798
5799 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5800 return true;
5801 if (!pwq_is_empty(pwq))
5802 return true;
5803
5804 return false;
5805 }
5806
5807 /**
5808 * destroy_workqueue - safely terminate a workqueue
5809 * @wq: target workqueue
5810 *
5811 * Safely destroy a workqueue. All work currently pending will be done first.
5812 */
destroy_workqueue(struct workqueue_struct * wq)5813 void destroy_workqueue(struct workqueue_struct *wq)
5814 {
5815 struct pool_workqueue *pwq;
5816 int cpu;
5817
5818 /*
5819 * Remove it from sysfs first so that sanity check failure doesn't
5820 * lead to sysfs name conflicts.
5821 */
5822 workqueue_sysfs_unregister(wq);
5823
5824 /* mark the workqueue destruction is in progress */
5825 mutex_lock(&wq->mutex);
5826 wq->flags |= __WQ_DESTROYING;
5827 mutex_unlock(&wq->mutex);
5828
5829 /* drain it before proceeding with destruction */
5830 drain_workqueue(wq);
5831
5832 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5833 if (wq->rescuer) {
5834 struct worker *rescuer = wq->rescuer;
5835
5836 /* this prevents new queueing */
5837 raw_spin_lock_irq(&wq_mayday_lock);
5838 wq->rescuer = NULL;
5839 raw_spin_unlock_irq(&wq_mayday_lock);
5840
5841 /* rescuer will empty maydays list before exiting */
5842 kthread_stop(rescuer->task);
5843 kfree(rescuer);
5844 }
5845
5846 /*
5847 * Sanity checks - grab all the locks so that we wait for all
5848 * in-flight operations which may do put_pwq().
5849 */
5850 mutex_lock(&wq_pool_mutex);
5851 mutex_lock(&wq->mutex);
5852 for_each_pwq(pwq, wq) {
5853 raw_spin_lock_irq(&pwq->pool->lock);
5854 if (WARN_ON(pwq_busy(pwq))) {
5855 pr_warn("%s: %s has the following busy pwq\n",
5856 __func__, wq->name);
5857 show_pwq(pwq);
5858 raw_spin_unlock_irq(&pwq->pool->lock);
5859 mutex_unlock(&wq->mutex);
5860 mutex_unlock(&wq_pool_mutex);
5861 show_one_workqueue(wq);
5862 return;
5863 }
5864 raw_spin_unlock_irq(&pwq->pool->lock);
5865 }
5866 mutex_unlock(&wq->mutex);
5867
5868 /*
5869 * wq list is used to freeze wq, remove from list after
5870 * flushing is complete in case freeze races us.
5871 */
5872 list_del_rcu(&wq->list);
5873 mutex_unlock(&wq_pool_mutex);
5874
5875 /*
5876 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5877 * to put the base refs. @wq will be auto-destroyed from the last
5878 * pwq_put. RCU read lock prevents @wq from going away from under us.
5879 */
5880 rcu_read_lock();
5881
5882 for_each_possible_cpu(cpu) {
5883 put_pwq_unlocked(unbound_pwq(wq, cpu));
5884 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5885 }
5886
5887 put_pwq_unlocked(unbound_pwq(wq, -1));
5888 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5889
5890 rcu_read_unlock();
5891 }
5892 EXPORT_SYMBOL_GPL(destroy_workqueue);
5893
5894 /**
5895 * workqueue_set_max_active - adjust max_active of a workqueue
5896 * @wq: target workqueue
5897 * @max_active: new max_active value.
5898 *
5899 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5900 * comment.
5901 *
5902 * CONTEXT:
5903 * Don't call from IRQ context.
5904 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5905 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5906 {
5907 /* max_active doesn't mean anything for BH workqueues */
5908 if (WARN_ON(wq->flags & WQ_BH))
5909 return;
5910 /* disallow meddling with max_active for ordered workqueues */
5911 if (WARN_ON(wq->flags & __WQ_ORDERED))
5912 return;
5913
5914 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5915
5916 mutex_lock(&wq->mutex);
5917
5918 wq->saved_max_active = max_active;
5919 if (wq->flags & WQ_UNBOUND)
5920 wq->saved_min_active = min(wq->saved_min_active, max_active);
5921
5922 wq_adjust_max_active(wq);
5923
5924 mutex_unlock(&wq->mutex);
5925 }
5926 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5927
5928 /**
5929 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5930 * @wq: target unbound workqueue
5931 * @min_active: new min_active value
5932 *
5933 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5934 * unbound workqueue is not guaranteed to be able to process max_active
5935 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5936 * able to process min_active number of interdependent work items which is
5937 * %WQ_DFL_MIN_ACTIVE by default.
5938 *
5939 * Use this function to adjust the min_active value between 0 and the current
5940 * max_active.
5941 */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)5942 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5943 {
5944 /* min_active is only meaningful for non-ordered unbound workqueues */
5945 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5946 WQ_UNBOUND))
5947 return;
5948
5949 mutex_lock(&wq->mutex);
5950 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5951 wq_adjust_max_active(wq);
5952 mutex_unlock(&wq->mutex);
5953 }
5954
5955 /**
5956 * current_work - retrieve %current task's work struct
5957 *
5958 * Determine if %current task is a workqueue worker and what it's working on.
5959 * Useful to find out the context that the %current task is running in.
5960 *
5961 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5962 */
current_work(void)5963 struct work_struct *current_work(void)
5964 {
5965 struct worker *worker = current_wq_worker();
5966
5967 return worker ? worker->current_work : NULL;
5968 }
5969 EXPORT_SYMBOL(current_work);
5970
5971 /**
5972 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5973 *
5974 * Determine whether %current is a workqueue rescuer. Can be used from
5975 * work functions to determine whether it's being run off the rescuer task.
5976 *
5977 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5978 */
current_is_workqueue_rescuer(void)5979 bool current_is_workqueue_rescuer(void)
5980 {
5981 struct worker *worker = current_wq_worker();
5982
5983 return worker && worker->rescue_wq;
5984 }
5985
5986 /**
5987 * workqueue_congested - test whether a workqueue is congested
5988 * @cpu: CPU in question
5989 * @wq: target workqueue
5990 *
5991 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5992 * no synchronization around this function and the test result is
5993 * unreliable and only useful as advisory hints or for debugging.
5994 *
5995 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5996 *
5997 * With the exception of ordered workqueues, all workqueues have per-cpu
5998 * pool_workqueues, each with its own congested state. A workqueue being
5999 * congested on one CPU doesn't mean that the workqueue is contested on any
6000 * other CPUs.
6001 *
6002 * Return:
6003 * %true if congested, %false otherwise.
6004 */
workqueue_congested(int cpu,struct workqueue_struct * wq)6005 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6006 {
6007 struct pool_workqueue *pwq;
6008 bool ret;
6009
6010 rcu_read_lock();
6011 preempt_disable();
6012
6013 if (cpu == WORK_CPU_UNBOUND)
6014 cpu = smp_processor_id();
6015
6016 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6017 ret = !list_empty(&pwq->inactive_works);
6018
6019 preempt_enable();
6020 rcu_read_unlock();
6021
6022 return ret;
6023 }
6024 EXPORT_SYMBOL_GPL(workqueue_congested);
6025
6026 /**
6027 * work_busy - test whether a work is currently pending or running
6028 * @work: the work to be tested
6029 *
6030 * Test whether @work is currently pending or running. There is no
6031 * synchronization around this function and the test result is
6032 * unreliable and only useful as advisory hints or for debugging.
6033 *
6034 * Return:
6035 * OR'd bitmask of WORK_BUSY_* bits.
6036 */
work_busy(struct work_struct * work)6037 unsigned int work_busy(struct work_struct *work)
6038 {
6039 struct worker_pool *pool;
6040 unsigned long irq_flags;
6041 unsigned int ret = 0;
6042
6043 if (work_pending(work))
6044 ret |= WORK_BUSY_PENDING;
6045
6046 rcu_read_lock();
6047 pool = get_work_pool(work);
6048 if (pool) {
6049 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6050 if (find_worker_executing_work(pool, work))
6051 ret |= WORK_BUSY_RUNNING;
6052 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6053 }
6054 rcu_read_unlock();
6055
6056 return ret;
6057 }
6058 EXPORT_SYMBOL_GPL(work_busy);
6059
6060 /**
6061 * set_worker_desc - set description for the current work item
6062 * @fmt: printf-style format string
6063 * @...: arguments for the format string
6064 *
6065 * This function can be called by a running work function to describe what
6066 * the work item is about. If the worker task gets dumped, this
6067 * information will be printed out together to help debugging. The
6068 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6069 */
set_worker_desc(const char * fmt,...)6070 void set_worker_desc(const char *fmt, ...)
6071 {
6072 struct worker *worker = current_wq_worker();
6073 va_list args;
6074
6075 if (worker) {
6076 va_start(args, fmt);
6077 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6078 va_end(args);
6079 }
6080 }
6081 EXPORT_SYMBOL_GPL(set_worker_desc);
6082
6083 /**
6084 * print_worker_info - print out worker information and description
6085 * @log_lvl: the log level to use when printing
6086 * @task: target task
6087 *
6088 * If @task is a worker and currently executing a work item, print out the
6089 * name of the workqueue being serviced and worker description set with
6090 * set_worker_desc() by the currently executing work item.
6091 *
6092 * This function can be safely called on any task as long as the
6093 * task_struct itself is accessible. While safe, this function isn't
6094 * synchronized and may print out mixups or garbages of limited length.
6095 */
print_worker_info(const char * log_lvl,struct task_struct * task)6096 void print_worker_info(const char *log_lvl, struct task_struct *task)
6097 {
6098 work_func_t *fn = NULL;
6099 char name[WQ_NAME_LEN] = { };
6100 char desc[WORKER_DESC_LEN] = { };
6101 struct pool_workqueue *pwq = NULL;
6102 struct workqueue_struct *wq = NULL;
6103 struct worker *worker;
6104
6105 if (!(task->flags & PF_WQ_WORKER))
6106 return;
6107
6108 /*
6109 * This function is called without any synchronization and @task
6110 * could be in any state. Be careful with dereferences.
6111 */
6112 worker = kthread_probe_data(task);
6113
6114 /*
6115 * Carefully copy the associated workqueue's workfn, name and desc.
6116 * Keep the original last '\0' in case the original is garbage.
6117 */
6118 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6119 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6120 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6121 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6122 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6123
6124 if (fn || name[0] || desc[0]) {
6125 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6126 if (strcmp(name, desc))
6127 pr_cont(" (%s)", desc);
6128 pr_cont("\n");
6129 }
6130 }
6131
pr_cont_pool_info(struct worker_pool * pool)6132 static void pr_cont_pool_info(struct worker_pool *pool)
6133 {
6134 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6135 if (pool->node != NUMA_NO_NODE)
6136 pr_cont(" node=%d", pool->node);
6137 pr_cont(" flags=0x%x", pool->flags);
6138 if (pool->flags & POOL_BH)
6139 pr_cont(" bh%s",
6140 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6141 else
6142 pr_cont(" nice=%d", pool->attrs->nice);
6143 }
6144
pr_cont_worker_id(struct worker * worker)6145 static void pr_cont_worker_id(struct worker *worker)
6146 {
6147 struct worker_pool *pool = worker->pool;
6148
6149 if (pool->flags & WQ_BH)
6150 pr_cont("bh%s",
6151 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6152 else
6153 pr_cont("%d%s", task_pid_nr(worker->task),
6154 worker->rescue_wq ? "(RESCUER)" : "");
6155 }
6156
6157 struct pr_cont_work_struct {
6158 bool comma;
6159 work_func_t func;
6160 long ctr;
6161 };
6162
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6163 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6164 {
6165 if (!pcwsp->ctr)
6166 goto out_record;
6167 if (func == pcwsp->func) {
6168 pcwsp->ctr++;
6169 return;
6170 }
6171 if (pcwsp->ctr == 1)
6172 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6173 else
6174 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6175 pcwsp->ctr = 0;
6176 out_record:
6177 if ((long)func == -1L)
6178 return;
6179 pcwsp->comma = comma;
6180 pcwsp->func = func;
6181 pcwsp->ctr = 1;
6182 }
6183
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6184 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6185 {
6186 if (work->func == wq_barrier_func) {
6187 struct wq_barrier *barr;
6188
6189 barr = container_of(work, struct wq_barrier, work);
6190
6191 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6192 pr_cont("%s BAR(%d)", comma ? "," : "",
6193 task_pid_nr(barr->task));
6194 } else {
6195 if (!comma)
6196 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6197 pr_cont_work_flush(comma, work->func, pcwsp);
6198 }
6199 }
6200
show_pwq(struct pool_workqueue * pwq)6201 static void show_pwq(struct pool_workqueue *pwq)
6202 {
6203 struct pr_cont_work_struct pcws = { .ctr = 0, };
6204 struct worker_pool *pool = pwq->pool;
6205 struct work_struct *work;
6206 struct worker *worker;
6207 bool has_in_flight = false, has_pending = false;
6208 int bkt;
6209
6210 pr_info(" pwq %d:", pool->id);
6211 pr_cont_pool_info(pool);
6212
6213 pr_cont(" active=%d refcnt=%d%s\n",
6214 pwq->nr_active, pwq->refcnt,
6215 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6216
6217 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6218 if (worker->current_pwq == pwq) {
6219 has_in_flight = true;
6220 break;
6221 }
6222 }
6223 if (has_in_flight) {
6224 bool comma = false;
6225
6226 pr_info(" in-flight:");
6227 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6228 if (worker->current_pwq != pwq)
6229 continue;
6230
6231 pr_cont(" %s", comma ? "," : "");
6232 pr_cont_worker_id(worker);
6233 pr_cont(":%ps", worker->current_func);
6234 list_for_each_entry(work, &worker->scheduled, entry)
6235 pr_cont_work(false, work, &pcws);
6236 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6237 comma = true;
6238 }
6239 pr_cont("\n");
6240 }
6241
6242 list_for_each_entry(work, &pool->worklist, entry) {
6243 if (get_work_pwq(work) == pwq) {
6244 has_pending = true;
6245 break;
6246 }
6247 }
6248 if (has_pending) {
6249 bool comma = false;
6250
6251 pr_info(" pending:");
6252 list_for_each_entry(work, &pool->worklist, entry) {
6253 if (get_work_pwq(work) != pwq)
6254 continue;
6255
6256 pr_cont_work(comma, work, &pcws);
6257 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6258 }
6259 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6260 pr_cont("\n");
6261 }
6262
6263 if (!list_empty(&pwq->inactive_works)) {
6264 bool comma = false;
6265
6266 pr_info(" inactive:");
6267 list_for_each_entry(work, &pwq->inactive_works, entry) {
6268 pr_cont_work(comma, work, &pcws);
6269 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6270 }
6271 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6272 pr_cont("\n");
6273 }
6274 }
6275
6276 /**
6277 * show_one_workqueue - dump state of specified workqueue
6278 * @wq: workqueue whose state will be printed
6279 */
show_one_workqueue(struct workqueue_struct * wq)6280 void show_one_workqueue(struct workqueue_struct *wq)
6281 {
6282 struct pool_workqueue *pwq;
6283 bool idle = true;
6284 unsigned long irq_flags;
6285
6286 for_each_pwq(pwq, wq) {
6287 if (!pwq_is_empty(pwq)) {
6288 idle = false;
6289 break;
6290 }
6291 }
6292 if (idle) /* Nothing to print for idle workqueue */
6293 return;
6294
6295 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6296
6297 for_each_pwq(pwq, wq) {
6298 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6299 if (!pwq_is_empty(pwq)) {
6300 /*
6301 * Defer printing to avoid deadlocks in console
6302 * drivers that queue work while holding locks
6303 * also taken in their write paths.
6304 */
6305 printk_deferred_enter();
6306 show_pwq(pwq);
6307 printk_deferred_exit();
6308 }
6309 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6310 /*
6311 * We could be printing a lot from atomic context, e.g.
6312 * sysrq-t -> show_all_workqueues(). Avoid triggering
6313 * hard lockup.
6314 */
6315 touch_nmi_watchdog();
6316 }
6317
6318 }
6319
6320 /**
6321 * show_one_worker_pool - dump state of specified worker pool
6322 * @pool: worker pool whose state will be printed
6323 */
show_one_worker_pool(struct worker_pool * pool)6324 static void show_one_worker_pool(struct worker_pool *pool)
6325 {
6326 struct worker *worker;
6327 bool first = true;
6328 unsigned long irq_flags;
6329 unsigned long hung = 0;
6330
6331 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6332 if (pool->nr_workers == pool->nr_idle)
6333 goto next_pool;
6334
6335 /* How long the first pending work is waiting for a worker. */
6336 if (!list_empty(&pool->worklist))
6337 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6338
6339 /*
6340 * Defer printing to avoid deadlocks in console drivers that
6341 * queue work while holding locks also taken in their write
6342 * paths.
6343 */
6344 printk_deferred_enter();
6345 pr_info("pool %d:", pool->id);
6346 pr_cont_pool_info(pool);
6347 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6348 if (pool->manager)
6349 pr_cont(" manager: %d",
6350 task_pid_nr(pool->manager->task));
6351 list_for_each_entry(worker, &pool->idle_list, entry) {
6352 pr_cont(" %s", first ? "idle: " : "");
6353 pr_cont_worker_id(worker);
6354 first = false;
6355 }
6356 pr_cont("\n");
6357 printk_deferred_exit();
6358 next_pool:
6359 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6360 /*
6361 * We could be printing a lot from atomic context, e.g.
6362 * sysrq-t -> show_all_workqueues(). Avoid triggering
6363 * hard lockup.
6364 */
6365 touch_nmi_watchdog();
6366
6367 }
6368
6369 /**
6370 * show_all_workqueues - dump workqueue state
6371 *
6372 * Called from a sysrq handler and prints out all busy workqueues and pools.
6373 */
show_all_workqueues(void)6374 void show_all_workqueues(void)
6375 {
6376 struct workqueue_struct *wq;
6377 struct worker_pool *pool;
6378 int pi;
6379
6380 rcu_read_lock();
6381
6382 pr_info("Showing busy workqueues and worker pools:\n");
6383
6384 list_for_each_entry_rcu(wq, &workqueues, list)
6385 show_one_workqueue(wq);
6386
6387 for_each_pool(pool, pi)
6388 show_one_worker_pool(pool);
6389
6390 rcu_read_unlock();
6391 }
6392
6393 /**
6394 * show_freezable_workqueues - dump freezable workqueue state
6395 *
6396 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6397 * still busy.
6398 */
show_freezable_workqueues(void)6399 void show_freezable_workqueues(void)
6400 {
6401 struct workqueue_struct *wq;
6402
6403 rcu_read_lock();
6404
6405 pr_info("Showing freezable workqueues that are still busy:\n");
6406
6407 list_for_each_entry_rcu(wq, &workqueues, list) {
6408 if (!(wq->flags & WQ_FREEZABLE))
6409 continue;
6410 show_one_workqueue(wq);
6411 }
6412
6413 rcu_read_unlock();
6414 }
6415
6416 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6417 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6418 {
6419 /* stabilize PF_WQ_WORKER and worker pool association */
6420 mutex_lock(&wq_pool_attach_mutex);
6421
6422 if (task->flags & PF_WQ_WORKER) {
6423 struct worker *worker = kthread_data(task);
6424 struct worker_pool *pool = worker->pool;
6425 int off;
6426
6427 off = format_worker_id(buf, size, worker, pool);
6428
6429 if (pool) {
6430 raw_spin_lock_irq(&pool->lock);
6431 /*
6432 * ->desc tracks information (wq name or
6433 * set_worker_desc()) for the latest execution. If
6434 * current, prepend '+', otherwise '-'.
6435 */
6436 if (worker->desc[0] != '\0') {
6437 if (worker->current_work)
6438 scnprintf(buf + off, size - off, "+%s",
6439 worker->desc);
6440 else
6441 scnprintf(buf + off, size - off, "-%s",
6442 worker->desc);
6443 }
6444 raw_spin_unlock_irq(&pool->lock);
6445 }
6446 } else {
6447 strscpy(buf, task->comm, size);
6448 }
6449
6450 mutex_unlock(&wq_pool_attach_mutex);
6451 }
6452
6453 #ifdef CONFIG_SMP
6454
6455 /*
6456 * CPU hotplug.
6457 *
6458 * There are two challenges in supporting CPU hotplug. Firstly, there
6459 * are a lot of assumptions on strong associations among work, pwq and
6460 * pool which make migrating pending and scheduled works very
6461 * difficult to implement without impacting hot paths. Secondly,
6462 * worker pools serve mix of short, long and very long running works making
6463 * blocked draining impractical.
6464 *
6465 * This is solved by allowing the pools to be disassociated from the CPU
6466 * running as an unbound one and allowing it to be reattached later if the
6467 * cpu comes back online.
6468 */
6469
unbind_workers(int cpu)6470 static void unbind_workers(int cpu)
6471 {
6472 struct worker_pool *pool;
6473 struct worker *worker;
6474
6475 for_each_cpu_worker_pool(pool, cpu) {
6476 mutex_lock(&wq_pool_attach_mutex);
6477 raw_spin_lock_irq(&pool->lock);
6478
6479 /*
6480 * We've blocked all attach/detach operations. Make all workers
6481 * unbound and set DISASSOCIATED. Before this, all workers
6482 * must be on the cpu. After this, they may become diasporas.
6483 * And the preemption disabled section in their sched callbacks
6484 * are guaranteed to see WORKER_UNBOUND since the code here
6485 * is on the same cpu.
6486 */
6487 for_each_pool_worker(worker, pool)
6488 worker->flags |= WORKER_UNBOUND;
6489
6490 pool->flags |= POOL_DISASSOCIATED;
6491
6492 /*
6493 * The handling of nr_running in sched callbacks are disabled
6494 * now. Zap nr_running. After this, nr_running stays zero and
6495 * need_more_worker() and keep_working() are always true as
6496 * long as the worklist is not empty. This pool now behaves as
6497 * an unbound (in terms of concurrency management) pool which
6498 * are served by workers tied to the pool.
6499 */
6500 pool->nr_running = 0;
6501
6502 /*
6503 * With concurrency management just turned off, a busy
6504 * worker blocking could lead to lengthy stalls. Kick off
6505 * unbound chain execution of currently pending work items.
6506 */
6507 kick_pool(pool);
6508
6509 raw_spin_unlock_irq(&pool->lock);
6510
6511 for_each_pool_worker(worker, pool)
6512 unbind_worker(worker);
6513
6514 mutex_unlock(&wq_pool_attach_mutex);
6515 }
6516 }
6517
6518 /**
6519 * rebind_workers - rebind all workers of a pool to the associated CPU
6520 * @pool: pool of interest
6521 *
6522 * @pool->cpu is coming online. Rebind all workers to the CPU.
6523 */
rebind_workers(struct worker_pool * pool)6524 static void rebind_workers(struct worker_pool *pool)
6525 {
6526 struct worker *worker;
6527
6528 lockdep_assert_held(&wq_pool_attach_mutex);
6529
6530 /*
6531 * Restore CPU affinity of all workers. As all idle workers should
6532 * be on the run-queue of the associated CPU before any local
6533 * wake-ups for concurrency management happen, restore CPU affinity
6534 * of all workers first and then clear UNBOUND. As we're called
6535 * from CPU_ONLINE, the following shouldn't fail.
6536 */
6537 for_each_pool_worker(worker, pool) {
6538 kthread_set_per_cpu(worker->task, pool->cpu);
6539 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6540 pool_allowed_cpus(pool)) < 0);
6541 }
6542
6543 raw_spin_lock_irq(&pool->lock);
6544
6545 pool->flags &= ~POOL_DISASSOCIATED;
6546
6547 for_each_pool_worker(worker, pool) {
6548 unsigned int worker_flags = worker->flags;
6549
6550 /*
6551 * We want to clear UNBOUND but can't directly call
6552 * worker_clr_flags() or adjust nr_running. Atomically
6553 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6554 * @worker will clear REBOUND using worker_clr_flags() when
6555 * it initiates the next execution cycle thus restoring
6556 * concurrency management. Note that when or whether
6557 * @worker clears REBOUND doesn't affect correctness.
6558 *
6559 * WRITE_ONCE() is necessary because @worker->flags may be
6560 * tested without holding any lock in
6561 * wq_worker_running(). Without it, NOT_RUNNING test may
6562 * fail incorrectly leading to premature concurrency
6563 * management operations.
6564 */
6565 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6566 worker_flags |= WORKER_REBOUND;
6567 worker_flags &= ~WORKER_UNBOUND;
6568 WRITE_ONCE(worker->flags, worker_flags);
6569 }
6570
6571 raw_spin_unlock_irq(&pool->lock);
6572 }
6573
6574 /**
6575 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6576 * @pool: unbound pool of interest
6577 * @cpu: the CPU which is coming up
6578 *
6579 * An unbound pool may end up with a cpumask which doesn't have any online
6580 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6581 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6582 * online CPU before, cpus_allowed of all its workers should be restored.
6583 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6584 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6585 {
6586 static cpumask_t cpumask;
6587 struct worker *worker;
6588
6589 lockdep_assert_held(&wq_pool_attach_mutex);
6590
6591 /* is @cpu allowed for @pool? */
6592 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6593 return;
6594
6595 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6596
6597 /* as we're called from CPU_ONLINE, the following shouldn't fail */
6598 for_each_pool_worker(worker, pool)
6599 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6600 }
6601
workqueue_prepare_cpu(unsigned int cpu)6602 int workqueue_prepare_cpu(unsigned int cpu)
6603 {
6604 struct worker_pool *pool;
6605
6606 for_each_cpu_worker_pool(pool, cpu) {
6607 if (pool->nr_workers)
6608 continue;
6609 if (!create_worker(pool))
6610 return -ENOMEM;
6611 }
6612 return 0;
6613 }
6614
workqueue_online_cpu(unsigned int cpu)6615 int workqueue_online_cpu(unsigned int cpu)
6616 {
6617 struct worker_pool *pool;
6618 struct workqueue_struct *wq;
6619 int pi;
6620
6621 mutex_lock(&wq_pool_mutex);
6622
6623 cpumask_set_cpu(cpu, wq_online_cpumask);
6624
6625 for_each_pool(pool, pi) {
6626 /* BH pools aren't affected by hotplug */
6627 if (pool->flags & POOL_BH)
6628 continue;
6629
6630 mutex_lock(&wq_pool_attach_mutex);
6631 if (pool->cpu == cpu)
6632 rebind_workers(pool);
6633 else if (pool->cpu < 0)
6634 restore_unbound_workers_cpumask(pool, cpu);
6635 mutex_unlock(&wq_pool_attach_mutex);
6636 }
6637
6638 /* update pod affinity of unbound workqueues */
6639 list_for_each_entry(wq, &workqueues, list) {
6640 struct workqueue_attrs *attrs = wq->unbound_attrs;
6641
6642 if (attrs) {
6643 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6644 int tcpu;
6645
6646 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6647 unbound_wq_update_pwq(wq, tcpu);
6648
6649 mutex_lock(&wq->mutex);
6650 wq_update_node_max_active(wq, -1);
6651 mutex_unlock(&wq->mutex);
6652 }
6653 }
6654
6655 mutex_unlock(&wq_pool_mutex);
6656 return 0;
6657 }
6658
workqueue_offline_cpu(unsigned int cpu)6659 int workqueue_offline_cpu(unsigned int cpu)
6660 {
6661 struct workqueue_struct *wq;
6662
6663 /* unbinding per-cpu workers should happen on the local CPU */
6664 if (WARN_ON(cpu != smp_processor_id()))
6665 return -1;
6666
6667 unbind_workers(cpu);
6668
6669 /* update pod affinity of unbound workqueues */
6670 mutex_lock(&wq_pool_mutex);
6671
6672 cpumask_clear_cpu(cpu, wq_online_cpumask);
6673
6674 list_for_each_entry(wq, &workqueues, list) {
6675 struct workqueue_attrs *attrs = wq->unbound_attrs;
6676
6677 if (attrs) {
6678 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6679 int tcpu;
6680
6681 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6682 unbound_wq_update_pwq(wq, tcpu);
6683
6684 mutex_lock(&wq->mutex);
6685 wq_update_node_max_active(wq, cpu);
6686 mutex_unlock(&wq->mutex);
6687 }
6688 }
6689 mutex_unlock(&wq_pool_mutex);
6690
6691 return 0;
6692 }
6693
6694 struct work_for_cpu {
6695 struct work_struct work;
6696 long (*fn)(void *);
6697 void *arg;
6698 long ret;
6699 };
6700
work_for_cpu_fn(struct work_struct * work)6701 static void work_for_cpu_fn(struct work_struct *work)
6702 {
6703 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6704
6705 wfc->ret = wfc->fn(wfc->arg);
6706 }
6707
6708 /**
6709 * work_on_cpu_key - run a function in thread context on a particular cpu
6710 * @cpu: the cpu to run on
6711 * @fn: the function to run
6712 * @arg: the function arg
6713 * @key: The lock class key for lock debugging purposes
6714 *
6715 * It is up to the caller to ensure that the cpu doesn't go offline.
6716 * The caller must not hold any locks which would prevent @fn from completing.
6717 *
6718 * Return: The value @fn returns.
6719 */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6720 long work_on_cpu_key(int cpu, long (*fn)(void *),
6721 void *arg, struct lock_class_key *key)
6722 {
6723 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6724
6725 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6726 schedule_work_on(cpu, &wfc.work);
6727 flush_work(&wfc.work);
6728 destroy_work_on_stack(&wfc.work);
6729 return wfc.ret;
6730 }
6731 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6732
6733 /**
6734 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6735 * @cpu: the cpu to run on
6736 * @fn: the function to run
6737 * @arg: the function argument
6738 * @key: The lock class key for lock debugging purposes
6739 *
6740 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6741 * any locks which would prevent @fn from completing.
6742 *
6743 * Return: The value @fn returns.
6744 */
work_on_cpu_safe_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6745 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6746 void *arg, struct lock_class_key *key)
6747 {
6748 long ret = -ENODEV;
6749
6750 cpus_read_lock();
6751 if (cpu_online(cpu))
6752 ret = work_on_cpu_key(cpu, fn, arg, key);
6753 cpus_read_unlock();
6754 return ret;
6755 }
6756 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6757 #endif /* CONFIG_SMP */
6758
6759 #ifdef CONFIG_FREEZER
6760
6761 /**
6762 * freeze_workqueues_begin - begin freezing workqueues
6763 *
6764 * Start freezing workqueues. After this function returns, all freezable
6765 * workqueues will queue new works to their inactive_works list instead of
6766 * pool->worklist.
6767 *
6768 * CONTEXT:
6769 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6770 */
freeze_workqueues_begin(void)6771 void freeze_workqueues_begin(void)
6772 {
6773 struct workqueue_struct *wq;
6774
6775 mutex_lock(&wq_pool_mutex);
6776
6777 WARN_ON_ONCE(workqueue_freezing);
6778 workqueue_freezing = true;
6779
6780 list_for_each_entry(wq, &workqueues, list) {
6781 mutex_lock(&wq->mutex);
6782 wq_adjust_max_active(wq);
6783 mutex_unlock(&wq->mutex);
6784 }
6785
6786 mutex_unlock(&wq_pool_mutex);
6787 }
6788
6789 /**
6790 * freeze_workqueues_busy - are freezable workqueues still busy?
6791 *
6792 * Check whether freezing is complete. This function must be called
6793 * between freeze_workqueues_begin() and thaw_workqueues().
6794 *
6795 * CONTEXT:
6796 * Grabs and releases wq_pool_mutex.
6797 *
6798 * Return:
6799 * %true if some freezable workqueues are still busy. %false if freezing
6800 * is complete.
6801 */
freeze_workqueues_busy(void)6802 bool freeze_workqueues_busy(void)
6803 {
6804 bool busy = false;
6805 struct workqueue_struct *wq;
6806 struct pool_workqueue *pwq;
6807
6808 mutex_lock(&wq_pool_mutex);
6809
6810 WARN_ON_ONCE(!workqueue_freezing);
6811
6812 list_for_each_entry(wq, &workqueues, list) {
6813 if (!(wq->flags & WQ_FREEZABLE))
6814 continue;
6815 /*
6816 * nr_active is monotonically decreasing. It's safe
6817 * to peek without lock.
6818 */
6819 rcu_read_lock();
6820 for_each_pwq(pwq, wq) {
6821 WARN_ON_ONCE(pwq->nr_active < 0);
6822 if (pwq->nr_active) {
6823 busy = true;
6824 rcu_read_unlock();
6825 goto out_unlock;
6826 }
6827 }
6828 rcu_read_unlock();
6829 }
6830 out_unlock:
6831 mutex_unlock(&wq_pool_mutex);
6832 return busy;
6833 }
6834
6835 /**
6836 * thaw_workqueues - thaw workqueues
6837 *
6838 * Thaw workqueues. Normal queueing is restored and all collected
6839 * frozen works are transferred to their respective pool worklists.
6840 *
6841 * CONTEXT:
6842 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6843 */
thaw_workqueues(void)6844 void thaw_workqueues(void)
6845 {
6846 struct workqueue_struct *wq;
6847
6848 mutex_lock(&wq_pool_mutex);
6849
6850 if (!workqueue_freezing)
6851 goto out_unlock;
6852
6853 workqueue_freezing = false;
6854
6855 /* restore max_active and repopulate worklist */
6856 list_for_each_entry(wq, &workqueues, list) {
6857 mutex_lock(&wq->mutex);
6858 wq_adjust_max_active(wq);
6859 mutex_unlock(&wq->mutex);
6860 }
6861
6862 out_unlock:
6863 mutex_unlock(&wq_pool_mutex);
6864 }
6865 #endif /* CONFIG_FREEZER */
6866
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6867 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6868 {
6869 LIST_HEAD(ctxs);
6870 int ret = 0;
6871 struct workqueue_struct *wq;
6872 struct apply_wqattrs_ctx *ctx, *n;
6873
6874 lockdep_assert_held(&wq_pool_mutex);
6875
6876 list_for_each_entry(wq, &workqueues, list) {
6877 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6878 continue;
6879
6880 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6881 if (IS_ERR(ctx)) {
6882 ret = PTR_ERR(ctx);
6883 break;
6884 }
6885
6886 list_add_tail(&ctx->list, &ctxs);
6887 }
6888
6889 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6890 if (!ret)
6891 apply_wqattrs_commit(ctx);
6892 apply_wqattrs_cleanup(ctx);
6893 }
6894
6895 if (!ret) {
6896 mutex_lock(&wq_pool_attach_mutex);
6897 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6898 mutex_unlock(&wq_pool_attach_mutex);
6899 }
6900 return ret;
6901 }
6902
6903 /**
6904 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6905 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6906 *
6907 * This function can be called from cpuset code to provide a set of isolated
6908 * CPUs that should be excluded from wq_unbound_cpumask.
6909 */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6910 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6911 {
6912 cpumask_var_t cpumask;
6913 int ret = 0;
6914
6915 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6916 return -ENOMEM;
6917
6918 mutex_lock(&wq_pool_mutex);
6919
6920 /*
6921 * If the operation fails, it will fall back to
6922 * wq_requested_unbound_cpumask which is initially set to
6923 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6924 * by any subsequent write to workqueue/cpumask sysfs file.
6925 */
6926 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6927 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6928 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6929 ret = workqueue_apply_unbound_cpumask(cpumask);
6930
6931 /* Save the current isolated cpumask & export it via sysfs */
6932 if (!ret)
6933 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6934
6935 mutex_unlock(&wq_pool_mutex);
6936 free_cpumask_var(cpumask);
6937 return ret;
6938 }
6939
parse_affn_scope(const char * val)6940 static int parse_affn_scope(const char *val)
6941 {
6942 int i;
6943
6944 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6945 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6946 return i;
6947 }
6948 return -EINVAL;
6949 }
6950
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6951 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6952 {
6953 struct workqueue_struct *wq;
6954 int affn, cpu;
6955
6956 affn = parse_affn_scope(val);
6957 if (affn < 0)
6958 return affn;
6959 if (affn == WQ_AFFN_DFL)
6960 return -EINVAL;
6961
6962 cpus_read_lock();
6963 mutex_lock(&wq_pool_mutex);
6964
6965 wq_affn_dfl = affn;
6966
6967 list_for_each_entry(wq, &workqueues, list) {
6968 for_each_online_cpu(cpu)
6969 unbound_wq_update_pwq(wq, cpu);
6970 }
6971
6972 mutex_unlock(&wq_pool_mutex);
6973 cpus_read_unlock();
6974
6975 return 0;
6976 }
6977
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)6978 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6979 {
6980 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6981 }
6982
6983 static const struct kernel_param_ops wq_affn_dfl_ops = {
6984 .set = wq_affn_dfl_set,
6985 .get = wq_affn_dfl_get,
6986 };
6987
6988 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6989
6990 #ifdef CONFIG_SYSFS
6991 /*
6992 * Workqueues with WQ_SYSFS flag set is visible to userland via
6993 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6994 * following attributes.
6995 *
6996 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6997 * max_active RW int : maximum number of in-flight work items
6998 *
6999 * Unbound workqueues have the following extra attributes.
7000 *
7001 * nice RW int : nice value of the workers
7002 * cpumask RW mask : bitmask of allowed CPUs for the workers
7003 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
7004 * affinity_strict RW bool : worker CPU affinity is strict
7005 */
7006 struct wq_device {
7007 struct workqueue_struct *wq;
7008 struct device dev;
7009 };
7010
dev_to_wq(struct device * dev)7011 static struct workqueue_struct *dev_to_wq(struct device *dev)
7012 {
7013 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7014
7015 return wq_dev->wq;
7016 }
7017
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7018 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7019 char *buf)
7020 {
7021 struct workqueue_struct *wq = dev_to_wq(dev);
7022
7023 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7024 }
7025 static DEVICE_ATTR_RO(per_cpu);
7026
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7027 static ssize_t max_active_show(struct device *dev,
7028 struct device_attribute *attr, char *buf)
7029 {
7030 struct workqueue_struct *wq = dev_to_wq(dev);
7031
7032 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7033 }
7034
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7035 static ssize_t max_active_store(struct device *dev,
7036 struct device_attribute *attr, const char *buf,
7037 size_t count)
7038 {
7039 struct workqueue_struct *wq = dev_to_wq(dev);
7040 int val;
7041
7042 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7043 return -EINVAL;
7044
7045 workqueue_set_max_active(wq, val);
7046 return count;
7047 }
7048 static DEVICE_ATTR_RW(max_active);
7049
7050 static struct attribute *wq_sysfs_attrs[] = {
7051 &dev_attr_per_cpu.attr,
7052 &dev_attr_max_active.attr,
7053 NULL,
7054 };
7055 ATTRIBUTE_GROUPS(wq_sysfs);
7056
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7057 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7058 char *buf)
7059 {
7060 struct workqueue_struct *wq = dev_to_wq(dev);
7061 int written;
7062
7063 mutex_lock(&wq->mutex);
7064 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7065 mutex_unlock(&wq->mutex);
7066
7067 return written;
7068 }
7069
7070 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7071 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7072 {
7073 struct workqueue_attrs *attrs;
7074
7075 lockdep_assert_held(&wq_pool_mutex);
7076
7077 attrs = alloc_workqueue_attrs();
7078 if (!attrs)
7079 return NULL;
7080
7081 copy_workqueue_attrs(attrs, wq->unbound_attrs);
7082 return attrs;
7083 }
7084
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7085 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7086 const char *buf, size_t count)
7087 {
7088 struct workqueue_struct *wq = dev_to_wq(dev);
7089 struct workqueue_attrs *attrs;
7090 int ret = -ENOMEM;
7091
7092 apply_wqattrs_lock();
7093
7094 attrs = wq_sysfs_prep_attrs(wq);
7095 if (!attrs)
7096 goto out_unlock;
7097
7098 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7099 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7100 ret = apply_workqueue_attrs_locked(wq, attrs);
7101 else
7102 ret = -EINVAL;
7103
7104 out_unlock:
7105 apply_wqattrs_unlock();
7106 free_workqueue_attrs(attrs);
7107 return ret ?: count;
7108 }
7109
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7110 static ssize_t wq_cpumask_show(struct device *dev,
7111 struct device_attribute *attr, char *buf)
7112 {
7113 struct workqueue_struct *wq = dev_to_wq(dev);
7114 int written;
7115
7116 mutex_lock(&wq->mutex);
7117 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7118 cpumask_pr_args(wq->unbound_attrs->cpumask));
7119 mutex_unlock(&wq->mutex);
7120 return written;
7121 }
7122
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7123 static ssize_t wq_cpumask_store(struct device *dev,
7124 struct device_attribute *attr,
7125 const char *buf, size_t count)
7126 {
7127 struct workqueue_struct *wq = dev_to_wq(dev);
7128 struct workqueue_attrs *attrs;
7129 int ret = -ENOMEM;
7130
7131 apply_wqattrs_lock();
7132
7133 attrs = wq_sysfs_prep_attrs(wq);
7134 if (!attrs)
7135 goto out_unlock;
7136
7137 ret = cpumask_parse(buf, attrs->cpumask);
7138 if (!ret)
7139 ret = apply_workqueue_attrs_locked(wq, attrs);
7140
7141 out_unlock:
7142 apply_wqattrs_unlock();
7143 free_workqueue_attrs(attrs);
7144 return ret ?: count;
7145 }
7146
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7147 static ssize_t wq_affn_scope_show(struct device *dev,
7148 struct device_attribute *attr, char *buf)
7149 {
7150 struct workqueue_struct *wq = dev_to_wq(dev);
7151 int written;
7152
7153 mutex_lock(&wq->mutex);
7154 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7155 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7156 wq_affn_names[WQ_AFFN_DFL],
7157 wq_affn_names[wq_affn_dfl]);
7158 else
7159 written = scnprintf(buf, PAGE_SIZE, "%s\n",
7160 wq_affn_names[wq->unbound_attrs->affn_scope]);
7161 mutex_unlock(&wq->mutex);
7162
7163 return written;
7164 }
7165
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7166 static ssize_t wq_affn_scope_store(struct device *dev,
7167 struct device_attribute *attr,
7168 const char *buf, size_t count)
7169 {
7170 struct workqueue_struct *wq = dev_to_wq(dev);
7171 struct workqueue_attrs *attrs;
7172 int affn, ret = -ENOMEM;
7173
7174 affn = parse_affn_scope(buf);
7175 if (affn < 0)
7176 return affn;
7177
7178 apply_wqattrs_lock();
7179 attrs = wq_sysfs_prep_attrs(wq);
7180 if (attrs) {
7181 attrs->affn_scope = affn;
7182 ret = apply_workqueue_attrs_locked(wq, attrs);
7183 }
7184 apply_wqattrs_unlock();
7185 free_workqueue_attrs(attrs);
7186 return ret ?: count;
7187 }
7188
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7189 static ssize_t wq_affinity_strict_show(struct device *dev,
7190 struct device_attribute *attr, char *buf)
7191 {
7192 struct workqueue_struct *wq = dev_to_wq(dev);
7193
7194 return scnprintf(buf, PAGE_SIZE, "%d\n",
7195 wq->unbound_attrs->affn_strict);
7196 }
7197
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7198 static ssize_t wq_affinity_strict_store(struct device *dev,
7199 struct device_attribute *attr,
7200 const char *buf, size_t count)
7201 {
7202 struct workqueue_struct *wq = dev_to_wq(dev);
7203 struct workqueue_attrs *attrs;
7204 int v, ret = -ENOMEM;
7205
7206 if (sscanf(buf, "%d", &v) != 1)
7207 return -EINVAL;
7208
7209 apply_wqattrs_lock();
7210 attrs = wq_sysfs_prep_attrs(wq);
7211 if (attrs) {
7212 attrs->affn_strict = (bool)v;
7213 ret = apply_workqueue_attrs_locked(wq, attrs);
7214 }
7215 apply_wqattrs_unlock();
7216 free_workqueue_attrs(attrs);
7217 return ret ?: count;
7218 }
7219
7220 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7221 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7222 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7223 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7224 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7225 __ATTR_NULL,
7226 };
7227
7228 static const struct bus_type wq_subsys = {
7229 .name = "workqueue",
7230 .dev_groups = wq_sysfs_groups,
7231 };
7232
7233 /**
7234 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7235 * @cpumask: the cpumask to set
7236 *
7237 * The low-level workqueues cpumask is a global cpumask that limits
7238 * the affinity of all unbound workqueues. This function check the @cpumask
7239 * and apply it to all unbound workqueues and updates all pwqs of them.
7240 *
7241 * Return: 0 - Success
7242 * -EINVAL - Invalid @cpumask
7243 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
7244 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7245 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7246 {
7247 int ret = -EINVAL;
7248
7249 /*
7250 * Not excluding isolated cpus on purpose.
7251 * If the user wishes to include them, we allow that.
7252 */
7253 cpumask_and(cpumask, cpumask, cpu_possible_mask);
7254 if (!cpumask_empty(cpumask)) {
7255 ret = 0;
7256 apply_wqattrs_lock();
7257 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7258 ret = workqueue_apply_unbound_cpumask(cpumask);
7259 if (!ret)
7260 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7261 apply_wqattrs_unlock();
7262 }
7263
7264 return ret;
7265 }
7266
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7267 static ssize_t __wq_cpumask_show(struct device *dev,
7268 struct device_attribute *attr, char *buf, cpumask_var_t mask)
7269 {
7270 int written;
7271
7272 mutex_lock(&wq_pool_mutex);
7273 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7274 mutex_unlock(&wq_pool_mutex);
7275
7276 return written;
7277 }
7278
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7279 static ssize_t cpumask_requested_show(struct device *dev,
7280 struct device_attribute *attr, char *buf)
7281 {
7282 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7283 }
7284 static DEVICE_ATTR_RO(cpumask_requested);
7285
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7286 static ssize_t cpumask_isolated_show(struct device *dev,
7287 struct device_attribute *attr, char *buf)
7288 {
7289 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7290 }
7291 static DEVICE_ATTR_RO(cpumask_isolated);
7292
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7293 static ssize_t cpumask_show(struct device *dev,
7294 struct device_attribute *attr, char *buf)
7295 {
7296 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7297 }
7298
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7299 static ssize_t cpumask_store(struct device *dev,
7300 struct device_attribute *attr, const char *buf, size_t count)
7301 {
7302 cpumask_var_t cpumask;
7303 int ret;
7304
7305 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7306 return -ENOMEM;
7307
7308 ret = cpumask_parse(buf, cpumask);
7309 if (!ret)
7310 ret = workqueue_set_unbound_cpumask(cpumask);
7311
7312 free_cpumask_var(cpumask);
7313 return ret ? ret : count;
7314 }
7315 static DEVICE_ATTR_RW(cpumask);
7316
7317 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7318 &dev_attr_cpumask.attr,
7319 &dev_attr_cpumask_requested.attr,
7320 &dev_attr_cpumask_isolated.attr,
7321 NULL,
7322 };
7323 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7324
wq_sysfs_init(void)7325 static int __init wq_sysfs_init(void)
7326 {
7327 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7328 }
7329 core_initcall(wq_sysfs_init);
7330
wq_device_release(struct device * dev)7331 static void wq_device_release(struct device *dev)
7332 {
7333 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7334
7335 kfree(wq_dev);
7336 }
7337
7338 /**
7339 * workqueue_sysfs_register - make a workqueue visible in sysfs
7340 * @wq: the workqueue to register
7341 *
7342 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7343 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7344 * which is the preferred method.
7345 *
7346 * Workqueue user should use this function directly iff it wants to apply
7347 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7348 * apply_workqueue_attrs() may race against userland updating the
7349 * attributes.
7350 *
7351 * Return: 0 on success, -errno on failure.
7352 */
workqueue_sysfs_register(struct workqueue_struct * wq)7353 int workqueue_sysfs_register(struct workqueue_struct *wq)
7354 {
7355 struct wq_device *wq_dev;
7356 int ret;
7357
7358 /*
7359 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7360 * ordered workqueues.
7361 */
7362 if (WARN_ON(wq->flags & __WQ_ORDERED))
7363 return -EINVAL;
7364
7365 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7366 if (!wq_dev)
7367 return -ENOMEM;
7368
7369 wq_dev->wq = wq;
7370 wq_dev->dev.bus = &wq_subsys;
7371 wq_dev->dev.release = wq_device_release;
7372 dev_set_name(&wq_dev->dev, "%s", wq->name);
7373
7374 /*
7375 * unbound_attrs are created separately. Suppress uevent until
7376 * everything is ready.
7377 */
7378 dev_set_uevent_suppress(&wq_dev->dev, true);
7379
7380 ret = device_register(&wq_dev->dev);
7381 if (ret) {
7382 put_device(&wq_dev->dev);
7383 wq->wq_dev = NULL;
7384 return ret;
7385 }
7386
7387 if (wq->flags & WQ_UNBOUND) {
7388 struct device_attribute *attr;
7389
7390 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7391 ret = device_create_file(&wq_dev->dev, attr);
7392 if (ret) {
7393 device_unregister(&wq_dev->dev);
7394 wq->wq_dev = NULL;
7395 return ret;
7396 }
7397 }
7398 }
7399
7400 dev_set_uevent_suppress(&wq_dev->dev, false);
7401 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7402 return 0;
7403 }
7404
7405 /**
7406 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7407 * @wq: the workqueue to unregister
7408 *
7409 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7410 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7411 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7412 {
7413 struct wq_device *wq_dev = wq->wq_dev;
7414
7415 if (!wq->wq_dev)
7416 return;
7417
7418 wq->wq_dev = NULL;
7419 device_unregister(&wq_dev->dev);
7420 }
7421 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7422 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7423 #endif /* CONFIG_SYSFS */
7424
7425 /*
7426 * Workqueue watchdog.
7427 *
7428 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7429 * flush dependency, a concurrency managed work item which stays RUNNING
7430 * indefinitely. Workqueue stalls can be very difficult to debug as the
7431 * usual warning mechanisms don't trigger and internal workqueue state is
7432 * largely opaque.
7433 *
7434 * Workqueue watchdog monitors all worker pools periodically and dumps
7435 * state if some pools failed to make forward progress for a while where
7436 * forward progress is defined as the first item on ->worklist changing.
7437 *
7438 * This mechanism is controlled through the kernel parameter
7439 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7440 * corresponding sysfs parameter file.
7441 */
7442 #ifdef CONFIG_WQ_WATCHDOG
7443
7444 static unsigned long wq_watchdog_thresh = 30;
7445 static struct timer_list wq_watchdog_timer;
7446
7447 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7448 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7449
7450 static unsigned int wq_panic_on_stall;
7451 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7452
7453 /*
7454 * Show workers that might prevent the processing of pending work items.
7455 * The only candidates are CPU-bound workers in the running state.
7456 * Pending work items should be handled by another idle worker
7457 * in all other situations.
7458 */
show_cpu_pool_hog(struct worker_pool * pool)7459 static void show_cpu_pool_hog(struct worker_pool *pool)
7460 {
7461 struct worker *worker;
7462 unsigned long irq_flags;
7463 int bkt;
7464
7465 raw_spin_lock_irqsave(&pool->lock, irq_flags);
7466
7467 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7468 if (task_is_running(worker->task)) {
7469 /*
7470 * Defer printing to avoid deadlocks in console
7471 * drivers that queue work while holding locks
7472 * also taken in their write paths.
7473 */
7474 printk_deferred_enter();
7475
7476 pr_info("pool %d:\n", pool->id);
7477 sched_show_task(worker->task);
7478
7479 printk_deferred_exit();
7480 }
7481 }
7482
7483 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7484 }
7485
show_cpu_pools_hogs(void)7486 static void show_cpu_pools_hogs(void)
7487 {
7488 struct worker_pool *pool;
7489 int pi;
7490
7491 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7492
7493 rcu_read_lock();
7494
7495 for_each_pool(pool, pi) {
7496 if (pool->cpu_stall)
7497 show_cpu_pool_hog(pool);
7498
7499 }
7500
7501 rcu_read_unlock();
7502 }
7503
panic_on_wq_watchdog(void)7504 static void panic_on_wq_watchdog(void)
7505 {
7506 static unsigned int wq_stall;
7507
7508 if (wq_panic_on_stall) {
7509 wq_stall++;
7510 BUG_ON(wq_stall >= wq_panic_on_stall);
7511 }
7512 }
7513
wq_watchdog_reset_touched(void)7514 static void wq_watchdog_reset_touched(void)
7515 {
7516 int cpu;
7517
7518 wq_watchdog_touched = jiffies;
7519 for_each_possible_cpu(cpu)
7520 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7521 }
7522
wq_watchdog_timer_fn(struct timer_list * unused)7523 static void wq_watchdog_timer_fn(struct timer_list *unused)
7524 {
7525 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7526 bool lockup_detected = false;
7527 bool cpu_pool_stall = false;
7528 unsigned long now = jiffies;
7529 struct worker_pool *pool;
7530 int pi;
7531
7532 if (!thresh)
7533 return;
7534
7535 rcu_read_lock();
7536
7537 for_each_pool(pool, pi) {
7538 unsigned long pool_ts, touched, ts;
7539
7540 pool->cpu_stall = false;
7541 if (list_empty(&pool->worklist))
7542 continue;
7543
7544 /*
7545 * If a virtual machine is stopped by the host it can look to
7546 * the watchdog like a stall.
7547 */
7548 kvm_check_and_clear_guest_paused();
7549
7550 /* get the latest of pool and touched timestamps */
7551 if (pool->cpu >= 0)
7552 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7553 else
7554 touched = READ_ONCE(wq_watchdog_touched);
7555 pool_ts = READ_ONCE(pool->watchdog_ts);
7556
7557 if (time_after(pool_ts, touched))
7558 ts = pool_ts;
7559 else
7560 ts = touched;
7561
7562 /* did we stall? */
7563 if (time_after(now, ts + thresh)) {
7564 lockup_detected = true;
7565 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7566 pool->cpu_stall = true;
7567 cpu_pool_stall = true;
7568 }
7569 pr_emerg("BUG: workqueue lockup - pool");
7570 pr_cont_pool_info(pool);
7571 pr_cont(" stuck for %us!\n",
7572 jiffies_to_msecs(now - pool_ts) / 1000);
7573 }
7574
7575
7576 }
7577
7578 rcu_read_unlock();
7579
7580 if (lockup_detected)
7581 show_all_workqueues();
7582
7583 if (cpu_pool_stall)
7584 show_cpu_pools_hogs();
7585
7586 if (lockup_detected)
7587 panic_on_wq_watchdog();
7588
7589 wq_watchdog_reset_touched();
7590 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7591 }
7592
wq_watchdog_touch(int cpu)7593 notrace void wq_watchdog_touch(int cpu)
7594 {
7595 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7596 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7597 unsigned long now = jiffies;
7598
7599 if (cpu >= 0)
7600 per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7601 else
7602 WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7603
7604 /* Don't unnecessarily store to global cacheline */
7605 if (time_after(now, touch_ts + thresh / 4))
7606 WRITE_ONCE(wq_watchdog_touched, jiffies);
7607 }
7608
wq_watchdog_set_thresh(unsigned long thresh)7609 static void wq_watchdog_set_thresh(unsigned long thresh)
7610 {
7611 wq_watchdog_thresh = 0;
7612 del_timer_sync(&wq_watchdog_timer);
7613
7614 if (thresh) {
7615 wq_watchdog_thresh = thresh;
7616 wq_watchdog_reset_touched();
7617 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7618 }
7619 }
7620
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7621 static int wq_watchdog_param_set_thresh(const char *val,
7622 const struct kernel_param *kp)
7623 {
7624 unsigned long thresh;
7625 int ret;
7626
7627 ret = kstrtoul(val, 0, &thresh);
7628 if (ret)
7629 return ret;
7630
7631 if (system_wq)
7632 wq_watchdog_set_thresh(thresh);
7633 else
7634 wq_watchdog_thresh = thresh;
7635
7636 return 0;
7637 }
7638
7639 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7640 .set = wq_watchdog_param_set_thresh,
7641 .get = param_get_ulong,
7642 };
7643
7644 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7645 0644);
7646
wq_watchdog_init(void)7647 static void wq_watchdog_init(void)
7648 {
7649 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7650 wq_watchdog_set_thresh(wq_watchdog_thresh);
7651 }
7652
7653 #else /* CONFIG_WQ_WATCHDOG */
7654
wq_watchdog_init(void)7655 static inline void wq_watchdog_init(void) { }
7656
7657 #endif /* CONFIG_WQ_WATCHDOG */
7658
bh_pool_kick_normal(struct irq_work * irq_work)7659 static void bh_pool_kick_normal(struct irq_work *irq_work)
7660 {
7661 raise_softirq_irqoff(TASKLET_SOFTIRQ);
7662 }
7663
bh_pool_kick_highpri(struct irq_work * irq_work)7664 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7665 {
7666 raise_softirq_irqoff(HI_SOFTIRQ);
7667 }
7668
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7669 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7670 {
7671 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7672 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7673 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7674 return;
7675 }
7676
7677 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7678 }
7679
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7680 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7681 {
7682 BUG_ON(init_worker_pool(pool));
7683 pool->cpu = cpu;
7684 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7685 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7686 pool->attrs->nice = nice;
7687 pool->attrs->affn_strict = true;
7688 pool->node = cpu_to_node(cpu);
7689
7690 /* alloc pool ID */
7691 mutex_lock(&wq_pool_mutex);
7692 BUG_ON(worker_pool_assign_id(pool));
7693 mutex_unlock(&wq_pool_mutex);
7694 }
7695
7696 /**
7697 * workqueue_init_early - early init for workqueue subsystem
7698 *
7699 * This is the first step of three-staged workqueue subsystem initialization and
7700 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7701 * up. It sets up all the data structures and system workqueues and allows early
7702 * boot code to create workqueues and queue/cancel work items. Actual work item
7703 * execution starts only after kthreads can be created and scheduled right
7704 * before early initcalls.
7705 */
workqueue_init_early(void)7706 void __init workqueue_init_early(void)
7707 {
7708 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7709 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7710 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7711 bh_pool_kick_highpri };
7712 int i, cpu;
7713
7714 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7715
7716 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7717 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7718 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7719 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7720
7721 cpumask_copy(wq_online_cpumask, cpu_online_mask);
7722 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7723 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7724 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7725 if (!cpumask_empty(&wq_cmdline_cpumask))
7726 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7727
7728 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7729
7730 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7731
7732 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7733 BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7734
7735 /*
7736 * If nohz_full is enabled, set power efficient workqueue as unbound.
7737 * This allows workqueue items to be moved to HK CPUs.
7738 */
7739 if (housekeeping_enabled(HK_TYPE_TICK))
7740 wq_power_efficient = true;
7741
7742 /* initialize WQ_AFFN_SYSTEM pods */
7743 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7744 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7745 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7746 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7747
7748 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7749
7750 pt->nr_pods = 1;
7751 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7752 pt->pod_node[0] = NUMA_NO_NODE;
7753 pt->cpu_pod[0] = 0;
7754
7755 /* initialize BH and CPU pools */
7756 for_each_possible_cpu(cpu) {
7757 struct worker_pool *pool;
7758
7759 i = 0;
7760 for_each_bh_worker_pool(pool, cpu) {
7761 init_cpu_worker_pool(pool, cpu, std_nice[i]);
7762 pool->flags |= POOL_BH;
7763 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7764 i++;
7765 }
7766
7767 i = 0;
7768 for_each_cpu_worker_pool(pool, cpu)
7769 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7770 }
7771
7772 /* create default unbound and ordered wq attrs */
7773 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7774 struct workqueue_attrs *attrs;
7775
7776 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7777 attrs->nice = std_nice[i];
7778 unbound_std_wq_attrs[i] = attrs;
7779
7780 /*
7781 * An ordered wq should have only one pwq as ordering is
7782 * guaranteed by max_active which is enforced by pwqs.
7783 */
7784 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7785 attrs->nice = std_nice[i];
7786 attrs->ordered = true;
7787 ordered_wq_attrs[i] = attrs;
7788 }
7789
7790 system_wq = alloc_workqueue("events", 0, 0);
7791 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7792 system_long_wq = alloc_workqueue("events_long", 0, 0);
7793 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7794 WQ_MAX_ACTIVE);
7795 system_freezable_wq = alloc_workqueue("events_freezable",
7796 WQ_FREEZABLE, 0);
7797 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7798 WQ_POWER_EFFICIENT, 0);
7799 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7800 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7801 0);
7802 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7803 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7804 WQ_BH | WQ_HIGHPRI, 0);
7805 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7806 !system_unbound_wq || !system_freezable_wq ||
7807 !system_power_efficient_wq ||
7808 !system_freezable_power_efficient_wq ||
7809 !system_bh_wq || !system_bh_highpri_wq);
7810 }
7811
wq_cpu_intensive_thresh_init(void)7812 static void __init wq_cpu_intensive_thresh_init(void)
7813 {
7814 unsigned long thresh;
7815 unsigned long bogo;
7816
7817 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7818 BUG_ON(IS_ERR(pwq_release_worker));
7819
7820 /* if the user set it to a specific value, keep it */
7821 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7822 return;
7823
7824 /*
7825 * The default of 10ms is derived from the fact that most modern (as of
7826 * 2023) processors can do a lot in 10ms and that it's just below what
7827 * most consider human-perceivable. However, the kernel also runs on a
7828 * lot slower CPUs including microcontrollers where the threshold is way
7829 * too low.
7830 *
7831 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7832 * This is by no means accurate but it doesn't have to be. The mechanism
7833 * is still useful even when the threshold is fully scaled up. Also, as
7834 * the reports would usually be applicable to everyone, some machines
7835 * operating on longer thresholds won't significantly diminish their
7836 * usefulness.
7837 */
7838 thresh = 10 * USEC_PER_MSEC;
7839
7840 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7841 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7842 if (bogo < 4000)
7843 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7844
7845 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7846 loops_per_jiffy, bogo, thresh);
7847
7848 wq_cpu_intensive_thresh_us = thresh;
7849 }
7850
7851 /**
7852 * workqueue_init - bring workqueue subsystem fully online
7853 *
7854 * This is the second step of three-staged workqueue subsystem initialization
7855 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7856 * been created and work items queued on them, but there are no kworkers
7857 * executing the work items yet. Populate the worker pools with the initial
7858 * workers and enable future kworker creations.
7859 */
workqueue_init(void)7860 void __init workqueue_init(void)
7861 {
7862 struct workqueue_struct *wq;
7863 struct worker_pool *pool;
7864 int cpu, bkt;
7865
7866 wq_cpu_intensive_thresh_init();
7867
7868 mutex_lock(&wq_pool_mutex);
7869
7870 /*
7871 * Per-cpu pools created earlier could be missing node hint. Fix them
7872 * up. Also, create a rescuer for workqueues that requested it.
7873 */
7874 for_each_possible_cpu(cpu) {
7875 for_each_bh_worker_pool(pool, cpu)
7876 pool->node = cpu_to_node(cpu);
7877 for_each_cpu_worker_pool(pool, cpu)
7878 pool->node = cpu_to_node(cpu);
7879 }
7880
7881 list_for_each_entry(wq, &workqueues, list) {
7882 WARN(init_rescuer(wq),
7883 "workqueue: failed to create early rescuer for %s",
7884 wq->name);
7885 }
7886
7887 mutex_unlock(&wq_pool_mutex);
7888
7889 /*
7890 * Create the initial workers. A BH pool has one pseudo worker that
7891 * represents the shared BH execution context and thus doesn't get
7892 * affected by hotplug events. Create the BH pseudo workers for all
7893 * possible CPUs here.
7894 */
7895 for_each_possible_cpu(cpu)
7896 for_each_bh_worker_pool(pool, cpu)
7897 BUG_ON(!create_worker(pool));
7898
7899 for_each_online_cpu(cpu) {
7900 for_each_cpu_worker_pool(pool, cpu) {
7901 pool->flags &= ~POOL_DISASSOCIATED;
7902 BUG_ON(!create_worker(pool));
7903 }
7904 }
7905
7906 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7907 BUG_ON(!create_worker(pool));
7908
7909 wq_online = true;
7910 wq_watchdog_init();
7911 }
7912
7913 /*
7914 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7915 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7916 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7917 */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7918 static void __init init_pod_type(struct wq_pod_type *pt,
7919 bool (*cpus_share_pod)(int, int))
7920 {
7921 int cur, pre, cpu, pod;
7922
7923 pt->nr_pods = 0;
7924
7925 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7926 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7927 BUG_ON(!pt->cpu_pod);
7928
7929 for_each_possible_cpu(cur) {
7930 for_each_possible_cpu(pre) {
7931 if (pre >= cur) {
7932 pt->cpu_pod[cur] = pt->nr_pods++;
7933 break;
7934 }
7935 if (cpus_share_pod(cur, pre)) {
7936 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7937 break;
7938 }
7939 }
7940 }
7941
7942 /* init the rest to match @pt->cpu_pod[] */
7943 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7944 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7945 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7946
7947 for (pod = 0; pod < pt->nr_pods; pod++)
7948 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7949
7950 for_each_possible_cpu(cpu) {
7951 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7952 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7953 }
7954 }
7955
cpus_dont_share(int cpu0,int cpu1)7956 static bool __init cpus_dont_share(int cpu0, int cpu1)
7957 {
7958 return false;
7959 }
7960
cpus_share_smt(int cpu0,int cpu1)7961 static bool __init cpus_share_smt(int cpu0, int cpu1)
7962 {
7963 #ifdef CONFIG_SCHED_SMT
7964 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7965 #else
7966 return false;
7967 #endif
7968 }
7969
cpus_share_numa(int cpu0,int cpu1)7970 static bool __init cpus_share_numa(int cpu0, int cpu1)
7971 {
7972 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7973 }
7974
7975 /**
7976 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7977 *
7978 * This is the third step of three-staged workqueue subsystem initialization and
7979 * invoked after SMP and topology information are fully initialized. It
7980 * initializes the unbound CPU pods accordingly.
7981 */
workqueue_init_topology(void)7982 void __init workqueue_init_topology(void)
7983 {
7984 struct workqueue_struct *wq;
7985 int cpu;
7986
7987 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7988 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7989 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7990 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7991
7992 wq_topo_initialized = true;
7993
7994 mutex_lock(&wq_pool_mutex);
7995
7996 /*
7997 * Workqueues allocated earlier would have all CPUs sharing the default
7998 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
7999 * and CPU combinations to apply per-pod sharing.
8000 */
8001 list_for_each_entry(wq, &workqueues, list) {
8002 for_each_online_cpu(cpu)
8003 unbound_wq_update_pwq(wq, cpu);
8004 if (wq->flags & WQ_UNBOUND) {
8005 mutex_lock(&wq->mutex);
8006 wq_update_node_max_active(wq, -1);
8007 mutex_unlock(&wq->mutex);
8008 }
8009 }
8010
8011 mutex_unlock(&wq_pool_mutex);
8012 }
8013
__warn_flushing_systemwide_wq(void)8014 void __warn_flushing_systemwide_wq(void)
8015 {
8016 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8017 dump_stack();
8018 }
8019 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8020
workqueue_unbound_cpus_setup(char * str)8021 static int __init workqueue_unbound_cpus_setup(char *str)
8022 {
8023 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8024 cpumask_clear(&wq_cmdline_cpumask);
8025 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8026 }
8027
8028 return 1;
8029 }
8030 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8031