xref: /linux/drivers/nvme/host/tcp.c (revision 381af8d9f484c06d93e4a0b8459526e779b35a65)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 struct nvme_tcp_queue;
28 
29 /* Define the socket priority to use for connections were it is desirable
30  * that the NIC consider performing optimized packet processing or filtering.
31  * A non-zero value being sufficient to indicate general consideration of any
32  * possible optimization.  Making it a module param allows for alternative
33  * values that may be unique for some NIC implementations.
34  */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38 
39 /*
40  * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41  * from sysfs.
42  */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46 
47 /*
48  * TLS handshake timeout
49  */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 		 "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56 
57 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
58 
59 #ifdef CONFIG_DEBUG_LOCK_ALLOC
60 /* lockdep can detect a circular dependency of the form
61  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
62  * because dependencies are tracked for both nvme-tcp and user contexts. Using
63  * a separate class prevents lockdep from conflating nvme-tcp socket use with
64  * user-space socket API use.
65  */
66 static struct lock_class_key nvme_tcp_sk_key[2];
67 static struct lock_class_key nvme_tcp_slock_key[2];
68 
nvme_tcp_reclassify_socket(struct socket * sock)69 static void nvme_tcp_reclassify_socket(struct socket *sock)
70 {
71 	struct sock *sk = sock->sk;
72 
73 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
74 		return;
75 
76 	switch (sk->sk_family) {
77 	case AF_INET:
78 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
79 					      &nvme_tcp_slock_key[0],
80 					      "sk_lock-AF_INET-NVME",
81 					      &nvme_tcp_sk_key[0]);
82 		break;
83 	case AF_INET6:
84 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
85 					      &nvme_tcp_slock_key[1],
86 					      "sk_lock-AF_INET6-NVME",
87 					      &nvme_tcp_sk_key[1]);
88 		break;
89 	default:
90 		WARN_ON_ONCE(1);
91 	}
92 }
93 #else
nvme_tcp_reclassify_socket(struct socket * sock)94 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
95 #endif
96 
97 enum nvme_tcp_send_state {
98 	NVME_TCP_SEND_CMD_PDU = 0,
99 	NVME_TCP_SEND_H2C_PDU,
100 	NVME_TCP_SEND_DATA,
101 	NVME_TCP_SEND_DDGST,
102 };
103 
104 struct nvme_tcp_request {
105 	struct nvme_request	req;
106 	void			*pdu;
107 	struct nvme_tcp_queue	*queue;
108 	u32			data_len;
109 	u32			pdu_len;
110 	u32			pdu_sent;
111 	u32			h2cdata_left;
112 	u32			h2cdata_offset;
113 	u16			ttag;
114 	__le16			status;
115 	struct list_head	entry;
116 	struct llist_node	lentry;
117 	__le32			ddgst;
118 
119 	struct bio		*curr_bio;
120 	struct iov_iter		iter;
121 
122 	/* send state */
123 	size_t			offset;
124 	size_t			data_sent;
125 	enum nvme_tcp_send_state state;
126 };
127 
128 enum nvme_tcp_queue_flags {
129 	NVME_TCP_Q_ALLOCATED	= 0,
130 	NVME_TCP_Q_LIVE		= 1,
131 	NVME_TCP_Q_POLLING	= 2,
132 	NVME_TCP_Q_IO_CPU_SET	= 3,
133 };
134 
135 enum nvme_tcp_recv_state {
136 	NVME_TCP_RECV_PDU = 0,
137 	NVME_TCP_RECV_DATA,
138 	NVME_TCP_RECV_DDGST,
139 };
140 
141 struct nvme_tcp_ctrl;
142 struct nvme_tcp_queue {
143 	struct socket		*sock;
144 	struct work_struct	io_work;
145 	int			io_cpu;
146 
147 	struct mutex		queue_lock;
148 	struct mutex		send_mutex;
149 	struct llist_head	req_list;
150 	struct list_head	send_list;
151 
152 	/* recv state */
153 	void			*pdu;
154 	int			pdu_remaining;
155 	int			pdu_offset;
156 	size_t			data_remaining;
157 	size_t			ddgst_remaining;
158 	unsigned int		nr_cqe;
159 
160 	/* send state */
161 	struct nvme_tcp_request *request;
162 
163 	u32			maxh2cdata;
164 	size_t			cmnd_capsule_len;
165 	struct nvme_tcp_ctrl	*ctrl;
166 	unsigned long		flags;
167 	bool			rd_enabled;
168 
169 	bool			hdr_digest;
170 	bool			data_digest;
171 	bool			tls_enabled;
172 	struct ahash_request	*rcv_hash;
173 	struct ahash_request	*snd_hash;
174 	__le32			exp_ddgst;
175 	__le32			recv_ddgst;
176 	struct completion       tls_complete;
177 	int                     tls_err;
178 	struct page_frag_cache	pf_cache;
179 
180 	void (*state_change)(struct sock *);
181 	void (*data_ready)(struct sock *);
182 	void (*write_space)(struct sock *);
183 };
184 
185 struct nvme_tcp_ctrl {
186 	/* read only in the hot path */
187 	struct nvme_tcp_queue	*queues;
188 	struct blk_mq_tag_set	tag_set;
189 
190 	/* other member variables */
191 	struct list_head	list;
192 	struct blk_mq_tag_set	admin_tag_set;
193 	struct sockaddr_storage addr;
194 	struct sockaddr_storage src_addr;
195 	struct nvme_ctrl	ctrl;
196 
197 	struct work_struct	err_work;
198 	struct delayed_work	connect_work;
199 	struct nvme_tcp_request async_req;
200 	u32			io_queues[HCTX_MAX_TYPES];
201 };
202 
203 static LIST_HEAD(nvme_tcp_ctrl_list);
204 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
205 static struct workqueue_struct *nvme_tcp_wq;
206 static const struct blk_mq_ops nvme_tcp_mq_ops;
207 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
208 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
209 
to_tcp_ctrl(struct nvme_ctrl * ctrl)210 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
211 {
212 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
213 }
214 
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)215 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
216 {
217 	return queue - queue->ctrl->queues;
218 }
219 
nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)220 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)
221 {
222 	switch (type) {
223 	case nvme_tcp_c2h_term:
224 	case nvme_tcp_c2h_data:
225 	case nvme_tcp_r2t:
226 	case nvme_tcp_rsp:
227 		return true;
228 	default:
229 		return false;
230 	}
231 }
232 
233 /*
234  * Check if the queue is TLS encrypted
235  */
nvme_tcp_queue_tls(struct nvme_tcp_queue * queue)236 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
237 {
238 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
239 		return 0;
240 
241 	return queue->tls_enabled;
242 }
243 
244 /*
245  * Check if TLS is configured for the controller.
246  */
nvme_tcp_tls_configured(struct nvme_ctrl * ctrl)247 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
248 {
249 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
250 		return 0;
251 
252 	return ctrl->opts->tls;
253 }
254 
nvme_tcp_tagset(struct nvme_tcp_queue * queue)255 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
256 {
257 	u32 queue_idx = nvme_tcp_queue_id(queue);
258 
259 	if (queue_idx == 0)
260 		return queue->ctrl->admin_tag_set.tags[queue_idx];
261 	return queue->ctrl->tag_set.tags[queue_idx - 1];
262 }
263 
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)264 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
265 {
266 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
267 }
268 
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)269 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
270 {
271 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
272 }
273 
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)274 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
275 {
276 	return req->pdu;
277 }
278 
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)279 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
280 {
281 	/* use the pdu space in the back for the data pdu */
282 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
283 		sizeof(struct nvme_tcp_data_pdu);
284 }
285 
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)286 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
287 {
288 	if (nvme_is_fabrics(req->req.cmd))
289 		return NVME_TCP_ADMIN_CCSZ;
290 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
291 }
292 
nvme_tcp_async_req(struct nvme_tcp_request * req)293 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
294 {
295 	return req == &req->queue->ctrl->async_req;
296 }
297 
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)298 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
299 {
300 	struct request *rq;
301 
302 	if (unlikely(nvme_tcp_async_req(req)))
303 		return false; /* async events don't have a request */
304 
305 	rq = blk_mq_rq_from_pdu(req);
306 
307 	return rq_data_dir(rq) == WRITE && req->data_len &&
308 		req->data_len <= nvme_tcp_inline_data_size(req);
309 }
310 
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)311 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
312 {
313 	return req->iter.bvec->bv_page;
314 }
315 
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)316 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
317 {
318 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
319 }
320 
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)321 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
322 {
323 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
324 			req->pdu_len - req->pdu_sent);
325 }
326 
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)327 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
328 {
329 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
330 			req->pdu_len - req->pdu_sent : 0;
331 }
332 
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)333 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
334 		int len)
335 {
336 	return nvme_tcp_pdu_data_left(req) <= len;
337 }
338 
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)339 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
340 		unsigned int dir)
341 {
342 	struct request *rq = blk_mq_rq_from_pdu(req);
343 	struct bio_vec *vec;
344 	unsigned int size;
345 	int nr_bvec;
346 	size_t offset;
347 
348 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
349 		vec = &rq->special_vec;
350 		nr_bvec = 1;
351 		size = blk_rq_payload_bytes(rq);
352 		offset = 0;
353 	} else {
354 		struct bio *bio = req->curr_bio;
355 		struct bvec_iter bi;
356 		struct bio_vec bv;
357 
358 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
359 		nr_bvec = 0;
360 		bio_for_each_bvec(bv, bio, bi) {
361 			nr_bvec++;
362 		}
363 		size = bio->bi_iter.bi_size;
364 		offset = bio->bi_iter.bi_bvec_done;
365 	}
366 
367 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
368 	req->iter.iov_offset = offset;
369 }
370 
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)371 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
372 		int len)
373 {
374 	req->data_sent += len;
375 	req->pdu_sent += len;
376 	iov_iter_advance(&req->iter, len);
377 	if (!iov_iter_count(&req->iter) &&
378 	    req->data_sent < req->data_len) {
379 		req->curr_bio = req->curr_bio->bi_next;
380 		nvme_tcp_init_iter(req, ITER_SOURCE);
381 	}
382 }
383 
nvme_tcp_send_all(struct nvme_tcp_queue * queue)384 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
385 {
386 	int ret;
387 
388 	/* drain the send queue as much as we can... */
389 	do {
390 		ret = nvme_tcp_try_send(queue);
391 	} while (ret > 0);
392 }
393 
nvme_tcp_queue_has_pending(struct nvme_tcp_queue * queue)394 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
395 {
396 	return !list_empty(&queue->send_list) ||
397 		!llist_empty(&queue->req_list);
398 }
399 
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)400 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
401 {
402 	return !nvme_tcp_queue_tls(queue) &&
403 		nvme_tcp_queue_has_pending(queue);
404 }
405 
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)406 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
407 		bool sync, bool last)
408 {
409 	struct nvme_tcp_queue *queue = req->queue;
410 	bool empty;
411 
412 	empty = llist_add(&req->lentry, &queue->req_list) &&
413 		list_empty(&queue->send_list) && !queue->request;
414 
415 	/*
416 	 * if we're the first on the send_list and we can try to send
417 	 * directly, otherwise queue io_work. Also, only do that if we
418 	 * are on the same cpu, so we don't introduce contention.
419 	 */
420 	if (queue->io_cpu == raw_smp_processor_id() &&
421 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
422 		nvme_tcp_send_all(queue);
423 		mutex_unlock(&queue->send_mutex);
424 	}
425 
426 	if (last && nvme_tcp_queue_has_pending(queue))
427 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
428 }
429 
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)430 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
431 {
432 	struct nvme_tcp_request *req;
433 	struct llist_node *node;
434 
435 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
436 		req = llist_entry(node, struct nvme_tcp_request, lentry);
437 		list_add(&req->entry, &queue->send_list);
438 	}
439 }
440 
441 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)442 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
443 {
444 	struct nvme_tcp_request *req;
445 
446 	req = list_first_entry_or_null(&queue->send_list,
447 			struct nvme_tcp_request, entry);
448 	if (!req) {
449 		nvme_tcp_process_req_list(queue);
450 		req = list_first_entry_or_null(&queue->send_list,
451 				struct nvme_tcp_request, entry);
452 		if (unlikely(!req))
453 			return NULL;
454 	}
455 
456 	list_del(&req->entry);
457 	return req;
458 }
459 
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)460 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
461 		__le32 *dgst)
462 {
463 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
464 	crypto_ahash_final(hash);
465 }
466 
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)467 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
468 		struct page *page, off_t off, size_t len)
469 {
470 	struct scatterlist sg;
471 
472 	sg_init_table(&sg, 1);
473 	sg_set_page(&sg, page, len, off);
474 	ahash_request_set_crypt(hash, &sg, NULL, len);
475 	crypto_ahash_update(hash);
476 }
477 
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)478 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
479 		void *pdu, size_t len)
480 {
481 	struct scatterlist sg;
482 
483 	sg_init_one(&sg, pdu, len);
484 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
485 	crypto_ahash_digest(hash);
486 }
487 
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)488 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
489 		void *pdu, size_t pdu_len)
490 {
491 	struct nvme_tcp_hdr *hdr = pdu;
492 	__le32 recv_digest;
493 	__le32 exp_digest;
494 
495 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
496 		dev_err(queue->ctrl->ctrl.device,
497 			"queue %d: header digest flag is cleared\n",
498 			nvme_tcp_queue_id(queue));
499 		return -EPROTO;
500 	}
501 
502 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
503 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
504 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
505 	if (recv_digest != exp_digest) {
506 		dev_err(queue->ctrl->ctrl.device,
507 			"header digest error: recv %#x expected %#x\n",
508 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
509 		return -EIO;
510 	}
511 
512 	return 0;
513 }
514 
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)515 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
516 {
517 	struct nvme_tcp_hdr *hdr = pdu;
518 	u8 digest_len = nvme_tcp_hdgst_len(queue);
519 	u32 len;
520 
521 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
522 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
523 
524 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
525 		dev_err(queue->ctrl->ctrl.device,
526 			"queue %d: data digest flag is cleared\n",
527 		nvme_tcp_queue_id(queue));
528 		return -EPROTO;
529 	}
530 	crypto_ahash_init(queue->rcv_hash);
531 
532 	return 0;
533 }
534 
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)535 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
536 		struct request *rq, unsigned int hctx_idx)
537 {
538 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
539 
540 	page_frag_free(req->pdu);
541 }
542 
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)543 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
544 		struct request *rq, unsigned int hctx_idx,
545 		unsigned int numa_node)
546 {
547 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
548 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
549 	struct nvme_tcp_cmd_pdu *pdu;
550 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
551 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
552 	u8 hdgst = nvme_tcp_hdgst_len(queue);
553 
554 	req->pdu = page_frag_alloc(&queue->pf_cache,
555 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
556 		GFP_KERNEL | __GFP_ZERO);
557 	if (!req->pdu)
558 		return -ENOMEM;
559 
560 	pdu = req->pdu;
561 	req->queue = queue;
562 	nvme_req(rq)->ctrl = &ctrl->ctrl;
563 	nvme_req(rq)->cmd = &pdu->cmd;
564 
565 	return 0;
566 }
567 
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)568 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
569 		unsigned int hctx_idx)
570 {
571 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
572 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
573 
574 	hctx->driver_data = queue;
575 	return 0;
576 }
577 
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)578 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
579 		unsigned int hctx_idx)
580 {
581 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
582 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
583 
584 	hctx->driver_data = queue;
585 	return 0;
586 }
587 
588 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)589 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
590 {
591 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
592 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
593 		NVME_TCP_RECV_DATA;
594 }
595 
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)596 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
597 {
598 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
599 				nvme_tcp_hdgst_len(queue);
600 	queue->pdu_offset = 0;
601 	queue->data_remaining = -1;
602 	queue->ddgst_remaining = 0;
603 }
604 
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)605 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
606 {
607 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
608 		return;
609 
610 	dev_warn(ctrl->device, "starting error recovery\n");
611 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
612 }
613 
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)614 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
615 		struct nvme_completion *cqe)
616 {
617 	struct nvme_tcp_request *req;
618 	struct request *rq;
619 
620 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
621 	if (!rq) {
622 		dev_err(queue->ctrl->ctrl.device,
623 			"got bad cqe.command_id %#x on queue %d\n",
624 			cqe->command_id, nvme_tcp_queue_id(queue));
625 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
626 		return -EINVAL;
627 	}
628 
629 	req = blk_mq_rq_to_pdu(rq);
630 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
631 		req->status = cqe->status;
632 
633 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
634 		nvme_complete_rq(rq);
635 	queue->nr_cqe++;
636 
637 	return 0;
638 }
639 
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)640 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
641 		struct nvme_tcp_data_pdu *pdu)
642 {
643 	struct request *rq;
644 
645 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
646 	if (!rq) {
647 		dev_err(queue->ctrl->ctrl.device,
648 			"got bad c2hdata.command_id %#x on queue %d\n",
649 			pdu->command_id, nvme_tcp_queue_id(queue));
650 		return -ENOENT;
651 	}
652 
653 	if (!blk_rq_payload_bytes(rq)) {
654 		dev_err(queue->ctrl->ctrl.device,
655 			"queue %d tag %#x unexpected data\n",
656 			nvme_tcp_queue_id(queue), rq->tag);
657 		return -EIO;
658 	}
659 
660 	queue->data_remaining = le32_to_cpu(pdu->data_length);
661 
662 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
663 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
664 		dev_err(queue->ctrl->ctrl.device,
665 			"queue %d tag %#x SUCCESS set but not last PDU\n",
666 			nvme_tcp_queue_id(queue), rq->tag);
667 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
668 		return -EPROTO;
669 	}
670 
671 	return 0;
672 }
673 
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)674 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
675 		struct nvme_tcp_rsp_pdu *pdu)
676 {
677 	struct nvme_completion *cqe = &pdu->cqe;
678 	int ret = 0;
679 
680 	/*
681 	 * AEN requests are special as they don't time out and can
682 	 * survive any kind of queue freeze and often don't respond to
683 	 * aborts.  We don't even bother to allocate a struct request
684 	 * for them but rather special case them here.
685 	 */
686 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
687 				     cqe->command_id)))
688 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
689 				&cqe->result);
690 	else
691 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
692 
693 	return ret;
694 }
695 
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)696 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
697 {
698 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
699 	struct nvme_tcp_queue *queue = req->queue;
700 	struct request *rq = blk_mq_rq_from_pdu(req);
701 	u32 h2cdata_sent = req->pdu_len;
702 	u8 hdgst = nvme_tcp_hdgst_len(queue);
703 	u8 ddgst = nvme_tcp_ddgst_len(queue);
704 
705 	req->state = NVME_TCP_SEND_H2C_PDU;
706 	req->offset = 0;
707 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
708 	req->pdu_sent = 0;
709 	req->h2cdata_left -= req->pdu_len;
710 	req->h2cdata_offset += h2cdata_sent;
711 
712 	memset(data, 0, sizeof(*data));
713 	data->hdr.type = nvme_tcp_h2c_data;
714 	if (!req->h2cdata_left)
715 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
716 	if (queue->hdr_digest)
717 		data->hdr.flags |= NVME_TCP_F_HDGST;
718 	if (queue->data_digest)
719 		data->hdr.flags |= NVME_TCP_F_DDGST;
720 	data->hdr.hlen = sizeof(*data);
721 	data->hdr.pdo = data->hdr.hlen + hdgst;
722 	data->hdr.plen =
723 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
724 	data->ttag = req->ttag;
725 	data->command_id = nvme_cid(rq);
726 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
727 	data->data_length = cpu_to_le32(req->pdu_len);
728 }
729 
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)730 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
731 		struct nvme_tcp_r2t_pdu *pdu)
732 {
733 	struct nvme_tcp_request *req;
734 	struct request *rq;
735 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
736 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
737 
738 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
739 	if (!rq) {
740 		dev_err(queue->ctrl->ctrl.device,
741 			"got bad r2t.command_id %#x on queue %d\n",
742 			pdu->command_id, nvme_tcp_queue_id(queue));
743 		return -ENOENT;
744 	}
745 	req = blk_mq_rq_to_pdu(rq);
746 
747 	if (unlikely(!r2t_length)) {
748 		dev_err(queue->ctrl->ctrl.device,
749 			"req %d r2t len is %u, probably a bug...\n",
750 			rq->tag, r2t_length);
751 		return -EPROTO;
752 	}
753 
754 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
755 		dev_err(queue->ctrl->ctrl.device,
756 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
757 			rq->tag, r2t_length, req->data_len, req->data_sent);
758 		return -EPROTO;
759 	}
760 
761 	if (unlikely(r2t_offset < req->data_sent)) {
762 		dev_err(queue->ctrl->ctrl.device,
763 			"req %d unexpected r2t offset %u (expected %zu)\n",
764 			rq->tag, r2t_offset, req->data_sent);
765 		return -EPROTO;
766 	}
767 
768 	req->pdu_len = 0;
769 	req->h2cdata_left = r2t_length;
770 	req->h2cdata_offset = r2t_offset;
771 	req->ttag = pdu->ttag;
772 
773 	nvme_tcp_setup_h2c_data_pdu(req);
774 	nvme_tcp_queue_request(req, false, true);
775 
776 	return 0;
777 }
778 
nvme_tcp_handle_c2h_term(struct nvme_tcp_queue * queue,struct nvme_tcp_term_pdu * pdu)779 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
780 		struct nvme_tcp_term_pdu *pdu)
781 {
782 	u16 fes;
783 	const char *msg;
784 	u32 plen = le32_to_cpu(pdu->hdr.plen);
785 
786 	static const char * const msg_table[] = {
787 		[NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
788 		[NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
789 		[NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
790 		[NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
791 		[NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
792 		[NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
793 	};
794 
795 	if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
796 	    plen > NVME_TCP_MAX_C2HTERM_PLEN) {
797 		dev_err(queue->ctrl->ctrl.device,
798 			"Received a malformed C2HTermReq PDU (plen = %u)\n",
799 			plen);
800 		return;
801 	}
802 
803 	fes = le16_to_cpu(pdu->fes);
804 	if (fes && fes < ARRAY_SIZE(msg_table))
805 		msg = msg_table[fes];
806 	else
807 		msg = "Unknown";
808 
809 	dev_err(queue->ctrl->ctrl.device,
810 		"Received C2HTermReq (FES = %s)\n", msg);
811 }
812 
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)813 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
814 		unsigned int *offset, size_t *len)
815 {
816 	struct nvme_tcp_hdr *hdr;
817 	char *pdu = queue->pdu;
818 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
819 	int ret;
820 
821 	ret = skb_copy_bits(skb, *offset,
822 		&pdu[queue->pdu_offset], rcv_len);
823 	if (unlikely(ret))
824 		return ret;
825 
826 	queue->pdu_remaining -= rcv_len;
827 	queue->pdu_offset += rcv_len;
828 	*offset += rcv_len;
829 	*len -= rcv_len;
830 	if (queue->pdu_remaining)
831 		return 0;
832 
833 	hdr = queue->pdu;
834 	if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) {
835 		if (!nvme_tcp_recv_pdu_supported(hdr->type))
836 			goto unsupported_pdu;
837 
838 		dev_err(queue->ctrl->ctrl.device,
839 			"pdu type %d has unexpected header length (%d)\n",
840 			hdr->type, hdr->hlen);
841 		return -EPROTO;
842 	}
843 
844 	if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
845 		/*
846 		 * C2HTermReq never includes Header or Data digests.
847 		 * Skip the checks.
848 		 */
849 		nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
850 		return -EINVAL;
851 	}
852 
853 	if (queue->hdr_digest) {
854 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
855 		if (unlikely(ret))
856 			return ret;
857 	}
858 
859 
860 	if (queue->data_digest) {
861 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
862 		if (unlikely(ret))
863 			return ret;
864 	}
865 
866 	switch (hdr->type) {
867 	case nvme_tcp_c2h_data:
868 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
869 	case nvme_tcp_rsp:
870 		nvme_tcp_init_recv_ctx(queue);
871 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
872 	case nvme_tcp_r2t:
873 		nvme_tcp_init_recv_ctx(queue);
874 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
875 	default:
876 		goto unsupported_pdu;
877 	}
878 
879 unsupported_pdu:
880 	dev_err(queue->ctrl->ctrl.device,
881 		"unsupported pdu type (%d)\n", hdr->type);
882 	return -EINVAL;
883 }
884 
nvme_tcp_end_request(struct request * rq,u16 status)885 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
886 {
887 	union nvme_result res = {};
888 
889 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
890 		nvme_complete_rq(rq);
891 }
892 
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)893 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
894 			      unsigned int *offset, size_t *len)
895 {
896 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
897 	struct request *rq =
898 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
899 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
900 
901 	while (true) {
902 		int recv_len, ret;
903 
904 		recv_len = min_t(size_t, *len, queue->data_remaining);
905 		if (!recv_len)
906 			break;
907 
908 		if (!iov_iter_count(&req->iter)) {
909 			req->curr_bio = req->curr_bio->bi_next;
910 
911 			/*
912 			 * If we don`t have any bios it means that controller
913 			 * sent more data than we requested, hence error
914 			 */
915 			if (!req->curr_bio) {
916 				dev_err(queue->ctrl->ctrl.device,
917 					"queue %d no space in request %#x",
918 					nvme_tcp_queue_id(queue), rq->tag);
919 				nvme_tcp_init_recv_ctx(queue);
920 				return -EIO;
921 			}
922 			nvme_tcp_init_iter(req, ITER_DEST);
923 		}
924 
925 		/* we can read only from what is left in this bio */
926 		recv_len = min_t(size_t, recv_len,
927 				iov_iter_count(&req->iter));
928 
929 		if (queue->data_digest)
930 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
931 				&req->iter, recv_len, queue->rcv_hash);
932 		else
933 			ret = skb_copy_datagram_iter(skb, *offset,
934 					&req->iter, recv_len);
935 		if (ret) {
936 			dev_err(queue->ctrl->ctrl.device,
937 				"queue %d failed to copy request %#x data",
938 				nvme_tcp_queue_id(queue), rq->tag);
939 			return ret;
940 		}
941 
942 		*len -= recv_len;
943 		*offset += recv_len;
944 		queue->data_remaining -= recv_len;
945 	}
946 
947 	if (!queue->data_remaining) {
948 		if (queue->data_digest) {
949 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
950 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
951 		} else {
952 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
953 				nvme_tcp_end_request(rq,
954 						le16_to_cpu(req->status));
955 				queue->nr_cqe++;
956 			}
957 			nvme_tcp_init_recv_ctx(queue);
958 		}
959 	}
960 
961 	return 0;
962 }
963 
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)964 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
965 		struct sk_buff *skb, unsigned int *offset, size_t *len)
966 {
967 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
968 	char *ddgst = (char *)&queue->recv_ddgst;
969 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
970 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
971 	int ret;
972 
973 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
974 	if (unlikely(ret))
975 		return ret;
976 
977 	queue->ddgst_remaining -= recv_len;
978 	*offset += recv_len;
979 	*len -= recv_len;
980 	if (queue->ddgst_remaining)
981 		return 0;
982 
983 	if (queue->recv_ddgst != queue->exp_ddgst) {
984 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
985 					pdu->command_id);
986 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
987 
988 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
989 
990 		dev_err(queue->ctrl->ctrl.device,
991 			"data digest error: recv %#x expected %#x\n",
992 			le32_to_cpu(queue->recv_ddgst),
993 			le32_to_cpu(queue->exp_ddgst));
994 	}
995 
996 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
997 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
998 					pdu->command_id);
999 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1000 
1001 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
1002 		queue->nr_cqe++;
1003 	}
1004 
1005 	nvme_tcp_init_recv_ctx(queue);
1006 	return 0;
1007 }
1008 
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)1009 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
1010 			     unsigned int offset, size_t len)
1011 {
1012 	struct nvme_tcp_queue *queue = desc->arg.data;
1013 	size_t consumed = len;
1014 	int result;
1015 
1016 	if (unlikely(!queue->rd_enabled))
1017 		return -EFAULT;
1018 
1019 	while (len) {
1020 		switch (nvme_tcp_recv_state(queue)) {
1021 		case NVME_TCP_RECV_PDU:
1022 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
1023 			break;
1024 		case NVME_TCP_RECV_DATA:
1025 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
1026 			break;
1027 		case NVME_TCP_RECV_DDGST:
1028 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
1029 			break;
1030 		default:
1031 			result = -EFAULT;
1032 		}
1033 		if (result) {
1034 			dev_err(queue->ctrl->ctrl.device,
1035 				"receive failed:  %d\n", result);
1036 			queue->rd_enabled = false;
1037 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1038 			return result;
1039 		}
1040 	}
1041 
1042 	return consumed;
1043 }
1044 
nvme_tcp_data_ready(struct sock * sk)1045 static void nvme_tcp_data_ready(struct sock *sk)
1046 {
1047 	struct nvme_tcp_queue *queue;
1048 
1049 	trace_sk_data_ready(sk);
1050 
1051 	read_lock_bh(&sk->sk_callback_lock);
1052 	queue = sk->sk_user_data;
1053 	if (likely(queue && queue->rd_enabled) &&
1054 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
1055 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1056 	read_unlock_bh(&sk->sk_callback_lock);
1057 }
1058 
nvme_tcp_write_space(struct sock * sk)1059 static void nvme_tcp_write_space(struct sock *sk)
1060 {
1061 	struct nvme_tcp_queue *queue;
1062 
1063 	read_lock_bh(&sk->sk_callback_lock);
1064 	queue = sk->sk_user_data;
1065 	if (likely(queue && sk_stream_is_writeable(sk))) {
1066 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1067 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1068 	}
1069 	read_unlock_bh(&sk->sk_callback_lock);
1070 }
1071 
nvme_tcp_state_change(struct sock * sk)1072 static void nvme_tcp_state_change(struct sock *sk)
1073 {
1074 	struct nvme_tcp_queue *queue;
1075 
1076 	read_lock_bh(&sk->sk_callback_lock);
1077 	queue = sk->sk_user_data;
1078 	if (!queue)
1079 		goto done;
1080 
1081 	switch (sk->sk_state) {
1082 	case TCP_CLOSE:
1083 	case TCP_CLOSE_WAIT:
1084 	case TCP_LAST_ACK:
1085 	case TCP_FIN_WAIT1:
1086 	case TCP_FIN_WAIT2:
1087 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1088 		break;
1089 	default:
1090 		dev_info(queue->ctrl->ctrl.device,
1091 			"queue %d socket state %d\n",
1092 			nvme_tcp_queue_id(queue), sk->sk_state);
1093 	}
1094 
1095 	queue->state_change(sk);
1096 done:
1097 	read_unlock_bh(&sk->sk_callback_lock);
1098 }
1099 
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)1100 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1101 {
1102 	queue->request = NULL;
1103 }
1104 
nvme_tcp_fail_request(struct nvme_tcp_request * req)1105 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1106 {
1107 	if (nvme_tcp_async_req(req)) {
1108 		union nvme_result res = {};
1109 
1110 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1111 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1112 	} else {
1113 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1114 				NVME_SC_HOST_PATH_ERROR);
1115 	}
1116 }
1117 
nvme_tcp_try_send_data(struct nvme_tcp_request * req)1118 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1119 {
1120 	struct nvme_tcp_queue *queue = req->queue;
1121 	int req_data_len = req->data_len;
1122 	u32 h2cdata_left = req->h2cdata_left;
1123 
1124 	while (true) {
1125 		struct bio_vec bvec;
1126 		struct msghdr msg = {
1127 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1128 		};
1129 		struct page *page = nvme_tcp_req_cur_page(req);
1130 		size_t offset = nvme_tcp_req_cur_offset(req);
1131 		size_t len = nvme_tcp_req_cur_length(req);
1132 		bool last = nvme_tcp_pdu_last_send(req, len);
1133 		int req_data_sent = req->data_sent;
1134 		int ret;
1135 
1136 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1137 			msg.msg_flags |= MSG_EOR;
1138 		else
1139 			msg.msg_flags |= MSG_MORE;
1140 
1141 		if (!sendpages_ok(page, len, offset))
1142 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1143 
1144 		bvec_set_page(&bvec, page, len, offset);
1145 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1146 		ret = sock_sendmsg(queue->sock, &msg);
1147 		if (ret <= 0)
1148 			return ret;
1149 
1150 		if (queue->data_digest)
1151 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1152 					offset, ret);
1153 
1154 		/*
1155 		 * update the request iterator except for the last payload send
1156 		 * in the request where we don't want to modify it as we may
1157 		 * compete with the RX path completing the request.
1158 		 */
1159 		if (req_data_sent + ret < req_data_len)
1160 			nvme_tcp_advance_req(req, ret);
1161 
1162 		/* fully successful last send in current PDU */
1163 		if (last && ret == len) {
1164 			if (queue->data_digest) {
1165 				nvme_tcp_ddgst_final(queue->snd_hash,
1166 					&req->ddgst);
1167 				req->state = NVME_TCP_SEND_DDGST;
1168 				req->offset = 0;
1169 			} else {
1170 				if (h2cdata_left)
1171 					nvme_tcp_setup_h2c_data_pdu(req);
1172 				else
1173 					nvme_tcp_done_send_req(queue);
1174 			}
1175 			return 1;
1176 		}
1177 	}
1178 	return -EAGAIN;
1179 }
1180 
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1181 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1182 {
1183 	struct nvme_tcp_queue *queue = req->queue;
1184 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1185 	struct bio_vec bvec;
1186 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1187 	bool inline_data = nvme_tcp_has_inline_data(req);
1188 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1189 	int len = sizeof(*pdu) + hdgst - req->offset;
1190 	int ret;
1191 
1192 	if (inline_data || nvme_tcp_queue_more(queue))
1193 		msg.msg_flags |= MSG_MORE;
1194 	else
1195 		msg.msg_flags |= MSG_EOR;
1196 
1197 	if (queue->hdr_digest && !req->offset)
1198 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1199 
1200 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1201 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1202 	ret = sock_sendmsg(queue->sock, &msg);
1203 	if (unlikely(ret <= 0))
1204 		return ret;
1205 
1206 	len -= ret;
1207 	if (!len) {
1208 		if (inline_data) {
1209 			req->state = NVME_TCP_SEND_DATA;
1210 			if (queue->data_digest)
1211 				crypto_ahash_init(queue->snd_hash);
1212 		} else {
1213 			nvme_tcp_done_send_req(queue);
1214 		}
1215 		return 1;
1216 	}
1217 	req->offset += ret;
1218 
1219 	return -EAGAIN;
1220 }
1221 
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1222 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1223 {
1224 	struct nvme_tcp_queue *queue = req->queue;
1225 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1226 	struct bio_vec bvec;
1227 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1228 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1229 	int len = sizeof(*pdu) - req->offset + hdgst;
1230 	int ret;
1231 
1232 	if (queue->hdr_digest && !req->offset)
1233 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1234 
1235 	if (!req->h2cdata_left)
1236 		msg.msg_flags |= MSG_SPLICE_PAGES;
1237 
1238 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1239 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1240 	ret = sock_sendmsg(queue->sock, &msg);
1241 	if (unlikely(ret <= 0))
1242 		return ret;
1243 
1244 	len -= ret;
1245 	if (!len) {
1246 		req->state = NVME_TCP_SEND_DATA;
1247 		if (queue->data_digest)
1248 			crypto_ahash_init(queue->snd_hash);
1249 		return 1;
1250 	}
1251 	req->offset += ret;
1252 
1253 	return -EAGAIN;
1254 }
1255 
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1256 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1257 {
1258 	struct nvme_tcp_queue *queue = req->queue;
1259 	size_t offset = req->offset;
1260 	u32 h2cdata_left = req->h2cdata_left;
1261 	int ret;
1262 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1263 	struct kvec iov = {
1264 		.iov_base = (u8 *)&req->ddgst + req->offset,
1265 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1266 	};
1267 
1268 	if (nvme_tcp_queue_more(queue))
1269 		msg.msg_flags |= MSG_MORE;
1270 	else
1271 		msg.msg_flags |= MSG_EOR;
1272 
1273 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1274 	if (unlikely(ret <= 0))
1275 		return ret;
1276 
1277 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1278 		if (h2cdata_left)
1279 			nvme_tcp_setup_h2c_data_pdu(req);
1280 		else
1281 			nvme_tcp_done_send_req(queue);
1282 		return 1;
1283 	}
1284 
1285 	req->offset += ret;
1286 	return -EAGAIN;
1287 }
1288 
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1289 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1290 {
1291 	struct nvme_tcp_request *req;
1292 	unsigned int noreclaim_flag;
1293 	int ret = 1;
1294 
1295 	if (!queue->request) {
1296 		queue->request = nvme_tcp_fetch_request(queue);
1297 		if (!queue->request)
1298 			return 0;
1299 	}
1300 	req = queue->request;
1301 
1302 	noreclaim_flag = memalloc_noreclaim_save();
1303 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1304 		ret = nvme_tcp_try_send_cmd_pdu(req);
1305 		if (ret <= 0)
1306 			goto done;
1307 		if (!nvme_tcp_has_inline_data(req))
1308 			goto out;
1309 	}
1310 
1311 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1312 		ret = nvme_tcp_try_send_data_pdu(req);
1313 		if (ret <= 0)
1314 			goto done;
1315 	}
1316 
1317 	if (req->state == NVME_TCP_SEND_DATA) {
1318 		ret = nvme_tcp_try_send_data(req);
1319 		if (ret <= 0)
1320 			goto done;
1321 	}
1322 
1323 	if (req->state == NVME_TCP_SEND_DDGST)
1324 		ret = nvme_tcp_try_send_ddgst(req);
1325 done:
1326 	if (ret == -EAGAIN) {
1327 		ret = 0;
1328 	} else if (ret < 0) {
1329 		dev_err(queue->ctrl->ctrl.device,
1330 			"failed to send request %d\n", ret);
1331 		nvme_tcp_fail_request(queue->request);
1332 		nvme_tcp_done_send_req(queue);
1333 	}
1334 out:
1335 	memalloc_noreclaim_restore(noreclaim_flag);
1336 	return ret;
1337 }
1338 
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1339 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1340 {
1341 	struct socket *sock = queue->sock;
1342 	struct sock *sk = sock->sk;
1343 	read_descriptor_t rd_desc;
1344 	int consumed;
1345 
1346 	rd_desc.arg.data = queue;
1347 	rd_desc.count = 1;
1348 	lock_sock(sk);
1349 	queue->nr_cqe = 0;
1350 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1351 	release_sock(sk);
1352 	return consumed;
1353 }
1354 
nvme_tcp_io_work(struct work_struct * w)1355 static void nvme_tcp_io_work(struct work_struct *w)
1356 {
1357 	struct nvme_tcp_queue *queue =
1358 		container_of(w, struct nvme_tcp_queue, io_work);
1359 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1360 
1361 	do {
1362 		bool pending = false;
1363 		int result;
1364 
1365 		if (mutex_trylock(&queue->send_mutex)) {
1366 			result = nvme_tcp_try_send(queue);
1367 			mutex_unlock(&queue->send_mutex);
1368 			if (result > 0)
1369 				pending = true;
1370 			else if (unlikely(result < 0))
1371 				break;
1372 		}
1373 
1374 		result = nvme_tcp_try_recv(queue);
1375 		if (result > 0)
1376 			pending = true;
1377 		else if (unlikely(result < 0))
1378 			return;
1379 
1380 		if (!pending || !queue->rd_enabled)
1381 			return;
1382 
1383 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1384 
1385 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1386 }
1387 
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1388 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1389 {
1390 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1391 
1392 	ahash_request_free(queue->rcv_hash);
1393 	ahash_request_free(queue->snd_hash);
1394 	crypto_free_ahash(tfm);
1395 }
1396 
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1397 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1398 {
1399 	struct crypto_ahash *tfm;
1400 
1401 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1402 	if (IS_ERR(tfm))
1403 		return PTR_ERR(tfm);
1404 
1405 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1406 	if (!queue->snd_hash)
1407 		goto free_tfm;
1408 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1409 
1410 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1411 	if (!queue->rcv_hash)
1412 		goto free_snd_hash;
1413 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1414 
1415 	return 0;
1416 free_snd_hash:
1417 	ahash_request_free(queue->snd_hash);
1418 free_tfm:
1419 	crypto_free_ahash(tfm);
1420 	return -ENOMEM;
1421 }
1422 
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1423 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1424 {
1425 	struct nvme_tcp_request *async = &ctrl->async_req;
1426 
1427 	page_frag_free(async->pdu);
1428 }
1429 
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1430 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1431 {
1432 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1433 	struct nvme_tcp_request *async = &ctrl->async_req;
1434 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1435 
1436 	async->pdu = page_frag_alloc(&queue->pf_cache,
1437 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1438 		GFP_KERNEL | __GFP_ZERO);
1439 	if (!async->pdu)
1440 		return -ENOMEM;
1441 
1442 	async->queue = &ctrl->queues[0];
1443 	return 0;
1444 }
1445 
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1446 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1447 {
1448 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1449 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1450 	unsigned int noreclaim_flag;
1451 
1452 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1453 		return;
1454 
1455 	if (queue->hdr_digest || queue->data_digest)
1456 		nvme_tcp_free_crypto(queue);
1457 
1458 	page_frag_cache_drain(&queue->pf_cache);
1459 
1460 	noreclaim_flag = memalloc_noreclaim_save();
1461 	/* ->sock will be released by fput() */
1462 	fput(queue->sock->file);
1463 	queue->sock = NULL;
1464 	memalloc_noreclaim_restore(noreclaim_flag);
1465 
1466 	kfree(queue->pdu);
1467 	mutex_destroy(&queue->send_mutex);
1468 	mutex_destroy(&queue->queue_lock);
1469 }
1470 
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1471 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1472 {
1473 	struct nvme_tcp_icreq_pdu *icreq;
1474 	struct nvme_tcp_icresp_pdu *icresp;
1475 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1476 	u8 ctype;
1477 	struct msghdr msg = {};
1478 	struct kvec iov;
1479 	bool ctrl_hdgst, ctrl_ddgst;
1480 	u32 maxh2cdata;
1481 	int ret;
1482 
1483 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1484 	if (!icreq)
1485 		return -ENOMEM;
1486 
1487 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1488 	if (!icresp) {
1489 		ret = -ENOMEM;
1490 		goto free_icreq;
1491 	}
1492 
1493 	icreq->hdr.type = nvme_tcp_icreq;
1494 	icreq->hdr.hlen = sizeof(*icreq);
1495 	icreq->hdr.pdo = 0;
1496 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1497 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1498 	icreq->maxr2t = 0; /* single inflight r2t supported */
1499 	icreq->hpda = 0; /* no alignment constraint */
1500 	if (queue->hdr_digest)
1501 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1502 	if (queue->data_digest)
1503 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1504 
1505 	iov.iov_base = icreq;
1506 	iov.iov_len = sizeof(*icreq);
1507 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1508 	if (ret < 0) {
1509 		pr_warn("queue %d: failed to send icreq, error %d\n",
1510 			nvme_tcp_queue_id(queue), ret);
1511 		goto free_icresp;
1512 	}
1513 
1514 	memset(&msg, 0, sizeof(msg));
1515 	iov.iov_base = icresp;
1516 	iov.iov_len = sizeof(*icresp);
1517 	if (nvme_tcp_queue_tls(queue)) {
1518 		msg.msg_control = cbuf;
1519 		msg.msg_controllen = sizeof(cbuf);
1520 	}
1521 	msg.msg_flags = MSG_WAITALL;
1522 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1523 			iov.iov_len, msg.msg_flags);
1524 	if (ret >= 0 && ret < sizeof(*icresp))
1525 		ret = -ECONNRESET;
1526 	if (ret < 0) {
1527 		pr_warn("queue %d: failed to receive icresp, error %d\n",
1528 			nvme_tcp_queue_id(queue), ret);
1529 		goto free_icresp;
1530 	}
1531 	ret = -ENOTCONN;
1532 	if (nvme_tcp_queue_tls(queue)) {
1533 		ctype = tls_get_record_type(queue->sock->sk,
1534 					    (struct cmsghdr *)cbuf);
1535 		if (ctype != TLS_RECORD_TYPE_DATA) {
1536 			pr_err("queue %d: unhandled TLS record %d\n",
1537 			       nvme_tcp_queue_id(queue), ctype);
1538 			goto free_icresp;
1539 		}
1540 	}
1541 	ret = -EINVAL;
1542 	if (icresp->hdr.type != nvme_tcp_icresp) {
1543 		pr_err("queue %d: bad type returned %d\n",
1544 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1545 		goto free_icresp;
1546 	}
1547 
1548 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1549 		pr_err("queue %d: bad pdu length returned %d\n",
1550 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1551 		goto free_icresp;
1552 	}
1553 
1554 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1555 		pr_err("queue %d: bad pfv returned %d\n",
1556 			nvme_tcp_queue_id(queue), icresp->pfv);
1557 		goto free_icresp;
1558 	}
1559 
1560 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1561 	if ((queue->data_digest && !ctrl_ddgst) ||
1562 	    (!queue->data_digest && ctrl_ddgst)) {
1563 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1564 			nvme_tcp_queue_id(queue),
1565 			queue->data_digest ? "enabled" : "disabled",
1566 			ctrl_ddgst ? "enabled" : "disabled");
1567 		goto free_icresp;
1568 	}
1569 
1570 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1571 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1572 	    (!queue->hdr_digest && ctrl_hdgst)) {
1573 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1574 			nvme_tcp_queue_id(queue),
1575 			queue->hdr_digest ? "enabled" : "disabled",
1576 			ctrl_hdgst ? "enabled" : "disabled");
1577 		goto free_icresp;
1578 	}
1579 
1580 	if (icresp->cpda != 0) {
1581 		pr_err("queue %d: unsupported cpda returned %d\n",
1582 			nvme_tcp_queue_id(queue), icresp->cpda);
1583 		goto free_icresp;
1584 	}
1585 
1586 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1587 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1588 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1589 		       nvme_tcp_queue_id(queue), maxh2cdata);
1590 		goto free_icresp;
1591 	}
1592 	queue->maxh2cdata = maxh2cdata;
1593 
1594 	ret = 0;
1595 free_icresp:
1596 	kfree(icresp);
1597 free_icreq:
1598 	kfree(icreq);
1599 	return ret;
1600 }
1601 
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1602 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1603 {
1604 	return nvme_tcp_queue_id(queue) == 0;
1605 }
1606 
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1607 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1608 {
1609 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1610 	int qid = nvme_tcp_queue_id(queue);
1611 
1612 	return !nvme_tcp_admin_queue(queue) &&
1613 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1614 }
1615 
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1616 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1617 {
1618 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1619 	int qid = nvme_tcp_queue_id(queue);
1620 
1621 	return !nvme_tcp_admin_queue(queue) &&
1622 		!nvme_tcp_default_queue(queue) &&
1623 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1624 			  ctrl->io_queues[HCTX_TYPE_READ];
1625 }
1626 
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1627 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1628 {
1629 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1630 	int qid = nvme_tcp_queue_id(queue);
1631 
1632 	return !nvme_tcp_admin_queue(queue) &&
1633 		!nvme_tcp_default_queue(queue) &&
1634 		!nvme_tcp_read_queue(queue) &&
1635 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1636 			  ctrl->io_queues[HCTX_TYPE_READ] +
1637 			  ctrl->io_queues[HCTX_TYPE_POLL];
1638 }
1639 
1640 /*
1641  * Track the number of queues assigned to each cpu using a global per-cpu
1642  * counter and select the least used cpu from the mq_map. Our goal is to spread
1643  * different controllers I/O threads across different cpu cores.
1644  *
1645  * Note that the accounting is not 100% perfect, but we don't need to be, we're
1646  * simply putting our best effort to select the best candidate cpu core that we
1647  * find at any given point.
1648  */
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1649 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1650 {
1651 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1652 	struct blk_mq_tag_set *set = &ctrl->tag_set;
1653 	int qid = nvme_tcp_queue_id(queue) - 1;
1654 	unsigned int *mq_map = NULL;
1655 	int cpu, min_queues = INT_MAX, io_cpu;
1656 
1657 	if (wq_unbound)
1658 		goto out;
1659 
1660 	if (nvme_tcp_default_queue(queue))
1661 		mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1662 	else if (nvme_tcp_read_queue(queue))
1663 		mq_map = set->map[HCTX_TYPE_READ].mq_map;
1664 	else if (nvme_tcp_poll_queue(queue))
1665 		mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1666 
1667 	if (WARN_ON(!mq_map))
1668 		goto out;
1669 
1670 	/* Search for the least used cpu from the mq_map */
1671 	io_cpu = WORK_CPU_UNBOUND;
1672 	for_each_online_cpu(cpu) {
1673 		int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1674 
1675 		if (mq_map[cpu] != qid)
1676 			continue;
1677 		if (num_queues < min_queues) {
1678 			io_cpu = cpu;
1679 			min_queues = num_queues;
1680 		}
1681 	}
1682 	if (io_cpu != WORK_CPU_UNBOUND) {
1683 		queue->io_cpu = io_cpu;
1684 		atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1685 		set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1686 	}
1687 out:
1688 	dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1689 		qid, queue->io_cpu);
1690 }
1691 
nvme_tcp_tls_done(void * data,int status,key_serial_t pskid)1692 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1693 {
1694 	struct nvme_tcp_queue *queue = data;
1695 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1696 	int qid = nvme_tcp_queue_id(queue);
1697 	struct key *tls_key;
1698 
1699 	dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1700 		qid, pskid, status);
1701 
1702 	if (status) {
1703 		queue->tls_err = -status;
1704 		goto out_complete;
1705 	}
1706 
1707 	tls_key = nvme_tls_key_lookup(pskid);
1708 	if (IS_ERR(tls_key)) {
1709 		dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1710 			 qid, pskid);
1711 		queue->tls_err = -ENOKEY;
1712 	} else {
1713 		queue->tls_enabled = true;
1714 		if (qid == 0)
1715 			ctrl->ctrl.tls_pskid = key_serial(tls_key);
1716 		key_put(tls_key);
1717 		queue->tls_err = 0;
1718 	}
1719 
1720 out_complete:
1721 	complete(&queue->tls_complete);
1722 }
1723 
nvme_tcp_start_tls(struct nvme_ctrl * nctrl,struct nvme_tcp_queue * queue,key_serial_t pskid)1724 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1725 			      struct nvme_tcp_queue *queue,
1726 			      key_serial_t pskid)
1727 {
1728 	int qid = nvme_tcp_queue_id(queue);
1729 	int ret;
1730 	struct tls_handshake_args args;
1731 	unsigned long tmo = tls_handshake_timeout * HZ;
1732 	key_serial_t keyring = nvme_keyring_id();
1733 
1734 	dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1735 		qid, pskid);
1736 	memset(&args, 0, sizeof(args));
1737 	args.ta_sock = queue->sock;
1738 	args.ta_done = nvme_tcp_tls_done;
1739 	args.ta_data = queue;
1740 	args.ta_my_peerids[0] = pskid;
1741 	args.ta_num_peerids = 1;
1742 	if (nctrl->opts->keyring)
1743 		keyring = key_serial(nctrl->opts->keyring);
1744 	args.ta_keyring = keyring;
1745 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1746 	queue->tls_err = -EOPNOTSUPP;
1747 	init_completion(&queue->tls_complete);
1748 	ret = tls_client_hello_psk(&args, GFP_KERNEL);
1749 	if (ret) {
1750 		dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1751 			qid, ret);
1752 		return ret;
1753 	}
1754 	ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1755 	if (ret <= 0) {
1756 		if (ret == 0)
1757 			ret = -ETIMEDOUT;
1758 
1759 		dev_err(nctrl->device,
1760 			"queue %d: TLS handshake failed, error %d\n",
1761 			qid, ret);
1762 		tls_handshake_cancel(queue->sock->sk);
1763 	} else {
1764 		dev_dbg(nctrl->device,
1765 			"queue %d: TLS handshake complete, error %d\n",
1766 			qid, queue->tls_err);
1767 		ret = queue->tls_err;
1768 	}
1769 	return ret;
1770 }
1771 
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,key_serial_t pskid)1772 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1773 				key_serial_t pskid)
1774 {
1775 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1776 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1777 	int ret, rcv_pdu_size;
1778 	struct file *sock_file;
1779 
1780 	mutex_init(&queue->queue_lock);
1781 	queue->ctrl = ctrl;
1782 	init_llist_head(&queue->req_list);
1783 	INIT_LIST_HEAD(&queue->send_list);
1784 	mutex_init(&queue->send_mutex);
1785 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1786 
1787 	if (qid > 0)
1788 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1789 	else
1790 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1791 						NVME_TCP_ADMIN_CCSZ;
1792 
1793 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1794 			IPPROTO_TCP, &queue->sock);
1795 	if (ret) {
1796 		dev_err(nctrl->device,
1797 			"failed to create socket: %d\n", ret);
1798 		goto err_destroy_mutex;
1799 	}
1800 
1801 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1802 	if (IS_ERR(sock_file)) {
1803 		ret = PTR_ERR(sock_file);
1804 		goto err_destroy_mutex;
1805 	}
1806 	nvme_tcp_reclassify_socket(queue->sock);
1807 
1808 	/* Single syn retry */
1809 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1810 
1811 	/* Set TCP no delay */
1812 	tcp_sock_set_nodelay(queue->sock->sk);
1813 
1814 	/*
1815 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1816 	 * close. This is done to prevent stale data from being sent should
1817 	 * the network connection be restored before TCP times out.
1818 	 */
1819 	sock_no_linger(queue->sock->sk);
1820 
1821 	if (so_priority > 0)
1822 		sock_set_priority(queue->sock->sk, so_priority);
1823 
1824 	/* Set socket type of service */
1825 	if (nctrl->opts->tos >= 0)
1826 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1827 
1828 	/* Set 10 seconds timeout for icresp recvmsg */
1829 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1830 
1831 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1832 	queue->sock->sk->sk_use_task_frag = false;
1833 	queue->io_cpu = WORK_CPU_UNBOUND;
1834 	queue->request = NULL;
1835 	queue->data_remaining = 0;
1836 	queue->ddgst_remaining = 0;
1837 	queue->pdu_remaining = 0;
1838 	queue->pdu_offset = 0;
1839 	sk_set_memalloc(queue->sock->sk);
1840 
1841 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1842 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1843 			sizeof(ctrl->src_addr));
1844 		if (ret) {
1845 			dev_err(nctrl->device,
1846 				"failed to bind queue %d socket %d\n",
1847 				qid, ret);
1848 			goto err_sock;
1849 		}
1850 	}
1851 
1852 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1853 		char *iface = nctrl->opts->host_iface;
1854 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1855 
1856 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1857 				      optval, strlen(iface));
1858 		if (ret) {
1859 			dev_err(nctrl->device,
1860 			  "failed to bind to interface %s queue %d err %d\n",
1861 			  iface, qid, ret);
1862 			goto err_sock;
1863 		}
1864 	}
1865 
1866 	queue->hdr_digest = nctrl->opts->hdr_digest;
1867 	queue->data_digest = nctrl->opts->data_digest;
1868 	if (queue->hdr_digest || queue->data_digest) {
1869 		ret = nvme_tcp_alloc_crypto(queue);
1870 		if (ret) {
1871 			dev_err(nctrl->device,
1872 				"failed to allocate queue %d crypto\n", qid);
1873 			goto err_sock;
1874 		}
1875 	}
1876 
1877 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1878 			nvme_tcp_hdgst_len(queue);
1879 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1880 	if (!queue->pdu) {
1881 		ret = -ENOMEM;
1882 		goto err_crypto;
1883 	}
1884 
1885 	dev_dbg(nctrl->device, "connecting queue %d\n",
1886 			nvme_tcp_queue_id(queue));
1887 
1888 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1889 		sizeof(ctrl->addr), 0);
1890 	if (ret) {
1891 		dev_err(nctrl->device,
1892 			"failed to connect socket: %d\n", ret);
1893 		goto err_rcv_pdu;
1894 	}
1895 
1896 	/* If PSKs are configured try to start TLS */
1897 	if (nvme_tcp_tls_configured(nctrl) && pskid) {
1898 		ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1899 		if (ret)
1900 			goto err_init_connect;
1901 	}
1902 
1903 	ret = nvme_tcp_init_connection(queue);
1904 	if (ret)
1905 		goto err_init_connect;
1906 
1907 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1908 
1909 	return 0;
1910 
1911 err_init_connect:
1912 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1913 err_rcv_pdu:
1914 	kfree(queue->pdu);
1915 err_crypto:
1916 	if (queue->hdr_digest || queue->data_digest)
1917 		nvme_tcp_free_crypto(queue);
1918 err_sock:
1919 	/* ->sock will be released by fput() */
1920 	fput(queue->sock->file);
1921 	queue->sock = NULL;
1922 err_destroy_mutex:
1923 	mutex_destroy(&queue->send_mutex);
1924 	mutex_destroy(&queue->queue_lock);
1925 	return ret;
1926 }
1927 
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1928 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1929 {
1930 	struct socket *sock = queue->sock;
1931 
1932 	write_lock_bh(&sock->sk->sk_callback_lock);
1933 	sock->sk->sk_user_data  = NULL;
1934 	sock->sk->sk_data_ready = queue->data_ready;
1935 	sock->sk->sk_state_change = queue->state_change;
1936 	sock->sk->sk_write_space  = queue->write_space;
1937 	write_unlock_bh(&sock->sk->sk_callback_lock);
1938 }
1939 
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1940 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1941 {
1942 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1943 	nvme_tcp_restore_sock_ops(queue);
1944 	cancel_work_sync(&queue->io_work);
1945 }
1946 
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1947 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1948 {
1949 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1950 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1951 
1952 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1953 		return;
1954 
1955 	if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1956 		atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1957 
1958 	mutex_lock(&queue->queue_lock);
1959 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1960 		__nvme_tcp_stop_queue(queue);
1961 	/* Stopping the queue will disable TLS */
1962 	queue->tls_enabled = false;
1963 	mutex_unlock(&queue->queue_lock);
1964 }
1965 
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1966 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1967 {
1968 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1969 	queue->sock->sk->sk_user_data = queue;
1970 	queue->state_change = queue->sock->sk->sk_state_change;
1971 	queue->data_ready = queue->sock->sk->sk_data_ready;
1972 	queue->write_space = queue->sock->sk->sk_write_space;
1973 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1974 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1975 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1976 #ifdef CONFIG_NET_RX_BUSY_POLL
1977 	queue->sock->sk->sk_ll_usec = 1;
1978 #endif
1979 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1980 }
1981 
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1982 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1983 {
1984 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1985 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1986 	int ret;
1987 
1988 	queue->rd_enabled = true;
1989 	nvme_tcp_init_recv_ctx(queue);
1990 	nvme_tcp_setup_sock_ops(queue);
1991 
1992 	if (idx) {
1993 		nvme_tcp_set_queue_io_cpu(queue);
1994 		ret = nvmf_connect_io_queue(nctrl, idx);
1995 	} else
1996 		ret = nvmf_connect_admin_queue(nctrl);
1997 
1998 	if (!ret) {
1999 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
2000 	} else {
2001 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
2002 			__nvme_tcp_stop_queue(queue);
2003 		dev_err(nctrl->device,
2004 			"failed to connect queue: %d ret=%d\n", idx, ret);
2005 	}
2006 	return ret;
2007 }
2008 
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)2009 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
2010 {
2011 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
2012 		cancel_work_sync(&ctrl->async_event_work);
2013 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
2014 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
2015 	}
2016 
2017 	nvme_tcp_free_queue(ctrl, 0);
2018 }
2019 
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)2020 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
2021 {
2022 	int i;
2023 
2024 	for (i = 1; i < ctrl->queue_count; i++)
2025 		nvme_tcp_free_queue(ctrl, i);
2026 }
2027 
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)2028 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
2029 {
2030 	int i;
2031 
2032 	for (i = 1; i < ctrl->queue_count; i++)
2033 		nvme_tcp_stop_queue(ctrl, i);
2034 }
2035 
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)2036 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
2037 				    int first, int last)
2038 {
2039 	int i, ret;
2040 
2041 	for (i = first; i < last; i++) {
2042 		ret = nvme_tcp_start_queue(ctrl, i);
2043 		if (ret)
2044 			goto out_stop_queues;
2045 	}
2046 
2047 	return 0;
2048 
2049 out_stop_queues:
2050 	for (i--; i >= first; i--)
2051 		nvme_tcp_stop_queue(ctrl, i);
2052 	return ret;
2053 }
2054 
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)2055 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
2056 {
2057 	int ret;
2058 	key_serial_t pskid = 0;
2059 
2060 	if (nvme_tcp_tls_configured(ctrl)) {
2061 		if (ctrl->opts->tls_key)
2062 			pskid = key_serial(ctrl->opts->tls_key);
2063 		else {
2064 			pskid = nvme_tls_psk_default(ctrl->opts->keyring,
2065 						      ctrl->opts->host->nqn,
2066 						      ctrl->opts->subsysnqn);
2067 			if (!pskid) {
2068 				dev_err(ctrl->device, "no valid PSK found\n");
2069 				return -ENOKEY;
2070 			}
2071 		}
2072 	}
2073 
2074 	ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2075 	if (ret)
2076 		return ret;
2077 
2078 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2079 	if (ret)
2080 		goto out_free_queue;
2081 
2082 	return 0;
2083 
2084 out_free_queue:
2085 	nvme_tcp_free_queue(ctrl, 0);
2086 	return ret;
2087 }
2088 
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2089 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2090 {
2091 	int i, ret;
2092 
2093 	if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
2094 		dev_err(ctrl->device, "no PSK negotiated\n");
2095 		return -ENOKEY;
2096 	}
2097 
2098 	for (i = 1; i < ctrl->queue_count; i++) {
2099 		ret = nvme_tcp_alloc_queue(ctrl, i,
2100 				ctrl->tls_pskid);
2101 		if (ret)
2102 			goto out_free_queues;
2103 	}
2104 
2105 	return 0;
2106 
2107 out_free_queues:
2108 	for (i--; i >= 1; i--)
2109 		nvme_tcp_free_queue(ctrl, i);
2110 
2111 	return ret;
2112 }
2113 
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2114 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2115 {
2116 	unsigned int nr_io_queues;
2117 	int ret;
2118 
2119 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2120 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2121 	if (ret)
2122 		return ret;
2123 
2124 	if (nr_io_queues == 0) {
2125 		dev_err(ctrl->device,
2126 			"unable to set any I/O queues\n");
2127 		return -ENOMEM;
2128 	}
2129 
2130 	ctrl->queue_count = nr_io_queues + 1;
2131 	dev_info(ctrl->device,
2132 		"creating %d I/O queues.\n", nr_io_queues);
2133 
2134 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2135 			   to_tcp_ctrl(ctrl)->io_queues);
2136 	return __nvme_tcp_alloc_io_queues(ctrl);
2137 }
2138 
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)2139 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2140 {
2141 	int ret, nr_queues;
2142 
2143 	ret = nvme_tcp_alloc_io_queues(ctrl);
2144 	if (ret)
2145 		return ret;
2146 
2147 	if (new) {
2148 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2149 				&nvme_tcp_mq_ops,
2150 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2151 				sizeof(struct nvme_tcp_request));
2152 		if (ret)
2153 			goto out_free_io_queues;
2154 	}
2155 
2156 	/*
2157 	 * Only start IO queues for which we have allocated the tagset
2158 	 * and limitted it to the available queues. On reconnects, the
2159 	 * queue number might have changed.
2160 	 */
2161 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2162 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2163 	if (ret)
2164 		goto out_cleanup_connect_q;
2165 
2166 	if (!new) {
2167 		nvme_start_freeze(ctrl);
2168 		nvme_unquiesce_io_queues(ctrl);
2169 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2170 			/*
2171 			 * If we timed out waiting for freeze we are likely to
2172 			 * be stuck.  Fail the controller initialization just
2173 			 * to be safe.
2174 			 */
2175 			ret = -ENODEV;
2176 			nvme_unfreeze(ctrl);
2177 			goto out_wait_freeze_timed_out;
2178 		}
2179 		blk_mq_update_nr_hw_queues(ctrl->tagset,
2180 			ctrl->queue_count - 1);
2181 		nvme_unfreeze(ctrl);
2182 	}
2183 
2184 	/*
2185 	 * If the number of queues has increased (reconnect case)
2186 	 * start all new queues now.
2187 	 */
2188 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2189 				       ctrl->tagset->nr_hw_queues + 1);
2190 	if (ret)
2191 		goto out_wait_freeze_timed_out;
2192 
2193 	return 0;
2194 
2195 out_wait_freeze_timed_out:
2196 	nvme_quiesce_io_queues(ctrl);
2197 	nvme_sync_io_queues(ctrl);
2198 	nvme_tcp_stop_io_queues(ctrl);
2199 out_cleanup_connect_q:
2200 	nvme_cancel_tagset(ctrl);
2201 	if (new)
2202 		nvme_remove_io_tag_set(ctrl);
2203 out_free_io_queues:
2204 	nvme_tcp_free_io_queues(ctrl);
2205 	return ret;
2206 }
2207 
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)2208 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2209 {
2210 	int error;
2211 
2212 	error = nvme_tcp_alloc_admin_queue(ctrl);
2213 	if (error)
2214 		return error;
2215 
2216 	if (new) {
2217 		error = nvme_alloc_admin_tag_set(ctrl,
2218 				&to_tcp_ctrl(ctrl)->admin_tag_set,
2219 				&nvme_tcp_admin_mq_ops,
2220 				sizeof(struct nvme_tcp_request));
2221 		if (error)
2222 			goto out_free_queue;
2223 	}
2224 
2225 	error = nvme_tcp_start_queue(ctrl, 0);
2226 	if (error)
2227 		goto out_cleanup_tagset;
2228 
2229 	error = nvme_enable_ctrl(ctrl);
2230 	if (error)
2231 		goto out_stop_queue;
2232 
2233 	nvme_unquiesce_admin_queue(ctrl);
2234 
2235 	error = nvme_init_ctrl_finish(ctrl, false);
2236 	if (error)
2237 		goto out_quiesce_queue;
2238 
2239 	return 0;
2240 
2241 out_quiesce_queue:
2242 	nvme_quiesce_admin_queue(ctrl);
2243 	blk_sync_queue(ctrl->admin_q);
2244 out_stop_queue:
2245 	nvme_tcp_stop_queue(ctrl, 0);
2246 	nvme_cancel_admin_tagset(ctrl);
2247 out_cleanup_tagset:
2248 	if (new)
2249 		nvme_remove_admin_tag_set(ctrl);
2250 out_free_queue:
2251 	nvme_tcp_free_admin_queue(ctrl);
2252 	return error;
2253 }
2254 
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2255 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2256 		bool remove)
2257 {
2258 	nvme_quiesce_admin_queue(ctrl);
2259 	blk_sync_queue(ctrl->admin_q);
2260 	nvme_tcp_stop_queue(ctrl, 0);
2261 	nvme_cancel_admin_tagset(ctrl);
2262 	if (remove) {
2263 		nvme_unquiesce_admin_queue(ctrl);
2264 		nvme_remove_admin_tag_set(ctrl);
2265 	}
2266 	nvme_tcp_free_admin_queue(ctrl);
2267 	if (ctrl->tls_pskid) {
2268 		dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2269 			ctrl->tls_pskid);
2270 		ctrl->tls_pskid = 0;
2271 	}
2272 }
2273 
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2274 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2275 		bool remove)
2276 {
2277 	if (ctrl->queue_count <= 1)
2278 		return;
2279 	nvme_quiesce_io_queues(ctrl);
2280 	nvme_sync_io_queues(ctrl);
2281 	nvme_tcp_stop_io_queues(ctrl);
2282 	nvme_cancel_tagset(ctrl);
2283 	if (remove) {
2284 		nvme_unquiesce_io_queues(ctrl);
2285 		nvme_remove_io_tag_set(ctrl);
2286 	}
2287 	nvme_tcp_free_io_queues(ctrl);
2288 }
2289 
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl,int status)2290 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2291 		int status)
2292 {
2293 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2294 
2295 	/* If we are resetting/deleting then do nothing */
2296 	if (state != NVME_CTRL_CONNECTING) {
2297 		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2298 		return;
2299 	}
2300 
2301 	if (nvmf_should_reconnect(ctrl, status)) {
2302 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2303 			ctrl->opts->reconnect_delay);
2304 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2305 				ctrl->opts->reconnect_delay * HZ);
2306 	} else {
2307 		dev_info(ctrl->device, "Removing controller (%d)...\n",
2308 			 status);
2309 		nvme_delete_ctrl(ctrl);
2310 	}
2311 }
2312 
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2313 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2314 {
2315 	struct nvmf_ctrl_options *opts = ctrl->opts;
2316 	int ret;
2317 
2318 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2319 	if (ret)
2320 		return ret;
2321 
2322 	if (ctrl->icdoff) {
2323 		ret = -EOPNOTSUPP;
2324 		dev_err(ctrl->device, "icdoff is not supported!\n");
2325 		goto destroy_admin;
2326 	}
2327 
2328 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2329 		ret = -EOPNOTSUPP;
2330 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2331 		goto destroy_admin;
2332 	}
2333 
2334 	if (opts->queue_size > ctrl->sqsize + 1)
2335 		dev_warn(ctrl->device,
2336 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2337 			opts->queue_size, ctrl->sqsize + 1);
2338 
2339 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2340 		dev_warn(ctrl->device,
2341 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2342 			ctrl->sqsize + 1, ctrl->maxcmd);
2343 		ctrl->sqsize = ctrl->maxcmd - 1;
2344 	}
2345 
2346 	if (ctrl->queue_count > 1) {
2347 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2348 		if (ret)
2349 			goto destroy_admin;
2350 	}
2351 
2352 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2353 		/*
2354 		 * state change failure is ok if we started ctrl delete,
2355 		 * unless we're during creation of a new controller to
2356 		 * avoid races with teardown flow.
2357 		 */
2358 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2359 
2360 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2361 			     state != NVME_CTRL_DELETING_NOIO);
2362 		WARN_ON_ONCE(new);
2363 		ret = -EINVAL;
2364 		goto destroy_io;
2365 	}
2366 
2367 	nvme_start_ctrl(ctrl);
2368 	return 0;
2369 
2370 destroy_io:
2371 	if (ctrl->queue_count > 1) {
2372 		nvme_quiesce_io_queues(ctrl);
2373 		nvme_sync_io_queues(ctrl);
2374 		nvme_tcp_stop_io_queues(ctrl);
2375 		nvme_cancel_tagset(ctrl);
2376 		if (new)
2377 			nvme_remove_io_tag_set(ctrl);
2378 		nvme_tcp_free_io_queues(ctrl);
2379 	}
2380 destroy_admin:
2381 	nvme_stop_keep_alive(ctrl);
2382 	nvme_tcp_teardown_admin_queue(ctrl, new);
2383 	return ret;
2384 }
2385 
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2386 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2387 {
2388 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2389 			struct nvme_tcp_ctrl, connect_work);
2390 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2391 	int ret;
2392 
2393 	++ctrl->nr_reconnects;
2394 
2395 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2396 	if (ret)
2397 		goto requeue;
2398 
2399 	dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2400 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2401 
2402 	ctrl->nr_reconnects = 0;
2403 
2404 	return;
2405 
2406 requeue:
2407 	dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2408 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2409 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2410 }
2411 
nvme_tcp_error_recovery_work(struct work_struct * work)2412 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2413 {
2414 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2415 				struct nvme_tcp_ctrl, err_work);
2416 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2417 
2418 	nvme_stop_keep_alive(ctrl);
2419 	flush_work(&ctrl->async_event_work);
2420 	nvme_tcp_teardown_io_queues(ctrl, false);
2421 	/* unquiesce to fail fast pending requests */
2422 	nvme_unquiesce_io_queues(ctrl);
2423 	nvme_tcp_teardown_admin_queue(ctrl, false);
2424 	nvme_unquiesce_admin_queue(ctrl);
2425 	nvme_auth_stop(ctrl);
2426 
2427 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2428 		/* state change failure is ok if we started ctrl delete */
2429 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2430 
2431 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2432 			     state != NVME_CTRL_DELETING_NOIO);
2433 		return;
2434 	}
2435 
2436 	nvme_tcp_reconnect_or_remove(ctrl, 0);
2437 }
2438 
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2439 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2440 {
2441 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2442 	nvme_quiesce_admin_queue(ctrl);
2443 	nvme_disable_ctrl(ctrl, shutdown);
2444 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2445 }
2446 
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2447 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2448 {
2449 	nvme_tcp_teardown_ctrl(ctrl, true);
2450 }
2451 
nvme_reset_ctrl_work(struct work_struct * work)2452 static void nvme_reset_ctrl_work(struct work_struct *work)
2453 {
2454 	struct nvme_ctrl *ctrl =
2455 		container_of(work, struct nvme_ctrl, reset_work);
2456 	int ret;
2457 
2458 	nvme_stop_ctrl(ctrl);
2459 	nvme_tcp_teardown_ctrl(ctrl, false);
2460 
2461 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2462 		/* state change failure is ok if we started ctrl delete */
2463 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2464 
2465 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2466 			     state != NVME_CTRL_DELETING_NOIO);
2467 		return;
2468 	}
2469 
2470 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2471 	if (ret)
2472 		goto out_fail;
2473 
2474 	return;
2475 
2476 out_fail:
2477 	++ctrl->nr_reconnects;
2478 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2479 }
2480 
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2481 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2482 {
2483 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2484 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2485 }
2486 
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2487 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2488 {
2489 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2490 
2491 	if (list_empty(&ctrl->list))
2492 		goto free_ctrl;
2493 
2494 	mutex_lock(&nvme_tcp_ctrl_mutex);
2495 	list_del(&ctrl->list);
2496 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2497 
2498 	nvmf_free_options(nctrl->opts);
2499 free_ctrl:
2500 	kfree(ctrl->queues);
2501 	kfree(ctrl);
2502 }
2503 
nvme_tcp_set_sg_null(struct nvme_command * c)2504 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2505 {
2506 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2507 
2508 	sg->addr = 0;
2509 	sg->length = 0;
2510 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2511 			NVME_SGL_FMT_TRANSPORT_A;
2512 }
2513 
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2514 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2515 		struct nvme_command *c, u32 data_len)
2516 {
2517 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2518 
2519 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2520 	sg->length = cpu_to_le32(data_len);
2521 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2522 }
2523 
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2524 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2525 		u32 data_len)
2526 {
2527 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2528 
2529 	sg->addr = 0;
2530 	sg->length = cpu_to_le32(data_len);
2531 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2532 			NVME_SGL_FMT_TRANSPORT_A;
2533 }
2534 
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2535 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2536 {
2537 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2538 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2539 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2540 	struct nvme_command *cmd = &pdu->cmd;
2541 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2542 
2543 	memset(pdu, 0, sizeof(*pdu));
2544 	pdu->hdr.type = nvme_tcp_cmd;
2545 	if (queue->hdr_digest)
2546 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2547 	pdu->hdr.hlen = sizeof(*pdu);
2548 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2549 
2550 	cmd->common.opcode = nvme_admin_async_event;
2551 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2552 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2553 	nvme_tcp_set_sg_null(cmd);
2554 
2555 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2556 	ctrl->async_req.offset = 0;
2557 	ctrl->async_req.curr_bio = NULL;
2558 	ctrl->async_req.data_len = 0;
2559 
2560 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2561 }
2562 
nvme_tcp_complete_timed_out(struct request * rq)2563 static void nvme_tcp_complete_timed_out(struct request *rq)
2564 {
2565 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2566 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2567 
2568 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2569 	nvmf_complete_timed_out_request(rq);
2570 }
2571 
nvme_tcp_timeout(struct request * rq)2572 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2573 {
2574 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2575 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2576 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2577 	struct nvme_command *cmd = &pdu->cmd;
2578 	int qid = nvme_tcp_queue_id(req->queue);
2579 
2580 	dev_warn(ctrl->device,
2581 		 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2582 		 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2583 		 nvme_fabrics_opcode_str(qid, cmd), qid);
2584 
2585 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2586 		/*
2587 		 * If we are resetting, connecting or deleting we should
2588 		 * complete immediately because we may block controller
2589 		 * teardown or setup sequence
2590 		 * - ctrl disable/shutdown fabrics requests
2591 		 * - connect requests
2592 		 * - initialization admin requests
2593 		 * - I/O requests that entered after unquiescing and
2594 		 *   the controller stopped responding
2595 		 *
2596 		 * All other requests should be cancelled by the error
2597 		 * recovery work, so it's fine that we fail it here.
2598 		 */
2599 		nvme_tcp_complete_timed_out(rq);
2600 		return BLK_EH_DONE;
2601 	}
2602 
2603 	/*
2604 	 * LIVE state should trigger the normal error recovery which will
2605 	 * handle completing this request.
2606 	 */
2607 	nvme_tcp_error_recovery(ctrl);
2608 	return BLK_EH_RESET_TIMER;
2609 }
2610 
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2611 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2612 			struct request *rq)
2613 {
2614 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2615 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2616 	struct nvme_command *c = &pdu->cmd;
2617 
2618 	c->common.flags |= NVME_CMD_SGL_METABUF;
2619 
2620 	if (!blk_rq_nr_phys_segments(rq))
2621 		nvme_tcp_set_sg_null(c);
2622 	else if (rq_data_dir(rq) == WRITE &&
2623 	    req->data_len <= nvme_tcp_inline_data_size(req))
2624 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2625 	else
2626 		nvme_tcp_set_sg_host_data(c, req->data_len);
2627 
2628 	return 0;
2629 }
2630 
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2631 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2632 		struct request *rq)
2633 {
2634 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2635 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2636 	struct nvme_tcp_queue *queue = req->queue;
2637 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2638 	blk_status_t ret;
2639 
2640 	ret = nvme_setup_cmd(ns, rq);
2641 	if (ret)
2642 		return ret;
2643 
2644 	req->state = NVME_TCP_SEND_CMD_PDU;
2645 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2646 	req->offset = 0;
2647 	req->data_sent = 0;
2648 	req->pdu_len = 0;
2649 	req->pdu_sent = 0;
2650 	req->h2cdata_left = 0;
2651 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2652 				blk_rq_payload_bytes(rq) : 0;
2653 	req->curr_bio = rq->bio;
2654 	if (req->curr_bio && req->data_len)
2655 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2656 
2657 	if (rq_data_dir(rq) == WRITE &&
2658 	    req->data_len <= nvme_tcp_inline_data_size(req))
2659 		req->pdu_len = req->data_len;
2660 
2661 	pdu->hdr.type = nvme_tcp_cmd;
2662 	pdu->hdr.flags = 0;
2663 	if (queue->hdr_digest)
2664 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2665 	if (queue->data_digest && req->pdu_len) {
2666 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2667 		ddgst = nvme_tcp_ddgst_len(queue);
2668 	}
2669 	pdu->hdr.hlen = sizeof(*pdu);
2670 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2671 	pdu->hdr.plen =
2672 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2673 
2674 	ret = nvme_tcp_map_data(queue, rq);
2675 	if (unlikely(ret)) {
2676 		nvme_cleanup_cmd(rq);
2677 		dev_err(queue->ctrl->ctrl.device,
2678 			"Failed to map data (%d)\n", ret);
2679 		return ret;
2680 	}
2681 
2682 	return 0;
2683 }
2684 
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2685 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2686 {
2687 	struct nvme_tcp_queue *queue = hctx->driver_data;
2688 
2689 	if (!llist_empty(&queue->req_list))
2690 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2691 }
2692 
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2693 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2694 		const struct blk_mq_queue_data *bd)
2695 {
2696 	struct nvme_ns *ns = hctx->queue->queuedata;
2697 	struct nvme_tcp_queue *queue = hctx->driver_data;
2698 	struct request *rq = bd->rq;
2699 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2700 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2701 	blk_status_t ret;
2702 
2703 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2704 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2705 
2706 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2707 	if (unlikely(ret))
2708 		return ret;
2709 
2710 	nvme_start_request(rq);
2711 
2712 	nvme_tcp_queue_request(req, true, bd->last);
2713 
2714 	return BLK_STS_OK;
2715 }
2716 
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2717 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2718 {
2719 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2720 
2721 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2722 }
2723 
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2724 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2725 {
2726 	struct nvme_tcp_queue *queue = hctx->driver_data;
2727 	struct sock *sk = queue->sock->sk;
2728 	int ret;
2729 
2730 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2731 		return 0;
2732 
2733 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2734 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2735 		sk_busy_loop(sk, true);
2736 	ret = nvme_tcp_try_recv(queue);
2737 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2738 	return ret < 0 ? ret : queue->nr_cqe;
2739 }
2740 
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2741 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2742 {
2743 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2744 	struct sockaddr_storage src_addr;
2745 	int ret, len;
2746 
2747 	len = nvmf_get_address(ctrl, buf, size);
2748 
2749 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2750 		return len;
2751 
2752 	mutex_lock(&queue->queue_lock);
2753 
2754 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2755 	if (ret > 0) {
2756 		if (len > 0)
2757 			len--; /* strip trailing newline */
2758 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2759 				(len) ? "," : "", &src_addr);
2760 	}
2761 
2762 	mutex_unlock(&queue->queue_lock);
2763 
2764 	return len;
2765 }
2766 
2767 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2768 	.queue_rq	= nvme_tcp_queue_rq,
2769 	.commit_rqs	= nvme_tcp_commit_rqs,
2770 	.complete	= nvme_complete_rq,
2771 	.init_request	= nvme_tcp_init_request,
2772 	.exit_request	= nvme_tcp_exit_request,
2773 	.init_hctx	= nvme_tcp_init_hctx,
2774 	.timeout	= nvme_tcp_timeout,
2775 	.map_queues	= nvme_tcp_map_queues,
2776 	.poll		= nvme_tcp_poll,
2777 };
2778 
2779 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2780 	.queue_rq	= nvme_tcp_queue_rq,
2781 	.complete	= nvme_complete_rq,
2782 	.init_request	= nvme_tcp_init_request,
2783 	.exit_request	= nvme_tcp_exit_request,
2784 	.init_hctx	= nvme_tcp_init_admin_hctx,
2785 	.timeout	= nvme_tcp_timeout,
2786 };
2787 
2788 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2789 	.name			= "tcp",
2790 	.module			= THIS_MODULE,
2791 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2792 	.reg_read32		= nvmf_reg_read32,
2793 	.reg_read64		= nvmf_reg_read64,
2794 	.reg_write32		= nvmf_reg_write32,
2795 	.subsystem_reset	= nvmf_subsystem_reset,
2796 	.free_ctrl		= nvme_tcp_free_ctrl,
2797 	.submit_async_event	= nvme_tcp_submit_async_event,
2798 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2799 	.get_address		= nvme_tcp_get_address,
2800 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2801 };
2802 
2803 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2804 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2805 {
2806 	struct nvme_tcp_ctrl *ctrl;
2807 	bool found = false;
2808 
2809 	mutex_lock(&nvme_tcp_ctrl_mutex);
2810 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2811 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2812 		if (found)
2813 			break;
2814 	}
2815 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2816 
2817 	return found;
2818 }
2819 
nvme_tcp_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2820 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2821 		struct nvmf_ctrl_options *opts)
2822 {
2823 	struct nvme_tcp_ctrl *ctrl;
2824 	int ret;
2825 
2826 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2827 	if (!ctrl)
2828 		return ERR_PTR(-ENOMEM);
2829 
2830 	INIT_LIST_HEAD(&ctrl->list);
2831 	ctrl->ctrl.opts = opts;
2832 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2833 				opts->nr_poll_queues + 1;
2834 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2835 	ctrl->ctrl.kato = opts->kato;
2836 
2837 	INIT_DELAYED_WORK(&ctrl->connect_work,
2838 			nvme_tcp_reconnect_ctrl_work);
2839 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2840 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2841 
2842 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2843 		opts->trsvcid =
2844 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2845 		if (!opts->trsvcid) {
2846 			ret = -ENOMEM;
2847 			goto out_free_ctrl;
2848 		}
2849 		opts->mask |= NVMF_OPT_TRSVCID;
2850 	}
2851 
2852 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2853 			opts->traddr, opts->trsvcid, &ctrl->addr);
2854 	if (ret) {
2855 		pr_err("malformed address passed: %s:%s\n",
2856 			opts->traddr, opts->trsvcid);
2857 		goto out_free_ctrl;
2858 	}
2859 
2860 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2861 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2862 			opts->host_traddr, NULL, &ctrl->src_addr);
2863 		if (ret) {
2864 			pr_err("malformed src address passed: %s\n",
2865 			       opts->host_traddr);
2866 			goto out_free_ctrl;
2867 		}
2868 	}
2869 
2870 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2871 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2872 			pr_err("invalid interface passed: %s\n",
2873 			       opts->host_iface);
2874 			ret = -ENODEV;
2875 			goto out_free_ctrl;
2876 		}
2877 	}
2878 
2879 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2880 		ret = -EALREADY;
2881 		goto out_free_ctrl;
2882 	}
2883 
2884 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2885 				GFP_KERNEL);
2886 	if (!ctrl->queues) {
2887 		ret = -ENOMEM;
2888 		goto out_free_ctrl;
2889 	}
2890 
2891 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2892 	if (ret)
2893 		goto out_kfree_queues;
2894 
2895 	return ctrl;
2896 out_kfree_queues:
2897 	kfree(ctrl->queues);
2898 out_free_ctrl:
2899 	kfree(ctrl);
2900 	return ERR_PTR(ret);
2901 }
2902 
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2903 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2904 		struct nvmf_ctrl_options *opts)
2905 {
2906 	struct nvme_tcp_ctrl *ctrl;
2907 	int ret;
2908 
2909 	ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2910 	if (IS_ERR(ctrl))
2911 		return ERR_CAST(ctrl);
2912 
2913 	ret = nvme_add_ctrl(&ctrl->ctrl);
2914 	if (ret)
2915 		goto out_put_ctrl;
2916 
2917 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2918 		WARN_ON_ONCE(1);
2919 		ret = -EINTR;
2920 		goto out_uninit_ctrl;
2921 	}
2922 
2923 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2924 	if (ret)
2925 		goto out_uninit_ctrl;
2926 
2927 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2928 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2929 
2930 	mutex_lock(&nvme_tcp_ctrl_mutex);
2931 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2932 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2933 
2934 	return &ctrl->ctrl;
2935 
2936 out_uninit_ctrl:
2937 	nvme_uninit_ctrl(&ctrl->ctrl);
2938 out_put_ctrl:
2939 	nvme_put_ctrl(&ctrl->ctrl);
2940 	if (ret > 0)
2941 		ret = -EIO;
2942 	return ERR_PTR(ret);
2943 }
2944 
2945 static struct nvmf_transport_ops nvme_tcp_transport = {
2946 	.name		= "tcp",
2947 	.module		= THIS_MODULE,
2948 	.required_opts	= NVMF_OPT_TRADDR,
2949 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2950 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2951 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2952 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2953 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2954 			  NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2955 	.create_ctrl	= nvme_tcp_create_ctrl,
2956 };
2957 
nvme_tcp_init_module(void)2958 static int __init nvme_tcp_init_module(void)
2959 {
2960 	unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2961 	int cpu;
2962 
2963 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2964 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2965 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2966 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2967 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2968 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2969 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2970 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2971 
2972 	if (wq_unbound)
2973 		wq_flags |= WQ_UNBOUND;
2974 
2975 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2976 	if (!nvme_tcp_wq)
2977 		return -ENOMEM;
2978 
2979 	for_each_possible_cpu(cpu)
2980 		atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
2981 
2982 	nvmf_register_transport(&nvme_tcp_transport);
2983 	return 0;
2984 }
2985 
nvme_tcp_cleanup_module(void)2986 static void __exit nvme_tcp_cleanup_module(void)
2987 {
2988 	struct nvme_tcp_ctrl *ctrl;
2989 
2990 	nvmf_unregister_transport(&nvme_tcp_transport);
2991 
2992 	mutex_lock(&nvme_tcp_ctrl_mutex);
2993 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2994 		nvme_delete_ctrl(&ctrl->ctrl);
2995 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2996 	flush_workqueue(nvme_delete_wq);
2997 
2998 	destroy_workqueue(nvme_tcp_wq);
2999 }
3000 
3001 module_init(nvme_tcp_init_module);
3002 module_exit(nvme_tcp_cleanup_module);
3003 
3004 MODULE_DESCRIPTION("NVMe host TCP transport driver");
3005 MODULE_LICENSE("GPL v2");
3006