xref: /linux/kernel/workqueue.c (revision 2b60145734a0e5a4b73952a540928d2c4f4fed64)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130 
131 /*
132  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134  * msecs_to_jiffies() can't be an initializer.
135  */
136 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS	10
138 
139 /*
140  * Structure fields follow one of the following exclusion rules.
141  *
142  * I: Modifiable by initialization/destruction paths and read-only for
143  *    everyone else.
144  *
145  * P: Preemption protected.  Disabling preemption is enough and should
146  *    only be modified and accessed from the local cpu.
147  *
148  * L: pool->lock protected.  Access with pool->lock held.
149  *
150  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151  *     reads.
152  *
153  * K: Only modified by worker while holding pool->lock. Can be safely read by
154  *    self, while holding pool->lock or from IRQ context if %current is the
155  *    kworker.
156  *
157  * S: Only modified by worker self.
158  *
159  * A: wq_pool_attach_mutex protected.
160  *
161  * PL: wq_pool_mutex protected.
162  *
163  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
164  *
165  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
166  *
167  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
168  *      RCU for reads.
169  *
170  * WQ: wq->mutex protected.
171  *
172  * WR: wq->mutex protected for writes.  RCU protected for reads.
173  *
174  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175  *     with READ_ONCE() without locking.
176  *
177  * MD: wq_mayday_lock protected.
178  *
179  * WD: Used internally by the watchdog.
180  */
181 
182 /* struct worker is defined in workqueue_internal.h */
183 
184 struct worker_pool {
185 	raw_spinlock_t		lock;		/* the pool lock */
186 	int			cpu;		/* I: the associated cpu */
187 	int			node;		/* I: the associated node ID */
188 	int			id;		/* I: pool ID */
189 	unsigned int		flags;		/* L: flags */
190 
191 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
192 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
193 
194 	/*
195 	 * The counter is incremented in a process context on the associated CPU
196 	 * w/ preemption disabled, and decremented or reset in the same context
197 	 * but w/ pool->lock held. The readers grab pool->lock and are
198 	 * guaranteed to see if the counter reached zero.
199 	 */
200 	int			nr_running;
201 
202 	struct list_head	worklist;	/* L: list of pending works */
203 
204 	int			nr_workers;	/* L: total number of workers */
205 	int			nr_idle;	/* L: currently idle workers */
206 
207 	struct list_head	idle_list;	/* L: list of idle workers */
208 	struct timer_list	idle_timer;	/* L: worker idle timeout */
209 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
210 
211 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
212 
213 	/* a workers is either on busy_hash or idle_list, or the manager */
214 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 						/* L: hash of busy workers */
216 
217 	struct worker		*manager;	/* L: purely informational */
218 	struct list_head	workers;	/* A: attached workers */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 #ifdef CONFIG_PREEMPT_RT
226 	spinlock_t		cb_lock;	/* BH worker cancel lock */
227 #endif
228 	/*
229 	 * Destruction of pool is RCU protected to allow dereferences
230 	 * from get_work_pool().
231 	 */
232 	struct rcu_head		rcu;
233 };
234 
235 /*
236  * Per-pool_workqueue statistics. These can be monitored using
237  * tools/workqueue/wq_monitor.py.
238  */
239 enum pool_workqueue_stats {
240 	PWQ_STAT_STARTED,	/* work items started execution */
241 	PWQ_STAT_COMPLETED,	/* work items completed execution */
242 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
243 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
244 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
245 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
246 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
247 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
248 
249 	PWQ_NR_STATS,
250 };
251 
252 /*
253  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
254  * of work_struct->data are used for flags and the remaining high bits
255  * point to the pwq; thus, pwqs need to be aligned at two's power of the
256  * number of flag bits.
257  */
258 struct pool_workqueue {
259 	struct worker_pool	*pool;		/* I: the associated pool */
260 	struct workqueue_struct *wq;		/* I: the owning workqueue */
261 	int			work_color;	/* L: current color */
262 	int			flush_color;	/* L: flushing color */
263 	int			refcnt;		/* L: reference count */
264 	int			nr_in_flight[WORK_NR_COLORS];
265 						/* L: nr of in_flight works */
266 	bool			plugged;	/* L: execution suspended */
267 
268 	/*
269 	 * nr_active management and WORK_STRUCT_INACTIVE:
270 	 *
271 	 * When pwq->nr_active >= max_active, new work item is queued to
272 	 * pwq->inactive_works instead of pool->worklist and marked with
273 	 * WORK_STRUCT_INACTIVE.
274 	 *
275 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
276 	 * nr_active and all work items in pwq->inactive_works are marked with
277 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
278 	 * in pwq->inactive_works. Some of them are ready to run in
279 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
280 	 * wq_barrier which is used for flush_work() and should not participate
281 	 * in nr_active. For non-barrier work item, it is marked with
282 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
283 	 */
284 	int			nr_active;	/* L: nr of active works */
285 	struct list_head	inactive_works;	/* L: inactive works */
286 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
287 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
288 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
289 
290 	u64			stats[PWQ_NR_STATS];
291 
292 	/*
293 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
294 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
295 	 * RCU protected so that the first pwq can be determined without
296 	 * grabbing wq->mutex.
297 	 */
298 	struct kthread_work	release_work;
299 	struct rcu_head		rcu;
300 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
301 
302 /*
303  * Structure used to wait for workqueue flush.
304  */
305 struct wq_flusher {
306 	struct list_head	list;		/* WQ: list of flushers */
307 	int			flush_color;	/* WQ: flush color waiting for */
308 	struct completion	done;		/* flush completion */
309 };
310 
311 struct wq_device;
312 
313 /*
314  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
315  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
316  * As sharing a single nr_active across multiple sockets can be very expensive,
317  * the counting and enforcement is per NUMA node.
318  *
319  * The following struct is used to enforce per-node max_active. When a pwq wants
320  * to start executing a work item, it should increment ->nr using
321  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
322  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
323  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
324  * round-robin order.
325  */
326 struct wq_node_nr_active {
327 	int			max;		/* per-node max_active */
328 	atomic_t		nr;		/* per-node nr_active */
329 	raw_spinlock_t		lock;		/* nests inside pool locks */
330 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
331 };
332 
333 /*
334  * The externally visible workqueue.  It relays the issued work items to
335  * the appropriate worker_pool through its pool_workqueues.
336  */
337 struct workqueue_struct {
338 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
339 	struct list_head	list;		/* PR: list of all workqueues */
340 
341 	struct mutex		mutex;		/* protects this wq */
342 	int			work_color;	/* WQ: current work color */
343 	int			flush_color;	/* WQ: current flush color */
344 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
345 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
346 	struct list_head	flusher_queue;	/* WQ: flush waiters */
347 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
348 
349 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
350 	struct worker		*rescuer;	/* MD: rescue worker */
351 
352 	int			nr_drainers;	/* WQ: drain in progress */
353 
354 	/* See alloc_workqueue() function comment for info on min/max_active */
355 	int			max_active;	/* WO: max active works */
356 	int			min_active;	/* WO: min active works */
357 	int			saved_max_active; /* WQ: saved max_active */
358 	int			saved_min_active; /* WQ: saved min_active */
359 
360 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
361 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
362 
363 #ifdef CONFIG_SYSFS
364 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
365 #endif
366 #ifdef CONFIG_LOCKDEP
367 	char			*lock_name;
368 	struct lock_class_key	key;
369 	struct lockdep_map	__lockdep_map;
370 	struct lockdep_map	*lockdep_map;
371 #endif
372 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
373 
374 	/*
375 	 * Destruction of workqueue_struct is RCU protected to allow walking
376 	 * the workqueues list without grabbing wq_pool_mutex.
377 	 * This is used to dump all workqueues from sysrq.
378 	 */
379 	struct rcu_head		rcu;
380 
381 	/* hot fields used during command issue, aligned to cacheline */
382 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
383 	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
384 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
385 };
386 
387 /*
388  * Each pod type describes how CPUs should be grouped for unbound workqueues.
389  * See the comment above workqueue_attrs->affn_scope.
390  */
391 struct wq_pod_type {
392 	int			nr_pods;	/* number of pods */
393 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
394 	int			*pod_node;	/* pod -> node */
395 	int			*cpu_pod;	/* cpu -> pod */
396 };
397 
398 struct work_offq_data {
399 	u32			pool_id;
400 	u32			disable;
401 	u32			flags;
402 };
403 
404 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
405 	[WQ_AFFN_DFL]		= "default",
406 	[WQ_AFFN_CPU]		= "cpu",
407 	[WQ_AFFN_SMT]		= "smt",
408 	[WQ_AFFN_CACHE]		= "cache",
409 	[WQ_AFFN_NUMA]		= "numa",
410 	[WQ_AFFN_SYSTEM]	= "system",
411 };
412 
413 /*
414  * Per-cpu work items which run for longer than the following threshold are
415  * automatically considered CPU intensive and excluded from concurrency
416  * management to prevent them from noticeably delaying other per-cpu work items.
417  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
418  * The actual value is initialized in wq_cpu_intensive_thresh_init().
419  */
420 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
421 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
422 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
423 static unsigned int wq_cpu_intensive_warning_thresh = 4;
424 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
425 #endif
426 
427 /* see the comment above the definition of WQ_POWER_EFFICIENT */
428 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
429 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
430 
431 static bool wq_online;			/* can kworkers be created yet? */
432 static bool wq_topo_initialized __read_mostly = false;
433 
434 static struct kmem_cache *pwq_cache;
435 
436 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
437 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
438 
439 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
440 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
441 
442 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
443 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
444 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
445 /* wait for manager to go away */
446 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
447 
448 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
449 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
450 
451 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
452 static cpumask_var_t wq_online_cpumask;
453 
454 /* PL&A: allowable cpus for unbound wqs and work items */
455 static cpumask_var_t wq_unbound_cpumask;
456 
457 /* PL: user requested unbound cpumask via sysfs */
458 static cpumask_var_t wq_requested_unbound_cpumask;
459 
460 /* PL: isolated cpumask to be excluded from unbound cpumask */
461 static cpumask_var_t wq_isolated_cpumask;
462 
463 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
464 static struct cpumask wq_cmdline_cpumask __initdata;
465 
466 /* CPU where unbound work was last round robin scheduled from this CPU */
467 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
468 
469 /*
470  * Local execution of unbound work items is no longer guaranteed.  The
471  * following always forces round-robin CPU selection on unbound work items
472  * to uncover usages which depend on it.
473  */
474 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
475 static bool wq_debug_force_rr_cpu = true;
476 #else
477 static bool wq_debug_force_rr_cpu = false;
478 #endif
479 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
480 
481 /* to raise softirq for the BH worker pools on other CPUs */
482 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
483 
484 /* the BH worker pools */
485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
486 
487 /* the per-cpu worker pools */
488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
489 
490 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
491 
492 /* PL: hash of all unbound pools keyed by pool->attrs */
493 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
494 
495 /* I: attributes used when instantiating standard unbound pools on demand */
496 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
497 
498 /* I: attributes used when instantiating ordered pools on demand */
499 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
500 
501 /*
502  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
503  * process context while holding a pool lock. Bounce to a dedicated kthread
504  * worker to avoid A-A deadlocks.
505  */
506 static struct kthread_worker *pwq_release_worker __ro_after_init;
507 
508 struct workqueue_struct *system_wq __ro_after_init;
509 EXPORT_SYMBOL(system_wq);
510 struct workqueue_struct *system_percpu_wq __ro_after_init;
511 EXPORT_SYMBOL(system_percpu_wq);
512 struct workqueue_struct *system_highpri_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_highpri_wq);
514 struct workqueue_struct *system_long_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_long_wq);
516 struct workqueue_struct *system_unbound_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_unbound_wq);
518 struct workqueue_struct *system_dfl_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_dfl_wq);
520 struct workqueue_struct *system_freezable_wq __ro_after_init;
521 EXPORT_SYMBOL_GPL(system_freezable_wq);
522 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
523 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
524 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
525 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
526 struct workqueue_struct *system_bh_wq;
527 EXPORT_SYMBOL_GPL(system_bh_wq);
528 struct workqueue_struct *system_bh_highpri_wq;
529 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
530 
531 static int worker_thread(void *__worker);
532 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
533 static void show_pwq(struct pool_workqueue *pwq);
534 static void show_one_worker_pool(struct worker_pool *pool);
535 
536 #define CREATE_TRACE_POINTS
537 #include <trace/events/workqueue.h>
538 
539 #define assert_rcu_or_pool_mutex()					\
540 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
541 			 !lockdep_is_held(&wq_pool_mutex),		\
542 			 "RCU or wq_pool_mutex should be held")
543 
544 #define for_each_bh_worker_pool(pool, cpu)				\
545 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
546 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 	     (pool)++)
548 
549 #define for_each_cpu_worker_pool(pool, cpu)				\
550 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
551 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552 	     (pool)++)
553 
554 /**
555  * for_each_pool - iterate through all worker_pools in the system
556  * @pool: iteration cursor
557  * @pi: integer used for iteration
558  *
559  * This must be called either with wq_pool_mutex held or RCU read
560  * locked.  If the pool needs to be used beyond the locking in effect, the
561  * caller is responsible for guaranteeing that the pool stays online.
562  *
563  * The if/else clause exists only for the lockdep assertion and can be
564  * ignored.
565  */
566 #define for_each_pool(pool, pi)						\
567 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
568 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
569 		else
570 
571 /**
572  * for_each_pool_worker - iterate through all workers of a worker_pool
573  * @worker: iteration cursor
574  * @pool: worker_pool to iterate workers of
575  *
576  * This must be called with wq_pool_attach_mutex.
577  *
578  * The if/else clause exists only for the lockdep assertion and can be
579  * ignored.
580  */
581 #define for_each_pool_worker(worker, pool)				\
582 	list_for_each_entry((worker), &(pool)->workers, node)		\
583 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584 		else
585 
586 /**
587  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588  * @pwq: iteration cursor
589  * @wq: the target workqueue
590  *
591  * This must be called either with wq->mutex held or RCU read locked.
592  * If the pwq needs to be used beyond the locking in effect, the caller is
593  * responsible for guaranteeing that the pwq stays online.
594  *
595  * The if/else clause exists only for the lockdep assertion and can be
596  * ignored.
597  */
598 #define for_each_pwq(pwq, wq)						\
599 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
600 				 lockdep_is_held(&(wq->mutex)))
601 
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
603 
604 static const struct debug_obj_descr work_debug_descr;
605 
work_debug_hint(void * addr)606 static void *work_debug_hint(void *addr)
607 {
608 	return ((struct work_struct *) addr)->func;
609 }
610 
work_is_static_object(void * addr)611 static bool work_is_static_object(void *addr)
612 {
613 	struct work_struct *work = addr;
614 
615 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616 }
617 
618 /*
619  * fixup_init is called when:
620  * - an active object is initialized
621  */
work_fixup_init(void * addr,enum debug_obj_state state)622 static bool work_fixup_init(void *addr, enum debug_obj_state state)
623 {
624 	struct work_struct *work = addr;
625 
626 	switch (state) {
627 	case ODEBUG_STATE_ACTIVE:
628 		cancel_work_sync(work);
629 		debug_object_init(work, &work_debug_descr);
630 		return true;
631 	default:
632 		return false;
633 	}
634 }
635 
636 /*
637  * fixup_free is called when:
638  * - an active object is freed
639  */
work_fixup_free(void * addr,enum debug_obj_state state)640 static bool work_fixup_free(void *addr, enum debug_obj_state state)
641 {
642 	struct work_struct *work = addr;
643 
644 	switch (state) {
645 	case ODEBUG_STATE_ACTIVE:
646 		cancel_work_sync(work);
647 		debug_object_free(work, &work_debug_descr);
648 		return true;
649 	default:
650 		return false;
651 	}
652 }
653 
654 static const struct debug_obj_descr work_debug_descr = {
655 	.name		= "work_struct",
656 	.debug_hint	= work_debug_hint,
657 	.is_static_object = work_is_static_object,
658 	.fixup_init	= work_fixup_init,
659 	.fixup_free	= work_fixup_free,
660 };
661 
debug_work_activate(struct work_struct * work)662 static inline void debug_work_activate(struct work_struct *work)
663 {
664 	debug_object_activate(work, &work_debug_descr);
665 }
666 
debug_work_deactivate(struct work_struct * work)667 static inline void debug_work_deactivate(struct work_struct *work)
668 {
669 	debug_object_deactivate(work, &work_debug_descr);
670 }
671 
__init_work(struct work_struct * work,int onstack)672 void __init_work(struct work_struct *work, int onstack)
673 {
674 	if (onstack)
675 		debug_object_init_on_stack(work, &work_debug_descr);
676 	else
677 		debug_object_init(work, &work_debug_descr);
678 }
679 EXPORT_SYMBOL_GPL(__init_work);
680 
destroy_work_on_stack(struct work_struct * work)681 void destroy_work_on_stack(struct work_struct *work)
682 {
683 	debug_object_free(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686 
destroy_delayed_work_on_stack(struct delayed_work * work)687 void destroy_delayed_work_on_stack(struct delayed_work *work)
688 {
689 	timer_destroy_on_stack(&work->timer);
690 	debug_object_free(&work->work, &work_debug_descr);
691 }
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693 
694 #else
debug_work_activate(struct work_struct * work)695 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)696 static inline void debug_work_deactivate(struct work_struct *work) { }
697 #endif
698 
699 /**
700  * worker_pool_assign_id - allocate ID and assign it to @pool
701  * @pool: the pool pointer of interest
702  *
703  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704  * successfully, -errno on failure.
705  */
worker_pool_assign_id(struct worker_pool * pool)706 static int worker_pool_assign_id(struct worker_pool *pool)
707 {
708 	int ret;
709 
710 	lockdep_assert_held(&wq_pool_mutex);
711 
712 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 			GFP_KERNEL);
714 	if (ret >= 0) {
715 		pool->id = ret;
716 		return 0;
717 	}
718 	return ret;
719 }
720 
721 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723 {
724        if (cpu >= 0)
725                return per_cpu_ptr(wq->cpu_pwq, cpu);
726        else
727                return &wq->dfl_pwq;
728 }
729 
730 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732 {
733 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 				     lockdep_is_held(&wq_pool_mutex) ||
735 				     lockdep_is_held(&wq->mutex));
736 }
737 
738 /**
739  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740  * @wq: workqueue of interest
741  *
742  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744  * default pwq is always mapped to the pool with the current effective cpumask.
745  */
unbound_effective_cpumask(struct workqueue_struct * wq)746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747 {
748 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749 }
750 
work_color_to_flags(int color)751 static unsigned int work_color_to_flags(int color)
752 {
753 	return color << WORK_STRUCT_COLOR_SHIFT;
754 }
755 
get_work_color(unsigned long work_data)756 static int get_work_color(unsigned long work_data)
757 {
758 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
760 }
761 
work_next_color(int color)762 static int work_next_color(int color)
763 {
764 	return (color + 1) % WORK_NR_COLORS;
765 }
766 
pool_offq_flags(struct worker_pool * pool)767 static unsigned long pool_offq_flags(struct worker_pool *pool)
768 {
769 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770 }
771 
772 /*
773  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774  * contain the pointer to the queued pwq.  Once execution starts, the flag
775  * is cleared and the high bits contain OFFQ flags and pool ID.
776  *
777  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778  * can be used to set the pwq, pool or clear work->data. These functions should
779  * only be called while the work is owned - ie. while the PENDING bit is set.
780  *
781  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782  * corresponding to a work.  Pool is available once the work has been
783  * queued anywhere after initialization until it is sync canceled.  pwq is
784  * available only while the work item is queued.
785  */
set_work_data(struct work_struct * work,unsigned long data)786 static inline void set_work_data(struct work_struct *work, unsigned long data)
787 {
788 	WARN_ON_ONCE(!work_pending(work));
789 	atomic_long_set(&work->data, data | work_static(work));
790 }
791 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793 			 unsigned long flags)
794 {
795 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 		      WORK_STRUCT_PWQ | flags);
797 }
798 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)799 static void set_work_pool_and_keep_pending(struct work_struct *work,
800 					   int pool_id, unsigned long flags)
801 {
802 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 		      WORK_STRUCT_PENDING | flags);
804 }
805 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)806 static void set_work_pool_and_clear_pending(struct work_struct *work,
807 					    int pool_id, unsigned long flags)
808 {
809 	/*
810 	 * The following wmb is paired with the implied mb in
811 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 	 * here are visible to and precede any updates by the next PENDING
813 	 * owner.
814 	 */
815 	smp_wmb();
816 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 		      flags);
818 	/*
819 	 * The following mb guarantees that previous clear of a PENDING bit
820 	 * will not be reordered with any speculative LOADS or STORES from
821 	 * work->current_func, which is executed afterwards.  This possible
822 	 * reordering can lead to a missed execution on attempt to queue
823 	 * the same @work.  E.g. consider this case:
824 	 *
825 	 *   CPU#0                         CPU#1
826 	 *   ----------------------------  --------------------------------
827 	 *
828 	 * 1  STORE event_indicated
829 	 * 2  queue_work_on() {
830 	 * 3    test_and_set_bit(PENDING)
831 	 * 4 }                             set_..._and_clear_pending() {
832 	 * 5                                 set_work_data() # clear bit
833 	 * 6                                 smp_mb()
834 	 * 7                               work->current_func() {
835 	 * 8				      LOAD event_indicated
836 	 *				   }
837 	 *
838 	 * Without an explicit full barrier speculative LOAD on line 8 can
839 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
840 	 * CPU#0 observes the PENDING bit is still set and new execution of
841 	 * a @work is not queued in a hope, that CPU#1 will eventually
842 	 * finish the queued @work.  Meanwhile CPU#1 does not see
843 	 * event_indicated is set, because speculative LOAD was executed
844 	 * before actual STORE.
845 	 */
846 	smp_mb();
847 }
848 
work_struct_pwq(unsigned long data)849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850 {
851 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852 }
853 
get_work_pwq(struct work_struct * work)854 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855 {
856 	unsigned long data = atomic_long_read(&work->data);
857 
858 	if (data & WORK_STRUCT_PWQ)
859 		return work_struct_pwq(data);
860 	else
861 		return NULL;
862 }
863 
864 /**
865  * get_work_pool - return the worker_pool a given work was associated with
866  * @work: the work item of interest
867  *
868  * Pools are created and destroyed under wq_pool_mutex, and allows read
869  * access under RCU read lock.  As such, this function should be
870  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871  *
872  * All fields of the returned pool are accessible as long as the above
873  * mentioned locking is in effect.  If the returned pool needs to be used
874  * beyond the critical section, the caller is responsible for ensuring the
875  * returned pool is and stays online.
876  *
877  * Return: The worker_pool @work was last associated with.  %NULL if none.
878  */
get_work_pool(struct work_struct * work)879 static struct worker_pool *get_work_pool(struct work_struct *work)
880 {
881 	unsigned long data = atomic_long_read(&work->data);
882 	int pool_id;
883 
884 	assert_rcu_or_pool_mutex();
885 
886 	if (data & WORK_STRUCT_PWQ)
887 		return work_struct_pwq(data)->pool;
888 
889 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 	if (pool_id == WORK_OFFQ_POOL_NONE)
891 		return NULL;
892 
893 	return idr_find(&worker_pool_idr, pool_id);
894 }
895 
shift_and_mask(unsigned long v,u32 shift,u32 bits)896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897 {
898 	return (v >> shift) & ((1U << bits) - 1);
899 }
900 
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902 {
903 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904 
905 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 					WORK_OFFQ_POOL_BITS);
907 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 					WORK_OFFQ_DISABLE_BITS);
909 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910 }
911 
work_offqd_pack_flags(struct work_offq_data * offqd)912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913 {
914 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 		((unsigned long)offqd->flags);
916 }
917 
918 /*
919  * Policy functions.  These define the policies on how the global worker
920  * pools are managed.  Unless noted otherwise, these functions assume that
921  * they're being called with pool->lock held.
922  */
923 
924 /*
925  * Need to wake up a worker?  Called from anything but currently
926  * running workers.
927  *
928  * Note that, because unbound workers never contribute to nr_running, this
929  * function will always return %true for unbound pools as long as the
930  * worklist isn't empty.
931  */
need_more_worker(struct worker_pool * pool)932 static bool need_more_worker(struct worker_pool *pool)
933 {
934 	return !list_empty(&pool->worklist) && !pool->nr_running;
935 }
936 
937 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)938 static bool may_start_working(struct worker_pool *pool)
939 {
940 	return pool->nr_idle;
941 }
942 
943 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)944 static bool keep_working(struct worker_pool *pool)
945 {
946 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947 }
948 
949 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)950 static bool need_to_create_worker(struct worker_pool *pool)
951 {
952 	return need_more_worker(pool) && !may_start_working(pool);
953 }
954 
955 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)956 static bool too_many_workers(struct worker_pool *pool)
957 {
958 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 	int nr_busy = pool->nr_workers - nr_idle;
961 
962 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963 }
964 
965 /**
966  * worker_set_flags - set worker flags and adjust nr_running accordingly
967  * @worker: self
968  * @flags: flags to set
969  *
970  * Set @flags in @worker->flags and adjust nr_running accordingly.
971  */
worker_set_flags(struct worker * worker,unsigned int flags)972 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973 {
974 	struct worker_pool *pool = worker->pool;
975 
976 	lockdep_assert_held(&pool->lock);
977 
978 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
979 	if ((flags & WORKER_NOT_RUNNING) &&
980 	    !(worker->flags & WORKER_NOT_RUNNING)) {
981 		pool->nr_running--;
982 	}
983 
984 	worker->flags |= flags;
985 }
986 
987 /**
988  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989  * @worker: self
990  * @flags: flags to clear
991  *
992  * Clear @flags in @worker->flags and adjust nr_running accordingly.
993  */
worker_clr_flags(struct worker * worker,unsigned int flags)994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 	struct worker_pool *pool = worker->pool;
997 	unsigned int oflags = worker->flags;
998 
999 	lockdep_assert_held(&pool->lock);
1000 
1001 	worker->flags &= ~flags;
1002 
1003 	/*
1004 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1005 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1006 	 * of multiple flags, not a single flag.
1007 	 */
1008 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 		if (!(worker->flags & WORKER_NOT_RUNNING))
1010 			pool->nr_running++;
1011 }
1012 
1013 /* Return the first idle worker.  Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1014 static struct worker *first_idle_worker(struct worker_pool *pool)
1015 {
1016 	if (unlikely(list_empty(&pool->idle_list)))
1017 		return NULL;
1018 
1019 	return list_first_entry(&pool->idle_list, struct worker, entry);
1020 }
1021 
1022 /**
1023  * worker_enter_idle - enter idle state
1024  * @worker: worker which is entering idle state
1025  *
1026  * @worker is entering idle state.  Update stats and idle timer if
1027  * necessary.
1028  *
1029  * LOCKING:
1030  * raw_spin_lock_irq(pool->lock).
1031  */
worker_enter_idle(struct worker * worker)1032 static void worker_enter_idle(struct worker *worker)
1033 {
1034 	struct worker_pool *pool = worker->pool;
1035 
1036 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 			 (worker->hentry.next || worker->hentry.pprev)))
1039 		return;
1040 
1041 	/* can't use worker_set_flags(), also called from create_worker() */
1042 	worker->flags |= WORKER_IDLE;
1043 	pool->nr_idle++;
1044 	worker->last_active = jiffies;
1045 
1046 	/* idle_list is LIFO */
1047 	list_add(&worker->entry, &pool->idle_list);
1048 
1049 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051 
1052 	/* Sanity check nr_running. */
1053 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054 }
1055 
1056 /**
1057  * worker_leave_idle - leave idle state
1058  * @worker: worker which is leaving idle state
1059  *
1060  * @worker is leaving idle state.  Update stats.
1061  *
1062  * LOCKING:
1063  * raw_spin_lock_irq(pool->lock).
1064  */
worker_leave_idle(struct worker * worker)1065 static void worker_leave_idle(struct worker *worker)
1066 {
1067 	struct worker_pool *pool = worker->pool;
1068 
1069 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 		return;
1071 	worker_clr_flags(worker, WORKER_IDLE);
1072 	pool->nr_idle--;
1073 	list_del_init(&worker->entry);
1074 }
1075 
1076 /**
1077  * find_worker_executing_work - find worker which is executing a work
1078  * @pool: pool of interest
1079  * @work: work to find worker for
1080  *
1081  * Find a worker which is executing @work on @pool by searching
1082  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1083  * to match, its current execution should match the address of @work and
1084  * its work function.  This is to avoid unwanted dependency between
1085  * unrelated work executions through a work item being recycled while still
1086  * being executed.
1087  *
1088  * This is a bit tricky.  A work item may be freed once its execution
1089  * starts and nothing prevents the freed area from being recycled for
1090  * another work item.  If the same work item address ends up being reused
1091  * before the original execution finishes, workqueue will identify the
1092  * recycled work item as currently executing and make it wait until the
1093  * current execution finishes, introducing an unwanted dependency.
1094  *
1095  * This function checks the work item address and work function to avoid
1096  * false positives.  Note that this isn't complete as one may construct a
1097  * work function which can introduce dependency onto itself through a
1098  * recycled work item.  Well, if somebody wants to shoot oneself in the
1099  * foot that badly, there's only so much we can do, and if such deadlock
1100  * actually occurs, it should be easy to locate the culprit work function.
1101  *
1102  * CONTEXT:
1103  * raw_spin_lock_irq(pool->lock).
1104  *
1105  * Return:
1106  * Pointer to worker which is executing @work if found, %NULL
1107  * otherwise.
1108  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1109 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 						 struct work_struct *work)
1111 {
1112 	struct worker *worker;
1113 
1114 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 			       (unsigned long)work)
1116 		if (worker->current_work == work &&
1117 		    worker->current_func == work->func)
1118 			return worker;
1119 
1120 	return NULL;
1121 }
1122 
1123 /**
1124  * move_linked_works - move linked works to a list
1125  * @work: start of series of works to be scheduled
1126  * @head: target list to append @work to
1127  * @nextp: out parameter for nested worklist walking
1128  *
1129  * Schedule linked works starting from @work to @head. Work series to be
1130  * scheduled starts at @work and includes any consecutive work with
1131  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132  * @nextp.
1133  *
1134  * CONTEXT:
1135  * raw_spin_lock_irq(pool->lock).
1136  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1137 static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 			      struct work_struct **nextp)
1139 {
1140 	struct work_struct *n;
1141 
1142 	/*
1143 	 * Linked worklist will always end before the end of the list,
1144 	 * use NULL for list head.
1145 	 */
1146 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 		list_move_tail(&work->entry, head);
1148 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 			break;
1150 	}
1151 
1152 	/*
1153 	 * If we're already inside safe list traversal and have moved
1154 	 * multiple works to the scheduled queue, the next position
1155 	 * needs to be updated.
1156 	 */
1157 	if (nextp)
1158 		*nextp = n;
1159 }
1160 
1161 /**
1162  * assign_work - assign a work item and its linked work items to a worker
1163  * @work: work to assign
1164  * @worker: worker to assign to
1165  * @nextp: out parameter for nested worklist walking
1166  *
1167  * Assign @work and its linked work items to @worker. If @work is already being
1168  * executed by another worker in the same pool, it'll be punted there.
1169  *
1170  * If @nextp is not NULL, it's updated to point to the next work of the last
1171  * scheduled work. This allows assign_work() to be nested inside
1172  * list_for_each_entry_safe().
1173  *
1174  * Returns %true if @work was successfully assigned to @worker. %false if @work
1175  * was punted to another worker already executing it.
1176  */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1177 static bool assign_work(struct work_struct *work, struct worker *worker,
1178 			struct work_struct **nextp)
1179 {
1180 	struct worker_pool *pool = worker->pool;
1181 	struct worker *collision;
1182 
1183 	lockdep_assert_held(&pool->lock);
1184 
1185 	/*
1186 	 * A single work shouldn't be executed concurrently by multiple workers.
1187 	 * __queue_work() ensures that @work doesn't jump to a different pool
1188 	 * while still running in the previous pool. Here, we should ensure that
1189 	 * @work is not executed concurrently by multiple workers from the same
1190 	 * pool. Check whether anyone is already processing the work. If so,
1191 	 * defer the work to the currently executing one.
1192 	 */
1193 	collision = find_worker_executing_work(pool, work);
1194 	if (unlikely(collision)) {
1195 		move_linked_works(work, &collision->scheduled, nextp);
1196 		return false;
1197 	}
1198 
1199 	move_linked_works(work, &worker->scheduled, nextp);
1200 	return true;
1201 }
1202 
bh_pool_irq_work(struct worker_pool * pool)1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204 {
1205 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206 
1207 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208 }
1209 
kick_bh_pool(struct worker_pool * pool)1210 static void kick_bh_pool(struct worker_pool *pool)
1211 {
1212 #ifdef CONFIG_SMP
1213 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 	if (unlikely(pool->cpu != smp_processor_id() &&
1215 		     !(pool->flags & POOL_BH_DRAINING))) {
1216 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 		return;
1218 	}
1219 #endif
1220 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 		raise_softirq_irqoff(HI_SOFTIRQ);
1222 	else
1223 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224 }
1225 
1226 /**
1227  * kick_pool - wake up an idle worker if necessary
1228  * @pool: pool to kick
1229  *
1230  * @pool may have pending work items. Wake up worker if necessary. Returns
1231  * whether a worker was woken up.
1232  */
kick_pool(struct worker_pool * pool)1233 static bool kick_pool(struct worker_pool *pool)
1234 {
1235 	struct worker *worker = first_idle_worker(pool);
1236 	struct task_struct *p;
1237 
1238 	lockdep_assert_held(&pool->lock);
1239 
1240 	if (!need_more_worker(pool) || !worker)
1241 		return false;
1242 
1243 	if (pool->flags & POOL_BH) {
1244 		kick_bh_pool(pool);
1245 		return true;
1246 	}
1247 
1248 	p = worker->task;
1249 
1250 #ifdef CONFIG_SMP
1251 	/*
1252 	 * Idle @worker is about to execute @work and waking up provides an
1253 	 * opportunity to migrate @worker at a lower cost by setting the task's
1254 	 * wake_cpu field. Let's see if we want to move @worker to improve
1255 	 * execution locality.
1256 	 *
1257 	 * We're waking the worker that went idle the latest and there's some
1258 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 	 * optimization and the race window is narrow, let's leave as-is for
1261 	 * now. If this becomes pronounced, we can skip over workers which are
1262 	 * still on cpu when picking an idle worker.
1263 	 *
1264 	 * If @pool has non-strict affinity, @worker might have ended up outside
1265 	 * its affinity scope. Repatriate.
1266 	 */
1267 	if (!pool->attrs->affn_strict &&
1268 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 		struct work_struct *work = list_first_entry(&pool->worklist,
1270 						struct work_struct, entry);
1271 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272 							  cpu_online_mask);
1273 		if (wake_cpu < nr_cpu_ids) {
1274 			p->wake_cpu = wake_cpu;
1275 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276 		}
1277 	}
1278 #endif
1279 	wake_up_process(p);
1280 	return true;
1281 }
1282 
1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284 
1285 /*
1286  * Concurrency-managed per-cpu work items that hog CPU for longer than
1287  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288  * which prevents them from stalling other concurrency-managed work items. If a
1289  * work function keeps triggering this mechanism, it's likely that the work item
1290  * should be using an unbound workqueue instead.
1291  *
1292  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293  * and report them so that they can be examined and converted to use unbound
1294  * workqueues as appropriate. To avoid flooding the console, each violating work
1295  * function is tracked and reported with exponential backoff.
1296  */
1297 #define WCI_MAX_ENTS 128
1298 
1299 struct wci_ent {
1300 	work_func_t		func;
1301 	atomic64_t		cnt;
1302 	struct hlist_node	hash_node;
1303 };
1304 
1305 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306 static int wci_nr_ents;
1307 static DEFINE_RAW_SPINLOCK(wci_lock);
1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309 
wci_find_ent(work_func_t func)1310 static struct wci_ent *wci_find_ent(work_func_t func)
1311 {
1312 	struct wci_ent *ent;
1313 
1314 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315 				   (unsigned long)func) {
1316 		if (ent->func == func)
1317 			return ent;
1318 	}
1319 	return NULL;
1320 }
1321 
wq_cpu_intensive_report(work_func_t func)1322 static void wq_cpu_intensive_report(work_func_t func)
1323 {
1324 	struct wci_ent *ent;
1325 
1326 restart:
1327 	ent = wci_find_ent(func);
1328 	if (ent) {
1329 		u64 cnt;
1330 
1331 		/*
1332 		 * Start reporting from the warning_thresh and back off
1333 		 * exponentially.
1334 		 */
1335 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336 		if (wq_cpu_intensive_warning_thresh &&
1337 		    cnt >= wq_cpu_intensive_warning_thresh &&
1338 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 					ent->func, wq_cpu_intensive_thresh_us,
1341 					atomic64_read(&ent->cnt));
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 	 * is exhausted, something went really wrong and we probably made enough
1348 	 * noise already.
1349 	 */
1350 	if (wci_nr_ents >= WCI_MAX_ENTS)
1351 		return;
1352 
1353 	raw_spin_lock(&wci_lock);
1354 
1355 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1356 		raw_spin_unlock(&wci_lock);
1357 		return;
1358 	}
1359 
1360 	if (wci_find_ent(func)) {
1361 		raw_spin_unlock(&wci_lock);
1362 		goto restart;
1363 	}
1364 
1365 	ent = &wci_ents[wci_nr_ents++];
1366 	ent->func = func;
1367 	atomic64_set(&ent->cnt, 0);
1368 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369 
1370 	raw_spin_unlock(&wci_lock);
1371 
1372 	goto restart;
1373 }
1374 
1375 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1376 static void wq_cpu_intensive_report(work_func_t func) {}
1377 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378 
1379 /**
1380  * wq_worker_running - a worker is running again
1381  * @task: task waking up
1382  *
1383  * This function is called when a worker returns from schedule()
1384  */
wq_worker_running(struct task_struct * task)1385 void wq_worker_running(struct task_struct *task)
1386 {
1387 	struct worker *worker = kthread_data(task);
1388 
1389 	if (!READ_ONCE(worker->sleeping))
1390 		return;
1391 
1392 	/*
1393 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 	 * and the nr_running increment below, we may ruin the nr_running reset
1395 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 	 * pool. Protect against such race.
1397 	 */
1398 	preempt_disable();
1399 	if (!(worker->flags & WORKER_NOT_RUNNING))
1400 		worker->pool->nr_running++;
1401 	preempt_enable();
1402 
1403 	/*
1404 	 * CPU intensive auto-detection cares about how long a work item hogged
1405 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406 	 */
1407 	worker->current_at = worker->task->se.sum_exec_runtime;
1408 
1409 	WRITE_ONCE(worker->sleeping, 0);
1410 }
1411 
1412 /**
1413  * wq_worker_sleeping - a worker is going to sleep
1414  * @task: task going to sleep
1415  *
1416  * This function is called from schedule() when a busy worker is
1417  * going to sleep.
1418  */
wq_worker_sleeping(struct task_struct * task)1419 void wq_worker_sleeping(struct task_struct *task)
1420 {
1421 	struct worker *worker = kthread_data(task);
1422 	struct worker_pool *pool;
1423 
1424 	/*
1425 	 * Rescuers, which may not have all the fields set up like normal
1426 	 * workers, also reach here, let's not access anything before
1427 	 * checking NOT_RUNNING.
1428 	 */
1429 	if (worker->flags & WORKER_NOT_RUNNING)
1430 		return;
1431 
1432 	pool = worker->pool;
1433 
1434 	/* Return if preempted before wq_worker_running() was reached */
1435 	if (READ_ONCE(worker->sleeping))
1436 		return;
1437 
1438 	WRITE_ONCE(worker->sleeping, 1);
1439 	raw_spin_lock_irq(&pool->lock);
1440 
1441 	/*
1442 	 * Recheck in case unbind_workers() preempted us. We don't
1443 	 * want to decrement nr_running after the worker is unbound
1444 	 * and nr_running has been reset.
1445 	 */
1446 	if (worker->flags & WORKER_NOT_RUNNING) {
1447 		raw_spin_unlock_irq(&pool->lock);
1448 		return;
1449 	}
1450 
1451 	pool->nr_running--;
1452 	if (kick_pool(pool))
1453 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454 
1455 	raw_spin_unlock_irq(&pool->lock);
1456 }
1457 
1458 /**
1459  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460  * @task: task currently running
1461  *
1462  * Called from sched_tick(). We're in the IRQ context and the current
1463  * worker's fields which follow the 'K' locking rule can be accessed safely.
1464  */
wq_worker_tick(struct task_struct * task)1465 void wq_worker_tick(struct task_struct *task)
1466 {
1467 	struct worker *worker = kthread_data(task);
1468 	struct pool_workqueue *pwq = worker->current_pwq;
1469 	struct worker_pool *pool = worker->pool;
1470 
1471 	if (!pwq)
1472 		return;
1473 
1474 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475 
1476 	if (!wq_cpu_intensive_thresh_us)
1477 		return;
1478 
1479 	/*
1480 	 * If the current worker is concurrency managed and hogged the CPU for
1481 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483 	 *
1484 	 * Set @worker->sleeping means that @worker is in the process of
1485 	 * switching out voluntarily and won't be contributing to
1486 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 	 * We probably want to make this prettier in the future.
1490 	 */
1491 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492 	    worker->task->se.sum_exec_runtime - worker->current_at <
1493 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494 		return;
1495 
1496 	raw_spin_lock(&pool->lock);
1497 
1498 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499 	wq_cpu_intensive_report(worker->current_func);
1500 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501 
1502 	if (kick_pool(pool))
1503 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504 
1505 	raw_spin_unlock(&pool->lock);
1506 }
1507 
1508 /**
1509  * wq_worker_last_func - retrieve worker's last work function
1510  * @task: Task to retrieve last work function of.
1511  *
1512  * Determine the last function a worker executed. This is called from
1513  * the scheduler to get a worker's last known identity.
1514  *
1515  * CONTEXT:
1516  * raw_spin_lock_irq(rq->lock)
1517  *
1518  * This function is called during schedule() when a kworker is going
1519  * to sleep. It's used by psi to identify aggregation workers during
1520  * dequeuing, to allow periodic aggregation to shut-off when that
1521  * worker is the last task in the system or cgroup to go to sleep.
1522  *
1523  * As this function doesn't involve any workqueue-related locking, it
1524  * only returns stable values when called from inside the scheduler's
1525  * queuing and dequeuing paths, when @task, which must be a kworker,
1526  * is guaranteed to not be processing any works.
1527  *
1528  * Return:
1529  * The last work function %current executed as a worker, NULL if it
1530  * hasn't executed any work yet.
1531  */
wq_worker_last_func(struct task_struct * task)1532 work_func_t wq_worker_last_func(struct task_struct *task)
1533 {
1534 	struct worker *worker = kthread_data(task);
1535 
1536 	return worker->last_func;
1537 }
1538 
1539 /**
1540  * wq_node_nr_active - Determine wq_node_nr_active to use
1541  * @wq: workqueue of interest
1542  * @node: NUMA node, can be %NUMA_NO_NODE
1543  *
1544  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545  *
1546  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547  *
1548  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549  *
1550  * - Otherwise, node_nr_active[@node].
1551  */
wq_node_nr_active(struct workqueue_struct * wq,int node)1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553 						   int node)
1554 {
1555 	if (!(wq->flags & WQ_UNBOUND))
1556 		return NULL;
1557 
1558 	if (node == NUMA_NO_NODE)
1559 		node = nr_node_ids;
1560 
1561 	return wq->node_nr_active[node];
1562 }
1563 
1564 /**
1565  * wq_update_node_max_active - Update per-node max_actives to use
1566  * @wq: workqueue to update
1567  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568  *
1569  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570  * distributed among nodes according to the proportions of numbers of online
1571  * cpus. The result is always between @wq->min_active and max_active.
1572  */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574 {
1575 	struct cpumask *effective = unbound_effective_cpumask(wq);
1576 	int min_active = READ_ONCE(wq->min_active);
1577 	int max_active = READ_ONCE(wq->max_active);
1578 	int total_cpus, node;
1579 
1580 	lockdep_assert_held(&wq->mutex);
1581 
1582 	if (!wq_topo_initialized)
1583 		return;
1584 
1585 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586 		off_cpu = -1;
1587 
1588 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589 	if (off_cpu >= 0)
1590 		total_cpus--;
1591 
1592 	/* If all CPUs of the wq get offline, use the default values */
1593 	if (unlikely(!total_cpus)) {
1594 		for_each_node(node)
1595 			wq_node_nr_active(wq, node)->max = min_active;
1596 
1597 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598 		return;
1599 	}
1600 
1601 	for_each_node(node) {
1602 		int node_cpus;
1603 
1604 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606 			node_cpus--;
1607 
1608 		wq_node_nr_active(wq, node)->max =
1609 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610 			      min_active, max_active);
1611 	}
1612 
1613 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614 }
1615 
1616 /**
1617  * get_pwq - get an extra reference on the specified pool_workqueue
1618  * @pwq: pool_workqueue to get
1619  *
1620  * Obtain an extra reference on @pwq.  The caller should guarantee that
1621  * @pwq has positive refcnt and be holding the matching pool->lock.
1622  */
get_pwq(struct pool_workqueue * pwq)1623 static void get_pwq(struct pool_workqueue *pwq)
1624 {
1625 	lockdep_assert_held(&pwq->pool->lock);
1626 	WARN_ON_ONCE(pwq->refcnt <= 0);
1627 	pwq->refcnt++;
1628 }
1629 
1630 /**
1631  * put_pwq - put a pool_workqueue reference
1632  * @pwq: pool_workqueue to put
1633  *
1634  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1635  * destruction.  The caller should be holding the matching pool->lock.
1636  */
put_pwq(struct pool_workqueue * pwq)1637 static void put_pwq(struct pool_workqueue *pwq)
1638 {
1639 	lockdep_assert_held(&pwq->pool->lock);
1640 	if (likely(--pwq->refcnt))
1641 		return;
1642 	/*
1643 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 	 * kthread_worker to avoid A-A deadlocks.
1645 	 */
1646 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647 }
1648 
1649 /**
1650  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651  * @pwq: pool_workqueue to put (can be %NULL)
1652  *
1653  * put_pwq() with locking.  This function also allows %NULL @pwq.
1654  */
put_pwq_unlocked(struct pool_workqueue * pwq)1655 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656 {
1657 	if (pwq) {
1658 		/*
1659 		 * As both pwqs and pools are RCU protected, the
1660 		 * following lock operations are safe.
1661 		 */
1662 		raw_spin_lock_irq(&pwq->pool->lock);
1663 		put_pwq(pwq);
1664 		raw_spin_unlock_irq(&pwq->pool->lock);
1665 	}
1666 }
1667 
pwq_is_empty(struct pool_workqueue * pwq)1668 static bool pwq_is_empty(struct pool_workqueue *pwq)
1669 {
1670 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671 }
1672 
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1673 static void __pwq_activate_work(struct pool_workqueue *pwq,
1674 				struct work_struct *work)
1675 {
1676 	unsigned long *wdb = work_data_bits(work);
1677 
1678 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679 	trace_workqueue_activate_work(work);
1680 	if (list_empty(&pwq->pool->worklist))
1681 		pwq->pool->watchdog_ts = jiffies;
1682 	move_linked_works(work, &pwq->pool->worklist, NULL);
1683 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684 }
1685 
tryinc_node_nr_active(struct wq_node_nr_active * nna)1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1687 {
1688 	int max = READ_ONCE(nna->max);
1689 	int old = atomic_read(&nna->nr);
1690 
1691 	do {
1692 		if (old >= max)
1693 			return false;
1694 	} while (!atomic_try_cmpxchg_relaxed(&nna->nr, &old, old + 1));
1695 
1696 	return true;
1697 }
1698 
1699 /**
1700  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1701  * @pwq: pool_workqueue of interest
1702  * @fill: max_active may have increased, try to increase concurrency level
1703  *
1704  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1705  * successfully obtained. %false otherwise.
1706  */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1707 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1708 {
1709 	struct workqueue_struct *wq = pwq->wq;
1710 	struct worker_pool *pool = pwq->pool;
1711 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1712 	bool obtained = false;
1713 
1714 	lockdep_assert_held(&pool->lock);
1715 
1716 	if (!nna) {
1717 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1718 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1719 		goto out;
1720 	}
1721 
1722 	if (unlikely(pwq->plugged))
1723 		return false;
1724 
1725 	/*
1726 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1727 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1728 	 * concurrency level. Don't jump the line.
1729 	 *
1730 	 * We need to ignore the pending test after max_active has increased as
1731 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1732 	 * increase it. This is indicated by @fill.
1733 	 */
1734 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1735 		goto out;
1736 
1737 	obtained = tryinc_node_nr_active(nna);
1738 	if (obtained)
1739 		goto out;
1740 
1741 	/*
1742 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1743 	 * and try again. The smp_mb() is paired with the implied memory barrier
1744 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1745 	 * we see the decremented $nna->nr or they see non-empty
1746 	 * $nna->pending_pwqs.
1747 	 */
1748 	raw_spin_lock(&nna->lock);
1749 
1750 	if (list_empty(&pwq->pending_node))
1751 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1752 	else if (likely(!fill))
1753 		goto out_unlock;
1754 
1755 	smp_mb();
1756 
1757 	obtained = tryinc_node_nr_active(nna);
1758 
1759 	/*
1760 	 * If @fill, @pwq might have already been pending. Being spuriously
1761 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1762 	 */
1763 	if (obtained && likely(!fill))
1764 		list_del_init(&pwq->pending_node);
1765 
1766 out_unlock:
1767 	raw_spin_unlock(&nna->lock);
1768 out:
1769 	if (obtained)
1770 		pwq->nr_active++;
1771 	return obtained;
1772 }
1773 
1774 /**
1775  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1776  * @pwq: pool_workqueue of interest
1777  * @fill: max_active may have increased, try to increase concurrency level
1778  *
1779  * Activate the first inactive work item of @pwq if available and allowed by
1780  * max_active limit.
1781  *
1782  * Returns %true if an inactive work item has been activated. %false if no
1783  * inactive work item is found or max_active limit is reached.
1784  */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1785 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1786 {
1787 	struct work_struct *work =
1788 		list_first_entry_or_null(&pwq->inactive_works,
1789 					 struct work_struct, entry);
1790 
1791 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1792 		__pwq_activate_work(pwq, work);
1793 		return true;
1794 	} else {
1795 		return false;
1796 	}
1797 }
1798 
1799 /**
1800  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1801  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1802  *
1803  * This function should only be called for ordered workqueues where only the
1804  * oldest pwq is unplugged, the others are plugged to suspend execution to
1805  * ensure proper work item ordering::
1806  *
1807  *    dfl_pwq --------------+     [P] - plugged
1808  *                          |
1809  *                          v
1810  *    pwqs -> A -> B [P] -> C [P] (newest)
1811  *            |    |        |
1812  *            1    3        5
1813  *            |    |        |
1814  *            2    4        6
1815  *
1816  * When the oldest pwq is drained and removed, this function should be called
1817  * to unplug the next oldest one to start its work item execution. Note that
1818  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1819  * the list is the oldest.
1820  */
unplug_oldest_pwq(struct workqueue_struct * wq)1821 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1822 {
1823 	struct pool_workqueue *pwq;
1824 
1825 	lockdep_assert_held(&wq->mutex);
1826 
1827 	/* Caller should make sure that pwqs isn't empty before calling */
1828 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1829 				       pwqs_node);
1830 	raw_spin_lock_irq(&pwq->pool->lock);
1831 	if (pwq->plugged) {
1832 		pwq->plugged = false;
1833 		if (pwq_activate_first_inactive(pwq, true))
1834 			kick_pool(pwq->pool);
1835 	}
1836 	raw_spin_unlock_irq(&pwq->pool->lock);
1837 }
1838 
1839 /**
1840  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1841  * @nna: wq_node_nr_active to activate a pending pwq for
1842  * @caller_pool: worker_pool the caller is locking
1843  *
1844  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1845  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1846  */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1847 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1848 				      struct worker_pool *caller_pool)
1849 {
1850 	struct worker_pool *locked_pool = caller_pool;
1851 	struct pool_workqueue *pwq;
1852 	struct work_struct *work;
1853 
1854 	lockdep_assert_held(&caller_pool->lock);
1855 
1856 	raw_spin_lock(&nna->lock);
1857 retry:
1858 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1859 				       struct pool_workqueue, pending_node);
1860 	if (!pwq)
1861 		goto out_unlock;
1862 
1863 	/*
1864 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1865 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1866 	 * / lock dance. For that, we also need to release @nna->lock as it's
1867 	 * nested inside pool locks.
1868 	 */
1869 	if (pwq->pool != locked_pool) {
1870 		raw_spin_unlock(&locked_pool->lock);
1871 		locked_pool = pwq->pool;
1872 		if (!raw_spin_trylock(&locked_pool->lock)) {
1873 			raw_spin_unlock(&nna->lock);
1874 			raw_spin_lock(&locked_pool->lock);
1875 			raw_spin_lock(&nna->lock);
1876 			goto retry;
1877 		}
1878 	}
1879 
1880 	/*
1881 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1882 	 * Drop it from pending_pwqs and see if there's another one.
1883 	 */
1884 	work = list_first_entry_or_null(&pwq->inactive_works,
1885 					struct work_struct, entry);
1886 	if (!work) {
1887 		list_del_init(&pwq->pending_node);
1888 		goto retry;
1889 	}
1890 
1891 	/*
1892 	 * Acquire an nr_active count and activate the inactive work item. If
1893 	 * $pwq still has inactive work items, rotate it to the end of the
1894 	 * pending_pwqs so that we round-robin through them. This means that
1895 	 * inactive work items are not activated in queueing order which is fine
1896 	 * given that there has never been any ordering across different pwqs.
1897 	 */
1898 	if (likely(tryinc_node_nr_active(nna))) {
1899 		pwq->nr_active++;
1900 		__pwq_activate_work(pwq, work);
1901 
1902 		if (list_empty(&pwq->inactive_works))
1903 			list_del_init(&pwq->pending_node);
1904 		else
1905 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1906 
1907 		/* if activating a foreign pool, make sure it's running */
1908 		if (pwq->pool != caller_pool)
1909 			kick_pool(pwq->pool);
1910 	}
1911 
1912 out_unlock:
1913 	raw_spin_unlock(&nna->lock);
1914 	if (locked_pool != caller_pool) {
1915 		raw_spin_unlock(&locked_pool->lock);
1916 		raw_spin_lock(&caller_pool->lock);
1917 	}
1918 }
1919 
1920 /**
1921  * pwq_dec_nr_active - Retire an active count
1922  * @pwq: pool_workqueue of interest
1923  *
1924  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1925  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1926  */
pwq_dec_nr_active(struct pool_workqueue * pwq)1927 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1928 {
1929 	struct worker_pool *pool = pwq->pool;
1930 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1931 
1932 	lockdep_assert_held(&pool->lock);
1933 
1934 	/*
1935 	 * @pwq->nr_active should be decremented for both percpu and unbound
1936 	 * workqueues.
1937 	 */
1938 	pwq->nr_active--;
1939 
1940 	/*
1941 	 * For a percpu workqueue, it's simple. Just need to kick the first
1942 	 * inactive work item on @pwq itself.
1943 	 */
1944 	if (!nna) {
1945 		pwq_activate_first_inactive(pwq, false);
1946 		return;
1947 	}
1948 
1949 	/*
1950 	 * If @pwq is for an unbound workqueue, it's more complicated because
1951 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1952 	 * pwq needs to wait for an nr_active count, it puts itself on
1953 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1954 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1955 	 * guarantee that either we see non-empty pending_pwqs or they see
1956 	 * decremented $nna->nr.
1957 	 *
1958 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1959 	 * max_active gets updated. However, it is guaranteed to be equal to or
1960 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1961 	 * This maintains the forward progress guarantee.
1962 	 */
1963 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1964 		return;
1965 
1966 	if (!list_empty(&nna->pending_pwqs))
1967 		node_activate_pending_pwq(nna, pool);
1968 }
1969 
1970 /**
1971  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1972  * @pwq: pwq of interest
1973  * @work_data: work_data of work which left the queue
1974  *
1975  * A work either has completed or is removed from pending queue,
1976  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1977  *
1978  * NOTE:
1979  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1980  * and thus should be called after all other state updates for the in-flight
1981  * work item is complete.
1982  *
1983  * CONTEXT:
1984  * raw_spin_lock_irq(pool->lock).
1985  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1986 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1987 {
1988 	int color = get_work_color(work_data);
1989 
1990 	if (!(work_data & WORK_STRUCT_INACTIVE))
1991 		pwq_dec_nr_active(pwq);
1992 
1993 	pwq->nr_in_flight[color]--;
1994 
1995 	/* is flush in progress and are we at the flushing tip? */
1996 	if (likely(pwq->flush_color != color))
1997 		goto out_put;
1998 
1999 	/* are there still in-flight works? */
2000 	if (pwq->nr_in_flight[color])
2001 		goto out_put;
2002 
2003 	/* this pwq is done, clear flush_color */
2004 	pwq->flush_color = -1;
2005 
2006 	/*
2007 	 * If this was the last pwq, wake up the first flusher.  It
2008 	 * will handle the rest.
2009 	 */
2010 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2011 		complete(&pwq->wq->first_flusher->done);
2012 out_put:
2013 	put_pwq(pwq);
2014 }
2015 
2016 /**
2017  * try_to_grab_pending - steal work item from worklist and disable irq
2018  * @work: work item to steal
2019  * @cflags: %WORK_CANCEL_ flags
2020  * @irq_flags: place to store irq state
2021  *
2022  * Try to grab PENDING bit of @work.  This function can handle @work in any
2023  * stable state - idle, on timer or on worklist.
2024  *
2025  * Return:
2026  *
2027  *  ========	================================================================
2028  *  1		if @work was pending and we successfully stole PENDING
2029  *  0		if @work was idle and we claimed PENDING
2030  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2031  *  ========	================================================================
2032  *
2033  * Note:
2034  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2035  * interrupted while holding PENDING and @work off queue, irq must be
2036  * disabled on entry.  This, combined with delayed_work->timer being
2037  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2038  *
2039  * On successful return, >= 0, irq is disabled and the caller is
2040  * responsible for releasing it using local_irq_restore(*@irq_flags).
2041  *
2042  * This function is safe to call from any context including IRQ handler.
2043  */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2044 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2045 			       unsigned long *irq_flags)
2046 {
2047 	struct worker_pool *pool;
2048 	struct pool_workqueue *pwq;
2049 
2050 	local_irq_save(*irq_flags);
2051 
2052 	/* try to steal the timer if it exists */
2053 	if (cflags & WORK_CANCEL_DELAYED) {
2054 		struct delayed_work *dwork = to_delayed_work(work);
2055 
2056 		/*
2057 		 * dwork->timer is irqsafe.  If timer_delete() fails, it's
2058 		 * guaranteed that the timer is not queued anywhere and not
2059 		 * running on the local CPU.
2060 		 */
2061 		if (likely(timer_delete(&dwork->timer)))
2062 			return 1;
2063 	}
2064 
2065 	/* try to claim PENDING the normal way */
2066 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2067 		return 0;
2068 
2069 	rcu_read_lock();
2070 	/*
2071 	 * The queueing is in progress, or it is already queued. Try to
2072 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2073 	 */
2074 	pool = get_work_pool(work);
2075 	if (!pool)
2076 		goto fail;
2077 
2078 	raw_spin_lock(&pool->lock);
2079 	/*
2080 	 * work->data is guaranteed to point to pwq only while the work
2081 	 * item is queued on pwq->wq, and both updating work->data to point
2082 	 * to pwq on queueing and to pool on dequeueing are done under
2083 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2084 	 * points to pwq which is associated with a locked pool, the work
2085 	 * item is currently queued on that pool.
2086 	 */
2087 	pwq = get_work_pwq(work);
2088 	if (pwq && pwq->pool == pool) {
2089 		unsigned long work_data = *work_data_bits(work);
2090 
2091 		debug_work_deactivate(work);
2092 
2093 		/*
2094 		 * A cancelable inactive work item must be in the
2095 		 * pwq->inactive_works since a queued barrier can't be
2096 		 * canceled (see the comments in insert_wq_barrier()).
2097 		 *
2098 		 * An inactive work item cannot be deleted directly because
2099 		 * it might have linked barrier work items which, if left
2100 		 * on the inactive_works list, will confuse pwq->nr_active
2101 		 * management later on and cause stall.  Move the linked
2102 		 * barrier work items to the worklist when deleting the grabbed
2103 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2104 		 * it doesn't participate in nr_active management in later
2105 		 * pwq_dec_nr_in_flight().
2106 		 */
2107 		if (work_data & WORK_STRUCT_INACTIVE)
2108 			move_linked_works(work, &pwq->pool->worklist, NULL);
2109 
2110 		list_del_init(&work->entry);
2111 
2112 		/*
2113 		 * work->data points to pwq iff queued. Let's point to pool. As
2114 		 * this destroys work->data needed by the next step, stash it.
2115 		 */
2116 		set_work_pool_and_keep_pending(work, pool->id,
2117 					       pool_offq_flags(pool));
2118 
2119 		/* must be the last step, see the function comment */
2120 		pwq_dec_nr_in_flight(pwq, work_data);
2121 
2122 		raw_spin_unlock(&pool->lock);
2123 		rcu_read_unlock();
2124 		return 1;
2125 	}
2126 	raw_spin_unlock(&pool->lock);
2127 fail:
2128 	rcu_read_unlock();
2129 	local_irq_restore(*irq_flags);
2130 	return -EAGAIN;
2131 }
2132 
2133 /**
2134  * work_grab_pending - steal work item from worklist and disable irq
2135  * @work: work item to steal
2136  * @cflags: %WORK_CANCEL_ flags
2137  * @irq_flags: place to store IRQ state
2138  *
2139  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2140  * or on worklist.
2141  *
2142  * Can be called from any context. IRQ is disabled on return with IRQ state
2143  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2144  * local_irq_restore().
2145  *
2146  * Returns %true if @work was pending. %false if idle.
2147  */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2148 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2149 			      unsigned long *irq_flags)
2150 {
2151 	int ret;
2152 
2153 	while (true) {
2154 		ret = try_to_grab_pending(work, cflags, irq_flags);
2155 		if (ret >= 0)
2156 			return ret;
2157 		cpu_relax();
2158 	}
2159 }
2160 
2161 /**
2162  * insert_work - insert a work into a pool
2163  * @pwq: pwq @work belongs to
2164  * @work: work to insert
2165  * @head: insertion point
2166  * @extra_flags: extra WORK_STRUCT_* flags to set
2167  *
2168  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2169  * work_struct flags.
2170  *
2171  * CONTEXT:
2172  * raw_spin_lock_irq(pool->lock).
2173  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2174 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2175 			struct list_head *head, unsigned int extra_flags)
2176 {
2177 	debug_work_activate(work);
2178 
2179 	/* record the work call stack in order to print it in KASAN reports */
2180 	kasan_record_aux_stack(work);
2181 
2182 	/* we own @work, set data and link */
2183 	set_work_pwq(work, pwq, extra_flags);
2184 	list_add_tail(&work->entry, head);
2185 	get_pwq(pwq);
2186 }
2187 
2188 /*
2189  * Test whether @work is being queued from another work executing on the
2190  * same workqueue.
2191  */
is_chained_work(struct workqueue_struct * wq)2192 static bool is_chained_work(struct workqueue_struct *wq)
2193 {
2194 	struct worker *worker;
2195 
2196 	worker = current_wq_worker();
2197 	/*
2198 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2199 	 * I'm @worker, it's safe to dereference it without locking.
2200 	 */
2201 	return worker && worker->current_pwq->wq == wq;
2202 }
2203 
2204 /*
2205  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2206  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2207  * avoid perturbing sensitive tasks.
2208  */
wq_select_unbound_cpu(int cpu)2209 static int wq_select_unbound_cpu(int cpu)
2210 {
2211 	int new_cpu;
2212 
2213 	if (likely(!wq_debug_force_rr_cpu)) {
2214 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2215 			return cpu;
2216 	} else {
2217 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2218 	}
2219 
2220 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2221 	new_cpu = cpumask_next_and_wrap(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2222 	if (unlikely(new_cpu >= nr_cpu_ids))
2223 		return cpu;
2224 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2225 
2226 	return new_cpu;
2227 }
2228 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2229 static void __queue_work(int cpu, struct workqueue_struct *wq,
2230 			 struct work_struct *work)
2231 {
2232 	struct pool_workqueue *pwq;
2233 	struct worker_pool *last_pool, *pool;
2234 	unsigned int work_flags;
2235 	unsigned int req_cpu = cpu;
2236 
2237 	/*
2238 	 * While a work item is PENDING && off queue, a task trying to
2239 	 * steal the PENDING will busy-loop waiting for it to either get
2240 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2241 	 * happen with IRQ disabled.
2242 	 */
2243 	lockdep_assert_irqs_disabled();
2244 
2245 	/*
2246 	 * For a draining wq, only works from the same workqueue are
2247 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2248 	 * queues a new work item to a wq after destroy_workqueue(wq).
2249 	 */
2250 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2251 		     WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n",
2252 			       work->func, wq->name))) {
2253 		return;
2254 	}
2255 	rcu_read_lock();
2256 retry:
2257 	/* pwq which will be used unless @work is executing elsewhere */
2258 	if (req_cpu == WORK_CPU_UNBOUND) {
2259 		if (wq->flags & WQ_UNBOUND)
2260 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2261 		else
2262 			cpu = raw_smp_processor_id();
2263 	}
2264 
2265 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2266 	pool = pwq->pool;
2267 
2268 	/*
2269 	 * If @work was previously on a different pool, it might still be
2270 	 * running there, in which case the work needs to be queued on that
2271 	 * pool to guarantee non-reentrancy.
2272 	 *
2273 	 * For ordered workqueue, work items must be queued on the newest pwq
2274 	 * for accurate order management.  Guaranteed order also guarantees
2275 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2276 	 */
2277 	last_pool = get_work_pool(work);
2278 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2279 		struct worker *worker;
2280 
2281 		raw_spin_lock(&last_pool->lock);
2282 
2283 		worker = find_worker_executing_work(last_pool, work);
2284 
2285 		if (worker && worker->current_pwq->wq == wq) {
2286 			pwq = worker->current_pwq;
2287 			pool = pwq->pool;
2288 			WARN_ON_ONCE(pool != last_pool);
2289 		} else {
2290 			/* meh... not running there, queue here */
2291 			raw_spin_unlock(&last_pool->lock);
2292 			raw_spin_lock(&pool->lock);
2293 		}
2294 	} else {
2295 		raw_spin_lock(&pool->lock);
2296 	}
2297 
2298 	/*
2299 	 * pwq is determined and locked. For unbound pools, we could have raced
2300 	 * with pwq release and it could already be dead. If its refcnt is zero,
2301 	 * repeat pwq selection. Note that unbound pwqs never die without
2302 	 * another pwq replacing it in cpu_pwq or while work items are executing
2303 	 * on it, so the retrying is guaranteed to make forward-progress.
2304 	 */
2305 	if (unlikely(!pwq->refcnt)) {
2306 		if (wq->flags & WQ_UNBOUND) {
2307 			raw_spin_unlock(&pool->lock);
2308 			cpu_relax();
2309 			goto retry;
2310 		}
2311 		/* oops */
2312 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2313 			  wq->name, cpu);
2314 	}
2315 
2316 	/* pwq determined, queue */
2317 	trace_workqueue_queue_work(req_cpu, pwq, work);
2318 
2319 	if (WARN_ON(!list_empty(&work->entry)))
2320 		goto out;
2321 
2322 	pwq->nr_in_flight[pwq->work_color]++;
2323 	work_flags = work_color_to_flags(pwq->work_color);
2324 
2325 	/*
2326 	 * Limit the number of concurrently active work items to max_active.
2327 	 * @work must also queue behind existing inactive work items to maintain
2328 	 * ordering when max_active changes. See wq_adjust_max_active().
2329 	 */
2330 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2331 		if (list_empty(&pool->worklist))
2332 			pool->watchdog_ts = jiffies;
2333 
2334 		trace_workqueue_activate_work(work);
2335 		insert_work(pwq, work, &pool->worklist, work_flags);
2336 		kick_pool(pool);
2337 	} else {
2338 		work_flags |= WORK_STRUCT_INACTIVE;
2339 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2340 	}
2341 
2342 out:
2343 	raw_spin_unlock(&pool->lock);
2344 	rcu_read_unlock();
2345 }
2346 
clear_pending_if_disabled(struct work_struct * work)2347 static bool clear_pending_if_disabled(struct work_struct *work)
2348 {
2349 	unsigned long data = *work_data_bits(work);
2350 	struct work_offq_data offqd;
2351 
2352 	if (likely((data & WORK_STRUCT_PWQ) ||
2353 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2354 		return false;
2355 
2356 	work_offqd_unpack(&offqd, data);
2357 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2358 					work_offqd_pack_flags(&offqd));
2359 	return true;
2360 }
2361 
2362 /**
2363  * queue_work_on - queue work on specific cpu
2364  * @cpu: CPU number to execute work on
2365  * @wq: workqueue to use
2366  * @work: work to queue
2367  *
2368  * We queue the work to a specific CPU, the caller must ensure it
2369  * can't go away.  Callers that fail to ensure that the specified
2370  * CPU cannot go away will execute on a randomly chosen CPU.
2371  * But note well that callers specifying a CPU that never has been
2372  * online will get a splat.
2373  *
2374  * Return: %false if @work was already on a queue, %true otherwise.
2375  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2376 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2377 		   struct work_struct *work)
2378 {
2379 	bool ret = false;
2380 	unsigned long irq_flags;
2381 
2382 	local_irq_save(irq_flags);
2383 
2384 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2385 	    !clear_pending_if_disabled(work)) {
2386 		__queue_work(cpu, wq, work);
2387 		ret = true;
2388 	}
2389 
2390 	local_irq_restore(irq_flags);
2391 	return ret;
2392 }
2393 EXPORT_SYMBOL(queue_work_on);
2394 
2395 /**
2396  * select_numa_node_cpu - Select a CPU based on NUMA node
2397  * @node: NUMA node ID that we want to select a CPU from
2398  *
2399  * This function will attempt to find a "random" cpu available on a given
2400  * node. If there are no CPUs available on the given node it will return
2401  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2402  * available CPU if we need to schedule this work.
2403  */
select_numa_node_cpu(int node)2404 static int select_numa_node_cpu(int node)
2405 {
2406 	int cpu;
2407 
2408 	/* Delay binding to CPU if node is not valid or online */
2409 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2410 		return WORK_CPU_UNBOUND;
2411 
2412 	/* Use local node/cpu if we are already there */
2413 	cpu = raw_smp_processor_id();
2414 	if (node == cpu_to_node(cpu))
2415 		return cpu;
2416 
2417 	/* Use "random" otherwise know as "first" online CPU of node */
2418 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2419 
2420 	/* If CPU is valid return that, otherwise just defer */
2421 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2422 }
2423 
2424 /**
2425  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2426  * @node: NUMA node that we are targeting the work for
2427  * @wq: workqueue to use
2428  * @work: work to queue
2429  *
2430  * We queue the work to a "random" CPU within a given NUMA node. The basic
2431  * idea here is to provide a way to somehow associate work with a given
2432  * NUMA node.
2433  *
2434  * This function will only make a best effort attempt at getting this onto
2435  * the right NUMA node. If no node is requested or the requested node is
2436  * offline then we just fall back to standard queue_work behavior.
2437  *
2438  * Currently the "random" CPU ends up being the first available CPU in the
2439  * intersection of cpu_online_mask and the cpumask of the node, unless we
2440  * are running on the node. In that case we just use the current CPU.
2441  *
2442  * Return: %false if @work was already on a queue, %true otherwise.
2443  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2444 bool queue_work_node(int node, struct workqueue_struct *wq,
2445 		     struct work_struct *work)
2446 {
2447 	unsigned long irq_flags;
2448 	bool ret = false;
2449 
2450 	/*
2451 	 * This current implementation is specific to unbound workqueues.
2452 	 * Specifically we only return the first available CPU for a given
2453 	 * node instead of cycling through individual CPUs within the node.
2454 	 *
2455 	 * If this is used with a per-cpu workqueue then the logic in
2456 	 * workqueue_select_cpu_near would need to be updated to allow for
2457 	 * some round robin type logic.
2458 	 */
2459 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2460 
2461 	local_irq_save(irq_flags);
2462 
2463 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2464 	    !clear_pending_if_disabled(work)) {
2465 		int cpu = select_numa_node_cpu(node);
2466 
2467 		__queue_work(cpu, wq, work);
2468 		ret = true;
2469 	}
2470 
2471 	local_irq_restore(irq_flags);
2472 	return ret;
2473 }
2474 EXPORT_SYMBOL_GPL(queue_work_node);
2475 
delayed_work_timer_fn(struct timer_list * t)2476 void delayed_work_timer_fn(struct timer_list *t)
2477 {
2478 	struct delayed_work *dwork = timer_container_of(dwork, t, timer);
2479 
2480 	/* should have been called from irqsafe timer with irq already off */
2481 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2482 }
2483 EXPORT_SYMBOL(delayed_work_timer_fn);
2484 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2485 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2486 				struct delayed_work *dwork, unsigned long delay)
2487 {
2488 	struct timer_list *timer = &dwork->timer;
2489 	struct work_struct *work = &dwork->work;
2490 
2491 	WARN_ON_ONCE(!wq);
2492 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2493 	WARN_ON_ONCE(timer_pending(timer));
2494 	WARN_ON_ONCE(!list_empty(&work->entry));
2495 
2496 	/*
2497 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2498 	 * both optimization and correctness.  The earliest @timer can
2499 	 * expire is on the closest next tick and delayed_work users depend
2500 	 * on that there's no such delay when @delay is 0.
2501 	 */
2502 	if (!delay) {
2503 		__queue_work(cpu, wq, &dwork->work);
2504 		return;
2505 	}
2506 
2507 	WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2508 	dwork->wq = wq;
2509 	dwork->cpu = cpu;
2510 	timer->expires = jiffies + delay;
2511 
2512 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2513 		/* If the current cpu is a housekeeping cpu, use it. */
2514 		cpu = smp_processor_id();
2515 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2516 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2517 		add_timer_on(timer, cpu);
2518 	} else {
2519 		if (likely(cpu == WORK_CPU_UNBOUND))
2520 			add_timer_global(timer);
2521 		else
2522 			add_timer_on(timer, cpu);
2523 	}
2524 }
2525 
2526 /**
2527  * queue_delayed_work_on - queue work on specific CPU after delay
2528  * @cpu: CPU number to execute work on
2529  * @wq: workqueue to use
2530  * @dwork: work to queue
2531  * @delay: number of jiffies to wait before queueing
2532  *
2533  * We queue the delayed_work to a specific CPU, for non-zero delays the
2534  * caller must ensure it is online and can't go away. Callers that fail
2535  * to ensure this, may get @dwork->timer queued to an offlined CPU and
2536  * this will prevent queueing of @dwork->work unless the offlined CPU
2537  * becomes online again.
2538  *
2539  * Return: %false if @work was already on a queue, %true otherwise.  If
2540  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2541  * execution.
2542  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2543 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2544 			   struct delayed_work *dwork, unsigned long delay)
2545 {
2546 	struct work_struct *work = &dwork->work;
2547 	bool ret = false;
2548 	unsigned long irq_flags;
2549 
2550 	/* read the comment in __queue_work() */
2551 	local_irq_save(irq_flags);
2552 
2553 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2554 	    !clear_pending_if_disabled(work)) {
2555 		__queue_delayed_work(cpu, wq, dwork, delay);
2556 		ret = true;
2557 	}
2558 
2559 	local_irq_restore(irq_flags);
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(queue_delayed_work_on);
2563 
2564 /**
2565  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2566  * @cpu: CPU number to execute work on
2567  * @wq: workqueue to use
2568  * @dwork: work to queue
2569  * @delay: number of jiffies to wait before queueing
2570  *
2571  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2572  * modify @dwork's timer so that it expires after @delay.  If @delay is
2573  * zero, @work is guaranteed to be scheduled immediately regardless of its
2574  * current state.
2575  *
2576  * Return: %false if @dwork was idle and queued, %true if @dwork was
2577  * pending and its timer was modified.
2578  *
2579  * This function is safe to call from any context including IRQ handler.
2580  * See try_to_grab_pending() for details.
2581  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2582 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2583 			 struct delayed_work *dwork, unsigned long delay)
2584 {
2585 	unsigned long irq_flags;
2586 	bool ret;
2587 
2588 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2589 
2590 	if (!clear_pending_if_disabled(&dwork->work))
2591 		__queue_delayed_work(cpu, wq, dwork, delay);
2592 
2593 	local_irq_restore(irq_flags);
2594 	return ret;
2595 }
2596 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2597 
rcu_work_rcufn(struct rcu_head * rcu)2598 static void rcu_work_rcufn(struct rcu_head *rcu)
2599 {
2600 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2601 
2602 	/* read the comment in __queue_work() */
2603 	local_irq_disable();
2604 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2605 	local_irq_enable();
2606 }
2607 
2608 /**
2609  * queue_rcu_work - queue work after a RCU grace period
2610  * @wq: workqueue to use
2611  * @rwork: work to queue
2612  *
2613  * Return: %false if @rwork was already pending, %true otherwise.  Note
2614  * that a full RCU grace period is guaranteed only after a %true return.
2615  * While @rwork is guaranteed to be executed after a %false return, the
2616  * execution may happen before a full RCU grace period has passed.
2617  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2618 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2619 {
2620 	struct work_struct *work = &rwork->work;
2621 
2622 	/*
2623 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2624 	 * inside @rwork and disabled the inner work.
2625 	 */
2626 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2627 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2628 		rwork->wq = wq;
2629 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2630 		return true;
2631 	}
2632 
2633 	return false;
2634 }
2635 EXPORT_SYMBOL(queue_rcu_work);
2636 
alloc_worker(int node)2637 static struct worker *alloc_worker(int node)
2638 {
2639 	struct worker *worker;
2640 
2641 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2642 	if (worker) {
2643 		INIT_LIST_HEAD(&worker->entry);
2644 		INIT_LIST_HEAD(&worker->scheduled);
2645 		INIT_LIST_HEAD(&worker->node);
2646 		/* on creation a worker is in !idle && prep state */
2647 		worker->flags = WORKER_PREP;
2648 	}
2649 	return worker;
2650 }
2651 
pool_allowed_cpus(struct worker_pool * pool)2652 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2653 {
2654 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2655 		return pool->attrs->__pod_cpumask;
2656 	else
2657 		return pool->attrs->cpumask;
2658 }
2659 
2660 /**
2661  * worker_attach_to_pool() - attach a worker to a pool
2662  * @worker: worker to be attached
2663  * @pool: the target pool
2664  *
2665  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2666  * cpu-binding of @worker are kept coordinated with the pool across
2667  * cpu-[un]hotplugs.
2668  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2669 static void worker_attach_to_pool(struct worker *worker,
2670 				  struct worker_pool *pool)
2671 {
2672 	mutex_lock(&wq_pool_attach_mutex);
2673 
2674 	/*
2675 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2676 	 * across this function. See the comments above the flag definition for
2677 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2678 	 */
2679 	if (pool->flags & POOL_DISASSOCIATED) {
2680 		worker->flags |= WORKER_UNBOUND;
2681 	} else {
2682 		WARN_ON_ONCE(pool->flags & POOL_BH);
2683 		kthread_set_per_cpu(worker->task, pool->cpu);
2684 	}
2685 
2686 	if (worker->rescue_wq)
2687 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2688 
2689 	list_add_tail(&worker->node, &pool->workers);
2690 	worker->pool = pool;
2691 
2692 	mutex_unlock(&wq_pool_attach_mutex);
2693 }
2694 
unbind_worker(struct worker * worker)2695 static void unbind_worker(struct worker *worker)
2696 {
2697 	lockdep_assert_held(&wq_pool_attach_mutex);
2698 
2699 	kthread_set_per_cpu(worker->task, -1);
2700 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2701 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2702 	else
2703 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2704 }
2705 
2706 
detach_worker(struct worker * worker)2707 static void detach_worker(struct worker *worker)
2708 {
2709 	lockdep_assert_held(&wq_pool_attach_mutex);
2710 
2711 	unbind_worker(worker);
2712 	list_del(&worker->node);
2713 }
2714 
2715 /**
2716  * worker_detach_from_pool() - detach a worker from its pool
2717  * @worker: worker which is attached to its pool
2718  *
2719  * Undo the attaching which had been done in worker_attach_to_pool().  The
2720  * caller worker shouldn't access to the pool after detached except it has
2721  * other reference to the pool.
2722  */
worker_detach_from_pool(struct worker * worker)2723 static void worker_detach_from_pool(struct worker *worker)
2724 {
2725 	struct worker_pool *pool = worker->pool;
2726 
2727 	/* there is one permanent BH worker per CPU which should never detach */
2728 	WARN_ON_ONCE(pool->flags & POOL_BH);
2729 
2730 	mutex_lock(&wq_pool_attach_mutex);
2731 	detach_worker(worker);
2732 	worker->pool = NULL;
2733 	mutex_unlock(&wq_pool_attach_mutex);
2734 
2735 	/* clear leftover flags without pool->lock after it is detached */
2736 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2737 }
2738 
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2739 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2740 			    struct worker_pool *pool)
2741 {
2742 	if (worker->rescue_wq)
2743 		return scnprintf(buf, size, "kworker/R-%s",
2744 				 worker->rescue_wq->name);
2745 
2746 	if (pool) {
2747 		if (pool->cpu >= 0)
2748 			return scnprintf(buf, size, "kworker/%d:%d%s",
2749 					 pool->cpu, worker->id,
2750 					 pool->attrs->nice < 0  ? "H" : "");
2751 		else
2752 			return scnprintf(buf, size, "kworker/u%d:%d",
2753 					 pool->id, worker->id);
2754 	} else {
2755 		return scnprintf(buf, size, "kworker/dying");
2756 	}
2757 }
2758 
2759 /**
2760  * create_worker - create a new workqueue worker
2761  * @pool: pool the new worker will belong to
2762  *
2763  * Create and start a new worker which is attached to @pool.
2764  *
2765  * CONTEXT:
2766  * Might sleep.  Does GFP_KERNEL allocations.
2767  *
2768  * Return:
2769  * Pointer to the newly created worker.
2770  */
create_worker(struct worker_pool * pool)2771 static struct worker *create_worker(struct worker_pool *pool)
2772 {
2773 	struct worker *worker;
2774 	int id;
2775 
2776 	/* ID is needed to determine kthread name */
2777 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2778 	if (id < 0) {
2779 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2780 			    ERR_PTR(id));
2781 		return NULL;
2782 	}
2783 
2784 	worker = alloc_worker(pool->node);
2785 	if (!worker) {
2786 		pr_err_once("workqueue: Failed to allocate a worker\n");
2787 		goto fail;
2788 	}
2789 
2790 	worker->id = id;
2791 
2792 	if (!(pool->flags & POOL_BH)) {
2793 		char id_buf[WORKER_ID_LEN];
2794 
2795 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2796 		worker->task = kthread_create_on_node(worker_thread, worker,
2797 						      pool->node, "%s", id_buf);
2798 		if (IS_ERR(worker->task)) {
2799 			if (PTR_ERR(worker->task) == -EINTR) {
2800 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2801 				       id_buf);
2802 			} else {
2803 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2804 					    worker->task);
2805 			}
2806 			goto fail;
2807 		}
2808 
2809 		set_user_nice(worker->task, pool->attrs->nice);
2810 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2811 	}
2812 
2813 	/* successful, attach the worker to the pool */
2814 	worker_attach_to_pool(worker, pool);
2815 
2816 	/* start the newly created worker */
2817 	raw_spin_lock_irq(&pool->lock);
2818 
2819 	worker->pool->nr_workers++;
2820 	worker_enter_idle(worker);
2821 
2822 	/*
2823 	 * @worker is waiting on a completion in kthread() and will trigger hung
2824 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2825 	 * wake it up explicitly.
2826 	 */
2827 	if (worker->task)
2828 		wake_up_process(worker->task);
2829 
2830 	raw_spin_unlock_irq(&pool->lock);
2831 
2832 	return worker;
2833 
2834 fail:
2835 	ida_free(&pool->worker_ida, id);
2836 	kfree(worker);
2837 	return NULL;
2838 }
2839 
detach_dying_workers(struct list_head * cull_list)2840 static void detach_dying_workers(struct list_head *cull_list)
2841 {
2842 	struct worker *worker;
2843 
2844 	list_for_each_entry(worker, cull_list, entry)
2845 		detach_worker(worker);
2846 }
2847 
reap_dying_workers(struct list_head * cull_list)2848 static void reap_dying_workers(struct list_head *cull_list)
2849 {
2850 	struct worker *worker, *tmp;
2851 
2852 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2853 		list_del_init(&worker->entry);
2854 		kthread_stop_put(worker->task);
2855 		kfree(worker);
2856 	}
2857 }
2858 
2859 /**
2860  * set_worker_dying - Tag a worker for destruction
2861  * @worker: worker to be destroyed
2862  * @list: transfer worker away from its pool->idle_list and into list
2863  *
2864  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2865  * should be idle.
2866  *
2867  * CONTEXT:
2868  * raw_spin_lock_irq(pool->lock).
2869  */
set_worker_dying(struct worker * worker,struct list_head * list)2870 static void set_worker_dying(struct worker *worker, struct list_head *list)
2871 {
2872 	struct worker_pool *pool = worker->pool;
2873 
2874 	lockdep_assert_held(&pool->lock);
2875 	lockdep_assert_held(&wq_pool_attach_mutex);
2876 
2877 	/* sanity check frenzy */
2878 	if (WARN_ON(worker->current_work) ||
2879 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2880 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2881 		return;
2882 
2883 	pool->nr_workers--;
2884 	pool->nr_idle--;
2885 
2886 	worker->flags |= WORKER_DIE;
2887 
2888 	list_move(&worker->entry, list);
2889 
2890 	/* get an extra task struct reference for later kthread_stop_put() */
2891 	get_task_struct(worker->task);
2892 }
2893 
2894 /**
2895  * idle_worker_timeout - check if some idle workers can now be deleted.
2896  * @t: The pool's idle_timer that just expired
2897  *
2898  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2899  * worker_leave_idle(), as a worker flicking between idle and active while its
2900  * pool is at the too_many_workers() tipping point would cause too much timer
2901  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2902  * it expire and re-evaluate things from there.
2903  */
idle_worker_timeout(struct timer_list * t)2904 static void idle_worker_timeout(struct timer_list *t)
2905 {
2906 	struct worker_pool *pool = timer_container_of(pool, t, idle_timer);
2907 	bool do_cull = false;
2908 
2909 	if (work_pending(&pool->idle_cull_work))
2910 		return;
2911 
2912 	raw_spin_lock_irq(&pool->lock);
2913 
2914 	if (too_many_workers(pool)) {
2915 		struct worker *worker;
2916 		unsigned long expires;
2917 
2918 		/* idle_list is kept in LIFO order, check the last one */
2919 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2920 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2921 		do_cull = !time_before(jiffies, expires);
2922 
2923 		if (!do_cull)
2924 			mod_timer(&pool->idle_timer, expires);
2925 	}
2926 	raw_spin_unlock_irq(&pool->lock);
2927 
2928 	if (do_cull)
2929 		queue_work(system_dfl_wq, &pool->idle_cull_work);
2930 }
2931 
2932 /**
2933  * idle_cull_fn - cull workers that have been idle for too long.
2934  * @work: the pool's work for handling these idle workers
2935  *
2936  * This goes through a pool's idle workers and gets rid of those that have been
2937  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2938  *
2939  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2940  * culled, so this also resets worker affinity. This requires a sleepable
2941  * context, hence the split between timer callback and work item.
2942  */
idle_cull_fn(struct work_struct * work)2943 static void idle_cull_fn(struct work_struct *work)
2944 {
2945 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2946 	LIST_HEAD(cull_list);
2947 
2948 	/*
2949 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2950 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2951 	 * This is required as a previously-preempted worker could run after
2952 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2953 	 */
2954 	mutex_lock(&wq_pool_attach_mutex);
2955 	raw_spin_lock_irq(&pool->lock);
2956 
2957 	while (too_many_workers(pool)) {
2958 		struct worker *worker;
2959 		unsigned long expires;
2960 
2961 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2962 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2963 
2964 		if (time_before(jiffies, expires)) {
2965 			mod_timer(&pool->idle_timer, expires);
2966 			break;
2967 		}
2968 
2969 		set_worker_dying(worker, &cull_list);
2970 	}
2971 
2972 	raw_spin_unlock_irq(&pool->lock);
2973 	detach_dying_workers(&cull_list);
2974 	mutex_unlock(&wq_pool_attach_mutex);
2975 
2976 	reap_dying_workers(&cull_list);
2977 }
2978 
send_mayday(struct work_struct * work)2979 static void send_mayday(struct work_struct *work)
2980 {
2981 	struct pool_workqueue *pwq = get_work_pwq(work);
2982 	struct workqueue_struct *wq = pwq->wq;
2983 
2984 	lockdep_assert_held(&wq_mayday_lock);
2985 
2986 	if (!wq->rescuer)
2987 		return;
2988 
2989 	/* mayday mayday mayday */
2990 	if (list_empty(&pwq->mayday_node)) {
2991 		/*
2992 		 * If @pwq is for an unbound wq, its base ref may be put at
2993 		 * any time due to an attribute change.  Pin @pwq until the
2994 		 * rescuer is done with it.
2995 		 */
2996 		get_pwq(pwq);
2997 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2998 		wake_up_process(wq->rescuer->task);
2999 		pwq->stats[PWQ_STAT_MAYDAY]++;
3000 	}
3001 }
3002 
pool_mayday_timeout(struct timer_list * t)3003 static void pool_mayday_timeout(struct timer_list *t)
3004 {
3005 	struct worker_pool *pool = timer_container_of(pool, t, mayday_timer);
3006 	struct work_struct *work;
3007 
3008 	raw_spin_lock_irq(&pool->lock);
3009 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3010 
3011 	if (need_to_create_worker(pool)) {
3012 		/*
3013 		 * We've been trying to create a new worker but
3014 		 * haven't been successful.  We might be hitting an
3015 		 * allocation deadlock.  Send distress signals to
3016 		 * rescuers.
3017 		 */
3018 		list_for_each_entry(work, &pool->worklist, entry)
3019 			send_mayday(work);
3020 	}
3021 
3022 	raw_spin_unlock(&wq_mayday_lock);
3023 	raw_spin_unlock_irq(&pool->lock);
3024 
3025 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3026 }
3027 
3028 /**
3029  * maybe_create_worker - create a new worker if necessary
3030  * @pool: pool to create a new worker for
3031  *
3032  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3033  * have at least one idle worker on return from this function.  If
3034  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3035  * sent to all rescuers with works scheduled on @pool to resolve
3036  * possible allocation deadlock.
3037  *
3038  * On return, need_to_create_worker() is guaranteed to be %false and
3039  * may_start_working() %true.
3040  *
3041  * LOCKING:
3042  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3043  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3044  * manager.
3045  */
maybe_create_worker(struct worker_pool * pool)3046 static void maybe_create_worker(struct worker_pool *pool)
3047 __releases(&pool->lock)
3048 __acquires(&pool->lock)
3049 {
3050 restart:
3051 	raw_spin_unlock_irq(&pool->lock);
3052 
3053 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3054 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3055 
3056 	while (true) {
3057 		if (create_worker(pool) || !need_to_create_worker(pool))
3058 			break;
3059 
3060 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3061 
3062 		if (!need_to_create_worker(pool))
3063 			break;
3064 	}
3065 
3066 	timer_delete_sync(&pool->mayday_timer);
3067 	raw_spin_lock_irq(&pool->lock);
3068 	/*
3069 	 * This is necessary even after a new worker was just successfully
3070 	 * created as @pool->lock was dropped and the new worker might have
3071 	 * already become busy.
3072 	 */
3073 	if (need_to_create_worker(pool))
3074 		goto restart;
3075 }
3076 
3077 #ifdef CONFIG_PREEMPT_RT
worker_lock_callback(struct worker_pool * pool)3078 static void worker_lock_callback(struct worker_pool *pool)
3079 {
3080 	spin_lock(&pool->cb_lock);
3081 }
3082 
worker_unlock_callback(struct worker_pool * pool)3083 static void worker_unlock_callback(struct worker_pool *pool)
3084 {
3085 	spin_unlock(&pool->cb_lock);
3086 }
3087 
workqueue_callback_cancel_wait_running(struct worker_pool * pool)3088 static void workqueue_callback_cancel_wait_running(struct worker_pool *pool)
3089 {
3090 	spin_lock(&pool->cb_lock);
3091 	spin_unlock(&pool->cb_lock);
3092 }
3093 
3094 #else
3095 
worker_lock_callback(struct worker_pool * pool)3096 static void worker_lock_callback(struct worker_pool *pool) { }
worker_unlock_callback(struct worker_pool * pool)3097 static void worker_unlock_callback(struct worker_pool *pool) { }
workqueue_callback_cancel_wait_running(struct worker_pool * pool)3098 static void workqueue_callback_cancel_wait_running(struct worker_pool *pool) { }
3099 
3100 #endif
3101 
3102 /**
3103  * manage_workers - manage worker pool
3104  * @worker: self
3105  *
3106  * Assume the manager role and manage the worker pool @worker belongs
3107  * to.  At any given time, there can be only zero or one manager per
3108  * pool.  The exclusion is handled automatically by this function.
3109  *
3110  * The caller can safely start processing works on false return.  On
3111  * true return, it's guaranteed that need_to_create_worker() is false
3112  * and may_start_working() is true.
3113  *
3114  * CONTEXT:
3115  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3116  * multiple times.  Does GFP_KERNEL allocations.
3117  *
3118  * Return:
3119  * %false if the pool doesn't need management and the caller can safely
3120  * start processing works, %true if management function was performed and
3121  * the conditions that the caller verified before calling the function may
3122  * no longer be true.
3123  */
manage_workers(struct worker * worker)3124 static bool manage_workers(struct worker *worker)
3125 {
3126 	struct worker_pool *pool = worker->pool;
3127 
3128 	if (pool->flags & POOL_MANAGER_ACTIVE)
3129 		return false;
3130 
3131 	pool->flags |= POOL_MANAGER_ACTIVE;
3132 	pool->manager = worker;
3133 
3134 	maybe_create_worker(pool);
3135 
3136 	pool->manager = NULL;
3137 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3138 	rcuwait_wake_up(&manager_wait);
3139 	return true;
3140 }
3141 
3142 /**
3143  * process_one_work - process single work
3144  * @worker: self
3145  * @work: work to process
3146  *
3147  * Process @work.  This function contains all the logics necessary to
3148  * process a single work including synchronization against and
3149  * interaction with other workers on the same cpu, queueing and
3150  * flushing.  As long as context requirement is met, any worker can
3151  * call this function to process a work.
3152  *
3153  * CONTEXT:
3154  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3155  */
process_one_work(struct worker * worker,struct work_struct * work)3156 static void process_one_work(struct worker *worker, struct work_struct *work)
3157 __releases(&pool->lock)
3158 __acquires(&pool->lock)
3159 {
3160 	struct pool_workqueue *pwq = get_work_pwq(work);
3161 	struct worker_pool *pool = worker->pool;
3162 	unsigned long work_data;
3163 	int lockdep_start_depth, rcu_start_depth;
3164 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3165 #ifdef CONFIG_LOCKDEP
3166 	/*
3167 	 * It is permissible to free the struct work_struct from
3168 	 * inside the function that is called from it, this we need to
3169 	 * take into account for lockdep too.  To avoid bogus "held
3170 	 * lock freed" warnings as well as problems when looking into
3171 	 * work->lockdep_map, make a copy and use that here.
3172 	 */
3173 	struct lockdep_map lockdep_map;
3174 
3175 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3176 #endif
3177 	/* ensure we're on the correct CPU */
3178 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3179 		     raw_smp_processor_id() != pool->cpu);
3180 
3181 	/* claim and dequeue */
3182 	debug_work_deactivate(work);
3183 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3184 	worker->current_work = work;
3185 	worker->current_func = work->func;
3186 	worker->current_pwq = pwq;
3187 	if (worker->task)
3188 		worker->current_at = worker->task->se.sum_exec_runtime;
3189 	work_data = *work_data_bits(work);
3190 	worker->current_color = get_work_color(work_data);
3191 
3192 	/*
3193 	 * Record wq name for cmdline and debug reporting, may get
3194 	 * overridden through set_worker_desc().
3195 	 */
3196 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3197 
3198 	list_del_init(&work->entry);
3199 
3200 	/*
3201 	 * CPU intensive works don't participate in concurrency management.
3202 	 * They're the scheduler's responsibility.  This takes @worker out
3203 	 * of concurrency management and the next code block will chain
3204 	 * execution of the pending work items.
3205 	 */
3206 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3207 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3208 
3209 	/*
3210 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3211 	 * since nr_running would always be >= 1 at this point. This is used to
3212 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3213 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3214 	 */
3215 	kick_pool(pool);
3216 
3217 	/*
3218 	 * Record the last pool and clear PENDING which should be the last
3219 	 * update to @work.  Also, do this inside @pool->lock so that
3220 	 * PENDING and queued state changes happen together while IRQ is
3221 	 * disabled.
3222 	 */
3223 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3224 
3225 	pwq->stats[PWQ_STAT_STARTED]++;
3226 	raw_spin_unlock_irq(&pool->lock);
3227 
3228 	rcu_start_depth = rcu_preempt_depth();
3229 	lockdep_start_depth = lockdep_depth(current);
3230 	/* see drain_dead_softirq_workfn() */
3231 	if (!bh_draining)
3232 		lock_map_acquire(pwq->wq->lockdep_map);
3233 	lock_map_acquire(&lockdep_map);
3234 	/*
3235 	 * Strictly speaking we should mark the invariant state without holding
3236 	 * any locks, that is, before these two lock_map_acquire()'s.
3237 	 *
3238 	 * However, that would result in:
3239 	 *
3240 	 *   A(W1)
3241 	 *   WFC(C)
3242 	 *		A(W1)
3243 	 *		C(C)
3244 	 *
3245 	 * Which would create W1->C->W1 dependencies, even though there is no
3246 	 * actual deadlock possible. There are two solutions, using a
3247 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3248 	 * hit the lockdep limitation on recursive locks, or simply discard
3249 	 * these locks.
3250 	 *
3251 	 * AFAICT there is no possible deadlock scenario between the
3252 	 * flush_work() and complete() primitives (except for single-threaded
3253 	 * workqueues), so hiding them isn't a problem.
3254 	 */
3255 	lockdep_invariant_state(true);
3256 	trace_workqueue_execute_start(work);
3257 	worker->current_func(work);
3258 	/*
3259 	 * While we must be careful to not use "work" after this, the trace
3260 	 * point will only record its address.
3261 	 */
3262 	trace_workqueue_execute_end(work, worker->current_func);
3263 
3264 	lock_map_release(&lockdep_map);
3265 	if (!bh_draining)
3266 		lock_map_release(pwq->wq->lockdep_map);
3267 
3268 	if (unlikely((worker->task && in_atomic()) ||
3269 		     lockdep_depth(current) != lockdep_start_depth ||
3270 		     rcu_preempt_depth() != rcu_start_depth)) {
3271 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3272 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3273 		       current->comm, task_pid_nr(current), preempt_count(),
3274 		       lockdep_start_depth, lockdep_depth(current),
3275 		       rcu_start_depth, rcu_preempt_depth(),
3276 		       worker->current_func);
3277 		debug_show_held_locks(current);
3278 		dump_stack();
3279 	}
3280 
3281 	/*
3282 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3283 	 * kernels, where a requeueing work item waiting for something to
3284 	 * happen could deadlock with stop_machine as such work item could
3285 	 * indefinitely requeue itself while all other CPUs are trapped in
3286 	 * stop_machine. At the same time, report a quiescent RCU state so
3287 	 * the same condition doesn't freeze RCU.
3288 	 */
3289 	if (worker->task)
3290 		cond_resched();
3291 
3292 	raw_spin_lock_irq(&pool->lock);
3293 
3294 	pwq->stats[PWQ_STAT_COMPLETED]++;
3295 
3296 	/*
3297 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3298 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3299 	 * wq_cpu_intensive_thresh_us. Clear it.
3300 	 */
3301 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3302 
3303 	/* tag the worker for identification in schedule() */
3304 	worker->last_func = worker->current_func;
3305 
3306 	/* we're done with it, release */
3307 	hash_del(&worker->hentry);
3308 	worker->current_work = NULL;
3309 	worker->current_func = NULL;
3310 	worker->current_pwq = NULL;
3311 	worker->current_color = INT_MAX;
3312 
3313 	/* must be the last step, see the function comment */
3314 	pwq_dec_nr_in_flight(pwq, work_data);
3315 }
3316 
3317 /**
3318  * process_scheduled_works - process scheduled works
3319  * @worker: self
3320  *
3321  * Process all scheduled works.  Please note that the scheduled list
3322  * may change while processing a work, so this function repeatedly
3323  * fetches a work from the top and executes it.
3324  *
3325  * CONTEXT:
3326  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3327  * multiple times.
3328  */
process_scheduled_works(struct worker * worker)3329 static void process_scheduled_works(struct worker *worker)
3330 {
3331 	struct work_struct *work;
3332 	bool first = true;
3333 
3334 	while ((work = list_first_entry_or_null(&worker->scheduled,
3335 						struct work_struct, entry))) {
3336 		if (first) {
3337 			worker->pool->watchdog_ts = jiffies;
3338 			first = false;
3339 		}
3340 		process_one_work(worker, work);
3341 	}
3342 }
3343 
set_pf_worker(bool val)3344 static void set_pf_worker(bool val)
3345 {
3346 	mutex_lock(&wq_pool_attach_mutex);
3347 	if (val)
3348 		current->flags |= PF_WQ_WORKER;
3349 	else
3350 		current->flags &= ~PF_WQ_WORKER;
3351 	mutex_unlock(&wq_pool_attach_mutex);
3352 }
3353 
3354 /**
3355  * worker_thread - the worker thread function
3356  * @__worker: self
3357  *
3358  * The worker thread function.  All workers belong to a worker_pool -
3359  * either a per-cpu one or dynamic unbound one.  These workers process all
3360  * work items regardless of their specific target workqueue.  The only
3361  * exception is work items which belong to workqueues with a rescuer which
3362  * will be explained in rescuer_thread().
3363  *
3364  * Return: 0
3365  */
worker_thread(void * __worker)3366 static int worker_thread(void *__worker)
3367 {
3368 	struct worker *worker = __worker;
3369 	struct worker_pool *pool = worker->pool;
3370 
3371 	/* tell the scheduler that this is a workqueue worker */
3372 	set_pf_worker(true);
3373 woke_up:
3374 	raw_spin_lock_irq(&pool->lock);
3375 
3376 	/* am I supposed to die? */
3377 	if (unlikely(worker->flags & WORKER_DIE)) {
3378 		raw_spin_unlock_irq(&pool->lock);
3379 		set_pf_worker(false);
3380 		/*
3381 		 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3382 		 * shouldn't be accessed, reset it to NULL in case otherwise.
3383 		 */
3384 		worker->pool = NULL;
3385 		ida_free(&pool->worker_ida, worker->id);
3386 		return 0;
3387 	}
3388 
3389 	worker_leave_idle(worker);
3390 recheck:
3391 	/* no more worker necessary? */
3392 	if (!need_more_worker(pool))
3393 		goto sleep;
3394 
3395 	/* do we need to manage? */
3396 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3397 		goto recheck;
3398 
3399 	/*
3400 	 * ->scheduled list can only be filled while a worker is
3401 	 * preparing to process a work or actually processing it.
3402 	 * Make sure nobody diddled with it while I was sleeping.
3403 	 */
3404 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3405 
3406 	/*
3407 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3408 	 * worker or that someone else has already assumed the manager
3409 	 * role.  This is where @worker starts participating in concurrency
3410 	 * management if applicable and concurrency management is restored
3411 	 * after being rebound.  See rebind_workers() for details.
3412 	 */
3413 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3414 
3415 	do {
3416 		struct work_struct *work =
3417 			list_first_entry(&pool->worklist,
3418 					 struct work_struct, entry);
3419 
3420 		if (assign_work(work, worker, NULL))
3421 			process_scheduled_works(worker);
3422 	} while (keep_working(pool));
3423 
3424 	worker_set_flags(worker, WORKER_PREP);
3425 sleep:
3426 	/*
3427 	 * pool->lock is held and there's no work to process and no need to
3428 	 * manage, sleep.  Workers are woken up only while holding
3429 	 * pool->lock or from local cpu, so setting the current state
3430 	 * before releasing pool->lock is enough to prevent losing any
3431 	 * event.
3432 	 */
3433 	worker_enter_idle(worker);
3434 	__set_current_state(TASK_IDLE);
3435 	raw_spin_unlock_irq(&pool->lock);
3436 	schedule();
3437 	goto woke_up;
3438 }
3439 
assign_rescuer_work(struct pool_workqueue * pwq,struct worker * rescuer)3440 static bool assign_rescuer_work(struct pool_workqueue *pwq, struct worker *rescuer)
3441 {
3442 	struct worker_pool *pool = pwq->pool;
3443 	struct work_struct *work, *n;
3444 
3445 	/* need rescue? */
3446 	if (!pwq->nr_active || !need_to_create_worker(pool))
3447 		return false;
3448 
3449 	/*
3450 	 * Slurp in all works issued via this workqueue and
3451 	 * process'em.
3452 	 */
3453 	list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3454 		if (get_work_pwq(work) == pwq && assign_work(work, rescuer, &n))
3455 			pwq->stats[PWQ_STAT_RESCUED]++;
3456 	}
3457 
3458 	return !list_empty(&rescuer->scheduled);
3459 }
3460 
3461 /**
3462  * rescuer_thread - the rescuer thread function
3463  * @__rescuer: self
3464  *
3465  * Workqueue rescuer thread function.  There's one rescuer for each
3466  * workqueue which has WQ_MEM_RECLAIM set.
3467  *
3468  * Regular work processing on a pool may block trying to create a new
3469  * worker which uses GFP_KERNEL allocation which has slight chance of
3470  * developing into deadlock if some works currently on the same queue
3471  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3472  * the problem rescuer solves.
3473  *
3474  * When such condition is possible, the pool summons rescuers of all
3475  * workqueues which have works queued on the pool and let them process
3476  * those works so that forward progress can be guaranteed.
3477  *
3478  * This should happen rarely.
3479  *
3480  * Return: 0
3481  */
rescuer_thread(void * __rescuer)3482 static int rescuer_thread(void *__rescuer)
3483 {
3484 	struct worker *rescuer = __rescuer;
3485 	struct workqueue_struct *wq = rescuer->rescue_wq;
3486 	bool should_stop;
3487 
3488 	set_user_nice(current, RESCUER_NICE_LEVEL);
3489 
3490 	/*
3491 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3492 	 * doesn't participate in concurrency management.
3493 	 */
3494 	set_pf_worker(true);
3495 repeat:
3496 	set_current_state(TASK_IDLE);
3497 
3498 	/*
3499 	 * By the time the rescuer is requested to stop, the workqueue
3500 	 * shouldn't have any work pending, but @wq->maydays may still have
3501 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3502 	 * all the work items before the rescuer got to them.  Go through
3503 	 * @wq->maydays processing before acting on should_stop so that the
3504 	 * list is always empty on exit.
3505 	 */
3506 	should_stop = kthread_should_stop();
3507 
3508 	/* see whether any pwq is asking for help */
3509 	raw_spin_lock_irq(&wq_mayday_lock);
3510 
3511 	while (!list_empty(&wq->maydays)) {
3512 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3513 					struct pool_workqueue, mayday_node);
3514 		struct worker_pool *pool = pwq->pool;
3515 
3516 		__set_current_state(TASK_RUNNING);
3517 		list_del_init(&pwq->mayday_node);
3518 
3519 		raw_spin_unlock_irq(&wq_mayday_lock);
3520 
3521 		worker_attach_to_pool(rescuer, pool);
3522 
3523 		raw_spin_lock_irq(&pool->lock);
3524 
3525 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3526 
3527 		if (assign_rescuer_work(pwq, rescuer)) {
3528 			process_scheduled_works(rescuer);
3529 
3530 			/*
3531 			 * The above execution of rescued work items could
3532 			 * have created more to rescue through
3533 			 * pwq_activate_first_inactive() or chained
3534 			 * queueing.  Let's put @pwq back on mayday list so
3535 			 * that such back-to-back work items, which may be
3536 			 * being used to relieve memory pressure, don't
3537 			 * incur MAYDAY_INTERVAL delay inbetween.
3538 			 */
3539 			if (pwq->nr_active && need_to_create_worker(pool)) {
3540 				raw_spin_lock(&wq_mayday_lock);
3541 				/*
3542 				 * Queue iff somebody else hasn't queued it already.
3543 				 */
3544 				if (list_empty(&pwq->mayday_node)) {
3545 					get_pwq(pwq);
3546 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3547 				}
3548 				raw_spin_unlock(&wq_mayday_lock);
3549 			}
3550 		}
3551 
3552 		/*
3553 		 * Leave this pool. Notify regular workers; otherwise, we end up
3554 		 * with 0 concurrency and stalling the execution.
3555 		 */
3556 		kick_pool(pool);
3557 
3558 		raw_spin_unlock_irq(&pool->lock);
3559 
3560 		worker_detach_from_pool(rescuer);
3561 
3562 		/*
3563 		 * Put the reference grabbed by send_mayday().  @pool might
3564 		 * go away any time after it.
3565 		 */
3566 		put_pwq_unlocked(pwq);
3567 
3568 		raw_spin_lock_irq(&wq_mayday_lock);
3569 	}
3570 
3571 	raw_spin_unlock_irq(&wq_mayday_lock);
3572 
3573 	if (should_stop) {
3574 		__set_current_state(TASK_RUNNING);
3575 		set_pf_worker(false);
3576 		return 0;
3577 	}
3578 
3579 	/* rescuers should never participate in concurrency management */
3580 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3581 	schedule();
3582 	goto repeat;
3583 }
3584 
bh_worker(struct worker * worker)3585 static void bh_worker(struct worker *worker)
3586 {
3587 	struct worker_pool *pool = worker->pool;
3588 	int nr_restarts = BH_WORKER_RESTARTS;
3589 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3590 
3591 	worker_lock_callback(pool);
3592 	raw_spin_lock_irq(&pool->lock);
3593 	worker_leave_idle(worker);
3594 
3595 	/*
3596 	 * This function follows the structure of worker_thread(). See there for
3597 	 * explanations on each step.
3598 	 */
3599 	if (!need_more_worker(pool))
3600 		goto done;
3601 
3602 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3603 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3604 
3605 	do {
3606 		struct work_struct *work =
3607 			list_first_entry(&pool->worklist,
3608 					 struct work_struct, entry);
3609 
3610 		if (assign_work(work, worker, NULL))
3611 			process_scheduled_works(worker);
3612 	} while (keep_working(pool) &&
3613 		 --nr_restarts && time_before(jiffies, end));
3614 
3615 	worker_set_flags(worker, WORKER_PREP);
3616 done:
3617 	worker_enter_idle(worker);
3618 	kick_pool(pool);
3619 	raw_spin_unlock_irq(&pool->lock);
3620 	worker_unlock_callback(pool);
3621 }
3622 
3623 /*
3624  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3625  *
3626  * This is currently called from tasklet[_hi]action() and thus is also called
3627  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3628  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3629  * can be dropped.
3630  *
3631  * After full conversion, we'll add worker->softirq_action, directly use the
3632  * softirq action and obtain the worker pointer from the softirq_action pointer.
3633  */
workqueue_softirq_action(bool highpri)3634 void workqueue_softirq_action(bool highpri)
3635 {
3636 	struct worker_pool *pool =
3637 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3638 	if (need_more_worker(pool))
3639 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3640 }
3641 
3642 struct wq_drain_dead_softirq_work {
3643 	struct work_struct	work;
3644 	struct worker_pool	*pool;
3645 	struct completion	done;
3646 };
3647 
drain_dead_softirq_workfn(struct work_struct * work)3648 static void drain_dead_softirq_workfn(struct work_struct *work)
3649 {
3650 	struct wq_drain_dead_softirq_work *dead_work =
3651 		container_of(work, struct wq_drain_dead_softirq_work, work);
3652 	struct worker_pool *pool = dead_work->pool;
3653 	bool repeat;
3654 
3655 	/*
3656 	 * @pool's CPU is dead and we want to execute its still pending work
3657 	 * items from this BH work item which is running on a different CPU. As
3658 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3659 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3660 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3661 	 */
3662 	raw_spin_lock_irq(&pool->lock);
3663 	pool->flags |= POOL_BH_DRAINING;
3664 	raw_spin_unlock_irq(&pool->lock);
3665 
3666 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3667 
3668 	raw_spin_lock_irq(&pool->lock);
3669 	pool->flags &= ~POOL_BH_DRAINING;
3670 	repeat = need_more_worker(pool);
3671 	raw_spin_unlock_irq(&pool->lock);
3672 
3673 	/*
3674 	 * bh_worker() might hit consecutive execution limit and bail. If there
3675 	 * still are pending work items, reschedule self and return so that we
3676 	 * don't hog this CPU's BH.
3677 	 */
3678 	if (repeat) {
3679 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3680 			queue_work(system_bh_highpri_wq, work);
3681 		else
3682 			queue_work(system_bh_wq, work);
3683 	} else {
3684 		complete(&dead_work->done);
3685 	}
3686 }
3687 
3688 /*
3689  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3690  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3691  * have to worry about draining overlapping with CPU coming back online or
3692  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3693  * on). Let's keep it simple and drain them synchronously. These are BH work
3694  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3695  */
workqueue_softirq_dead(unsigned int cpu)3696 void workqueue_softirq_dead(unsigned int cpu)
3697 {
3698 	int i;
3699 
3700 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3701 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3702 		struct wq_drain_dead_softirq_work dead_work;
3703 
3704 		if (!need_more_worker(pool))
3705 			continue;
3706 
3707 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3708 		dead_work.pool = pool;
3709 		init_completion(&dead_work.done);
3710 
3711 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3712 			queue_work(system_bh_highpri_wq, &dead_work.work);
3713 		else
3714 			queue_work(system_bh_wq, &dead_work.work);
3715 
3716 		wait_for_completion(&dead_work.done);
3717 		destroy_work_on_stack(&dead_work.work);
3718 	}
3719 }
3720 
3721 /**
3722  * check_flush_dependency - check for flush dependency sanity
3723  * @target_wq: workqueue being flushed
3724  * @target_work: work item being flushed (NULL for workqueue flushes)
3725  * @from_cancel: are we called from the work cancel path
3726  *
3727  * %current is trying to flush the whole @target_wq or @target_work on it.
3728  * If this is not the cancel path (which implies work being flushed is either
3729  * already running, or will not be at all), check if @target_wq doesn't have
3730  * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3731  * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3732  * progress guarantee leading to a deadlock.
3733  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3734 static void check_flush_dependency(struct workqueue_struct *target_wq,
3735 				   struct work_struct *target_work,
3736 				   bool from_cancel)
3737 {
3738 	work_func_t target_func;
3739 	struct worker *worker;
3740 
3741 	if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3742 		return;
3743 
3744 	worker = current_wq_worker();
3745 	target_func = target_work ? target_work->func : NULL;
3746 
3747 	WARN_ONCE(current->flags & PF_MEMALLOC,
3748 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3749 		  current->pid, current->comm, target_wq->name, target_func);
3750 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3751 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3752 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3753 		  worker->current_pwq->wq->name, worker->current_func,
3754 		  target_wq->name, target_func);
3755 }
3756 
3757 struct wq_barrier {
3758 	struct work_struct	work;
3759 	struct completion	done;
3760 	struct task_struct	*task;	/* purely informational */
3761 };
3762 
wq_barrier_func(struct work_struct * work)3763 static void wq_barrier_func(struct work_struct *work)
3764 {
3765 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3766 	complete(&barr->done);
3767 }
3768 
3769 /**
3770  * insert_wq_barrier - insert a barrier work
3771  * @pwq: pwq to insert barrier into
3772  * @barr: wq_barrier to insert
3773  * @target: target work to attach @barr to
3774  * @worker: worker currently executing @target, NULL if @target is not executing
3775  *
3776  * @barr is linked to @target such that @barr is completed only after
3777  * @target finishes execution.  Please note that the ordering
3778  * guarantee is observed only with respect to @target and on the local
3779  * cpu.
3780  *
3781  * Currently, a queued barrier can't be canceled.  This is because
3782  * try_to_grab_pending() can't determine whether the work to be
3783  * grabbed is at the head of the queue and thus can't clear LINKED
3784  * flag of the previous work while there must be a valid next work
3785  * after a work with LINKED flag set.
3786  *
3787  * Note that when @worker is non-NULL, @target may be modified
3788  * underneath us, so we can't reliably determine pwq from @target.
3789  *
3790  * CONTEXT:
3791  * raw_spin_lock_irq(pool->lock).
3792  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3793 static void insert_wq_barrier(struct pool_workqueue *pwq,
3794 			      struct wq_barrier *barr,
3795 			      struct work_struct *target, struct worker *worker)
3796 {
3797 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3798 	unsigned int work_flags = 0;
3799 	unsigned int work_color;
3800 	struct list_head *head;
3801 
3802 	/*
3803 	 * debugobject calls are safe here even with pool->lock locked
3804 	 * as we know for sure that this will not trigger any of the
3805 	 * checks and call back into the fixup functions where we
3806 	 * might deadlock.
3807 	 *
3808 	 * BH and threaded workqueues need separate lockdep keys to avoid
3809 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3810 	 * usage".
3811 	 */
3812 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3813 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3814 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3815 
3816 	init_completion_map(&barr->done, &target->lockdep_map);
3817 
3818 	barr->task = current;
3819 
3820 	/* The barrier work item does not participate in nr_active. */
3821 	work_flags |= WORK_STRUCT_INACTIVE;
3822 
3823 	/*
3824 	 * If @target is currently being executed, schedule the
3825 	 * barrier to the worker; otherwise, put it after @target.
3826 	 */
3827 	if (worker) {
3828 		head = worker->scheduled.next;
3829 		work_color = worker->current_color;
3830 	} else {
3831 		unsigned long *bits = work_data_bits(target);
3832 
3833 		head = target->entry.next;
3834 		/* there can already be other linked works, inherit and set */
3835 		work_flags |= *bits & WORK_STRUCT_LINKED;
3836 		work_color = get_work_color(*bits);
3837 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3838 	}
3839 
3840 	pwq->nr_in_flight[work_color]++;
3841 	work_flags |= work_color_to_flags(work_color);
3842 
3843 	insert_work(pwq, &barr->work, head, work_flags);
3844 }
3845 
3846 /**
3847  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3848  * @wq: workqueue being flushed
3849  * @flush_color: new flush color, < 0 for no-op
3850  * @work_color: new work color, < 0 for no-op
3851  *
3852  * Prepare pwqs for workqueue flushing.
3853  *
3854  * If @flush_color is non-negative, flush_color on all pwqs should be
3855  * -1.  If no pwq has in-flight commands at the specified color, all
3856  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3857  * has in flight commands, its pwq->flush_color is set to
3858  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3859  * wakeup logic is armed and %true is returned.
3860  *
3861  * The caller should have initialized @wq->first_flusher prior to
3862  * calling this function with non-negative @flush_color.  If
3863  * @flush_color is negative, no flush color update is done and %false
3864  * is returned.
3865  *
3866  * If @work_color is non-negative, all pwqs should have the same
3867  * work_color which is previous to @work_color and all will be
3868  * advanced to @work_color.
3869  *
3870  * CONTEXT:
3871  * mutex_lock(wq->mutex).
3872  *
3873  * Return:
3874  * %true if @flush_color >= 0 and there's something to flush.  %false
3875  * otherwise.
3876  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3877 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3878 				      int flush_color, int work_color)
3879 {
3880 	bool wait = false;
3881 	struct pool_workqueue *pwq;
3882 	struct worker_pool *current_pool = NULL;
3883 
3884 	if (flush_color >= 0) {
3885 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3886 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3887 	}
3888 
3889 	/*
3890 	 * For unbound workqueue, pwqs will map to only a few pools.
3891 	 * Most of the time, pwqs within the same pool will be linked
3892 	 * sequentially to wq->pwqs by cpu index. So in the majority
3893 	 * of pwq iters, the pool is the same, only doing lock/unlock
3894 	 * if the pool has changed. This can largely reduce expensive
3895 	 * lock operations.
3896 	 */
3897 	for_each_pwq(pwq, wq) {
3898 		if (current_pool != pwq->pool) {
3899 			if (likely(current_pool))
3900 				raw_spin_unlock_irq(&current_pool->lock);
3901 			current_pool = pwq->pool;
3902 			raw_spin_lock_irq(&current_pool->lock);
3903 		}
3904 
3905 		if (flush_color >= 0) {
3906 			WARN_ON_ONCE(pwq->flush_color != -1);
3907 
3908 			if (pwq->nr_in_flight[flush_color]) {
3909 				pwq->flush_color = flush_color;
3910 				atomic_inc(&wq->nr_pwqs_to_flush);
3911 				wait = true;
3912 			}
3913 		}
3914 
3915 		if (work_color >= 0) {
3916 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3917 			pwq->work_color = work_color;
3918 		}
3919 
3920 	}
3921 
3922 	if (current_pool)
3923 		raw_spin_unlock_irq(&current_pool->lock);
3924 
3925 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3926 		complete(&wq->first_flusher->done);
3927 
3928 	return wait;
3929 }
3930 
touch_wq_lockdep_map(struct workqueue_struct * wq)3931 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3932 {
3933 #ifdef CONFIG_LOCKDEP
3934 	if (unlikely(!wq->lockdep_map))
3935 		return;
3936 
3937 	if (wq->flags & WQ_BH)
3938 		local_bh_disable();
3939 
3940 	lock_map_acquire(wq->lockdep_map);
3941 	lock_map_release(wq->lockdep_map);
3942 
3943 	if (wq->flags & WQ_BH)
3944 		local_bh_enable();
3945 #endif
3946 }
3947 
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3948 static void touch_work_lockdep_map(struct work_struct *work,
3949 				   struct workqueue_struct *wq)
3950 {
3951 #ifdef CONFIG_LOCKDEP
3952 	if (wq->flags & WQ_BH)
3953 		local_bh_disable();
3954 
3955 	lock_map_acquire(&work->lockdep_map);
3956 	lock_map_release(&work->lockdep_map);
3957 
3958 	if (wq->flags & WQ_BH)
3959 		local_bh_enable();
3960 #endif
3961 }
3962 
3963 /**
3964  * __flush_workqueue - ensure that any scheduled work has run to completion.
3965  * @wq: workqueue to flush
3966  *
3967  * This function sleeps until all work items which were queued on entry
3968  * have finished execution, but it is not livelocked by new incoming ones.
3969  */
__flush_workqueue(struct workqueue_struct * wq)3970 void __flush_workqueue(struct workqueue_struct *wq)
3971 {
3972 	struct wq_flusher this_flusher = {
3973 		.list = LIST_HEAD_INIT(this_flusher.list),
3974 		.flush_color = -1,
3975 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3976 	};
3977 	int next_color;
3978 
3979 	if (WARN_ON(!wq_online))
3980 		return;
3981 
3982 	touch_wq_lockdep_map(wq);
3983 
3984 	mutex_lock(&wq->mutex);
3985 
3986 	/*
3987 	 * Start-to-wait phase
3988 	 */
3989 	next_color = work_next_color(wq->work_color);
3990 
3991 	if (next_color != wq->flush_color) {
3992 		/*
3993 		 * Color space is not full.  The current work_color
3994 		 * becomes our flush_color and work_color is advanced
3995 		 * by one.
3996 		 */
3997 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3998 		this_flusher.flush_color = wq->work_color;
3999 		wq->work_color = next_color;
4000 
4001 		if (!wq->first_flusher) {
4002 			/* no flush in progress, become the first flusher */
4003 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4004 
4005 			wq->first_flusher = &this_flusher;
4006 
4007 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
4008 						       wq->work_color)) {
4009 				/* nothing to flush, done */
4010 				wq->flush_color = next_color;
4011 				wq->first_flusher = NULL;
4012 				goto out_unlock;
4013 			}
4014 		} else {
4015 			/* wait in queue */
4016 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
4017 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
4018 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4019 		}
4020 	} else {
4021 		/*
4022 		 * Oops, color space is full, wait on overflow queue.
4023 		 * The next flush completion will assign us
4024 		 * flush_color and transfer to flusher_queue.
4025 		 */
4026 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
4027 	}
4028 
4029 	check_flush_dependency(wq, NULL, false);
4030 
4031 	mutex_unlock(&wq->mutex);
4032 
4033 	wait_for_completion(&this_flusher.done);
4034 
4035 	/*
4036 	 * Wake-up-and-cascade phase
4037 	 *
4038 	 * First flushers are responsible for cascading flushes and
4039 	 * handling overflow.  Non-first flushers can simply return.
4040 	 */
4041 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4042 		return;
4043 
4044 	mutex_lock(&wq->mutex);
4045 
4046 	/* we might have raced, check again with mutex held */
4047 	if (wq->first_flusher != &this_flusher)
4048 		goto out_unlock;
4049 
4050 	WRITE_ONCE(wq->first_flusher, NULL);
4051 
4052 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4053 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4054 
4055 	while (true) {
4056 		struct wq_flusher *next, *tmp;
4057 
4058 		/* complete all the flushers sharing the current flush color */
4059 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4060 			if (next->flush_color != wq->flush_color)
4061 				break;
4062 			list_del_init(&next->list);
4063 			complete(&next->done);
4064 		}
4065 
4066 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4067 			     wq->flush_color != work_next_color(wq->work_color));
4068 
4069 		/* this flush_color is finished, advance by one */
4070 		wq->flush_color = work_next_color(wq->flush_color);
4071 
4072 		/* one color has been freed, handle overflow queue */
4073 		if (!list_empty(&wq->flusher_overflow)) {
4074 			/*
4075 			 * Assign the same color to all overflowed
4076 			 * flushers, advance work_color and append to
4077 			 * flusher_queue.  This is the start-to-wait
4078 			 * phase for these overflowed flushers.
4079 			 */
4080 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4081 				tmp->flush_color = wq->work_color;
4082 
4083 			wq->work_color = work_next_color(wq->work_color);
4084 
4085 			list_splice_tail_init(&wq->flusher_overflow,
4086 					      &wq->flusher_queue);
4087 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4088 		}
4089 
4090 		if (list_empty(&wq->flusher_queue)) {
4091 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4092 			break;
4093 		}
4094 
4095 		/*
4096 		 * Need to flush more colors.  Make the next flusher
4097 		 * the new first flusher and arm pwqs.
4098 		 */
4099 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4100 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4101 
4102 		list_del_init(&next->list);
4103 		wq->first_flusher = next;
4104 
4105 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4106 			break;
4107 
4108 		/*
4109 		 * Meh... this color is already done, clear first
4110 		 * flusher and repeat cascading.
4111 		 */
4112 		wq->first_flusher = NULL;
4113 	}
4114 
4115 out_unlock:
4116 	mutex_unlock(&wq->mutex);
4117 }
4118 EXPORT_SYMBOL(__flush_workqueue);
4119 
4120 /**
4121  * drain_workqueue - drain a workqueue
4122  * @wq: workqueue to drain
4123  *
4124  * Wait until the workqueue becomes empty.  While draining is in progress,
4125  * only chain queueing is allowed.  IOW, only currently pending or running
4126  * work items on @wq can queue further work items on it.  @wq is flushed
4127  * repeatedly until it becomes empty.  The number of flushing is determined
4128  * by the depth of chaining and should be relatively short.  Whine if it
4129  * takes too long.
4130  */
drain_workqueue(struct workqueue_struct * wq)4131 void drain_workqueue(struct workqueue_struct *wq)
4132 {
4133 	unsigned int flush_cnt = 0;
4134 	struct pool_workqueue *pwq;
4135 
4136 	/*
4137 	 * __queue_work() needs to test whether there are drainers, is much
4138 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4139 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4140 	 */
4141 	mutex_lock(&wq->mutex);
4142 	if (!wq->nr_drainers++)
4143 		wq->flags |= __WQ_DRAINING;
4144 	mutex_unlock(&wq->mutex);
4145 reflush:
4146 	__flush_workqueue(wq);
4147 
4148 	mutex_lock(&wq->mutex);
4149 
4150 	for_each_pwq(pwq, wq) {
4151 		bool drained;
4152 
4153 		raw_spin_lock_irq(&pwq->pool->lock);
4154 		drained = pwq_is_empty(pwq);
4155 		raw_spin_unlock_irq(&pwq->pool->lock);
4156 
4157 		if (drained)
4158 			continue;
4159 
4160 		if (++flush_cnt == 10 ||
4161 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4162 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4163 				wq->name, __func__, flush_cnt);
4164 
4165 		mutex_unlock(&wq->mutex);
4166 		goto reflush;
4167 	}
4168 
4169 	if (!--wq->nr_drainers)
4170 		wq->flags &= ~__WQ_DRAINING;
4171 	mutex_unlock(&wq->mutex);
4172 }
4173 EXPORT_SYMBOL_GPL(drain_workqueue);
4174 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4175 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4176 			     bool from_cancel)
4177 {
4178 	struct worker *worker = NULL;
4179 	struct worker_pool *pool;
4180 	struct pool_workqueue *pwq;
4181 	struct workqueue_struct *wq;
4182 
4183 	rcu_read_lock();
4184 	pool = get_work_pool(work);
4185 	if (!pool) {
4186 		rcu_read_unlock();
4187 		return false;
4188 	}
4189 
4190 	raw_spin_lock_irq(&pool->lock);
4191 	/* see the comment in try_to_grab_pending() with the same code */
4192 	pwq = get_work_pwq(work);
4193 	if (pwq) {
4194 		if (unlikely(pwq->pool != pool))
4195 			goto already_gone;
4196 	} else {
4197 		worker = find_worker_executing_work(pool, work);
4198 		if (!worker)
4199 			goto already_gone;
4200 		pwq = worker->current_pwq;
4201 	}
4202 
4203 	wq = pwq->wq;
4204 	check_flush_dependency(wq, work, from_cancel);
4205 
4206 	insert_wq_barrier(pwq, barr, work, worker);
4207 	raw_spin_unlock_irq(&pool->lock);
4208 
4209 	touch_work_lockdep_map(work, wq);
4210 
4211 	/*
4212 	 * Force a lock recursion deadlock when using flush_work() inside a
4213 	 * single-threaded or rescuer equipped workqueue.
4214 	 *
4215 	 * For single threaded workqueues the deadlock happens when the work
4216 	 * is after the work issuing the flush_work(). For rescuer equipped
4217 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4218 	 * forward progress.
4219 	 */
4220 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4221 		touch_wq_lockdep_map(wq);
4222 
4223 	rcu_read_unlock();
4224 	return true;
4225 already_gone:
4226 	raw_spin_unlock_irq(&pool->lock);
4227 	rcu_read_unlock();
4228 	return false;
4229 }
4230 
__flush_work(struct work_struct * work,bool from_cancel)4231 static bool __flush_work(struct work_struct *work, bool from_cancel)
4232 {
4233 	struct wq_barrier barr;
4234 
4235 	if (WARN_ON(!wq_online))
4236 		return false;
4237 
4238 	if (WARN_ON(!work->func))
4239 		return false;
4240 
4241 	if (!start_flush_work(work, &barr, from_cancel))
4242 		return false;
4243 
4244 	/*
4245 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4246 	 * that @work must have been executing during start_flush_work() and
4247 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4248 	 * was queued on a BH workqueue, we also know that it was running in the
4249 	 * BH context and thus can be busy-waited.
4250 	 */
4251 	if (from_cancel) {
4252 		unsigned long data = *work_data_bits(work);
4253 
4254 		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4255 		    (data & WORK_OFFQ_BH)) {
4256 			/*
4257 			 * On RT, prevent a live lock when %current preempted
4258 			 * soft interrupt processing by blocking on lock which
4259 			 * is owned by the thread invoking the callback.
4260 			 */
4261 			while (!try_wait_for_completion(&barr.done)) {
4262 				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4263 					struct worker_pool *pool;
4264 
4265 					guard(rcu)();
4266 					pool = get_work_pool(work);
4267 					if (pool)
4268 						workqueue_callback_cancel_wait_running(pool);
4269 				} else {
4270 					cpu_relax();
4271 				}
4272 			}
4273 			goto out_destroy;
4274 		}
4275 	}
4276 
4277 	wait_for_completion(&barr.done);
4278 
4279 out_destroy:
4280 	destroy_work_on_stack(&barr.work);
4281 	return true;
4282 }
4283 
4284 /**
4285  * flush_work - wait for a work to finish executing the last queueing instance
4286  * @work: the work to flush
4287  *
4288  * Wait until @work has finished execution.  @work is guaranteed to be idle
4289  * on return if it hasn't been requeued since flush started.
4290  *
4291  * Return:
4292  * %true if flush_work() waited for the work to finish execution,
4293  * %false if it was already idle.
4294  */
flush_work(struct work_struct * work)4295 bool flush_work(struct work_struct *work)
4296 {
4297 	might_sleep();
4298 	return __flush_work(work, false);
4299 }
4300 EXPORT_SYMBOL_GPL(flush_work);
4301 
4302 /**
4303  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4304  * @dwork: the delayed work to flush
4305  *
4306  * Delayed timer is cancelled and the pending work is queued for
4307  * immediate execution.  Like flush_work(), this function only
4308  * considers the last queueing instance of @dwork.
4309  *
4310  * Return:
4311  * %true if flush_work() waited for the work to finish execution,
4312  * %false if it was already idle.
4313  */
flush_delayed_work(struct delayed_work * dwork)4314 bool flush_delayed_work(struct delayed_work *dwork)
4315 {
4316 	local_irq_disable();
4317 	if (timer_delete_sync(&dwork->timer))
4318 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4319 	local_irq_enable();
4320 	return flush_work(&dwork->work);
4321 }
4322 EXPORT_SYMBOL(flush_delayed_work);
4323 
4324 /**
4325  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4326  * @rwork: the rcu work to flush
4327  *
4328  * Return:
4329  * %true if flush_rcu_work() waited for the work to finish execution,
4330  * %false if it was already idle.
4331  */
flush_rcu_work(struct rcu_work * rwork)4332 bool flush_rcu_work(struct rcu_work *rwork)
4333 {
4334 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4335 		rcu_barrier();
4336 		flush_work(&rwork->work);
4337 		return true;
4338 	} else {
4339 		return flush_work(&rwork->work);
4340 	}
4341 }
4342 EXPORT_SYMBOL(flush_rcu_work);
4343 
work_offqd_disable(struct work_offq_data * offqd)4344 static void work_offqd_disable(struct work_offq_data *offqd)
4345 {
4346 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4347 
4348 	if (likely(offqd->disable < max))
4349 		offqd->disable++;
4350 	else
4351 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4352 }
4353 
work_offqd_enable(struct work_offq_data * offqd)4354 static void work_offqd_enable(struct work_offq_data *offqd)
4355 {
4356 	if (likely(offqd->disable > 0))
4357 		offqd->disable--;
4358 	else
4359 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4360 }
4361 
__cancel_work(struct work_struct * work,u32 cflags)4362 static bool __cancel_work(struct work_struct *work, u32 cflags)
4363 {
4364 	struct work_offq_data offqd;
4365 	unsigned long irq_flags;
4366 	int ret;
4367 
4368 	ret = work_grab_pending(work, cflags, &irq_flags);
4369 
4370 	work_offqd_unpack(&offqd, *work_data_bits(work));
4371 
4372 	if (cflags & WORK_CANCEL_DISABLE)
4373 		work_offqd_disable(&offqd);
4374 
4375 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4376 					work_offqd_pack_flags(&offqd));
4377 	local_irq_restore(irq_flags);
4378 	return ret;
4379 }
4380 
__cancel_work_sync(struct work_struct * work,u32 cflags)4381 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4382 {
4383 	bool ret;
4384 
4385 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4386 
4387 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4388 		WARN_ON_ONCE(in_hardirq());
4389 	else
4390 		might_sleep();
4391 
4392 	/*
4393 	 * Skip __flush_work() during early boot when we know that @work isn't
4394 	 * executing. This allows canceling during early boot.
4395 	 */
4396 	if (wq_online)
4397 		__flush_work(work, true);
4398 
4399 	if (!(cflags & WORK_CANCEL_DISABLE))
4400 		enable_work(work);
4401 
4402 	return ret;
4403 }
4404 
4405 /*
4406  * See cancel_delayed_work()
4407  */
cancel_work(struct work_struct * work)4408 bool cancel_work(struct work_struct *work)
4409 {
4410 	return __cancel_work(work, 0);
4411 }
4412 EXPORT_SYMBOL(cancel_work);
4413 
4414 /**
4415  * cancel_work_sync - cancel a work and wait for it to finish
4416  * @work: the work to cancel
4417  *
4418  * Cancel @work and wait for its execution to finish. This function can be used
4419  * even if the work re-queues itself or migrates to another workqueue. On return
4420  * from this function, @work is guaranteed to be not pending or executing on any
4421  * CPU as long as there aren't racing enqueues.
4422  *
4423  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4424  * Use cancel_delayed_work_sync() instead.
4425  *
4426  * Must be called from a sleepable context if @work was last queued on a non-BH
4427  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4428  * if @work was last queued on a BH workqueue.
4429  *
4430  * Returns %true if @work was pending, %false otherwise.
4431  */
cancel_work_sync(struct work_struct * work)4432 bool cancel_work_sync(struct work_struct *work)
4433 {
4434 	return __cancel_work_sync(work, 0);
4435 }
4436 EXPORT_SYMBOL_GPL(cancel_work_sync);
4437 
4438 /**
4439  * cancel_delayed_work - cancel a delayed work
4440  * @dwork: delayed_work to cancel
4441  *
4442  * Kill off a pending delayed_work.
4443  *
4444  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4445  * pending.
4446  *
4447  * Note:
4448  * The work callback function may still be running on return, unless
4449  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4450  * use cancel_delayed_work_sync() to wait on it.
4451  *
4452  * This function is safe to call from any context including IRQ handler.
4453  */
cancel_delayed_work(struct delayed_work * dwork)4454 bool cancel_delayed_work(struct delayed_work *dwork)
4455 {
4456 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4457 }
4458 EXPORT_SYMBOL(cancel_delayed_work);
4459 
4460 /**
4461  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4462  * @dwork: the delayed work cancel
4463  *
4464  * This is cancel_work_sync() for delayed works.
4465  *
4466  * Return:
4467  * %true if @dwork was pending, %false otherwise.
4468  */
cancel_delayed_work_sync(struct delayed_work * dwork)4469 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4470 {
4471 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4472 }
4473 EXPORT_SYMBOL(cancel_delayed_work_sync);
4474 
4475 /**
4476  * disable_work - Disable and cancel a work item
4477  * @work: work item to disable
4478  *
4479  * Disable @work by incrementing its disable count and cancel it if currently
4480  * pending. As long as the disable count is non-zero, any attempt to queue @work
4481  * will fail and return %false. The maximum supported disable depth is 2 to the
4482  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4483  *
4484  * Can be called from any context. Returns %true if @work was pending, %false
4485  * otherwise.
4486  */
disable_work(struct work_struct * work)4487 bool disable_work(struct work_struct *work)
4488 {
4489 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4490 }
4491 EXPORT_SYMBOL_GPL(disable_work);
4492 
4493 /**
4494  * disable_work_sync - Disable, cancel and drain a work item
4495  * @work: work item to disable
4496  *
4497  * Similar to disable_work() but also wait for @work to finish if currently
4498  * executing.
4499  *
4500  * Must be called from a sleepable context if @work was last queued on a non-BH
4501  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4502  * if @work was last queued on a BH workqueue.
4503  *
4504  * Returns %true if @work was pending, %false otherwise.
4505  */
disable_work_sync(struct work_struct * work)4506 bool disable_work_sync(struct work_struct *work)
4507 {
4508 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4509 }
4510 EXPORT_SYMBOL_GPL(disable_work_sync);
4511 
4512 /**
4513  * enable_work - Enable a work item
4514  * @work: work item to enable
4515  *
4516  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4517  * only be queued if its disable count is 0.
4518  *
4519  * Can be called from any context. Returns %true if the disable count reached 0.
4520  * Otherwise, %false.
4521  */
enable_work(struct work_struct * work)4522 bool enable_work(struct work_struct *work)
4523 {
4524 	struct work_offq_data offqd;
4525 	unsigned long irq_flags;
4526 
4527 	work_grab_pending(work, 0, &irq_flags);
4528 
4529 	work_offqd_unpack(&offqd, *work_data_bits(work));
4530 	work_offqd_enable(&offqd);
4531 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4532 					work_offqd_pack_flags(&offqd));
4533 	local_irq_restore(irq_flags);
4534 
4535 	return !offqd.disable;
4536 }
4537 EXPORT_SYMBOL_GPL(enable_work);
4538 
4539 /**
4540  * disable_delayed_work - Disable and cancel a delayed work item
4541  * @dwork: delayed work item to disable
4542  *
4543  * disable_work() for delayed work items.
4544  */
disable_delayed_work(struct delayed_work * dwork)4545 bool disable_delayed_work(struct delayed_work *dwork)
4546 {
4547 	return __cancel_work(&dwork->work,
4548 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4549 }
4550 EXPORT_SYMBOL_GPL(disable_delayed_work);
4551 
4552 /**
4553  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4554  * @dwork: delayed work item to disable
4555  *
4556  * disable_work_sync() for delayed work items.
4557  */
disable_delayed_work_sync(struct delayed_work * dwork)4558 bool disable_delayed_work_sync(struct delayed_work *dwork)
4559 {
4560 	return __cancel_work_sync(&dwork->work,
4561 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4562 }
4563 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4564 
4565 /**
4566  * enable_delayed_work - Enable a delayed work item
4567  * @dwork: delayed work item to enable
4568  *
4569  * enable_work() for delayed work items.
4570  */
enable_delayed_work(struct delayed_work * dwork)4571 bool enable_delayed_work(struct delayed_work *dwork)
4572 {
4573 	return enable_work(&dwork->work);
4574 }
4575 EXPORT_SYMBOL_GPL(enable_delayed_work);
4576 
4577 /**
4578  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4579  * @func: the function to call
4580  *
4581  * schedule_on_each_cpu() executes @func on each online CPU using the
4582  * system workqueue and blocks until all CPUs have completed.
4583  * schedule_on_each_cpu() is very slow.
4584  *
4585  * Return:
4586  * 0 on success, -errno on failure.
4587  */
schedule_on_each_cpu(work_func_t func)4588 int schedule_on_each_cpu(work_func_t func)
4589 {
4590 	int cpu;
4591 	struct work_struct __percpu *works;
4592 
4593 	works = alloc_percpu(struct work_struct);
4594 	if (!works)
4595 		return -ENOMEM;
4596 
4597 	cpus_read_lock();
4598 
4599 	for_each_online_cpu(cpu) {
4600 		struct work_struct *work = per_cpu_ptr(works, cpu);
4601 
4602 		INIT_WORK(work, func);
4603 		schedule_work_on(cpu, work);
4604 	}
4605 
4606 	for_each_online_cpu(cpu)
4607 		flush_work(per_cpu_ptr(works, cpu));
4608 
4609 	cpus_read_unlock();
4610 	free_percpu(works);
4611 	return 0;
4612 }
4613 
4614 /**
4615  * execute_in_process_context - reliably execute the routine with user context
4616  * @fn:		the function to execute
4617  * @ew:		guaranteed storage for the execute work structure (must
4618  *		be available when the work executes)
4619  *
4620  * Executes the function immediately if process context is available,
4621  * otherwise schedules the function for delayed execution.
4622  *
4623  * Return:	0 - function was executed
4624  *		1 - function was scheduled for execution
4625  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4626 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4627 {
4628 	if (!in_interrupt()) {
4629 		fn(&ew->work);
4630 		return 0;
4631 	}
4632 
4633 	INIT_WORK(&ew->work, fn);
4634 	schedule_work(&ew->work);
4635 
4636 	return 1;
4637 }
4638 EXPORT_SYMBOL_GPL(execute_in_process_context);
4639 
4640 /**
4641  * free_workqueue_attrs - free a workqueue_attrs
4642  * @attrs: workqueue_attrs to free
4643  *
4644  * Undo alloc_workqueue_attrs().
4645  */
free_workqueue_attrs(struct workqueue_attrs * attrs)4646 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4647 {
4648 	if (attrs) {
4649 		free_cpumask_var(attrs->cpumask);
4650 		free_cpumask_var(attrs->__pod_cpumask);
4651 		kfree(attrs);
4652 	}
4653 }
4654 
4655 /**
4656  * alloc_workqueue_attrs - allocate a workqueue_attrs
4657  *
4658  * Allocate a new workqueue_attrs, initialize with default settings and
4659  * return it.
4660  *
4661  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4662  */
alloc_workqueue_attrs_noprof(void)4663 struct workqueue_attrs *alloc_workqueue_attrs_noprof(void)
4664 {
4665 	struct workqueue_attrs *attrs;
4666 
4667 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4668 	if (!attrs)
4669 		goto fail;
4670 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4671 		goto fail;
4672 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4673 		goto fail;
4674 
4675 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4676 	attrs->affn_scope = WQ_AFFN_DFL;
4677 	return attrs;
4678 fail:
4679 	free_workqueue_attrs(attrs);
4680 	return NULL;
4681 }
4682 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4683 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4684 				 const struct workqueue_attrs *from)
4685 {
4686 	to->nice = from->nice;
4687 	cpumask_copy(to->cpumask, from->cpumask);
4688 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4689 	to->affn_strict = from->affn_strict;
4690 
4691 	/*
4692 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4693 	 * fields as copying is used for both pool and wq attrs. Instead,
4694 	 * get_unbound_pool() explicitly clears the fields.
4695 	 */
4696 	to->affn_scope = from->affn_scope;
4697 	to->ordered = from->ordered;
4698 }
4699 
4700 /*
4701  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4702  * comments in 'struct workqueue_attrs' definition.
4703  */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4704 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4705 {
4706 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4707 	attrs->ordered = false;
4708 	if (attrs->affn_strict)
4709 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4710 }
4711 
4712 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4713 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4714 {
4715 	u32 hash = 0;
4716 
4717 	hash = jhash_1word(attrs->nice, hash);
4718 	hash = jhash_1word(attrs->affn_strict, hash);
4719 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4720 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4721 	if (!attrs->affn_strict)
4722 		hash = jhash(cpumask_bits(attrs->cpumask),
4723 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4724 	return hash;
4725 }
4726 
4727 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4728 static bool wqattrs_equal(const struct workqueue_attrs *a,
4729 			  const struct workqueue_attrs *b)
4730 {
4731 	if (a->nice != b->nice)
4732 		return false;
4733 	if (a->affn_strict != b->affn_strict)
4734 		return false;
4735 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4736 		return false;
4737 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4738 		return false;
4739 	return true;
4740 }
4741 
4742 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4743 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4744 				      const cpumask_t *unbound_cpumask)
4745 {
4746 	/*
4747 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4748 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4749 	 * @unbound_cpumask.
4750 	 */
4751 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4752 	if (unlikely(cpumask_empty(attrs->cpumask)))
4753 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4754 }
4755 
4756 /* find wq_pod_type to use for @attrs */
4757 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4758 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4759 {
4760 	enum wq_affn_scope scope;
4761 	struct wq_pod_type *pt;
4762 
4763 	/* to synchronize access to wq_affn_dfl */
4764 	lockdep_assert_held(&wq_pool_mutex);
4765 
4766 	if (attrs->affn_scope == WQ_AFFN_DFL)
4767 		scope = wq_affn_dfl;
4768 	else
4769 		scope = attrs->affn_scope;
4770 
4771 	pt = &wq_pod_types[scope];
4772 
4773 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4774 	    likely(pt->nr_pods))
4775 		return pt;
4776 
4777 	/*
4778 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4779 	 * initialized in workqueue_init_early().
4780 	 */
4781 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4782 	BUG_ON(!pt->nr_pods);
4783 	return pt;
4784 }
4785 
4786 /**
4787  * init_worker_pool - initialize a newly zalloc'd worker_pool
4788  * @pool: worker_pool to initialize
4789  *
4790  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4791  *
4792  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4793  * inside @pool proper are initialized and put_unbound_pool() can be called
4794  * on @pool safely to release it.
4795  */
init_worker_pool(struct worker_pool * pool)4796 static int init_worker_pool(struct worker_pool *pool)
4797 {
4798 	raw_spin_lock_init(&pool->lock);
4799 	pool->id = -1;
4800 	pool->cpu = -1;
4801 	pool->node = NUMA_NO_NODE;
4802 	pool->flags |= POOL_DISASSOCIATED;
4803 	pool->watchdog_ts = jiffies;
4804 	INIT_LIST_HEAD(&pool->worklist);
4805 	INIT_LIST_HEAD(&pool->idle_list);
4806 	hash_init(pool->busy_hash);
4807 
4808 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4809 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4810 
4811 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4812 
4813 	INIT_LIST_HEAD(&pool->workers);
4814 
4815 	ida_init(&pool->worker_ida);
4816 	INIT_HLIST_NODE(&pool->hash_node);
4817 	pool->refcnt = 1;
4818 #ifdef CONFIG_PREEMPT_RT
4819 	spin_lock_init(&pool->cb_lock);
4820 #endif
4821 
4822 	/* shouldn't fail above this point */
4823 	pool->attrs = alloc_workqueue_attrs();
4824 	if (!pool->attrs)
4825 		return -ENOMEM;
4826 
4827 	wqattrs_clear_for_pool(pool->attrs);
4828 
4829 	return 0;
4830 }
4831 
4832 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4833 static void wq_init_lockdep(struct workqueue_struct *wq)
4834 {
4835 	char *lock_name;
4836 
4837 	lockdep_register_key(&wq->key);
4838 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4839 	if (!lock_name)
4840 		lock_name = wq->name;
4841 
4842 	wq->lock_name = lock_name;
4843 	wq->lockdep_map = &wq->__lockdep_map;
4844 	lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4845 }
4846 
wq_unregister_lockdep(struct workqueue_struct * wq)4847 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4848 {
4849 	if (wq->lockdep_map != &wq->__lockdep_map)
4850 		return;
4851 
4852 	lockdep_unregister_key(&wq->key);
4853 }
4854 
wq_free_lockdep(struct workqueue_struct * wq)4855 static void wq_free_lockdep(struct workqueue_struct *wq)
4856 {
4857 	if (wq->lockdep_map != &wq->__lockdep_map)
4858 		return;
4859 
4860 	if (wq->lock_name != wq->name)
4861 		kfree(wq->lock_name);
4862 }
4863 #else
wq_init_lockdep(struct workqueue_struct * wq)4864 static void wq_init_lockdep(struct workqueue_struct *wq)
4865 {
4866 }
4867 
wq_unregister_lockdep(struct workqueue_struct * wq)4868 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4869 {
4870 }
4871 
wq_free_lockdep(struct workqueue_struct * wq)4872 static void wq_free_lockdep(struct workqueue_struct *wq)
4873 {
4874 }
4875 #endif
4876 
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4877 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4878 {
4879 	int node;
4880 
4881 	for_each_node(node) {
4882 		kfree(nna_ar[node]);
4883 		nna_ar[node] = NULL;
4884 	}
4885 
4886 	kfree(nna_ar[nr_node_ids]);
4887 	nna_ar[nr_node_ids] = NULL;
4888 }
4889 
init_node_nr_active(struct wq_node_nr_active * nna)4890 static void init_node_nr_active(struct wq_node_nr_active *nna)
4891 {
4892 	nna->max = WQ_DFL_MIN_ACTIVE;
4893 	atomic_set(&nna->nr, 0);
4894 	raw_spin_lock_init(&nna->lock);
4895 	INIT_LIST_HEAD(&nna->pending_pwqs);
4896 }
4897 
4898 /*
4899  * Each node's nr_active counter will be accessed mostly from its own node and
4900  * should be allocated in the node.
4901  */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4902 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4903 {
4904 	struct wq_node_nr_active *nna;
4905 	int node;
4906 
4907 	for_each_node(node) {
4908 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4909 		if (!nna)
4910 			goto err_free;
4911 		init_node_nr_active(nna);
4912 		nna_ar[node] = nna;
4913 	}
4914 
4915 	/* [nr_node_ids] is used as the fallback */
4916 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4917 	if (!nna)
4918 		goto err_free;
4919 	init_node_nr_active(nna);
4920 	nna_ar[nr_node_ids] = nna;
4921 
4922 	return 0;
4923 
4924 err_free:
4925 	free_node_nr_active(nna_ar);
4926 	return -ENOMEM;
4927 }
4928 
rcu_free_wq(struct rcu_head * rcu)4929 static void rcu_free_wq(struct rcu_head *rcu)
4930 {
4931 	struct workqueue_struct *wq =
4932 		container_of(rcu, struct workqueue_struct, rcu);
4933 
4934 	if (wq->flags & WQ_UNBOUND)
4935 		free_node_nr_active(wq->node_nr_active);
4936 
4937 	wq_free_lockdep(wq);
4938 	free_percpu(wq->cpu_pwq);
4939 	free_workqueue_attrs(wq->unbound_attrs);
4940 	kfree(wq);
4941 }
4942 
rcu_free_pool(struct rcu_head * rcu)4943 static void rcu_free_pool(struct rcu_head *rcu)
4944 {
4945 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4946 
4947 	ida_destroy(&pool->worker_ida);
4948 	free_workqueue_attrs(pool->attrs);
4949 	kfree(pool);
4950 }
4951 
4952 /**
4953  * put_unbound_pool - put a worker_pool
4954  * @pool: worker_pool to put
4955  *
4956  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4957  * safe manner.  get_unbound_pool() calls this function on its failure path
4958  * and this function should be able to release pools which went through,
4959  * successfully or not, init_worker_pool().
4960  *
4961  * Should be called with wq_pool_mutex held.
4962  */
put_unbound_pool(struct worker_pool * pool)4963 static void put_unbound_pool(struct worker_pool *pool)
4964 {
4965 	struct worker *worker;
4966 	LIST_HEAD(cull_list);
4967 
4968 	lockdep_assert_held(&wq_pool_mutex);
4969 
4970 	if (--pool->refcnt)
4971 		return;
4972 
4973 	/* sanity checks */
4974 	if (WARN_ON(!(pool->cpu < 0)) ||
4975 	    WARN_ON(!list_empty(&pool->worklist)))
4976 		return;
4977 
4978 	/* release id and unhash */
4979 	if (pool->id >= 0)
4980 		idr_remove(&worker_pool_idr, pool->id);
4981 	hash_del(&pool->hash_node);
4982 
4983 	/*
4984 	 * Become the manager and destroy all workers.  This prevents
4985 	 * @pool's workers from blocking on attach_mutex.  We're the last
4986 	 * manager and @pool gets freed with the flag set.
4987 	 *
4988 	 * Having a concurrent manager is quite unlikely to happen as we can
4989 	 * only get here with
4990 	 *   pwq->refcnt == pool->refcnt == 0
4991 	 * which implies no work queued to the pool, which implies no worker can
4992 	 * become the manager. However a worker could have taken the role of
4993 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4994 	 * drops pool->lock
4995 	 */
4996 	while (true) {
4997 		rcuwait_wait_event(&manager_wait,
4998 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4999 				   TASK_UNINTERRUPTIBLE);
5000 
5001 		mutex_lock(&wq_pool_attach_mutex);
5002 		raw_spin_lock_irq(&pool->lock);
5003 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
5004 			pool->flags |= POOL_MANAGER_ACTIVE;
5005 			break;
5006 		}
5007 		raw_spin_unlock_irq(&pool->lock);
5008 		mutex_unlock(&wq_pool_attach_mutex);
5009 	}
5010 
5011 	while ((worker = first_idle_worker(pool)))
5012 		set_worker_dying(worker, &cull_list);
5013 	WARN_ON(pool->nr_workers || pool->nr_idle);
5014 	raw_spin_unlock_irq(&pool->lock);
5015 
5016 	detach_dying_workers(&cull_list);
5017 
5018 	mutex_unlock(&wq_pool_attach_mutex);
5019 
5020 	reap_dying_workers(&cull_list);
5021 
5022 	/* shut down the timers */
5023 	timer_delete_sync(&pool->idle_timer);
5024 	cancel_work_sync(&pool->idle_cull_work);
5025 	timer_delete_sync(&pool->mayday_timer);
5026 
5027 	/* RCU protected to allow dereferences from get_work_pool() */
5028 	call_rcu(&pool->rcu, rcu_free_pool);
5029 }
5030 
5031 /**
5032  * get_unbound_pool - get a worker_pool with the specified attributes
5033  * @attrs: the attributes of the worker_pool to get
5034  *
5035  * Obtain a worker_pool which has the same attributes as @attrs, bump the
5036  * reference count and return it.  If there already is a matching
5037  * worker_pool, it will be used; otherwise, this function attempts to
5038  * create a new one.
5039  *
5040  * Should be called with wq_pool_mutex held.
5041  *
5042  * Return: On success, a worker_pool with the same attributes as @attrs.
5043  * On failure, %NULL.
5044  */
get_unbound_pool(const struct workqueue_attrs * attrs)5045 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5046 {
5047 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5048 	u32 hash = wqattrs_hash(attrs);
5049 	struct worker_pool *pool;
5050 	int pod, node = NUMA_NO_NODE;
5051 
5052 	lockdep_assert_held(&wq_pool_mutex);
5053 
5054 	/* do we already have a matching pool? */
5055 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5056 		if (wqattrs_equal(pool->attrs, attrs)) {
5057 			pool->refcnt++;
5058 			return pool;
5059 		}
5060 	}
5061 
5062 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5063 	for (pod = 0; pod < pt->nr_pods; pod++) {
5064 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5065 			node = pt->pod_node[pod];
5066 			break;
5067 		}
5068 	}
5069 
5070 	/* nope, create a new one */
5071 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5072 	if (!pool || init_worker_pool(pool) < 0)
5073 		goto fail;
5074 
5075 	pool->node = node;
5076 	copy_workqueue_attrs(pool->attrs, attrs);
5077 	wqattrs_clear_for_pool(pool->attrs);
5078 
5079 	if (worker_pool_assign_id(pool) < 0)
5080 		goto fail;
5081 
5082 	/* create and start the initial worker */
5083 	if (wq_online && !create_worker(pool))
5084 		goto fail;
5085 
5086 	/* install */
5087 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5088 
5089 	return pool;
5090 fail:
5091 	if (pool)
5092 		put_unbound_pool(pool);
5093 	return NULL;
5094 }
5095 
5096 /*
5097  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5098  * refcnt and needs to be destroyed.
5099  */
pwq_release_workfn(struct kthread_work * work)5100 static void pwq_release_workfn(struct kthread_work *work)
5101 {
5102 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5103 						  release_work);
5104 	struct workqueue_struct *wq = pwq->wq;
5105 	struct worker_pool *pool = pwq->pool;
5106 	bool is_last = false;
5107 
5108 	/*
5109 	 * When @pwq is not linked, it doesn't hold any reference to the
5110 	 * @wq, and @wq is invalid to access.
5111 	 */
5112 	if (!list_empty(&pwq->pwqs_node)) {
5113 		mutex_lock(&wq->mutex);
5114 		list_del_rcu(&pwq->pwqs_node);
5115 		is_last = list_empty(&wq->pwqs);
5116 
5117 		/*
5118 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5119 		 */
5120 		if (!is_last && (wq->flags & __WQ_ORDERED))
5121 			unplug_oldest_pwq(wq);
5122 
5123 		mutex_unlock(&wq->mutex);
5124 	}
5125 
5126 	if (wq->flags & WQ_UNBOUND) {
5127 		mutex_lock(&wq_pool_mutex);
5128 		put_unbound_pool(pool);
5129 		mutex_unlock(&wq_pool_mutex);
5130 	}
5131 
5132 	if (!list_empty(&pwq->pending_node)) {
5133 		struct wq_node_nr_active *nna =
5134 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5135 
5136 		raw_spin_lock_irq(&nna->lock);
5137 		list_del_init(&pwq->pending_node);
5138 		raw_spin_unlock_irq(&nna->lock);
5139 	}
5140 
5141 	kfree_rcu(pwq, rcu);
5142 
5143 	/*
5144 	 * If we're the last pwq going away, @wq is already dead and no one
5145 	 * is gonna access it anymore.  Schedule RCU free.
5146 	 */
5147 	if (is_last) {
5148 		wq_unregister_lockdep(wq);
5149 		call_rcu(&wq->rcu, rcu_free_wq);
5150 	}
5151 }
5152 
5153 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5154 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5155 		     struct worker_pool *pool)
5156 {
5157 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5158 
5159 	memset(pwq, 0, sizeof(*pwq));
5160 
5161 	pwq->pool = pool;
5162 	pwq->wq = wq;
5163 	pwq->flush_color = -1;
5164 	pwq->refcnt = 1;
5165 	INIT_LIST_HEAD(&pwq->inactive_works);
5166 	INIT_LIST_HEAD(&pwq->pending_node);
5167 	INIT_LIST_HEAD(&pwq->pwqs_node);
5168 	INIT_LIST_HEAD(&pwq->mayday_node);
5169 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5170 }
5171 
5172 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5173 static void link_pwq(struct pool_workqueue *pwq)
5174 {
5175 	struct workqueue_struct *wq = pwq->wq;
5176 
5177 	lockdep_assert_held(&wq->mutex);
5178 
5179 	/* may be called multiple times, ignore if already linked */
5180 	if (!list_empty(&pwq->pwqs_node))
5181 		return;
5182 
5183 	/* set the matching work_color */
5184 	pwq->work_color = wq->work_color;
5185 
5186 	/* link in @pwq */
5187 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5188 }
5189 
5190 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5191 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5192 					const struct workqueue_attrs *attrs)
5193 {
5194 	struct worker_pool *pool;
5195 	struct pool_workqueue *pwq;
5196 
5197 	lockdep_assert_held(&wq_pool_mutex);
5198 
5199 	pool = get_unbound_pool(attrs);
5200 	if (!pool)
5201 		return NULL;
5202 
5203 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5204 	if (!pwq) {
5205 		put_unbound_pool(pool);
5206 		return NULL;
5207 	}
5208 
5209 	init_pwq(pwq, wq, pool);
5210 	return pwq;
5211 }
5212 
apply_wqattrs_lock(void)5213 static void apply_wqattrs_lock(void)
5214 {
5215 	mutex_lock(&wq_pool_mutex);
5216 }
5217 
apply_wqattrs_unlock(void)5218 static void apply_wqattrs_unlock(void)
5219 {
5220 	mutex_unlock(&wq_pool_mutex);
5221 }
5222 
5223 /**
5224  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5225  * @attrs: the wq_attrs of the default pwq of the target workqueue
5226  * @cpu: the target CPU
5227  *
5228  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5229  * The result is stored in @attrs->__pod_cpumask.
5230  *
5231  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5232  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5233  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5234  *
5235  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5236  */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5237 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5238 {
5239 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5240 	int pod = pt->cpu_pod[cpu];
5241 
5242 	/* calculate possible CPUs in @pod that @attrs wants */
5243 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5244 	/* does @pod have any online CPUs @attrs wants? */
5245 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5246 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5247 		return;
5248 	}
5249 }
5250 
5251 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5252 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5253 					int cpu, struct pool_workqueue *pwq)
5254 {
5255 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5256 	struct pool_workqueue *old_pwq;
5257 
5258 	lockdep_assert_held(&wq_pool_mutex);
5259 	lockdep_assert_held(&wq->mutex);
5260 
5261 	/* link_pwq() can handle duplicate calls */
5262 	link_pwq(pwq);
5263 
5264 	old_pwq = rcu_access_pointer(*slot);
5265 	rcu_assign_pointer(*slot, pwq);
5266 	return old_pwq;
5267 }
5268 
5269 /* context to store the prepared attrs & pwqs before applying */
5270 struct apply_wqattrs_ctx {
5271 	struct workqueue_struct	*wq;		/* target workqueue */
5272 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5273 	struct list_head	list;		/* queued for batching commit */
5274 	struct pool_workqueue	*dfl_pwq;
5275 	struct pool_workqueue	*pwq_tbl[];
5276 };
5277 
5278 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5279 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5280 {
5281 	if (ctx) {
5282 		int cpu;
5283 
5284 		for_each_possible_cpu(cpu)
5285 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5286 		put_pwq_unlocked(ctx->dfl_pwq);
5287 
5288 		free_workqueue_attrs(ctx->attrs);
5289 
5290 		kfree(ctx);
5291 	}
5292 }
5293 
5294 /* allocate the attrs and pwqs for later installation */
5295 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5296 apply_wqattrs_prepare(struct workqueue_struct *wq,
5297 		      const struct workqueue_attrs *attrs,
5298 		      const cpumask_var_t unbound_cpumask)
5299 {
5300 	struct apply_wqattrs_ctx *ctx;
5301 	struct workqueue_attrs *new_attrs;
5302 	int cpu;
5303 
5304 	lockdep_assert_held(&wq_pool_mutex);
5305 
5306 	if (WARN_ON(attrs->affn_scope < 0 ||
5307 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5308 		return ERR_PTR(-EINVAL);
5309 
5310 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5311 
5312 	new_attrs = alloc_workqueue_attrs();
5313 	if (!ctx || !new_attrs)
5314 		goto out_free;
5315 
5316 	/*
5317 	 * If something goes wrong during CPU up/down, we'll fall back to
5318 	 * the default pwq covering whole @attrs->cpumask.  Always create
5319 	 * it even if we don't use it immediately.
5320 	 */
5321 	copy_workqueue_attrs(new_attrs, attrs);
5322 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5323 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5324 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5325 	if (!ctx->dfl_pwq)
5326 		goto out_free;
5327 
5328 	for_each_possible_cpu(cpu) {
5329 		if (new_attrs->ordered) {
5330 			ctx->dfl_pwq->refcnt++;
5331 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5332 		} else {
5333 			wq_calc_pod_cpumask(new_attrs, cpu);
5334 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5335 			if (!ctx->pwq_tbl[cpu])
5336 				goto out_free;
5337 		}
5338 	}
5339 
5340 	/* save the user configured attrs and sanitize it. */
5341 	copy_workqueue_attrs(new_attrs, attrs);
5342 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5343 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5344 	ctx->attrs = new_attrs;
5345 
5346 	/*
5347 	 * For initialized ordered workqueues, there should only be one pwq
5348 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5349 	 * of newly queued work items until execution of older work items in
5350 	 * the old pwq's have completed.
5351 	 */
5352 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5353 		ctx->dfl_pwq->plugged = true;
5354 
5355 	ctx->wq = wq;
5356 	return ctx;
5357 
5358 out_free:
5359 	free_workqueue_attrs(new_attrs);
5360 	apply_wqattrs_cleanup(ctx);
5361 	return ERR_PTR(-ENOMEM);
5362 }
5363 
5364 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5365 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5366 {
5367 	int cpu;
5368 
5369 	/* all pwqs have been created successfully, let's install'em */
5370 	mutex_lock(&ctx->wq->mutex);
5371 
5372 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5373 
5374 	/* save the previous pwqs and install the new ones */
5375 	for_each_possible_cpu(cpu)
5376 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5377 							ctx->pwq_tbl[cpu]);
5378 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5379 
5380 	/* update node_nr_active->max */
5381 	wq_update_node_max_active(ctx->wq, -1);
5382 
5383 	mutex_unlock(&ctx->wq->mutex);
5384 }
5385 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5386 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5387 					const struct workqueue_attrs *attrs)
5388 {
5389 	struct apply_wqattrs_ctx *ctx;
5390 
5391 	/* only unbound workqueues can change attributes */
5392 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5393 		return -EINVAL;
5394 
5395 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5396 	if (IS_ERR(ctx))
5397 		return PTR_ERR(ctx);
5398 
5399 	/* the ctx has been prepared successfully, let's commit it */
5400 	apply_wqattrs_commit(ctx);
5401 	apply_wqattrs_cleanup(ctx);
5402 
5403 	return 0;
5404 }
5405 
5406 /**
5407  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5408  * @wq: the target workqueue
5409  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5410  *
5411  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5412  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5413  * work items are affine to the pod it was issued on. Older pwqs are released as
5414  * in-flight work items finish. Note that a work item which repeatedly requeues
5415  * itself back-to-back will stay on its current pwq.
5416  *
5417  * Performs GFP_KERNEL allocations.
5418  *
5419  * Return: 0 on success and -errno on failure.
5420  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5421 int apply_workqueue_attrs(struct workqueue_struct *wq,
5422 			  const struct workqueue_attrs *attrs)
5423 {
5424 	int ret;
5425 
5426 	mutex_lock(&wq_pool_mutex);
5427 	ret = apply_workqueue_attrs_locked(wq, attrs);
5428 	mutex_unlock(&wq_pool_mutex);
5429 
5430 	return ret;
5431 }
5432 
5433 /**
5434  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5435  * @wq: the target workqueue
5436  * @cpu: the CPU to update the pwq slot for
5437  *
5438  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5439  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5440  *
5441  *
5442  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5443  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5444  *
5445  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5446  * with a cpumask spanning multiple pods, the workers which were already
5447  * executing the work items for the workqueue will lose their CPU affinity and
5448  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5449  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5450  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5451  */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5452 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5453 {
5454 	struct pool_workqueue *old_pwq = NULL, *pwq;
5455 	struct workqueue_attrs *target_attrs;
5456 
5457 	lockdep_assert_held(&wq_pool_mutex);
5458 
5459 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5460 		return;
5461 
5462 	/*
5463 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5464 	 * Let's use a preallocated one.  The following buf is protected by
5465 	 * CPU hotplug exclusion.
5466 	 */
5467 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5468 
5469 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5470 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5471 
5472 	/* nothing to do if the target cpumask matches the current pwq */
5473 	wq_calc_pod_cpumask(target_attrs, cpu);
5474 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5475 		return;
5476 
5477 	/* create a new pwq */
5478 	pwq = alloc_unbound_pwq(wq, target_attrs);
5479 	if (!pwq) {
5480 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5481 			wq->name);
5482 		goto use_dfl_pwq;
5483 	}
5484 
5485 	/* Install the new pwq. */
5486 	mutex_lock(&wq->mutex);
5487 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5488 	goto out_unlock;
5489 
5490 use_dfl_pwq:
5491 	mutex_lock(&wq->mutex);
5492 	pwq = unbound_pwq(wq, -1);
5493 	raw_spin_lock_irq(&pwq->pool->lock);
5494 	get_pwq(pwq);
5495 	raw_spin_unlock_irq(&pwq->pool->lock);
5496 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5497 out_unlock:
5498 	mutex_unlock(&wq->mutex);
5499 	put_pwq_unlocked(old_pwq);
5500 }
5501 
alloc_and_link_pwqs(struct workqueue_struct * wq)5502 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5503 {
5504 	bool highpri = wq->flags & WQ_HIGHPRI;
5505 	int cpu, ret;
5506 
5507 	lockdep_assert_held(&wq_pool_mutex);
5508 
5509 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5510 	if (!wq->cpu_pwq)
5511 		goto enomem;
5512 
5513 	if (!(wq->flags & WQ_UNBOUND)) {
5514 		struct worker_pool __percpu *pools;
5515 
5516 		if (wq->flags & WQ_BH)
5517 			pools = bh_worker_pools;
5518 		else
5519 			pools = cpu_worker_pools;
5520 
5521 		for_each_possible_cpu(cpu) {
5522 			struct pool_workqueue **pwq_p;
5523 			struct worker_pool *pool;
5524 
5525 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5526 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5527 
5528 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5529 						       pool->node);
5530 			if (!*pwq_p)
5531 				goto enomem;
5532 
5533 			init_pwq(*pwq_p, wq, pool);
5534 
5535 			mutex_lock(&wq->mutex);
5536 			link_pwq(*pwq_p);
5537 			mutex_unlock(&wq->mutex);
5538 		}
5539 		return 0;
5540 	}
5541 
5542 	if (wq->flags & __WQ_ORDERED) {
5543 		struct pool_workqueue *dfl_pwq;
5544 
5545 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5546 		/* there should only be single pwq for ordering guarantee */
5547 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5548 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5549 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5550 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5551 	} else {
5552 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5553 	}
5554 
5555 	return ret;
5556 
5557 enomem:
5558 	if (wq->cpu_pwq) {
5559 		for_each_possible_cpu(cpu) {
5560 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5561 
5562 			if (pwq)
5563 				kmem_cache_free(pwq_cache, pwq);
5564 		}
5565 		free_percpu(wq->cpu_pwq);
5566 		wq->cpu_pwq = NULL;
5567 	}
5568 	return -ENOMEM;
5569 }
5570 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5571 static int wq_clamp_max_active(int max_active, unsigned int flags,
5572 			       const char *name)
5573 {
5574 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5575 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5576 			max_active, name, 1, WQ_MAX_ACTIVE);
5577 
5578 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5579 }
5580 
5581 /*
5582  * Workqueues which may be used during memory reclaim should have a rescuer
5583  * to guarantee forward progress.
5584  */
init_rescuer(struct workqueue_struct * wq)5585 static int init_rescuer(struct workqueue_struct *wq)
5586 {
5587 	struct worker *rescuer;
5588 	char id_buf[WORKER_ID_LEN];
5589 	int ret;
5590 
5591 	lockdep_assert_held(&wq_pool_mutex);
5592 
5593 	if (!(wq->flags & WQ_MEM_RECLAIM))
5594 		return 0;
5595 
5596 	rescuer = alloc_worker(NUMA_NO_NODE);
5597 	if (!rescuer) {
5598 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5599 		       wq->name);
5600 		return -ENOMEM;
5601 	}
5602 
5603 	rescuer->rescue_wq = wq;
5604 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5605 
5606 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5607 	if (IS_ERR(rescuer->task)) {
5608 		ret = PTR_ERR(rescuer->task);
5609 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5610 		       wq->name, ERR_PTR(ret));
5611 		kfree(rescuer);
5612 		return ret;
5613 	}
5614 
5615 	wq->rescuer = rescuer;
5616 
5617 	/* initial cpumask is consistent with the detached rescuer and unbind_worker() */
5618 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
5619 		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5620 	else
5621 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5622 
5623 	wake_up_process(rescuer->task);
5624 
5625 	return 0;
5626 }
5627 
5628 /**
5629  * wq_adjust_max_active - update a wq's max_active to the current setting
5630  * @wq: target workqueue
5631  *
5632  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5633  * activate inactive work items accordingly. If @wq is freezing, clear
5634  * @wq->max_active to zero.
5635  */
wq_adjust_max_active(struct workqueue_struct * wq)5636 static void wq_adjust_max_active(struct workqueue_struct *wq)
5637 {
5638 	bool activated;
5639 	int new_max, new_min;
5640 
5641 	lockdep_assert_held(&wq->mutex);
5642 
5643 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5644 		new_max = 0;
5645 		new_min = 0;
5646 	} else {
5647 		new_max = wq->saved_max_active;
5648 		new_min = wq->saved_min_active;
5649 	}
5650 
5651 	if (wq->max_active == new_max && wq->min_active == new_min)
5652 		return;
5653 
5654 	/*
5655 	 * Update @wq->max/min_active and then kick inactive work items if more
5656 	 * active work items are allowed. This doesn't break work item ordering
5657 	 * because new work items are always queued behind existing inactive
5658 	 * work items if there are any.
5659 	 */
5660 	WRITE_ONCE(wq->max_active, new_max);
5661 	WRITE_ONCE(wq->min_active, new_min);
5662 
5663 	if (wq->flags & WQ_UNBOUND)
5664 		wq_update_node_max_active(wq, -1);
5665 
5666 	if (new_max == 0)
5667 		return;
5668 
5669 	/*
5670 	 * Round-robin through pwq's activating the first inactive work item
5671 	 * until max_active is filled.
5672 	 */
5673 	do {
5674 		struct pool_workqueue *pwq;
5675 
5676 		activated = false;
5677 		for_each_pwq(pwq, wq) {
5678 			unsigned long irq_flags;
5679 
5680 			/* can be called during early boot w/ irq disabled */
5681 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5682 			if (pwq_activate_first_inactive(pwq, true)) {
5683 				activated = true;
5684 				kick_pool(pwq->pool);
5685 			}
5686 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5687 		}
5688 	} while (activated);
5689 }
5690 
5691 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5692 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5693 						  unsigned int flags,
5694 						  int max_active, va_list args)
5695 {
5696 	struct workqueue_struct *wq;
5697 	size_t wq_size;
5698 	int name_len;
5699 
5700 	if (flags & WQ_BH) {
5701 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5702 			return NULL;
5703 		if (WARN_ON_ONCE(max_active))
5704 			return NULL;
5705 	}
5706 
5707 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5708 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5709 		flags |= WQ_UNBOUND;
5710 
5711 	/* allocate wq and format name */
5712 	if (flags & WQ_UNBOUND)
5713 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5714 	else
5715 		wq_size = sizeof(*wq);
5716 
5717 	wq = kzalloc_noprof(wq_size, GFP_KERNEL);
5718 	if (!wq)
5719 		return NULL;
5720 
5721 	if (flags & WQ_UNBOUND) {
5722 		wq->unbound_attrs = alloc_workqueue_attrs_noprof();
5723 		if (!wq->unbound_attrs)
5724 			goto err_free_wq;
5725 	}
5726 
5727 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5728 
5729 	if (name_len >= WQ_NAME_LEN)
5730 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5731 			     wq->name);
5732 
5733 	if (flags & WQ_BH) {
5734 		/*
5735 		 * BH workqueues always share a single execution context per CPU
5736 		 * and don't impose any max_active limit.
5737 		 */
5738 		max_active = INT_MAX;
5739 	} else {
5740 		max_active = max_active ?: WQ_DFL_ACTIVE;
5741 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5742 	}
5743 
5744 	/* init wq */
5745 	wq->flags = flags;
5746 	wq->max_active = max_active;
5747 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5748 	wq->saved_max_active = wq->max_active;
5749 	wq->saved_min_active = wq->min_active;
5750 	mutex_init(&wq->mutex);
5751 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5752 	INIT_LIST_HEAD(&wq->pwqs);
5753 	INIT_LIST_HEAD(&wq->flusher_queue);
5754 	INIT_LIST_HEAD(&wq->flusher_overflow);
5755 	INIT_LIST_HEAD(&wq->maydays);
5756 
5757 	INIT_LIST_HEAD(&wq->list);
5758 
5759 	if (flags & WQ_UNBOUND) {
5760 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5761 			goto err_free_wq;
5762 	}
5763 
5764 	/*
5765 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5766 	 * and the global freeze state.
5767 	 */
5768 	apply_wqattrs_lock();
5769 
5770 	if (alloc_and_link_pwqs(wq) < 0)
5771 		goto err_unlock_free_node_nr_active;
5772 
5773 	mutex_lock(&wq->mutex);
5774 	wq_adjust_max_active(wq);
5775 	mutex_unlock(&wq->mutex);
5776 
5777 	list_add_tail_rcu(&wq->list, &workqueues);
5778 
5779 	if (wq_online && init_rescuer(wq) < 0)
5780 		goto err_unlock_destroy;
5781 
5782 	apply_wqattrs_unlock();
5783 
5784 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5785 		goto err_destroy;
5786 
5787 	return wq;
5788 
5789 err_unlock_free_node_nr_active:
5790 	apply_wqattrs_unlock();
5791 	/*
5792 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5793 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5794 	 * completes before calling kfree(wq).
5795 	 */
5796 	if (wq->flags & WQ_UNBOUND) {
5797 		kthread_flush_worker(pwq_release_worker);
5798 		free_node_nr_active(wq->node_nr_active);
5799 	}
5800 err_free_wq:
5801 	free_workqueue_attrs(wq->unbound_attrs);
5802 	kfree(wq);
5803 	return NULL;
5804 err_unlock_destroy:
5805 	apply_wqattrs_unlock();
5806 err_destroy:
5807 	destroy_workqueue(wq);
5808 	return NULL;
5809 }
5810 
5811 __printf(1, 4)
alloc_workqueue_noprof(const char * fmt,unsigned int flags,int max_active,...)5812 struct workqueue_struct *alloc_workqueue_noprof(const char *fmt,
5813 						unsigned int flags,
5814 						int max_active, ...)
5815 {
5816 	struct workqueue_struct *wq;
5817 	va_list args;
5818 
5819 	va_start(args, max_active);
5820 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5821 	va_end(args);
5822 	if (!wq)
5823 		return NULL;
5824 
5825 	wq_init_lockdep(wq);
5826 
5827 	return wq;
5828 }
5829 EXPORT_SYMBOL_GPL(alloc_workqueue_noprof);
5830 
5831 #ifdef CONFIG_LOCKDEP
5832 __printf(1, 5)
5833 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5834 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5835 			    int max_active, struct lockdep_map *lockdep_map, ...)
5836 {
5837 	struct workqueue_struct *wq;
5838 	va_list args;
5839 
5840 	va_start(args, lockdep_map);
5841 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5842 	va_end(args);
5843 	if (!wq)
5844 		return NULL;
5845 
5846 	wq->lockdep_map = lockdep_map;
5847 
5848 	return wq;
5849 }
5850 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5851 #endif
5852 
pwq_busy(struct pool_workqueue * pwq)5853 static bool pwq_busy(struct pool_workqueue *pwq)
5854 {
5855 	int i;
5856 
5857 	for (i = 0; i < WORK_NR_COLORS; i++)
5858 		if (pwq->nr_in_flight[i])
5859 			return true;
5860 
5861 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5862 		return true;
5863 	if (!pwq_is_empty(pwq))
5864 		return true;
5865 
5866 	return false;
5867 }
5868 
5869 /**
5870  * destroy_workqueue - safely terminate a workqueue
5871  * @wq: target workqueue
5872  *
5873  * Safely destroy a workqueue. All work currently pending will be done first.
5874  *
5875  * This function does NOT guarantee that non-pending work that has been
5876  * submitted with queue_delayed_work() and similar functions will be done
5877  * before destroying the workqueue. The fundamental problem is that, currently,
5878  * the workqueue has no way of accessing non-pending delayed_work. delayed_work
5879  * is only linked on the timer-side. All delayed_work must, therefore, be
5880  * canceled before calling this function.
5881  *
5882  * TODO: It would be better if the problem described above wouldn't exist and
5883  * destroy_workqueue() would cleanly cancel all pending and non-pending
5884  * delayed_work.
5885  */
destroy_workqueue(struct workqueue_struct * wq)5886 void destroy_workqueue(struct workqueue_struct *wq)
5887 {
5888 	struct pool_workqueue *pwq;
5889 	int cpu;
5890 
5891 	/*
5892 	 * Remove it from sysfs first so that sanity check failure doesn't
5893 	 * lead to sysfs name conflicts.
5894 	 */
5895 	workqueue_sysfs_unregister(wq);
5896 
5897 	/* mark the workqueue destruction is in progress */
5898 	mutex_lock(&wq->mutex);
5899 	wq->flags |= __WQ_DESTROYING;
5900 	mutex_unlock(&wq->mutex);
5901 
5902 	/* drain it before proceeding with destruction */
5903 	drain_workqueue(wq);
5904 
5905 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5906 	if (wq->rescuer) {
5907 		/* rescuer will empty maydays list before exiting */
5908 		kthread_stop(wq->rescuer->task);
5909 		kfree(wq->rescuer);
5910 		wq->rescuer = NULL;
5911 	}
5912 
5913 	/*
5914 	 * Sanity checks - grab all the locks so that we wait for all
5915 	 * in-flight operations which may do put_pwq().
5916 	 */
5917 	mutex_lock(&wq_pool_mutex);
5918 	mutex_lock(&wq->mutex);
5919 	for_each_pwq(pwq, wq) {
5920 		raw_spin_lock_irq(&pwq->pool->lock);
5921 		if (WARN_ON(pwq_busy(pwq))) {
5922 			pr_warn("%s: %s has the following busy pwq\n",
5923 				__func__, wq->name);
5924 			show_pwq(pwq);
5925 			raw_spin_unlock_irq(&pwq->pool->lock);
5926 			mutex_unlock(&wq->mutex);
5927 			mutex_unlock(&wq_pool_mutex);
5928 			show_one_workqueue(wq);
5929 			return;
5930 		}
5931 		raw_spin_unlock_irq(&pwq->pool->lock);
5932 	}
5933 	mutex_unlock(&wq->mutex);
5934 
5935 	/*
5936 	 * wq list is used to freeze wq, remove from list after
5937 	 * flushing is complete in case freeze races us.
5938 	 */
5939 	list_del_rcu(&wq->list);
5940 	mutex_unlock(&wq_pool_mutex);
5941 
5942 	/*
5943 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5944 	 * to put the base refs. @wq will be auto-destroyed from the last
5945 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5946 	 */
5947 	rcu_read_lock();
5948 
5949 	for_each_possible_cpu(cpu) {
5950 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5951 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5952 	}
5953 
5954 	put_pwq_unlocked(unbound_pwq(wq, -1));
5955 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5956 
5957 	rcu_read_unlock();
5958 }
5959 EXPORT_SYMBOL_GPL(destroy_workqueue);
5960 
5961 /**
5962  * workqueue_set_max_active - adjust max_active of a workqueue
5963  * @wq: target workqueue
5964  * @max_active: new max_active value.
5965  *
5966  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5967  * comment.
5968  *
5969  * CONTEXT:
5970  * Don't call from IRQ context.
5971  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5972 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5973 {
5974 	/* max_active doesn't mean anything for BH workqueues */
5975 	if (WARN_ON(wq->flags & WQ_BH))
5976 		return;
5977 	/* disallow meddling with max_active for ordered workqueues */
5978 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5979 		return;
5980 
5981 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5982 
5983 	mutex_lock(&wq->mutex);
5984 
5985 	wq->saved_max_active = max_active;
5986 	if (wq->flags & WQ_UNBOUND)
5987 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5988 
5989 	wq_adjust_max_active(wq);
5990 
5991 	mutex_unlock(&wq->mutex);
5992 }
5993 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5994 
5995 /**
5996  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5997  * @wq: target unbound workqueue
5998  * @min_active: new min_active value
5999  *
6000  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
6001  * unbound workqueue is not guaranteed to be able to process max_active
6002  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
6003  * able to process min_active number of interdependent work items which is
6004  * %WQ_DFL_MIN_ACTIVE by default.
6005  *
6006  * Use this function to adjust the min_active value between 0 and the current
6007  * max_active.
6008  */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)6009 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
6010 {
6011 	/* min_active is only meaningful for non-ordered unbound workqueues */
6012 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
6013 		    WQ_UNBOUND))
6014 		return;
6015 
6016 	mutex_lock(&wq->mutex);
6017 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
6018 	wq_adjust_max_active(wq);
6019 	mutex_unlock(&wq->mutex);
6020 }
6021 
6022 /**
6023  * current_work - retrieve %current task's work struct
6024  *
6025  * Determine if %current task is a workqueue worker and what it's working on.
6026  * Useful to find out the context that the %current task is running in.
6027  *
6028  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
6029  */
current_work(void)6030 struct work_struct *current_work(void)
6031 {
6032 	struct worker *worker = current_wq_worker();
6033 
6034 	return worker ? worker->current_work : NULL;
6035 }
6036 EXPORT_SYMBOL(current_work);
6037 
6038 /**
6039  * current_is_workqueue_rescuer - is %current workqueue rescuer?
6040  *
6041  * Determine whether %current is a workqueue rescuer.  Can be used from
6042  * work functions to determine whether it's being run off the rescuer task.
6043  *
6044  * Return: %true if %current is a workqueue rescuer. %false otherwise.
6045  */
current_is_workqueue_rescuer(void)6046 bool current_is_workqueue_rescuer(void)
6047 {
6048 	struct worker *worker = current_wq_worker();
6049 
6050 	return worker && worker->rescue_wq;
6051 }
6052 
6053 /**
6054  * workqueue_congested - test whether a workqueue is congested
6055  * @cpu: CPU in question
6056  * @wq: target workqueue
6057  *
6058  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
6059  * no synchronization around this function and the test result is
6060  * unreliable and only useful as advisory hints or for debugging.
6061  *
6062  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6063  *
6064  * With the exception of ordered workqueues, all workqueues have per-cpu
6065  * pool_workqueues, each with its own congested state. A workqueue being
6066  * congested on one CPU doesn't mean that the workqueue is contested on any
6067  * other CPUs.
6068  *
6069  * Return:
6070  * %true if congested, %false otherwise.
6071  */
workqueue_congested(int cpu,struct workqueue_struct * wq)6072 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6073 {
6074 	struct pool_workqueue *pwq;
6075 	bool ret;
6076 
6077 	preempt_disable();
6078 
6079 	if (cpu == WORK_CPU_UNBOUND)
6080 		cpu = smp_processor_id();
6081 
6082 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6083 	ret = !list_empty(&pwq->inactive_works);
6084 
6085 	preempt_enable();
6086 
6087 	return ret;
6088 }
6089 EXPORT_SYMBOL_GPL(workqueue_congested);
6090 
6091 /**
6092  * work_busy - test whether a work is currently pending or running
6093  * @work: the work to be tested
6094  *
6095  * Test whether @work is currently pending or running.  There is no
6096  * synchronization around this function and the test result is
6097  * unreliable and only useful as advisory hints or for debugging.
6098  *
6099  * Return:
6100  * OR'd bitmask of WORK_BUSY_* bits.
6101  */
work_busy(struct work_struct * work)6102 unsigned int work_busy(struct work_struct *work)
6103 {
6104 	struct worker_pool *pool;
6105 	unsigned long irq_flags;
6106 	unsigned int ret = 0;
6107 
6108 	if (work_pending(work))
6109 		ret |= WORK_BUSY_PENDING;
6110 
6111 	rcu_read_lock();
6112 	pool = get_work_pool(work);
6113 	if (pool) {
6114 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6115 		if (find_worker_executing_work(pool, work))
6116 			ret |= WORK_BUSY_RUNNING;
6117 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6118 	}
6119 	rcu_read_unlock();
6120 
6121 	return ret;
6122 }
6123 EXPORT_SYMBOL_GPL(work_busy);
6124 
6125 /**
6126  * set_worker_desc - set description for the current work item
6127  * @fmt: printf-style format string
6128  * @...: arguments for the format string
6129  *
6130  * This function can be called by a running work function to describe what
6131  * the work item is about.  If the worker task gets dumped, this
6132  * information will be printed out together to help debugging.  The
6133  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6134  */
set_worker_desc(const char * fmt,...)6135 void set_worker_desc(const char *fmt, ...)
6136 {
6137 	struct worker *worker = current_wq_worker();
6138 	va_list args;
6139 
6140 	if (worker) {
6141 		va_start(args, fmt);
6142 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6143 		va_end(args);
6144 	}
6145 }
6146 EXPORT_SYMBOL_GPL(set_worker_desc);
6147 
6148 /**
6149  * print_worker_info - print out worker information and description
6150  * @log_lvl: the log level to use when printing
6151  * @task: target task
6152  *
6153  * If @task is a worker and currently executing a work item, print out the
6154  * name of the workqueue being serviced and worker description set with
6155  * set_worker_desc() by the currently executing work item.
6156  *
6157  * This function can be safely called on any task as long as the
6158  * task_struct itself is accessible.  While safe, this function isn't
6159  * synchronized and may print out mixups or garbages of limited length.
6160  */
print_worker_info(const char * log_lvl,struct task_struct * task)6161 void print_worker_info(const char *log_lvl, struct task_struct *task)
6162 {
6163 	work_func_t *fn = NULL;
6164 	char name[WQ_NAME_LEN] = { };
6165 	char desc[WORKER_DESC_LEN] = { };
6166 	struct pool_workqueue *pwq = NULL;
6167 	struct workqueue_struct *wq = NULL;
6168 	struct worker *worker;
6169 
6170 	if (!(task->flags & PF_WQ_WORKER))
6171 		return;
6172 
6173 	/*
6174 	 * This function is called without any synchronization and @task
6175 	 * could be in any state.  Be careful with dereferences.
6176 	 */
6177 	worker = kthread_probe_data(task);
6178 
6179 	/*
6180 	 * Carefully copy the associated workqueue's workfn, name and desc.
6181 	 * Keep the original last '\0' in case the original is garbage.
6182 	 */
6183 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6184 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6185 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6186 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6187 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6188 
6189 	if (fn || name[0] || desc[0]) {
6190 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6191 		if (strcmp(name, desc))
6192 			pr_cont(" (%s)", desc);
6193 		pr_cont("\n");
6194 	}
6195 }
6196 
pr_cont_pool_info(struct worker_pool * pool)6197 static void pr_cont_pool_info(struct worker_pool *pool)
6198 {
6199 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6200 	if (pool->node != NUMA_NO_NODE)
6201 		pr_cont(" node=%d", pool->node);
6202 	pr_cont(" flags=0x%x", pool->flags);
6203 	if (pool->flags & POOL_BH)
6204 		pr_cont(" bh%s",
6205 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6206 	else
6207 		pr_cont(" nice=%d", pool->attrs->nice);
6208 }
6209 
pr_cont_worker_id(struct worker * worker)6210 static void pr_cont_worker_id(struct worker *worker)
6211 {
6212 	struct worker_pool *pool = worker->pool;
6213 
6214 	if (pool->flags & WQ_BH)
6215 		pr_cont("bh%s",
6216 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6217 	else
6218 		pr_cont("%d%s", task_pid_nr(worker->task),
6219 			worker->rescue_wq ? "(RESCUER)" : "");
6220 }
6221 
6222 struct pr_cont_work_struct {
6223 	bool comma;
6224 	work_func_t func;
6225 	long ctr;
6226 };
6227 
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6228 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6229 {
6230 	if (!pcwsp->ctr)
6231 		goto out_record;
6232 	if (func == pcwsp->func) {
6233 		pcwsp->ctr++;
6234 		return;
6235 	}
6236 	if (pcwsp->ctr == 1)
6237 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6238 	else
6239 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6240 	pcwsp->ctr = 0;
6241 out_record:
6242 	if ((long)func == -1L)
6243 		return;
6244 	pcwsp->comma = comma;
6245 	pcwsp->func = func;
6246 	pcwsp->ctr = 1;
6247 }
6248 
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6249 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6250 {
6251 	if (work->func == wq_barrier_func) {
6252 		struct wq_barrier *barr;
6253 
6254 		barr = container_of(work, struct wq_barrier, work);
6255 
6256 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6257 		pr_cont("%s BAR(%d)", comma ? "," : "",
6258 			task_pid_nr(barr->task));
6259 	} else {
6260 		if (!comma)
6261 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6262 		pr_cont_work_flush(comma, work->func, pcwsp);
6263 	}
6264 }
6265 
show_pwq(struct pool_workqueue * pwq)6266 static void show_pwq(struct pool_workqueue *pwq)
6267 {
6268 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6269 	struct worker_pool *pool = pwq->pool;
6270 	struct work_struct *work;
6271 	struct worker *worker;
6272 	bool has_in_flight = false, has_pending = false;
6273 	int bkt;
6274 
6275 	pr_info("  pwq %d:", pool->id);
6276 	pr_cont_pool_info(pool);
6277 
6278 	pr_cont(" active=%d refcnt=%d%s\n",
6279 		pwq->nr_active, pwq->refcnt,
6280 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6281 
6282 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6283 		if (worker->current_pwq == pwq) {
6284 			has_in_flight = true;
6285 			break;
6286 		}
6287 	}
6288 	if (has_in_flight) {
6289 		bool comma = false;
6290 
6291 		pr_info("    in-flight:");
6292 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6293 			if (worker->current_pwq != pwq)
6294 				continue;
6295 
6296 			pr_cont(" %s", comma ? "," : "");
6297 			pr_cont_worker_id(worker);
6298 			pr_cont(":%ps", worker->current_func);
6299 			list_for_each_entry(work, &worker->scheduled, entry)
6300 				pr_cont_work(false, work, &pcws);
6301 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6302 			comma = true;
6303 		}
6304 		pr_cont("\n");
6305 	}
6306 
6307 	list_for_each_entry(work, &pool->worklist, entry) {
6308 		if (get_work_pwq(work) == pwq) {
6309 			has_pending = true;
6310 			break;
6311 		}
6312 	}
6313 	if (has_pending) {
6314 		bool comma = false;
6315 
6316 		pr_info("    pending:");
6317 		list_for_each_entry(work, &pool->worklist, entry) {
6318 			if (get_work_pwq(work) != pwq)
6319 				continue;
6320 
6321 			pr_cont_work(comma, work, &pcws);
6322 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6323 		}
6324 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6325 		pr_cont("\n");
6326 	}
6327 
6328 	if (!list_empty(&pwq->inactive_works)) {
6329 		bool comma = false;
6330 
6331 		pr_info("    inactive:");
6332 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6333 			pr_cont_work(comma, work, &pcws);
6334 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6335 		}
6336 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6337 		pr_cont("\n");
6338 	}
6339 }
6340 
6341 /**
6342  * show_one_workqueue - dump state of specified workqueue
6343  * @wq: workqueue whose state will be printed
6344  */
show_one_workqueue(struct workqueue_struct * wq)6345 void show_one_workqueue(struct workqueue_struct *wq)
6346 {
6347 	struct pool_workqueue *pwq;
6348 	bool idle = true;
6349 	unsigned long irq_flags;
6350 
6351 	for_each_pwq(pwq, wq) {
6352 		if (!pwq_is_empty(pwq)) {
6353 			idle = false;
6354 			break;
6355 		}
6356 	}
6357 	if (idle) /* Nothing to print for idle workqueue */
6358 		return;
6359 
6360 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6361 
6362 	for_each_pwq(pwq, wq) {
6363 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6364 		if (!pwq_is_empty(pwq)) {
6365 			/*
6366 			 * Defer printing to avoid deadlocks in console
6367 			 * drivers that queue work while holding locks
6368 			 * also taken in their write paths.
6369 			 */
6370 			printk_deferred_enter();
6371 			show_pwq(pwq);
6372 			printk_deferred_exit();
6373 		}
6374 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6375 		/*
6376 		 * We could be printing a lot from atomic context, e.g.
6377 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6378 		 * hard lockup.
6379 		 */
6380 		touch_nmi_watchdog();
6381 	}
6382 
6383 }
6384 
6385 /**
6386  * show_one_worker_pool - dump state of specified worker pool
6387  * @pool: worker pool whose state will be printed
6388  */
show_one_worker_pool(struct worker_pool * pool)6389 static void show_one_worker_pool(struct worker_pool *pool)
6390 {
6391 	struct worker *worker;
6392 	bool first = true;
6393 	unsigned long irq_flags;
6394 	unsigned long hung = 0;
6395 
6396 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6397 	if (pool->nr_workers == pool->nr_idle)
6398 		goto next_pool;
6399 
6400 	/* How long the first pending work is waiting for a worker. */
6401 	if (!list_empty(&pool->worklist))
6402 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6403 
6404 	/*
6405 	 * Defer printing to avoid deadlocks in console drivers that
6406 	 * queue work while holding locks also taken in their write
6407 	 * paths.
6408 	 */
6409 	printk_deferred_enter();
6410 	pr_info("pool %d:", pool->id);
6411 	pr_cont_pool_info(pool);
6412 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6413 	if (pool->manager)
6414 		pr_cont(" manager: %d",
6415 			task_pid_nr(pool->manager->task));
6416 	list_for_each_entry(worker, &pool->idle_list, entry) {
6417 		pr_cont(" %s", first ? "idle: " : "");
6418 		pr_cont_worker_id(worker);
6419 		first = false;
6420 	}
6421 	pr_cont("\n");
6422 	printk_deferred_exit();
6423 next_pool:
6424 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6425 	/*
6426 	 * We could be printing a lot from atomic context, e.g.
6427 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6428 	 * hard lockup.
6429 	 */
6430 	touch_nmi_watchdog();
6431 
6432 }
6433 
6434 /**
6435  * show_all_workqueues - dump workqueue state
6436  *
6437  * Called from a sysrq handler and prints out all busy workqueues and pools.
6438  */
show_all_workqueues(void)6439 void show_all_workqueues(void)
6440 {
6441 	struct workqueue_struct *wq;
6442 	struct worker_pool *pool;
6443 	int pi;
6444 
6445 	rcu_read_lock();
6446 
6447 	pr_info("Showing busy workqueues and worker pools:\n");
6448 
6449 	list_for_each_entry_rcu(wq, &workqueues, list)
6450 		show_one_workqueue(wq);
6451 
6452 	for_each_pool(pool, pi)
6453 		show_one_worker_pool(pool);
6454 
6455 	rcu_read_unlock();
6456 }
6457 
6458 /**
6459  * show_freezable_workqueues - dump freezable workqueue state
6460  *
6461  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6462  * still busy.
6463  */
show_freezable_workqueues(void)6464 void show_freezable_workqueues(void)
6465 {
6466 	struct workqueue_struct *wq;
6467 
6468 	rcu_read_lock();
6469 
6470 	pr_info("Showing freezable workqueues that are still busy:\n");
6471 
6472 	list_for_each_entry_rcu(wq, &workqueues, list) {
6473 		if (!(wq->flags & WQ_FREEZABLE))
6474 			continue;
6475 		show_one_workqueue(wq);
6476 	}
6477 
6478 	rcu_read_unlock();
6479 }
6480 
6481 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6482 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6483 {
6484 	/* stabilize PF_WQ_WORKER and worker pool association */
6485 	mutex_lock(&wq_pool_attach_mutex);
6486 
6487 	if (task->flags & PF_WQ_WORKER) {
6488 		struct worker *worker = kthread_data(task);
6489 		struct worker_pool *pool = worker->pool;
6490 		int off;
6491 
6492 		off = format_worker_id(buf, size, worker, pool);
6493 
6494 		if (pool) {
6495 			raw_spin_lock_irq(&pool->lock);
6496 			/*
6497 			 * ->desc tracks information (wq name or
6498 			 * set_worker_desc()) for the latest execution.  If
6499 			 * current, prepend '+', otherwise '-'.
6500 			 */
6501 			if (worker->desc[0] != '\0') {
6502 				if (worker->current_work)
6503 					scnprintf(buf + off, size - off, "+%s",
6504 						  worker->desc);
6505 				else
6506 					scnprintf(buf + off, size - off, "-%s",
6507 						  worker->desc);
6508 			}
6509 			raw_spin_unlock_irq(&pool->lock);
6510 		}
6511 	} else {
6512 		strscpy(buf, task->comm, size);
6513 	}
6514 
6515 	mutex_unlock(&wq_pool_attach_mutex);
6516 }
6517 
6518 #ifdef CONFIG_SMP
6519 
6520 /*
6521  * CPU hotplug.
6522  *
6523  * There are two challenges in supporting CPU hotplug.  Firstly, there
6524  * are a lot of assumptions on strong associations among work, pwq and
6525  * pool which make migrating pending and scheduled works very
6526  * difficult to implement without impacting hot paths.  Secondly,
6527  * worker pools serve mix of short, long and very long running works making
6528  * blocked draining impractical.
6529  *
6530  * This is solved by allowing the pools to be disassociated from the CPU
6531  * running as an unbound one and allowing it to be reattached later if the
6532  * cpu comes back online.
6533  */
6534 
unbind_workers(int cpu)6535 static void unbind_workers(int cpu)
6536 {
6537 	struct worker_pool *pool;
6538 	struct worker *worker;
6539 
6540 	for_each_cpu_worker_pool(pool, cpu) {
6541 		mutex_lock(&wq_pool_attach_mutex);
6542 		raw_spin_lock_irq(&pool->lock);
6543 
6544 		/*
6545 		 * We've blocked all attach/detach operations. Make all workers
6546 		 * unbound and set DISASSOCIATED.  Before this, all workers
6547 		 * must be on the cpu.  After this, they may become diasporas.
6548 		 * And the preemption disabled section in their sched callbacks
6549 		 * are guaranteed to see WORKER_UNBOUND since the code here
6550 		 * is on the same cpu.
6551 		 */
6552 		for_each_pool_worker(worker, pool)
6553 			worker->flags |= WORKER_UNBOUND;
6554 
6555 		pool->flags |= POOL_DISASSOCIATED;
6556 
6557 		/*
6558 		 * The handling of nr_running in sched callbacks are disabled
6559 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6560 		 * need_more_worker() and keep_working() are always true as
6561 		 * long as the worklist is not empty.  This pool now behaves as
6562 		 * an unbound (in terms of concurrency management) pool which
6563 		 * are served by workers tied to the pool.
6564 		 */
6565 		pool->nr_running = 0;
6566 
6567 		/*
6568 		 * With concurrency management just turned off, a busy
6569 		 * worker blocking could lead to lengthy stalls.  Kick off
6570 		 * unbound chain execution of currently pending work items.
6571 		 */
6572 		kick_pool(pool);
6573 
6574 		raw_spin_unlock_irq(&pool->lock);
6575 
6576 		for_each_pool_worker(worker, pool)
6577 			unbind_worker(worker);
6578 
6579 		mutex_unlock(&wq_pool_attach_mutex);
6580 	}
6581 }
6582 
6583 /**
6584  * rebind_workers - rebind all workers of a pool to the associated CPU
6585  * @pool: pool of interest
6586  *
6587  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6588  */
rebind_workers(struct worker_pool * pool)6589 static void rebind_workers(struct worker_pool *pool)
6590 {
6591 	struct worker *worker;
6592 
6593 	lockdep_assert_held(&wq_pool_attach_mutex);
6594 
6595 	/*
6596 	 * Restore CPU affinity of all workers.  As all idle workers should
6597 	 * be on the run-queue of the associated CPU before any local
6598 	 * wake-ups for concurrency management happen, restore CPU affinity
6599 	 * of all workers first and then clear UNBOUND.  As we're called
6600 	 * from CPU_ONLINE, the following shouldn't fail.
6601 	 */
6602 	for_each_pool_worker(worker, pool) {
6603 		kthread_set_per_cpu(worker->task, pool->cpu);
6604 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6605 						  pool_allowed_cpus(pool)) < 0);
6606 	}
6607 
6608 	raw_spin_lock_irq(&pool->lock);
6609 
6610 	pool->flags &= ~POOL_DISASSOCIATED;
6611 
6612 	for_each_pool_worker(worker, pool) {
6613 		unsigned int worker_flags = worker->flags;
6614 
6615 		/*
6616 		 * We want to clear UNBOUND but can't directly call
6617 		 * worker_clr_flags() or adjust nr_running.  Atomically
6618 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6619 		 * @worker will clear REBOUND using worker_clr_flags() when
6620 		 * it initiates the next execution cycle thus restoring
6621 		 * concurrency management.  Note that when or whether
6622 		 * @worker clears REBOUND doesn't affect correctness.
6623 		 *
6624 		 * WRITE_ONCE() is necessary because @worker->flags may be
6625 		 * tested without holding any lock in
6626 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6627 		 * fail incorrectly leading to premature concurrency
6628 		 * management operations.
6629 		 */
6630 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6631 		worker_flags |= WORKER_REBOUND;
6632 		worker_flags &= ~WORKER_UNBOUND;
6633 		WRITE_ONCE(worker->flags, worker_flags);
6634 	}
6635 
6636 	raw_spin_unlock_irq(&pool->lock);
6637 }
6638 
6639 /**
6640  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6641  * @pool: unbound pool of interest
6642  * @cpu: the CPU which is coming up
6643  *
6644  * An unbound pool may end up with a cpumask which doesn't have any online
6645  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6646  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6647  * online CPU before, cpus_allowed of all its workers should be restored.
6648  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6649 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6650 {
6651 	static cpumask_t cpumask;
6652 	struct worker *worker;
6653 
6654 	lockdep_assert_held(&wq_pool_attach_mutex);
6655 
6656 	/* is @cpu allowed for @pool? */
6657 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6658 		return;
6659 
6660 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6661 
6662 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6663 	for_each_pool_worker(worker, pool)
6664 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6665 }
6666 
workqueue_prepare_cpu(unsigned int cpu)6667 int workqueue_prepare_cpu(unsigned int cpu)
6668 {
6669 	struct worker_pool *pool;
6670 
6671 	for_each_cpu_worker_pool(pool, cpu) {
6672 		if (pool->nr_workers)
6673 			continue;
6674 		if (!create_worker(pool))
6675 			return -ENOMEM;
6676 	}
6677 	return 0;
6678 }
6679 
workqueue_online_cpu(unsigned int cpu)6680 int workqueue_online_cpu(unsigned int cpu)
6681 {
6682 	struct worker_pool *pool;
6683 	struct workqueue_struct *wq;
6684 	int pi;
6685 
6686 	mutex_lock(&wq_pool_mutex);
6687 
6688 	cpumask_set_cpu(cpu, wq_online_cpumask);
6689 
6690 	for_each_pool(pool, pi) {
6691 		/* BH pools aren't affected by hotplug */
6692 		if (pool->flags & POOL_BH)
6693 			continue;
6694 
6695 		mutex_lock(&wq_pool_attach_mutex);
6696 		if (pool->cpu == cpu)
6697 			rebind_workers(pool);
6698 		else if (pool->cpu < 0)
6699 			restore_unbound_workers_cpumask(pool, cpu);
6700 		mutex_unlock(&wq_pool_attach_mutex);
6701 	}
6702 
6703 	/* update pod affinity of unbound workqueues */
6704 	list_for_each_entry(wq, &workqueues, list) {
6705 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6706 
6707 		if (attrs) {
6708 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6709 			int tcpu;
6710 
6711 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6712 				unbound_wq_update_pwq(wq, tcpu);
6713 
6714 			mutex_lock(&wq->mutex);
6715 			wq_update_node_max_active(wq, -1);
6716 			mutex_unlock(&wq->mutex);
6717 		}
6718 	}
6719 
6720 	mutex_unlock(&wq_pool_mutex);
6721 	return 0;
6722 }
6723 
workqueue_offline_cpu(unsigned int cpu)6724 int workqueue_offline_cpu(unsigned int cpu)
6725 {
6726 	struct workqueue_struct *wq;
6727 
6728 	/* unbinding per-cpu workers should happen on the local CPU */
6729 	if (WARN_ON(cpu != smp_processor_id()))
6730 		return -1;
6731 
6732 	unbind_workers(cpu);
6733 
6734 	/* update pod affinity of unbound workqueues */
6735 	mutex_lock(&wq_pool_mutex);
6736 
6737 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6738 
6739 	list_for_each_entry(wq, &workqueues, list) {
6740 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6741 
6742 		if (attrs) {
6743 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6744 			int tcpu;
6745 
6746 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6747 				unbound_wq_update_pwq(wq, tcpu);
6748 
6749 			mutex_lock(&wq->mutex);
6750 			wq_update_node_max_active(wq, cpu);
6751 			mutex_unlock(&wq->mutex);
6752 		}
6753 	}
6754 	mutex_unlock(&wq_pool_mutex);
6755 
6756 	return 0;
6757 }
6758 
6759 struct work_for_cpu {
6760 	struct work_struct work;
6761 	long (*fn)(void *);
6762 	void *arg;
6763 	long ret;
6764 };
6765 
work_for_cpu_fn(struct work_struct * work)6766 static void work_for_cpu_fn(struct work_struct *work)
6767 {
6768 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6769 
6770 	wfc->ret = wfc->fn(wfc->arg);
6771 }
6772 
6773 /**
6774  * work_on_cpu_key - run a function in thread context on a particular cpu
6775  * @cpu: the cpu to run on
6776  * @fn: the function to run
6777  * @arg: the function arg
6778  * @key: The lock class key for lock debugging purposes
6779  *
6780  * It is up to the caller to ensure that the cpu doesn't go offline.
6781  * The caller must not hold any locks which would prevent @fn from completing.
6782  *
6783  * Return: The value @fn returns.
6784  */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6785 long work_on_cpu_key(int cpu, long (*fn)(void *),
6786 		     void *arg, struct lock_class_key *key)
6787 {
6788 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6789 
6790 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6791 	schedule_work_on(cpu, &wfc.work);
6792 	flush_work(&wfc.work);
6793 	destroy_work_on_stack(&wfc.work);
6794 	return wfc.ret;
6795 }
6796 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6797 #endif /* CONFIG_SMP */
6798 
6799 #ifdef CONFIG_FREEZER
6800 
6801 /**
6802  * freeze_workqueues_begin - begin freezing workqueues
6803  *
6804  * Start freezing workqueues.  After this function returns, all freezable
6805  * workqueues will queue new works to their inactive_works list instead of
6806  * pool->worklist.
6807  *
6808  * CONTEXT:
6809  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6810  */
freeze_workqueues_begin(void)6811 void freeze_workqueues_begin(void)
6812 {
6813 	struct workqueue_struct *wq;
6814 
6815 	mutex_lock(&wq_pool_mutex);
6816 
6817 	WARN_ON_ONCE(workqueue_freezing);
6818 	workqueue_freezing = true;
6819 
6820 	list_for_each_entry(wq, &workqueues, list) {
6821 		mutex_lock(&wq->mutex);
6822 		wq_adjust_max_active(wq);
6823 		mutex_unlock(&wq->mutex);
6824 	}
6825 
6826 	mutex_unlock(&wq_pool_mutex);
6827 }
6828 
6829 /**
6830  * freeze_workqueues_busy - are freezable workqueues still busy?
6831  *
6832  * Check whether freezing is complete.  This function must be called
6833  * between freeze_workqueues_begin() and thaw_workqueues().
6834  *
6835  * CONTEXT:
6836  * Grabs and releases wq_pool_mutex.
6837  *
6838  * Return:
6839  * %true if some freezable workqueues are still busy.  %false if freezing
6840  * is complete.
6841  */
freeze_workqueues_busy(void)6842 bool freeze_workqueues_busy(void)
6843 {
6844 	bool busy = false;
6845 	struct workqueue_struct *wq;
6846 	struct pool_workqueue *pwq;
6847 
6848 	mutex_lock(&wq_pool_mutex);
6849 
6850 	WARN_ON_ONCE(!workqueue_freezing);
6851 
6852 	list_for_each_entry(wq, &workqueues, list) {
6853 		if (!(wq->flags & WQ_FREEZABLE))
6854 			continue;
6855 		/*
6856 		 * nr_active is monotonically decreasing.  It's safe
6857 		 * to peek without lock.
6858 		 */
6859 		rcu_read_lock();
6860 		for_each_pwq(pwq, wq) {
6861 			WARN_ON_ONCE(pwq->nr_active < 0);
6862 			if (pwq->nr_active) {
6863 				busy = true;
6864 				rcu_read_unlock();
6865 				goto out_unlock;
6866 			}
6867 		}
6868 		rcu_read_unlock();
6869 	}
6870 out_unlock:
6871 	mutex_unlock(&wq_pool_mutex);
6872 	return busy;
6873 }
6874 
6875 /**
6876  * thaw_workqueues - thaw workqueues
6877  *
6878  * Thaw workqueues.  Normal queueing is restored and all collected
6879  * frozen works are transferred to their respective pool worklists.
6880  *
6881  * CONTEXT:
6882  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6883  */
thaw_workqueues(void)6884 void thaw_workqueues(void)
6885 {
6886 	struct workqueue_struct *wq;
6887 
6888 	mutex_lock(&wq_pool_mutex);
6889 
6890 	if (!workqueue_freezing)
6891 		goto out_unlock;
6892 
6893 	workqueue_freezing = false;
6894 
6895 	/* restore max_active and repopulate worklist */
6896 	list_for_each_entry(wq, &workqueues, list) {
6897 		mutex_lock(&wq->mutex);
6898 		wq_adjust_max_active(wq);
6899 		mutex_unlock(&wq->mutex);
6900 	}
6901 
6902 out_unlock:
6903 	mutex_unlock(&wq_pool_mutex);
6904 }
6905 #endif /* CONFIG_FREEZER */
6906 
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6907 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6908 {
6909 	LIST_HEAD(ctxs);
6910 	int ret = 0;
6911 	struct workqueue_struct *wq;
6912 	struct apply_wqattrs_ctx *ctx, *n;
6913 
6914 	lockdep_assert_held(&wq_pool_mutex);
6915 
6916 	list_for_each_entry(wq, &workqueues, list) {
6917 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6918 			continue;
6919 
6920 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6921 		if (IS_ERR(ctx)) {
6922 			ret = PTR_ERR(ctx);
6923 			break;
6924 		}
6925 
6926 		list_add_tail(&ctx->list, &ctxs);
6927 	}
6928 
6929 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6930 		if (!ret)
6931 			apply_wqattrs_commit(ctx);
6932 		apply_wqattrs_cleanup(ctx);
6933 	}
6934 
6935 	if (!ret) {
6936 		int cpu;
6937 		struct worker_pool *pool;
6938 		struct worker *worker;
6939 
6940 		mutex_lock(&wq_pool_attach_mutex);
6941 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6942 		/* rescuer needs to respect cpumask changes when it is not attached */
6943 		list_for_each_entry(wq, &workqueues, list) {
6944 			if (wq->rescuer && !wq->rescuer->pool)
6945 				unbind_worker(wq->rescuer);
6946 		}
6947 		/* DISASSOCIATED worker needs to respect wq_unbound_cpumask */
6948 		for_each_possible_cpu(cpu) {
6949 			for_each_cpu_worker_pool(pool, cpu) {
6950 				if (!(pool->flags & POOL_DISASSOCIATED))
6951 					continue;
6952 				for_each_pool_worker(worker, pool)
6953 					unbind_worker(worker);
6954 			}
6955 		}
6956 		mutex_unlock(&wq_pool_attach_mutex);
6957 	}
6958 	return ret;
6959 }
6960 
6961 /**
6962  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6963  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6964  *
6965  * This function can be called from cpuset code to provide a set of isolated
6966  * CPUs that should be excluded from wq_unbound_cpumask.
6967  */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6968 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6969 {
6970 	cpumask_var_t cpumask;
6971 	int ret = 0;
6972 
6973 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6974 		return -ENOMEM;
6975 
6976 	mutex_lock(&wq_pool_mutex);
6977 
6978 	/*
6979 	 * If the operation fails, it will fall back to
6980 	 * wq_requested_unbound_cpumask which is initially set to
6981 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6982 	 * by any subsequent write to workqueue/cpumask sysfs file.
6983 	 */
6984 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6985 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6986 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6987 		ret = workqueue_apply_unbound_cpumask(cpumask);
6988 
6989 	/* Save the current isolated cpumask & export it via sysfs */
6990 	if (!ret)
6991 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6992 
6993 	mutex_unlock(&wq_pool_mutex);
6994 	free_cpumask_var(cpumask);
6995 	return ret;
6996 }
6997 
parse_affn_scope(const char * val)6998 static int parse_affn_scope(const char *val)
6999 {
7000 	int i;
7001 
7002 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
7003 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
7004 			return i;
7005 	}
7006 	return -EINVAL;
7007 }
7008 
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)7009 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
7010 {
7011 	struct workqueue_struct *wq;
7012 	int affn, cpu;
7013 
7014 	affn = parse_affn_scope(val);
7015 	if (affn < 0)
7016 		return affn;
7017 	if (affn == WQ_AFFN_DFL)
7018 		return -EINVAL;
7019 
7020 	cpus_read_lock();
7021 	mutex_lock(&wq_pool_mutex);
7022 
7023 	wq_affn_dfl = affn;
7024 
7025 	list_for_each_entry(wq, &workqueues, list) {
7026 		for_each_online_cpu(cpu)
7027 			unbound_wq_update_pwq(wq, cpu);
7028 	}
7029 
7030 	mutex_unlock(&wq_pool_mutex);
7031 	cpus_read_unlock();
7032 
7033 	return 0;
7034 }
7035 
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)7036 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7037 {
7038 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7039 }
7040 
7041 static const struct kernel_param_ops wq_affn_dfl_ops = {
7042 	.set	= wq_affn_dfl_set,
7043 	.get	= wq_affn_dfl_get,
7044 };
7045 
7046 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7047 
7048 #ifdef CONFIG_SYSFS
7049 /*
7050  * Workqueues with WQ_SYSFS flag set is visible to userland via
7051  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
7052  * following attributes.
7053  *
7054  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
7055  *  max_active		RW int	: maximum number of in-flight work items
7056  *
7057  * Unbound workqueues have the following extra attributes.
7058  *
7059  *  nice		RW int	: nice value of the workers
7060  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
7061  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
7062  *  affinity_strict	RW bool : worker CPU affinity is strict
7063  */
7064 struct wq_device {
7065 	struct workqueue_struct		*wq;
7066 	struct device			dev;
7067 };
7068 
dev_to_wq(struct device * dev)7069 static struct workqueue_struct *dev_to_wq(struct device *dev)
7070 {
7071 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7072 
7073 	return wq_dev->wq;
7074 }
7075 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7076 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7077 			    char *buf)
7078 {
7079 	struct workqueue_struct *wq = dev_to_wq(dev);
7080 
7081 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7082 }
7083 static DEVICE_ATTR_RO(per_cpu);
7084 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7085 static ssize_t max_active_show(struct device *dev,
7086 			       struct device_attribute *attr, char *buf)
7087 {
7088 	struct workqueue_struct *wq = dev_to_wq(dev);
7089 
7090 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7091 }
7092 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7093 static ssize_t max_active_store(struct device *dev,
7094 				struct device_attribute *attr, const char *buf,
7095 				size_t count)
7096 {
7097 	struct workqueue_struct *wq = dev_to_wq(dev);
7098 	int val;
7099 
7100 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7101 		return -EINVAL;
7102 
7103 	workqueue_set_max_active(wq, val);
7104 	return count;
7105 }
7106 static DEVICE_ATTR_RW(max_active);
7107 
7108 static struct attribute *wq_sysfs_attrs[] = {
7109 	&dev_attr_per_cpu.attr,
7110 	&dev_attr_max_active.attr,
7111 	NULL,
7112 };
7113 ATTRIBUTE_GROUPS(wq_sysfs);
7114 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7115 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7116 			    char *buf)
7117 {
7118 	struct workqueue_struct *wq = dev_to_wq(dev);
7119 	int written;
7120 
7121 	mutex_lock(&wq->mutex);
7122 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7123 	mutex_unlock(&wq->mutex);
7124 
7125 	return written;
7126 }
7127 
7128 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7129 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7130 {
7131 	struct workqueue_attrs *attrs;
7132 
7133 	lockdep_assert_held(&wq_pool_mutex);
7134 
7135 	attrs = alloc_workqueue_attrs();
7136 	if (!attrs)
7137 		return NULL;
7138 
7139 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7140 	return attrs;
7141 }
7142 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7143 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7144 			     const char *buf, size_t count)
7145 {
7146 	struct workqueue_struct *wq = dev_to_wq(dev);
7147 	struct workqueue_attrs *attrs;
7148 	int ret = -ENOMEM;
7149 
7150 	apply_wqattrs_lock();
7151 
7152 	attrs = wq_sysfs_prep_attrs(wq);
7153 	if (!attrs)
7154 		goto out_unlock;
7155 
7156 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7157 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7158 		ret = apply_workqueue_attrs_locked(wq, attrs);
7159 	else
7160 		ret = -EINVAL;
7161 
7162 out_unlock:
7163 	apply_wqattrs_unlock();
7164 	free_workqueue_attrs(attrs);
7165 	return ret ?: count;
7166 }
7167 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7168 static ssize_t wq_cpumask_show(struct device *dev,
7169 			       struct device_attribute *attr, char *buf)
7170 {
7171 	struct workqueue_struct *wq = dev_to_wq(dev);
7172 	int written;
7173 
7174 	mutex_lock(&wq->mutex);
7175 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7176 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7177 	mutex_unlock(&wq->mutex);
7178 	return written;
7179 }
7180 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7181 static ssize_t wq_cpumask_store(struct device *dev,
7182 				struct device_attribute *attr,
7183 				const char *buf, size_t count)
7184 {
7185 	struct workqueue_struct *wq = dev_to_wq(dev);
7186 	struct workqueue_attrs *attrs;
7187 	int ret = -ENOMEM;
7188 
7189 	apply_wqattrs_lock();
7190 
7191 	attrs = wq_sysfs_prep_attrs(wq);
7192 	if (!attrs)
7193 		goto out_unlock;
7194 
7195 	ret = cpumask_parse(buf, attrs->cpumask);
7196 	if (!ret)
7197 		ret = apply_workqueue_attrs_locked(wq, attrs);
7198 
7199 out_unlock:
7200 	apply_wqattrs_unlock();
7201 	free_workqueue_attrs(attrs);
7202 	return ret ?: count;
7203 }
7204 
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7205 static ssize_t wq_affn_scope_show(struct device *dev,
7206 				  struct device_attribute *attr, char *buf)
7207 {
7208 	struct workqueue_struct *wq = dev_to_wq(dev);
7209 	int written;
7210 
7211 	mutex_lock(&wq->mutex);
7212 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7213 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7214 				    wq_affn_names[WQ_AFFN_DFL],
7215 				    wq_affn_names[wq_affn_dfl]);
7216 	else
7217 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7218 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7219 	mutex_unlock(&wq->mutex);
7220 
7221 	return written;
7222 }
7223 
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7224 static ssize_t wq_affn_scope_store(struct device *dev,
7225 				   struct device_attribute *attr,
7226 				   const char *buf, size_t count)
7227 {
7228 	struct workqueue_struct *wq = dev_to_wq(dev);
7229 	struct workqueue_attrs *attrs;
7230 	int affn, ret = -ENOMEM;
7231 
7232 	affn = parse_affn_scope(buf);
7233 	if (affn < 0)
7234 		return affn;
7235 
7236 	apply_wqattrs_lock();
7237 	attrs = wq_sysfs_prep_attrs(wq);
7238 	if (attrs) {
7239 		attrs->affn_scope = affn;
7240 		ret = apply_workqueue_attrs_locked(wq, attrs);
7241 	}
7242 	apply_wqattrs_unlock();
7243 	free_workqueue_attrs(attrs);
7244 	return ret ?: count;
7245 }
7246 
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7247 static ssize_t wq_affinity_strict_show(struct device *dev,
7248 				       struct device_attribute *attr, char *buf)
7249 {
7250 	struct workqueue_struct *wq = dev_to_wq(dev);
7251 
7252 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7253 			 wq->unbound_attrs->affn_strict);
7254 }
7255 
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7256 static ssize_t wq_affinity_strict_store(struct device *dev,
7257 					struct device_attribute *attr,
7258 					const char *buf, size_t count)
7259 {
7260 	struct workqueue_struct *wq = dev_to_wq(dev);
7261 	struct workqueue_attrs *attrs;
7262 	int v, ret = -ENOMEM;
7263 
7264 	if (sscanf(buf, "%d", &v) != 1)
7265 		return -EINVAL;
7266 
7267 	apply_wqattrs_lock();
7268 	attrs = wq_sysfs_prep_attrs(wq);
7269 	if (attrs) {
7270 		attrs->affn_strict = (bool)v;
7271 		ret = apply_workqueue_attrs_locked(wq, attrs);
7272 	}
7273 	apply_wqattrs_unlock();
7274 	free_workqueue_attrs(attrs);
7275 	return ret ?: count;
7276 }
7277 
7278 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7279 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7280 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7281 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7282 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7283 	__ATTR_NULL,
7284 };
7285 
7286 static const struct bus_type wq_subsys = {
7287 	.name				= "workqueue",
7288 	.dev_groups			= wq_sysfs_groups,
7289 };
7290 
7291 /**
7292  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7293  *  @cpumask: the cpumask to set
7294  *
7295  *  The low-level workqueues cpumask is a global cpumask that limits
7296  *  the affinity of all unbound workqueues.  This function check the @cpumask
7297  *  and apply it to all unbound workqueues and updates all pwqs of them.
7298  *
7299  *  Return:	0	- Success
7300  *		-EINVAL	- Invalid @cpumask
7301  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7302  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7303 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7304 {
7305 	int ret = -EINVAL;
7306 
7307 	/*
7308 	 * Not excluding isolated cpus on purpose.
7309 	 * If the user wishes to include them, we allow that.
7310 	 */
7311 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7312 	if (!cpumask_empty(cpumask)) {
7313 		ret = 0;
7314 		apply_wqattrs_lock();
7315 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7316 			ret = workqueue_apply_unbound_cpumask(cpumask);
7317 		if (!ret)
7318 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7319 		apply_wqattrs_unlock();
7320 	}
7321 
7322 	return ret;
7323 }
7324 
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7325 static ssize_t __wq_cpumask_show(struct device *dev,
7326 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7327 {
7328 	int written;
7329 
7330 	mutex_lock(&wq_pool_mutex);
7331 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7332 	mutex_unlock(&wq_pool_mutex);
7333 
7334 	return written;
7335 }
7336 
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7337 static ssize_t cpumask_requested_show(struct device *dev,
7338 		struct device_attribute *attr, char *buf)
7339 {
7340 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7341 }
7342 static DEVICE_ATTR_RO(cpumask_requested);
7343 
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7344 static ssize_t cpumask_isolated_show(struct device *dev,
7345 		struct device_attribute *attr, char *buf)
7346 {
7347 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7348 }
7349 static DEVICE_ATTR_RO(cpumask_isolated);
7350 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7351 static ssize_t cpumask_show(struct device *dev,
7352 		struct device_attribute *attr, char *buf)
7353 {
7354 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7355 }
7356 
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7357 static ssize_t cpumask_store(struct device *dev,
7358 		struct device_attribute *attr, const char *buf, size_t count)
7359 {
7360 	cpumask_var_t cpumask;
7361 	int ret;
7362 
7363 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7364 		return -ENOMEM;
7365 
7366 	ret = cpumask_parse(buf, cpumask);
7367 	if (!ret)
7368 		ret = workqueue_set_unbound_cpumask(cpumask);
7369 
7370 	free_cpumask_var(cpumask);
7371 	return ret ? ret : count;
7372 }
7373 static DEVICE_ATTR_RW(cpumask);
7374 
7375 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7376 	&dev_attr_cpumask.attr,
7377 	&dev_attr_cpumask_requested.attr,
7378 	&dev_attr_cpumask_isolated.attr,
7379 	NULL,
7380 };
7381 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7382 
wq_sysfs_init(void)7383 static int __init wq_sysfs_init(void)
7384 {
7385 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7386 }
7387 core_initcall(wq_sysfs_init);
7388 
wq_device_release(struct device * dev)7389 static void wq_device_release(struct device *dev)
7390 {
7391 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7392 
7393 	kfree(wq_dev);
7394 }
7395 
7396 /**
7397  * workqueue_sysfs_register - make a workqueue visible in sysfs
7398  * @wq: the workqueue to register
7399  *
7400  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7401  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7402  * which is the preferred method.
7403  *
7404  * Workqueue user should use this function directly iff it wants to apply
7405  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7406  * apply_workqueue_attrs() may race against userland updating the
7407  * attributes.
7408  *
7409  * Return: 0 on success, -errno on failure.
7410  */
workqueue_sysfs_register(struct workqueue_struct * wq)7411 int workqueue_sysfs_register(struct workqueue_struct *wq)
7412 {
7413 	struct wq_device *wq_dev;
7414 	int ret;
7415 
7416 	/*
7417 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7418 	 * ordered workqueues.
7419 	 */
7420 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7421 		return -EINVAL;
7422 
7423 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7424 	if (!wq_dev)
7425 		return -ENOMEM;
7426 
7427 	wq_dev->wq = wq;
7428 	wq_dev->dev.bus = &wq_subsys;
7429 	wq_dev->dev.release = wq_device_release;
7430 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7431 
7432 	/*
7433 	 * unbound_attrs are created separately.  Suppress uevent until
7434 	 * everything is ready.
7435 	 */
7436 	dev_set_uevent_suppress(&wq_dev->dev, true);
7437 
7438 	ret = device_register(&wq_dev->dev);
7439 	if (ret) {
7440 		put_device(&wq_dev->dev);
7441 		wq->wq_dev = NULL;
7442 		return ret;
7443 	}
7444 
7445 	if (wq->flags & WQ_UNBOUND) {
7446 		struct device_attribute *attr;
7447 
7448 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7449 			ret = device_create_file(&wq_dev->dev, attr);
7450 			if (ret) {
7451 				device_unregister(&wq_dev->dev);
7452 				wq->wq_dev = NULL;
7453 				return ret;
7454 			}
7455 		}
7456 	}
7457 
7458 	dev_set_uevent_suppress(&wq_dev->dev, false);
7459 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7460 	return 0;
7461 }
7462 
7463 /**
7464  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7465  * @wq: the workqueue to unregister
7466  *
7467  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7468  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7469 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7470 {
7471 	struct wq_device *wq_dev = wq->wq_dev;
7472 
7473 	if (!wq->wq_dev)
7474 		return;
7475 
7476 	wq->wq_dev = NULL;
7477 	device_unregister(&wq_dev->dev);
7478 }
7479 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7480 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7481 #endif	/* CONFIG_SYSFS */
7482 
7483 /*
7484  * Workqueue watchdog.
7485  *
7486  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7487  * flush dependency, a concurrency managed work item which stays RUNNING
7488  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7489  * usual warning mechanisms don't trigger and internal workqueue state is
7490  * largely opaque.
7491  *
7492  * Workqueue watchdog monitors all worker pools periodically and dumps
7493  * state if some pools failed to make forward progress for a while where
7494  * forward progress is defined as the first item on ->worklist changing.
7495  *
7496  * This mechanism is controlled through the kernel parameter
7497  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7498  * corresponding sysfs parameter file.
7499  */
7500 #ifdef CONFIG_WQ_WATCHDOG
7501 
7502 static unsigned long wq_watchdog_thresh = 30;
7503 static struct timer_list wq_watchdog_timer;
7504 
7505 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7506 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7507 
7508 static unsigned int wq_panic_on_stall;
7509 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7510 
7511 /*
7512  * Show workers that might prevent the processing of pending work items.
7513  * The only candidates are CPU-bound workers in the running state.
7514  * Pending work items should be handled by another idle worker
7515  * in all other situations.
7516  */
show_cpu_pool_hog(struct worker_pool * pool)7517 static void show_cpu_pool_hog(struct worker_pool *pool)
7518 {
7519 	struct worker *worker;
7520 	unsigned long irq_flags;
7521 	int bkt;
7522 
7523 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7524 
7525 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7526 		if (task_is_running(worker->task)) {
7527 			/*
7528 			 * Defer printing to avoid deadlocks in console
7529 			 * drivers that queue work while holding locks
7530 			 * also taken in their write paths.
7531 			 */
7532 			printk_deferred_enter();
7533 
7534 			pr_info("pool %d:\n", pool->id);
7535 			sched_show_task(worker->task);
7536 
7537 			printk_deferred_exit();
7538 		}
7539 	}
7540 
7541 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7542 }
7543 
show_cpu_pools_hogs(void)7544 static void show_cpu_pools_hogs(void)
7545 {
7546 	struct worker_pool *pool;
7547 	int pi;
7548 
7549 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7550 
7551 	rcu_read_lock();
7552 
7553 	for_each_pool(pool, pi) {
7554 		if (pool->cpu_stall)
7555 			show_cpu_pool_hog(pool);
7556 
7557 	}
7558 
7559 	rcu_read_unlock();
7560 }
7561 
panic_on_wq_watchdog(void)7562 static void panic_on_wq_watchdog(void)
7563 {
7564 	static unsigned int wq_stall;
7565 
7566 	if (wq_panic_on_stall) {
7567 		wq_stall++;
7568 		BUG_ON(wq_stall >= wq_panic_on_stall);
7569 	}
7570 }
7571 
wq_watchdog_reset_touched(void)7572 static void wq_watchdog_reset_touched(void)
7573 {
7574 	int cpu;
7575 
7576 	wq_watchdog_touched = jiffies;
7577 	for_each_possible_cpu(cpu)
7578 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7579 }
7580 
wq_watchdog_timer_fn(struct timer_list * unused)7581 static void wq_watchdog_timer_fn(struct timer_list *unused)
7582 {
7583 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7584 	bool lockup_detected = false;
7585 	bool cpu_pool_stall = false;
7586 	unsigned long now = jiffies;
7587 	struct worker_pool *pool;
7588 	int pi;
7589 
7590 	if (!thresh)
7591 		return;
7592 
7593 	for_each_pool(pool, pi) {
7594 		unsigned long pool_ts, touched, ts;
7595 
7596 		pool->cpu_stall = false;
7597 		if (list_empty(&pool->worklist))
7598 			continue;
7599 
7600 		/*
7601 		 * If a virtual machine is stopped by the host it can look to
7602 		 * the watchdog like a stall.
7603 		 */
7604 		kvm_check_and_clear_guest_paused();
7605 
7606 		/* get the latest of pool and touched timestamps */
7607 		if (pool->cpu >= 0)
7608 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7609 		else
7610 			touched = READ_ONCE(wq_watchdog_touched);
7611 		pool_ts = READ_ONCE(pool->watchdog_ts);
7612 
7613 		if (time_after(pool_ts, touched))
7614 			ts = pool_ts;
7615 		else
7616 			ts = touched;
7617 
7618 		/* did we stall? */
7619 		if (time_after(now, ts + thresh)) {
7620 			lockup_detected = true;
7621 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7622 				pool->cpu_stall = true;
7623 				cpu_pool_stall = true;
7624 			}
7625 			pr_emerg("BUG: workqueue lockup - pool");
7626 			pr_cont_pool_info(pool);
7627 			pr_cont(" stuck for %us!\n",
7628 				jiffies_to_msecs(now - pool_ts) / 1000);
7629 		}
7630 
7631 
7632 	}
7633 
7634 	if (lockup_detected)
7635 		show_all_workqueues();
7636 
7637 	if (cpu_pool_stall)
7638 		show_cpu_pools_hogs();
7639 
7640 	if (lockup_detected)
7641 		panic_on_wq_watchdog();
7642 
7643 	wq_watchdog_reset_touched();
7644 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7645 }
7646 
wq_watchdog_touch(int cpu)7647 notrace void wq_watchdog_touch(int cpu)
7648 {
7649 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7650 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7651 	unsigned long now = jiffies;
7652 
7653 	if (cpu >= 0)
7654 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7655 	else
7656 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7657 
7658 	/* Don't unnecessarily store to global cacheline */
7659 	if (time_after(now, touch_ts + thresh / 4))
7660 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7661 }
7662 
wq_watchdog_set_thresh(unsigned long thresh)7663 static void wq_watchdog_set_thresh(unsigned long thresh)
7664 {
7665 	wq_watchdog_thresh = 0;
7666 	timer_delete_sync(&wq_watchdog_timer);
7667 
7668 	if (thresh) {
7669 		wq_watchdog_thresh = thresh;
7670 		wq_watchdog_reset_touched();
7671 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7672 	}
7673 }
7674 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7675 static int wq_watchdog_param_set_thresh(const char *val,
7676 					const struct kernel_param *kp)
7677 {
7678 	unsigned long thresh;
7679 	int ret;
7680 
7681 	ret = kstrtoul(val, 0, &thresh);
7682 	if (ret)
7683 		return ret;
7684 
7685 	if (system_percpu_wq)
7686 		wq_watchdog_set_thresh(thresh);
7687 	else
7688 		wq_watchdog_thresh = thresh;
7689 
7690 	return 0;
7691 }
7692 
7693 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7694 	.set	= wq_watchdog_param_set_thresh,
7695 	.get	= param_get_ulong,
7696 };
7697 
7698 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7699 		0644);
7700 
wq_watchdog_init(void)7701 static void wq_watchdog_init(void)
7702 {
7703 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7704 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7705 }
7706 
7707 #else	/* CONFIG_WQ_WATCHDOG */
7708 
wq_watchdog_init(void)7709 static inline void wq_watchdog_init(void) { }
7710 
7711 #endif	/* CONFIG_WQ_WATCHDOG */
7712 
bh_pool_kick_normal(struct irq_work * irq_work)7713 static void bh_pool_kick_normal(struct irq_work *irq_work)
7714 {
7715 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7716 }
7717 
bh_pool_kick_highpri(struct irq_work * irq_work)7718 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7719 {
7720 	raise_softirq_irqoff(HI_SOFTIRQ);
7721 }
7722 
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7723 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7724 {
7725 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7726 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7727 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7728 		return;
7729 	}
7730 
7731 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7732 }
7733 
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7734 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7735 {
7736 	BUG_ON(init_worker_pool(pool));
7737 	pool->cpu = cpu;
7738 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7739 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7740 	pool->attrs->nice = nice;
7741 	pool->attrs->affn_strict = true;
7742 	pool->node = cpu_to_node(cpu);
7743 
7744 	/* alloc pool ID */
7745 	mutex_lock(&wq_pool_mutex);
7746 	BUG_ON(worker_pool_assign_id(pool));
7747 	mutex_unlock(&wq_pool_mutex);
7748 }
7749 
7750 /**
7751  * workqueue_init_early - early init for workqueue subsystem
7752  *
7753  * This is the first step of three-staged workqueue subsystem initialization and
7754  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7755  * up. It sets up all the data structures and system workqueues and allows early
7756  * boot code to create workqueues and queue/cancel work items. Actual work item
7757  * execution starts only after kthreads can be created and scheduled right
7758  * before early initcalls.
7759  */
workqueue_init_early(void)7760 void __init workqueue_init_early(void)
7761 {
7762 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7763 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7764 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7765 						       bh_pool_kick_highpri };
7766 	int i, cpu;
7767 
7768 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7769 
7770 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7771 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7772 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7773 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7774 
7775 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7776 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7777 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7778 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7779 	if (!cpumask_empty(&wq_cmdline_cpumask))
7780 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7781 
7782 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7783 	cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7784 						housekeeping_cpumask(HK_TYPE_DOMAIN));
7785 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7786 
7787 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7788 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7789 
7790 	/*
7791 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7792 	 * This allows workqueue items to be moved to HK CPUs.
7793 	 */
7794 	if (housekeeping_enabled(HK_TYPE_TICK))
7795 		wq_power_efficient = true;
7796 
7797 	/* initialize WQ_AFFN_SYSTEM pods */
7798 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7799 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7800 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7801 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7802 
7803 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7804 
7805 	pt->nr_pods = 1;
7806 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7807 	pt->pod_node[0] = NUMA_NO_NODE;
7808 	pt->cpu_pod[0] = 0;
7809 
7810 	/* initialize BH and CPU pools */
7811 	for_each_possible_cpu(cpu) {
7812 		struct worker_pool *pool;
7813 
7814 		i = 0;
7815 		for_each_bh_worker_pool(pool, cpu) {
7816 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7817 			pool->flags |= POOL_BH;
7818 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7819 			i++;
7820 		}
7821 
7822 		i = 0;
7823 		for_each_cpu_worker_pool(pool, cpu)
7824 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7825 	}
7826 
7827 	/* create default unbound and ordered wq attrs */
7828 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7829 		struct workqueue_attrs *attrs;
7830 
7831 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7832 		attrs->nice = std_nice[i];
7833 		unbound_std_wq_attrs[i] = attrs;
7834 
7835 		/*
7836 		 * An ordered wq should have only one pwq as ordering is
7837 		 * guaranteed by max_active which is enforced by pwqs.
7838 		 */
7839 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7840 		attrs->nice = std_nice[i];
7841 		attrs->ordered = true;
7842 		ordered_wq_attrs[i] = attrs;
7843 	}
7844 
7845 	system_wq = alloc_workqueue("events", WQ_PERCPU, 0);
7846 	system_percpu_wq = alloc_workqueue("events", WQ_PERCPU, 0);
7847 	system_highpri_wq = alloc_workqueue("events_highpri",
7848 					    WQ_HIGHPRI | WQ_PERCPU, 0);
7849 	system_long_wq = alloc_workqueue("events_long", WQ_PERCPU, 0);
7850 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7851 	system_dfl_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7852 	system_freezable_wq = alloc_workqueue("events_freezable",
7853 					      WQ_FREEZABLE | WQ_PERCPU, 0);
7854 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7855 					      WQ_POWER_EFFICIENT | WQ_PERCPU, 0);
7856 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7857 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT | WQ_PERCPU, 0);
7858 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH | WQ_PERCPU, 0);
7859 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7860 					       WQ_BH | WQ_HIGHPRI | WQ_PERCPU, 0);
7861 	BUG_ON(!system_wq || !system_percpu_wq|| !system_highpri_wq || !system_long_wq ||
7862 	       !system_unbound_wq || !system_freezable_wq || !system_dfl_wq ||
7863 	       !system_power_efficient_wq ||
7864 	       !system_freezable_power_efficient_wq ||
7865 	       !system_bh_wq || !system_bh_highpri_wq);
7866 }
7867 
wq_cpu_intensive_thresh_init(void)7868 static void __init wq_cpu_intensive_thresh_init(void)
7869 {
7870 	unsigned long thresh;
7871 	unsigned long bogo;
7872 
7873 	pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release");
7874 	BUG_ON(IS_ERR(pwq_release_worker));
7875 
7876 	/* if the user set it to a specific value, keep it */
7877 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7878 		return;
7879 
7880 	/*
7881 	 * The default of 10ms is derived from the fact that most modern (as of
7882 	 * 2023) processors can do a lot in 10ms and that it's just below what
7883 	 * most consider human-perceivable. However, the kernel also runs on a
7884 	 * lot slower CPUs including microcontrollers where the threshold is way
7885 	 * too low.
7886 	 *
7887 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7888 	 * This is by no means accurate but it doesn't have to be. The mechanism
7889 	 * is still useful even when the threshold is fully scaled up. Also, as
7890 	 * the reports would usually be applicable to everyone, some machines
7891 	 * operating on longer thresholds won't significantly diminish their
7892 	 * usefulness.
7893 	 */
7894 	thresh = 10 * USEC_PER_MSEC;
7895 
7896 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7897 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7898 	if (bogo < 4000)
7899 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7900 
7901 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7902 		 loops_per_jiffy, bogo, thresh);
7903 
7904 	wq_cpu_intensive_thresh_us = thresh;
7905 }
7906 
7907 /**
7908  * workqueue_init - bring workqueue subsystem fully online
7909  *
7910  * This is the second step of three-staged workqueue subsystem initialization
7911  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7912  * been created and work items queued on them, but there are no kworkers
7913  * executing the work items yet. Populate the worker pools with the initial
7914  * workers and enable future kworker creations.
7915  */
workqueue_init(void)7916 void __init workqueue_init(void)
7917 {
7918 	struct workqueue_struct *wq;
7919 	struct worker_pool *pool;
7920 	int cpu, bkt;
7921 
7922 	wq_cpu_intensive_thresh_init();
7923 
7924 	mutex_lock(&wq_pool_mutex);
7925 
7926 	/*
7927 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7928 	 * up. Also, create a rescuer for workqueues that requested it.
7929 	 */
7930 	for_each_possible_cpu(cpu) {
7931 		for_each_bh_worker_pool(pool, cpu)
7932 			pool->node = cpu_to_node(cpu);
7933 		for_each_cpu_worker_pool(pool, cpu)
7934 			pool->node = cpu_to_node(cpu);
7935 	}
7936 
7937 	list_for_each_entry(wq, &workqueues, list) {
7938 		WARN(init_rescuer(wq),
7939 		     "workqueue: failed to create early rescuer for %s",
7940 		     wq->name);
7941 	}
7942 
7943 	mutex_unlock(&wq_pool_mutex);
7944 
7945 	/*
7946 	 * Create the initial workers. A BH pool has one pseudo worker that
7947 	 * represents the shared BH execution context and thus doesn't get
7948 	 * affected by hotplug events. Create the BH pseudo workers for all
7949 	 * possible CPUs here.
7950 	 */
7951 	for_each_possible_cpu(cpu)
7952 		for_each_bh_worker_pool(pool, cpu)
7953 			BUG_ON(!create_worker(pool));
7954 
7955 	for_each_online_cpu(cpu) {
7956 		for_each_cpu_worker_pool(pool, cpu) {
7957 			pool->flags &= ~POOL_DISASSOCIATED;
7958 			BUG_ON(!create_worker(pool));
7959 		}
7960 	}
7961 
7962 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7963 		BUG_ON(!create_worker(pool));
7964 
7965 	wq_online = true;
7966 	wq_watchdog_init();
7967 }
7968 
7969 /*
7970  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7971  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7972  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7973  */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7974 static void __init init_pod_type(struct wq_pod_type *pt,
7975 				 bool (*cpus_share_pod)(int, int))
7976 {
7977 	int cur, pre, cpu, pod;
7978 
7979 	pt->nr_pods = 0;
7980 
7981 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7982 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7983 	BUG_ON(!pt->cpu_pod);
7984 
7985 	for_each_possible_cpu(cur) {
7986 		for_each_possible_cpu(pre) {
7987 			if (pre >= cur) {
7988 				pt->cpu_pod[cur] = pt->nr_pods++;
7989 				break;
7990 			}
7991 			if (cpus_share_pod(cur, pre)) {
7992 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7993 				break;
7994 			}
7995 		}
7996 	}
7997 
7998 	/* init the rest to match @pt->cpu_pod[] */
7999 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
8000 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
8001 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
8002 
8003 	for (pod = 0; pod < pt->nr_pods; pod++)
8004 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
8005 
8006 	for_each_possible_cpu(cpu) {
8007 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
8008 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
8009 	}
8010 }
8011 
cpus_dont_share(int cpu0,int cpu1)8012 static bool __init cpus_dont_share(int cpu0, int cpu1)
8013 {
8014 	return false;
8015 }
8016 
cpus_share_smt(int cpu0,int cpu1)8017 static bool __init cpus_share_smt(int cpu0, int cpu1)
8018 {
8019 #ifdef CONFIG_SCHED_SMT
8020 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
8021 #else
8022 	return false;
8023 #endif
8024 }
8025 
cpus_share_numa(int cpu0,int cpu1)8026 static bool __init cpus_share_numa(int cpu0, int cpu1)
8027 {
8028 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
8029 }
8030 
8031 /**
8032  * workqueue_init_topology - initialize CPU pods for unbound workqueues
8033  *
8034  * This is the third step of three-staged workqueue subsystem initialization and
8035  * invoked after SMP and topology information are fully initialized. It
8036  * initializes the unbound CPU pods accordingly.
8037  */
workqueue_init_topology(void)8038 void __init workqueue_init_topology(void)
8039 {
8040 	struct workqueue_struct *wq;
8041 	int cpu;
8042 
8043 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8044 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8045 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8046 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8047 
8048 	wq_topo_initialized = true;
8049 
8050 	mutex_lock(&wq_pool_mutex);
8051 
8052 	/*
8053 	 * Workqueues allocated earlier would have all CPUs sharing the default
8054 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8055 	 * and CPU combinations to apply per-pod sharing.
8056 	 */
8057 	list_for_each_entry(wq, &workqueues, list) {
8058 		for_each_online_cpu(cpu)
8059 			unbound_wq_update_pwq(wq, cpu);
8060 		if (wq->flags & WQ_UNBOUND) {
8061 			mutex_lock(&wq->mutex);
8062 			wq_update_node_max_active(wq, -1);
8063 			mutex_unlock(&wq->mutex);
8064 		}
8065 	}
8066 
8067 	mutex_unlock(&wq_pool_mutex);
8068 }
8069 
__warn_flushing_systemwide_wq(void)8070 void __warn_flushing_systemwide_wq(void)
8071 {
8072 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8073 	dump_stack();
8074 }
8075 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8076 
workqueue_unbound_cpus_setup(char * str)8077 static int __init workqueue_unbound_cpus_setup(char *str)
8078 {
8079 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8080 		cpumask_clear(&wq_cmdline_cpumask);
8081 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8082 	}
8083 
8084 	return 1;
8085 }
8086 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8087