xref: /linux/fs/btrfs/zoned.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "disk-io.h"
13 #include "block-group.h"
14 #include "dev-replace.h"
15 #include "space-info.h"
16 #include "fs.h"
17 #include "accessors.h"
18 #include "bio.h"
19 #include "transaction.h"
20 #include "sysfs.h"
21 
22 /* Maximum number of zones to report per blkdev_report_zones() call */
23 #define BTRFS_REPORT_NR_ZONES   4096
24 /* Invalid allocation pointer value for missing devices */
25 #define WP_MISSING_DEV ((u64)-1)
26 /* Pseudo write pointer value for conventional zone */
27 #define WP_CONVENTIONAL ((u64)-2)
28 
29 /*
30  * Location of the first zone of superblock logging zone pairs.
31  *
32  * - primary superblock:    0B (zone 0)
33  * - first copy:          512G (zone starting at that offset)
34  * - second copy:           4T (zone starting at that offset)
35  */
36 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
37 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
38 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
39 
40 #define BTRFS_SB_LOG_FIRST_SHIFT	ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
41 #define BTRFS_SB_LOG_SECOND_SHIFT	ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
42 
43 /* Number of superblock log zones */
44 #define BTRFS_NR_SB_LOG_ZONES 2
45 
46 /* Default number of max active zones when the device has no limits. */
47 #define BTRFS_DEFAULT_MAX_ACTIVE_ZONES	128
48 
49 /*
50  * Minimum of active zones we need:
51  *
52  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
53  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
54  * - 1 zone for tree-log dedicated block group
55  * - 1 zone for relocation
56  */
57 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
58 
59 /*
60  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
61  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
62  * We do not expect the zone size to become larger than 8GiB or smaller than
63  * 4MiB in the near future.
64  */
65 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
66 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
67 
68 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
69 
70 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
71 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
72 
sb_zone_is_full(const struct blk_zone * zone)73 static inline bool sb_zone_is_full(const struct blk_zone *zone)
74 {
75 	return (zone->cond == BLK_ZONE_COND_FULL) ||
76 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
77 }
78 
copy_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)79 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
80 {
81 	struct blk_zone *zones = data;
82 
83 	memcpy(&zones[idx], zone, sizeof(*zone));
84 
85 	return 0;
86 }
87 
sb_write_pointer(struct block_device * bdev,struct blk_zone * zones,u64 * wp_ret)88 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
89 			    u64 *wp_ret)
90 {
91 	bool empty[BTRFS_NR_SB_LOG_ZONES];
92 	bool full[BTRFS_NR_SB_LOG_ZONES];
93 	sector_t sector;
94 
95 	for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
96 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL,
97 		       "zones[%d].type=%d", i, zones[i].type);
98 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
99 		full[i] = sb_zone_is_full(&zones[i]);
100 	}
101 
102 	/*
103 	 * Possible states of log buffer zones
104 	 *
105 	 *           Empty[0]  In use[0]  Full[0]
106 	 * Empty[1]         *          0        1
107 	 * In use[1]        x          x        1
108 	 * Full[1]          0          0        C
109 	 *
110 	 * Log position:
111 	 *   *: Special case, no superblock is written
112 	 *   0: Use write pointer of zones[0]
113 	 *   1: Use write pointer of zones[1]
114 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
115 	 *      one determined by generation
116 	 *   x: Invalid state
117 	 */
118 
119 	if (empty[0] && empty[1]) {
120 		/* Special case to distinguish no superblock to read */
121 		*wp_ret = zones[0].start << SECTOR_SHIFT;
122 		return -ENOENT;
123 	} else if (full[0] && full[1]) {
124 		/* Compare two super blocks */
125 		struct address_space *mapping = bdev->bd_mapping;
126 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
127 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
128 
129 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
130 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
131 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
132 						BTRFS_SUPER_INFO_SIZE;
133 
134 			page[i] = read_cache_page_gfp(mapping,
135 					bytenr >> PAGE_SHIFT, GFP_NOFS);
136 			if (IS_ERR(page[i])) {
137 				if (i == 1)
138 					btrfs_release_disk_super(super[0]);
139 				return PTR_ERR(page[i]);
140 			}
141 			super[i] = page_address(page[i]);
142 		}
143 
144 		if (btrfs_super_generation(super[0]) >
145 		    btrfs_super_generation(super[1]))
146 			sector = zones[1].start;
147 		else
148 			sector = zones[0].start;
149 
150 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
151 			btrfs_release_disk_super(super[i]);
152 	} else if (!full[0] && (empty[1] || full[1])) {
153 		sector = zones[0].wp;
154 	} else if (full[0]) {
155 		sector = zones[1].wp;
156 	} else {
157 		return -EUCLEAN;
158 	}
159 	*wp_ret = sector << SECTOR_SHIFT;
160 	return 0;
161 }
162 
163 /*
164  * Get the first zone number of the superblock mirror
165  */
sb_zone_number(int shift,int mirror)166 static inline u32 sb_zone_number(int shift, int mirror)
167 {
168 	u64 zone = U64_MAX;
169 
170 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX, "mirror=%d", mirror);
171 	switch (mirror) {
172 	case 0: zone = 0; break;
173 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
174 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
175 	}
176 
177 	ASSERT(zone <= U32_MAX, "zone=%llu", zone);
178 
179 	return (u32)zone;
180 }
181 
zone_start_sector(u32 zone_number,struct block_device * bdev)182 static inline sector_t zone_start_sector(u32 zone_number,
183 					 struct block_device *bdev)
184 {
185 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
186 }
187 
zone_start_physical(u32 zone_number,struct btrfs_zoned_device_info * zone_info)188 static inline u64 zone_start_physical(u32 zone_number,
189 				      struct btrfs_zoned_device_info *zone_info)
190 {
191 	return (u64)zone_number << zone_info->zone_size_shift;
192 }
193 
194 /*
195  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
196  * device into static sized chunks and fake a conventional zone on each of
197  * them.
198  */
emulate_report_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int nr_zones)199 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
200 				struct blk_zone *zones, unsigned int nr_zones)
201 {
202 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
203 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
204 	unsigned int i;
205 
206 	pos >>= SECTOR_SHIFT;
207 	for (i = 0; i < nr_zones; i++) {
208 		zones[i].start = i * zone_sectors + pos;
209 		zones[i].len = zone_sectors;
210 		zones[i].capacity = zone_sectors;
211 		zones[i].wp = zones[i].start + zone_sectors;
212 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
213 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
214 
215 		if (zones[i].wp >= bdev_size) {
216 			i++;
217 			break;
218 		}
219 	}
220 
221 	return i;
222 }
223 
btrfs_get_dev_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int * nr_zones)224 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
225 			       struct blk_zone *zones, unsigned int *nr_zones)
226 {
227 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
228 	int ret;
229 
230 	if (!*nr_zones)
231 		return 0;
232 
233 	if (!bdev_is_zoned(device->bdev)) {
234 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
235 		*nr_zones = ret;
236 		return 0;
237 	}
238 
239 	/* Check cache */
240 	if (zinfo->zone_cache) {
241 		unsigned int i;
242 		u32 zno;
243 
244 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size),
245 		       "pos=%llu zinfo->zone_size=%llu", pos, zinfo->zone_size);
246 		zno = pos >> zinfo->zone_size_shift;
247 		/*
248 		 * We cannot report zones beyond the zone end. So, it is OK to
249 		 * cap *nr_zones to at the end.
250 		 */
251 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
252 
253 		for (i = 0; i < *nr_zones; i++) {
254 			struct blk_zone *zone_info;
255 
256 			zone_info = &zinfo->zone_cache[zno + i];
257 			if (!zone_info->len)
258 				break;
259 		}
260 
261 		if (i == *nr_zones) {
262 			/* Cache hit on all the zones */
263 			memcpy(zones, zinfo->zone_cache + zno,
264 			       sizeof(*zinfo->zone_cache) * *nr_zones);
265 			return 0;
266 		}
267 	}
268 
269 	ret = blkdev_report_zones_cached(device->bdev, pos >> SECTOR_SHIFT,
270 					 *nr_zones, copy_zone_info_cb, zones);
271 	if (ret < 0) {
272 		btrfs_err(device->fs_info,
273 				 "zoned: failed to read zone %llu on %s (devid %llu)",
274 				 pos, rcu_dereference(device->name),
275 				 device->devid);
276 		return ret;
277 	}
278 	*nr_zones = ret;
279 	if (unlikely(!ret))
280 		return -EIO;
281 
282 	/* Populate cache */
283 	if (zinfo->zone_cache) {
284 		u32 zno = pos >> zinfo->zone_size_shift;
285 
286 		memcpy(zinfo->zone_cache + zno, zones,
287 		       sizeof(*zinfo->zone_cache) * *nr_zones);
288 	}
289 
290 	return 0;
291 }
292 
293 /* The emulated zone size is determined from the size of device extent */
calculate_emulated_zone_size(struct btrfs_fs_info * fs_info)294 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
295 {
296 	BTRFS_PATH_AUTO_FREE(path);
297 	struct btrfs_root *root = fs_info->dev_root;
298 	struct btrfs_key key;
299 	struct extent_buffer *leaf;
300 	struct btrfs_dev_extent *dext;
301 	int ret = 0;
302 
303 	key.objectid = 1;
304 	key.type = BTRFS_DEV_EXTENT_KEY;
305 	key.offset = 0;
306 
307 	path = btrfs_alloc_path();
308 	if (!path)
309 		return -ENOMEM;
310 
311 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
312 	if (ret < 0)
313 		return ret;
314 
315 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
316 		ret = btrfs_next_leaf(root, path);
317 		if (ret < 0)
318 			return ret;
319 		/* No dev extents at all? Not good */
320 		if (unlikely(ret > 0))
321 			return -EUCLEAN;
322 	}
323 
324 	leaf = path->nodes[0];
325 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327 	return 0;
328 }
329 
btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info * fs_info)330 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
331 {
332 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
333 	struct btrfs_device *device;
334 	int ret = 0;
335 
336 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
337 	if (!btrfs_fs_incompat(fs_info, ZONED))
338 		return 0;
339 
340 	mutex_lock(&fs_devices->device_list_mutex);
341 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
342 		/* We can skip reading of zone info for missing devices */
343 		if (!device->bdev)
344 			continue;
345 
346 		ret = btrfs_get_dev_zone_info(device, true);
347 		if (ret)
348 			break;
349 	}
350 	mutex_unlock(&fs_devices->device_list_mutex);
351 
352 	return ret;
353 }
354 
btrfs_get_dev_zone_info(struct btrfs_device * device,bool populate_cache)355 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
356 {
357 	struct btrfs_fs_info *fs_info = device->fs_info;
358 	struct btrfs_zoned_device_info *zone_info = NULL;
359 	struct block_device *bdev = device->bdev;
360 	unsigned int max_active_zones;
361 	unsigned int nactive;
362 	sector_t nr_sectors;
363 	sector_t sector = 0;
364 	struct blk_zone *zones = NULL;
365 	unsigned int i, nreported = 0, nr_zones;
366 	sector_t zone_sectors;
367 	char *model, *emulated;
368 	int ret;
369 
370 	/*
371 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
372 	 * yet be set.
373 	 */
374 	if (!btrfs_fs_incompat(fs_info, ZONED))
375 		return 0;
376 
377 	if (device->zone_info)
378 		return 0;
379 
380 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
381 	if (!zone_info)
382 		return -ENOMEM;
383 
384 	device->zone_info = zone_info;
385 
386 	if (!bdev_is_zoned(bdev)) {
387 		if (!fs_info->zone_size) {
388 			ret = calculate_emulated_zone_size(fs_info);
389 			if (ret)
390 				goto out;
391 		}
392 
393 		ASSERT(fs_info->zone_size);
394 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
395 	} else {
396 		zone_sectors = bdev_zone_sectors(bdev);
397 	}
398 
399 	ASSERT(is_power_of_two_u64(zone_sectors));
400 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
401 
402 	/* We reject devices with a zone size larger than 8GB */
403 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
404 		btrfs_err(fs_info,
405 		"zoned: %s: zone size %llu larger than supported maximum %llu",
406 				 rcu_dereference(device->name),
407 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
408 		ret = -EINVAL;
409 		goto out;
410 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
411 		btrfs_err(fs_info,
412 		"zoned: %s: zone size %llu smaller than supported minimum %u",
413 				 rcu_dereference(device->name),
414 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
415 		ret = -EINVAL;
416 		goto out;
417 	}
418 
419 	nr_sectors = bdev_nr_sectors(bdev);
420 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
421 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
422 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
423 		zone_info->nr_zones++;
424 
425 	max_active_zones = min_not_zero(bdev_max_active_zones(bdev),
426 					bdev_max_open_zones(bdev));
427 	if (!max_active_zones && zone_info->nr_zones > BTRFS_DEFAULT_MAX_ACTIVE_ZONES)
428 		max_active_zones = BTRFS_DEFAULT_MAX_ACTIVE_ZONES;
429 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
430 		btrfs_err(fs_info,
431 "zoned: %s: max active zones %u is too small, need at least %u active zones",
432 				 rcu_dereference(device->name), max_active_zones,
433 				 BTRFS_MIN_ACTIVE_ZONES);
434 		ret = -EINVAL;
435 		goto out;
436 	}
437 	zone_info->max_active_zones = max_active_zones;
438 
439 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
440 	if (!zone_info->seq_zones) {
441 		ret = -ENOMEM;
442 		goto out;
443 	}
444 
445 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
446 	if (!zone_info->empty_zones) {
447 		ret = -ENOMEM;
448 		goto out;
449 	}
450 
451 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
452 	if (!zone_info->active_zones) {
453 		ret = -ENOMEM;
454 		goto out;
455 	}
456 
457 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
458 	if (!zones) {
459 		ret = -ENOMEM;
460 		goto out;
461 	}
462 
463 	/*
464 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
465 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
466 	 * use the cache.
467 	 */
468 	if (populate_cache && bdev_is_zoned(device->bdev)) {
469 		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
470 						sizeof(struct blk_zone));
471 		if (!zone_info->zone_cache) {
472 			btrfs_err(device->fs_info,
473 				"zoned: failed to allocate zone cache for %s",
474 				rcu_dereference(device->name));
475 			ret = -ENOMEM;
476 			goto out;
477 		}
478 	}
479 
480 	/* Get zones type */
481 	nactive = 0;
482 	while (sector < nr_sectors) {
483 		nr_zones = BTRFS_REPORT_NR_ZONES;
484 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
485 					  &nr_zones);
486 		if (ret)
487 			goto out;
488 
489 		for (i = 0; i < nr_zones; i++) {
490 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
491 				__set_bit(nreported, zone_info->seq_zones);
492 			switch (zones[i].cond) {
493 			case BLK_ZONE_COND_EMPTY:
494 				__set_bit(nreported, zone_info->empty_zones);
495 				break;
496 			case BLK_ZONE_COND_IMP_OPEN:
497 			case BLK_ZONE_COND_EXP_OPEN:
498 			case BLK_ZONE_COND_CLOSED:
499 			case BLK_ZONE_COND_ACTIVE:
500 				__set_bit(nreported, zone_info->active_zones);
501 				nactive++;
502 				break;
503 			}
504 			nreported++;
505 		}
506 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
507 	}
508 
509 	if (unlikely(nreported != zone_info->nr_zones)) {
510 		btrfs_err(device->fs_info,
511 				 "inconsistent number of zones on %s (%u/%u)",
512 				 rcu_dereference(device->name), nreported,
513 				 zone_info->nr_zones);
514 		ret = -EIO;
515 		goto out;
516 	}
517 
518 	if (max_active_zones) {
519 		if (unlikely(nactive > max_active_zones)) {
520 			if (bdev_max_active_zones(bdev) == 0) {
521 				max_active_zones = 0;
522 				zone_info->max_active_zones = 0;
523 				goto validate;
524 			}
525 			btrfs_err(device->fs_info,
526 			"zoned: %u active zones on %s exceeds max_active_zones %u",
527 					 nactive, rcu_dereference(device->name),
528 					 max_active_zones);
529 			ret = -EIO;
530 			goto out;
531 		}
532 		atomic_set(&zone_info->active_zones_left,
533 			   max_active_zones - nactive);
534 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
535 	}
536 
537 validate:
538 	/* Validate superblock log */
539 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
540 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
541 		u32 sb_zone;
542 		u64 sb_wp;
543 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
544 
545 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
546 		if (sb_zone + 1 >= zone_info->nr_zones)
547 			continue;
548 
549 		ret = btrfs_get_dev_zones(device,
550 					  zone_start_physical(sb_zone, zone_info),
551 					  &zone_info->sb_zones[sb_pos],
552 					  &nr_zones);
553 		if (ret)
554 			goto out;
555 
556 		if (unlikely(nr_zones != BTRFS_NR_SB_LOG_ZONES)) {
557 			btrfs_err(device->fs_info,
558 	"zoned: failed to read super block log zone info at devid %llu zone %u",
559 					 device->devid, sb_zone);
560 			ret = -EUCLEAN;
561 			goto out;
562 		}
563 
564 		/*
565 		 * If zones[0] is conventional, always use the beginning of the
566 		 * zone to record superblock. No need to validate in that case.
567 		 */
568 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
569 		    BLK_ZONE_TYPE_CONVENTIONAL)
570 			continue;
571 
572 		ret = sb_write_pointer(device->bdev,
573 				       &zone_info->sb_zones[sb_pos], &sb_wp);
574 		if (unlikely(ret != -ENOENT && ret)) {
575 			btrfs_err(device->fs_info,
576 			"zoned: super block log zone corrupted devid %llu zone %u",
577 					 device->devid, sb_zone);
578 			ret = -EUCLEAN;
579 			goto out;
580 		}
581 	}
582 
583 
584 	kvfree(zones);
585 
586 	if (bdev_is_zoned(bdev)) {
587 		model = "host-managed zoned";
588 		emulated = "";
589 	} else {
590 		model = "regular";
591 		emulated = "emulated ";
592 	}
593 
594 	btrfs_info(fs_info,
595 		"%s block device %s, %u %szones of %llu bytes",
596 		model, rcu_dereference(device->name), zone_info->nr_zones,
597 		emulated, zone_info->zone_size);
598 
599 	return 0;
600 
601 out:
602 	kvfree(zones);
603 	btrfs_destroy_dev_zone_info(device);
604 	return ret;
605 }
606 
btrfs_destroy_dev_zone_info(struct btrfs_device * device)607 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
608 {
609 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
610 
611 	if (!zone_info)
612 		return;
613 
614 	bitmap_free(zone_info->active_zones);
615 	bitmap_free(zone_info->seq_zones);
616 	bitmap_free(zone_info->empty_zones);
617 	vfree(zone_info->zone_cache);
618 	kfree(zone_info);
619 	device->zone_info = NULL;
620 }
621 
btrfs_clone_dev_zone_info(struct btrfs_device * orig_dev)622 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
623 {
624 	struct btrfs_zoned_device_info *zone_info;
625 
626 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
627 	if (!zone_info)
628 		return NULL;
629 
630 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
631 	if (!zone_info->seq_zones)
632 		goto out;
633 
634 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
635 		    zone_info->nr_zones);
636 
637 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
638 	if (!zone_info->empty_zones)
639 		goto out;
640 
641 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
642 		    zone_info->nr_zones);
643 
644 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
645 	if (!zone_info->active_zones)
646 		goto out;
647 
648 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
649 		    zone_info->nr_zones);
650 	zone_info->zone_cache = NULL;
651 
652 	return zone_info;
653 
654 out:
655 	bitmap_free(zone_info->seq_zones);
656 	bitmap_free(zone_info->empty_zones);
657 	bitmap_free(zone_info->active_zones);
658 	kfree(zone_info);
659 	return NULL;
660 }
661 
btrfs_get_dev_zone(struct btrfs_device * device,u64 pos,struct blk_zone * zone)662 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
663 {
664 	unsigned int nr_zones = 1;
665 	int ret;
666 
667 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
668 	if (ret != 0 || !nr_zones)
669 		return ret ? ret : -EIO;
670 
671 	return 0;
672 }
673 
btrfs_check_for_zoned_device(struct btrfs_fs_info * fs_info)674 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
675 {
676 	struct btrfs_device *device;
677 
678 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
679 		if (device->bdev && bdev_is_zoned(device->bdev)) {
680 			btrfs_err(fs_info,
681 				"zoned: mode not enabled but zoned device found: %pg",
682 				device->bdev);
683 			return -EINVAL;
684 		}
685 	}
686 
687 	return 0;
688 }
689 
btrfs_check_zoned_mode(struct btrfs_fs_info * fs_info)690 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
691 {
692 	struct queue_limits *lim = &fs_info->limits;
693 	struct btrfs_device *device;
694 	u64 zone_size = 0;
695 	int ret;
696 
697 	/*
698 	 * Host-Managed devices can't be used without the ZONED flag.  With the
699 	 * ZONED all devices can be used, using zone emulation if required.
700 	 */
701 	if (!btrfs_fs_incompat(fs_info, ZONED))
702 		return btrfs_check_for_zoned_device(fs_info);
703 
704 	blk_set_stacking_limits(lim);
705 
706 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
707 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
708 
709 		if (!device->bdev)
710 			continue;
711 
712 		if (!zone_size) {
713 			zone_size = zone_info->zone_size;
714 		} else if (zone_info->zone_size != zone_size) {
715 			btrfs_err(fs_info,
716 		"zoned: unequal block device zone sizes: have %llu found %llu",
717 				  zone_info->zone_size, zone_size);
718 			return -EINVAL;
719 		}
720 
721 		/*
722 		 * With the zoned emulation, we can have non-zoned device on the
723 		 * zoned mode. In this case, we don't have a valid max zone
724 		 * append size.
725 		 */
726 		if (bdev_is_zoned(device->bdev))
727 			blk_stack_limits(lim, bdev_limits(device->bdev), 0);
728 	}
729 
730 	ret = blk_validate_limits(lim);
731 	if (ret) {
732 		btrfs_err(fs_info, "zoned: failed to validate queue limits");
733 		return ret;
734 	}
735 
736 	/*
737 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
738 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
739 	 * check the alignment here.
740 	 */
741 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
742 		btrfs_err(fs_info,
743 			  "zoned: zone size %llu not aligned to stripe %u",
744 			  zone_size, BTRFS_STRIPE_LEN);
745 		return -EINVAL;
746 	}
747 
748 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
749 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
750 		return -EINVAL;
751 	}
752 
753 	fs_info->zone_size = zone_size;
754 	/*
755 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
756 	 * Technically, we can have multiple pages per segment. But, since
757 	 * we add the pages one by one to a bio, and cannot increase the
758 	 * metadata reservation even if it increases the number of extents, it
759 	 * is safe to stick with the limit.
760 	 */
761 	fs_info->max_zone_append_size = ALIGN_DOWN(
762 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
763 		     (u64)lim->max_sectors << SECTOR_SHIFT,
764 		     (u64)lim->max_segments << PAGE_SHIFT),
765 		fs_info->sectorsize);
766 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
767 
768 	fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size,
769 						fs_info->max_zone_append_size);
770 
771 	/*
772 	 * Check mount options here, because we might change fs_info->zoned
773 	 * from fs_info->zone_size.
774 	 */
775 	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
776 	if (ret)
777 		return ret;
778 
779 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
780 	return 0;
781 }
782 
btrfs_check_mountopts_zoned(const struct btrfs_fs_info * info,unsigned long long * mount_opt)783 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
784 				unsigned long long *mount_opt)
785 {
786 	if (!btrfs_is_zoned(info))
787 		return 0;
788 
789 	/*
790 	 * Space cache writing is not COWed. Disable that to avoid write errors
791 	 * in sequential zones.
792 	 */
793 	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
794 		btrfs_err(info, "zoned: space cache v1 is not supported");
795 		return -EINVAL;
796 	}
797 
798 	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
799 		btrfs_err(info, "zoned: NODATACOW not supported");
800 		return -EINVAL;
801 	}
802 
803 	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
804 		btrfs_info(info,
805 			   "zoned: async discard ignored and disabled for zoned mode");
806 		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
807 	}
808 
809 	return 0;
810 }
811 
sb_log_location(struct block_device * bdev,struct blk_zone * zones,int rw,u64 * bytenr_ret)812 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
813 			   int rw, u64 *bytenr_ret)
814 {
815 	u64 wp;
816 	int ret;
817 
818 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
819 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
820 		return 0;
821 	}
822 
823 	ret = sb_write_pointer(bdev, zones, &wp);
824 	if (ret != -ENOENT && ret < 0)
825 		return ret;
826 
827 	if (rw == WRITE) {
828 		struct blk_zone *reset = NULL;
829 
830 		if (wp == zones[0].start << SECTOR_SHIFT)
831 			reset = &zones[0];
832 		else if (wp == zones[1].start << SECTOR_SHIFT)
833 			reset = &zones[1];
834 
835 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
836 			unsigned int nofs_flags;
837 
838 			ASSERT(sb_zone_is_full(reset));
839 
840 			nofs_flags = memalloc_nofs_save();
841 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
842 					       reset->start, reset->len);
843 			memalloc_nofs_restore(nofs_flags);
844 			if (ret)
845 				return ret;
846 
847 			reset->cond = BLK_ZONE_COND_EMPTY;
848 			reset->wp = reset->start;
849 		}
850 	} else if (ret != -ENOENT) {
851 		/*
852 		 * For READ, we want the previous one. Move write pointer to
853 		 * the end of a zone, if it is at the head of a zone.
854 		 */
855 		u64 zone_end = 0;
856 
857 		if (wp == zones[0].start << SECTOR_SHIFT)
858 			zone_end = zones[1].start + zones[1].capacity;
859 		else if (wp == zones[1].start << SECTOR_SHIFT)
860 			zone_end = zones[0].start + zones[0].capacity;
861 		if (zone_end)
862 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
863 					BTRFS_SUPER_INFO_SIZE);
864 
865 		wp -= BTRFS_SUPER_INFO_SIZE;
866 	}
867 
868 	*bytenr_ret = wp;
869 	return 0;
870 
871 }
872 
btrfs_sb_log_location_bdev(struct block_device * bdev,int mirror,int rw,u64 * bytenr_ret)873 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
874 			       u64 *bytenr_ret)
875 {
876 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
877 	sector_t zone_sectors;
878 	u32 sb_zone;
879 	int ret;
880 	u8 zone_sectors_shift;
881 	sector_t nr_sectors;
882 	u32 nr_zones;
883 
884 	if (!bdev_is_zoned(bdev)) {
885 		*bytenr_ret = btrfs_sb_offset(mirror);
886 		return 0;
887 	}
888 
889 	ASSERT(rw == READ || rw == WRITE);
890 
891 	zone_sectors = bdev_zone_sectors(bdev);
892 	if (!is_power_of_2(zone_sectors))
893 		return -EINVAL;
894 	zone_sectors_shift = ilog2(zone_sectors);
895 	nr_sectors = bdev_nr_sectors(bdev);
896 	nr_zones = nr_sectors >> zone_sectors_shift;
897 
898 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
899 	if (sb_zone + 1 >= nr_zones)
900 		return -ENOENT;
901 
902 	ret = blkdev_report_zones_cached(bdev, zone_start_sector(sb_zone, bdev),
903 					 BTRFS_NR_SB_LOG_ZONES,
904 					 copy_zone_info_cb, zones);
905 	if (ret < 0)
906 		return ret;
907 	if (unlikely(ret != BTRFS_NR_SB_LOG_ZONES))
908 		return -EIO;
909 
910 	return sb_log_location(bdev, zones, rw, bytenr_ret);
911 }
912 
btrfs_sb_log_location(struct btrfs_device * device,int mirror,int rw,u64 * bytenr_ret)913 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
914 			  u64 *bytenr_ret)
915 {
916 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
917 	u32 zone_num;
918 
919 	/*
920 	 * For a zoned filesystem on a non-zoned block device, use the same
921 	 * super block locations as regular filesystem. Doing so, the super
922 	 * block can always be retrieved and the zoned flag of the volume
923 	 * detected from the super block information.
924 	 */
925 	if (!bdev_is_zoned(device->bdev)) {
926 		*bytenr_ret = btrfs_sb_offset(mirror);
927 		return 0;
928 	}
929 
930 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
931 	if (zone_num + 1 >= zinfo->nr_zones)
932 		return -ENOENT;
933 
934 	return sb_log_location(device->bdev,
935 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
936 			       rw, bytenr_ret);
937 }
938 
is_sb_log_zone(struct btrfs_zoned_device_info * zinfo,int mirror)939 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
940 				  int mirror)
941 {
942 	u32 zone_num;
943 
944 	if (!zinfo)
945 		return false;
946 
947 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
948 	if (zone_num + 1 >= zinfo->nr_zones)
949 		return false;
950 
951 	if (!test_bit(zone_num, zinfo->seq_zones))
952 		return false;
953 
954 	return true;
955 }
956 
btrfs_advance_sb_log(struct btrfs_device * device,int mirror)957 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
958 {
959 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
960 	struct blk_zone *zone;
961 	int i;
962 
963 	if (!is_sb_log_zone(zinfo, mirror))
964 		return 0;
965 
966 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
967 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
968 		/* Advance the next zone */
969 		if (zone->cond == BLK_ZONE_COND_FULL) {
970 			zone++;
971 			continue;
972 		}
973 
974 		if (zone->cond == BLK_ZONE_COND_EMPTY)
975 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
976 
977 		zone->wp += SUPER_INFO_SECTORS;
978 
979 		if (sb_zone_is_full(zone)) {
980 			/*
981 			 * No room left to write new superblock. Since
982 			 * superblock is written with REQ_SYNC, it is safe to
983 			 * finish the zone now.
984 			 *
985 			 * If the write pointer is exactly at the capacity,
986 			 * explicit ZONE_FINISH is not necessary.
987 			 */
988 			if (zone->wp != zone->start + zone->capacity) {
989 				unsigned int nofs_flags;
990 				int ret;
991 
992 				nofs_flags = memalloc_nofs_save();
993 				ret = blkdev_zone_mgmt(device->bdev,
994 						REQ_OP_ZONE_FINISH, zone->start,
995 						zone->len);
996 				memalloc_nofs_restore(nofs_flags);
997 				if (ret)
998 					return ret;
999 			}
1000 
1001 			zone->wp = zone->start + zone->len;
1002 			zone->cond = BLK_ZONE_COND_FULL;
1003 		}
1004 		return 0;
1005 	}
1006 
1007 	/* All the zones are FULL. Should not reach here. */
1008 	DEBUG_WARN("unexpected state, all zones full");
1009 	return -EIO;
1010 }
1011 
btrfs_reset_sb_log_zones(struct block_device * bdev,int mirror)1012 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1013 {
1014 	unsigned int nofs_flags;
1015 	sector_t zone_sectors;
1016 	sector_t nr_sectors;
1017 	u8 zone_sectors_shift;
1018 	u32 sb_zone;
1019 	u32 nr_zones;
1020 	int ret;
1021 
1022 	zone_sectors = bdev_zone_sectors(bdev);
1023 	zone_sectors_shift = ilog2(zone_sectors);
1024 	nr_sectors = bdev_nr_sectors(bdev);
1025 	nr_zones = nr_sectors >> zone_sectors_shift;
1026 
1027 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1028 	if (sb_zone + 1 >= nr_zones)
1029 		return -ENOENT;
1030 
1031 	nofs_flags = memalloc_nofs_save();
1032 	ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1033 			       zone_start_sector(sb_zone, bdev),
1034 			       zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1035 	memalloc_nofs_restore(nofs_flags);
1036 	return ret;
1037 }
1038 
1039 /*
1040  * Find allocatable zones within a given region.
1041  *
1042  * @device:	the device to allocate a region on
1043  * @hole_start: the position of the hole to allocate the region
1044  * @num_bytes:	size of wanted region
1045  * @hole_end:	the end of the hole
1046  * @return:	position of allocatable zones
1047  *
1048  * Allocatable region should not contain any superblock locations.
1049  */
btrfs_find_allocatable_zones(struct btrfs_device * device,u64 hole_start,u64 hole_end,u64 num_bytes)1050 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1051 				 u64 hole_end, u64 num_bytes)
1052 {
1053 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1054 	const u8 shift = zinfo->zone_size_shift;
1055 	u64 nzones = num_bytes >> shift;
1056 	u64 pos = hole_start;
1057 	u64 begin, end;
1058 	bool have_sb;
1059 	int i;
1060 
1061 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size),
1062 	       "hole_start=%llu zinfo->zone_size=%llu", hole_start, zinfo->zone_size);
1063 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size),
1064 	       "num_bytes=%llu zinfo->zone_size=%llu", num_bytes, zinfo->zone_size);
1065 
1066 	while (pos < hole_end) {
1067 		begin = pos >> shift;
1068 		end = begin + nzones;
1069 
1070 		if (end > zinfo->nr_zones)
1071 			return hole_end;
1072 
1073 		/* Check if zones in the region are all empty */
1074 		if (btrfs_dev_is_sequential(device, pos) &&
1075 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1076 			pos += zinfo->zone_size;
1077 			continue;
1078 		}
1079 
1080 		have_sb = false;
1081 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1082 			u32 sb_zone;
1083 			u64 sb_pos;
1084 
1085 			sb_zone = sb_zone_number(shift, i);
1086 			if (!(end <= sb_zone ||
1087 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1088 				have_sb = true;
1089 				pos = zone_start_physical(
1090 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1091 				break;
1092 			}
1093 
1094 			/* We also need to exclude regular superblock positions */
1095 			sb_pos = btrfs_sb_offset(i);
1096 			if (!(pos + num_bytes <= sb_pos ||
1097 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1098 				have_sb = true;
1099 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1100 					    zinfo->zone_size);
1101 				break;
1102 			}
1103 		}
1104 		if (!have_sb)
1105 			break;
1106 	}
1107 
1108 	return pos;
1109 }
1110 
btrfs_dev_set_active_zone(struct btrfs_device * device,u64 pos)1111 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1112 {
1113 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1114 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1115 
1116 	/* We can use any number of zones */
1117 	if (zone_info->max_active_zones == 0)
1118 		return true;
1119 
1120 	if (!test_bit(zno, zone_info->active_zones)) {
1121 		/* Active zone left? */
1122 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1123 			return false;
1124 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1125 			/* Someone already set the bit */
1126 			atomic_inc(&zone_info->active_zones_left);
1127 		}
1128 	}
1129 
1130 	return true;
1131 }
1132 
btrfs_dev_clear_active_zone(struct btrfs_device * device,u64 pos)1133 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1134 {
1135 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1136 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1137 
1138 	/* We can use any number of zones */
1139 	if (zone_info->max_active_zones == 0)
1140 		return;
1141 
1142 	if (test_and_clear_bit(zno, zone_info->active_zones))
1143 		atomic_inc(&zone_info->active_zones_left);
1144 }
1145 
btrfs_reset_device_zone(struct btrfs_device * device,u64 physical,u64 length,u64 * bytes)1146 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1147 			    u64 length, u64 *bytes)
1148 {
1149 	unsigned int nofs_flags;
1150 	int ret;
1151 
1152 	*bytes = 0;
1153 	nofs_flags = memalloc_nofs_save();
1154 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1155 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1156 	memalloc_nofs_restore(nofs_flags);
1157 	if (ret)
1158 		return ret;
1159 
1160 	*bytes = length;
1161 	while (length) {
1162 		btrfs_dev_set_zone_empty(device, physical);
1163 		btrfs_dev_clear_active_zone(device, physical);
1164 		physical += device->zone_info->zone_size;
1165 		length -= device->zone_info->zone_size;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
btrfs_ensure_empty_zones(struct btrfs_device * device,u64 start,u64 size)1171 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1172 {
1173 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1174 	const u8 shift = zinfo->zone_size_shift;
1175 	unsigned long begin = start >> shift;
1176 	unsigned long nbits = size >> shift;
1177 	u64 pos;
1178 	int ret;
1179 
1180 	ASSERT(IS_ALIGNED(start, zinfo->zone_size),
1181 	       "start=%llu, zinfo->zone_size=%llu", start, zinfo->zone_size);
1182 	ASSERT(IS_ALIGNED(size, zinfo->zone_size),
1183 	       "size=%llu, zinfo->zone_size=%llu", size, zinfo->zone_size);
1184 
1185 	if (begin + nbits > zinfo->nr_zones)
1186 		return -ERANGE;
1187 
1188 	/* All the zones are conventional */
1189 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1190 		return 0;
1191 
1192 	/* All the zones are sequential and empty */
1193 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1194 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1195 		return 0;
1196 
1197 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1198 		u64 reset_bytes;
1199 
1200 		if (!btrfs_dev_is_sequential(device, pos) ||
1201 		    btrfs_dev_is_empty_zone(device, pos))
1202 			continue;
1203 
1204 		/* Free regions should be empty */
1205 		btrfs_warn(
1206 			device->fs_info,
1207 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1208 			rcu_dereference(device->name), device->devid, pos >> shift);
1209 		WARN_ON_ONCE(1);
1210 
1211 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1212 					      &reset_bytes);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Calculate an allocation pointer from the extent allocation information
1222  * for a block group consist of conventional zones. It is pointed to the
1223  * end of the highest addressed extent in the block group as an allocation
1224  * offset.
1225  */
calculate_alloc_pointer(struct btrfs_block_group * cache,u64 * offset_ret,bool new)1226 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1227 				   u64 *offset_ret, bool new)
1228 {
1229 	struct btrfs_fs_info *fs_info = cache->fs_info;
1230 	struct btrfs_root *root;
1231 	BTRFS_PATH_AUTO_FREE(path);
1232 	struct btrfs_key key;
1233 	struct btrfs_key found_key;
1234 	int ret;
1235 	u64 length;
1236 
1237 	/*
1238 	 * Avoid  tree lookups for a new block group, there's no use for it.
1239 	 * It must always be 0.
1240 	 *
1241 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1242 	 * For new a block group, this function is called from
1243 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1244 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1245 	 * buffer locks to avoid deadlock.
1246 	 */
1247 	if (new) {
1248 		*offset_ret = 0;
1249 		return 0;
1250 	}
1251 
1252 	path = btrfs_alloc_path();
1253 	if (!path)
1254 		return -ENOMEM;
1255 
1256 	key.objectid = cache->start + cache->length;
1257 	key.type = 0;
1258 	key.offset = 0;
1259 
1260 	root = btrfs_extent_root(fs_info, key.objectid);
1261 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1262 	/* We should not find the exact match */
1263 	if (unlikely(!ret))
1264 		ret = -EUCLEAN;
1265 	if (ret < 0)
1266 		return ret;
1267 
1268 	ret = btrfs_previous_extent_item(root, path, cache->start);
1269 	if (ret) {
1270 		if (ret == 1) {
1271 			ret = 0;
1272 			*offset_ret = 0;
1273 		}
1274 		return ret;
1275 	}
1276 
1277 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1278 
1279 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1280 		length = found_key.offset;
1281 	else
1282 		length = fs_info->nodesize;
1283 
1284 	if (unlikely(!(found_key.objectid >= cache->start &&
1285 		       found_key.objectid + length <= cache->start + cache->length))) {
1286 		return -EUCLEAN;
1287 	}
1288 	*offset_ret = found_key.objectid + length - cache->start;
1289 	return 0;
1290 }
1291 
1292 struct zone_info {
1293 	u64 physical;
1294 	u64 capacity;
1295 	u64 alloc_offset;
1296 };
1297 
btrfs_load_zone_info(struct btrfs_fs_info * fs_info,int zone_idx,struct zone_info * info,unsigned long * active,struct btrfs_chunk_map * map,bool new)1298 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1299 				struct zone_info *info, unsigned long *active,
1300 				struct btrfs_chunk_map *map, bool new)
1301 {
1302 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1303 	struct btrfs_device *device;
1304 	int dev_replace_is_ongoing = 0;
1305 	unsigned int nofs_flag;
1306 	struct blk_zone zone;
1307 	int ret;
1308 
1309 	info->physical = map->stripes[zone_idx].physical;
1310 
1311 	down_read(&dev_replace->rwsem);
1312 	device = map->stripes[zone_idx].dev;
1313 
1314 	if (!device->bdev) {
1315 		up_read(&dev_replace->rwsem);
1316 		info->alloc_offset = WP_MISSING_DEV;
1317 		return 0;
1318 	}
1319 
1320 	/* Consider a zone as active if we can allow any number of active zones. */
1321 	if (!device->zone_info->max_active_zones)
1322 		__set_bit(zone_idx, active);
1323 
1324 	if (!btrfs_dev_is_sequential(device, info->physical)) {
1325 		up_read(&dev_replace->rwsem);
1326 		info->alloc_offset = WP_CONVENTIONAL;
1327 		info->capacity = device->zone_info->zone_size;
1328 		return 0;
1329 	}
1330 
1331 	ASSERT(!new || btrfs_dev_is_empty_zone(device, info->physical));
1332 
1333 	/* This zone will be used for allocation, so mark this zone non-empty. */
1334 	btrfs_dev_clear_zone_empty(device, info->physical);
1335 
1336 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1337 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1338 		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1339 
1340 	/*
1341 	 * The group is mapped to a sequential zone. Get the zone write pointer
1342 	 * to determine the allocation offset within the zone.
1343 	 */
1344 	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1345 
1346 	if (new) {
1347 		sector_t capacity;
1348 
1349 		capacity = bdev_zone_capacity(device->bdev, info->physical >> SECTOR_SHIFT);
1350 		up_read(&dev_replace->rwsem);
1351 		info->alloc_offset = 0;
1352 		info->capacity = capacity << SECTOR_SHIFT;
1353 
1354 		return 0;
1355 	}
1356 
1357 	nofs_flag = memalloc_nofs_save();
1358 	ret = btrfs_get_dev_zone(device, info->physical, &zone);
1359 	memalloc_nofs_restore(nofs_flag);
1360 	if (ret) {
1361 		up_read(&dev_replace->rwsem);
1362 		if (ret != -EIO && ret != -EOPNOTSUPP)
1363 			return ret;
1364 		info->alloc_offset = WP_MISSING_DEV;
1365 		return 0;
1366 	}
1367 
1368 	if (unlikely(zone.type == BLK_ZONE_TYPE_CONVENTIONAL)) {
1369 		btrfs_err(fs_info,
1370 		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1371 			zone.start << SECTOR_SHIFT, rcu_dereference(device->name),
1372 			device->devid);
1373 		up_read(&dev_replace->rwsem);
1374 		return -EIO;
1375 	}
1376 
1377 	info->capacity = (zone.capacity << SECTOR_SHIFT);
1378 
1379 	switch (zone.cond) {
1380 	case BLK_ZONE_COND_OFFLINE:
1381 	case BLK_ZONE_COND_READONLY:
1382 		btrfs_err(fs_info,
1383 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1384 			  (info->physical >> device->zone_info->zone_size_shift),
1385 			  rcu_dereference(device->name), device->devid);
1386 		info->alloc_offset = WP_MISSING_DEV;
1387 		break;
1388 	case BLK_ZONE_COND_EMPTY:
1389 		info->alloc_offset = 0;
1390 		break;
1391 	case BLK_ZONE_COND_FULL:
1392 		info->alloc_offset = info->capacity;
1393 		break;
1394 	default:
1395 		/* Partially used zone. */
1396 		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1397 		__set_bit(zone_idx, active);
1398 		break;
1399 	}
1400 
1401 	up_read(&dev_replace->rwsem);
1402 
1403 	return 0;
1404 }
1405 
btrfs_load_block_group_single(struct btrfs_block_group * bg,struct zone_info * info,unsigned long * active)1406 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1407 					 struct zone_info *info,
1408 					 unsigned long *active)
1409 {
1410 	if (unlikely(info->alloc_offset == WP_MISSING_DEV)) {
1411 		btrfs_err(bg->fs_info,
1412 			"zoned: cannot recover write pointer for zone %llu",
1413 			info->physical);
1414 		return -EIO;
1415 	}
1416 
1417 	bg->alloc_offset = info->alloc_offset;
1418 	bg->zone_capacity = info->capacity;
1419 	if (test_bit(0, active))
1420 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1421 	return 0;
1422 }
1423 
btrfs_load_block_group_dup(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1424 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1425 				      struct btrfs_chunk_map *map,
1426 				      struct zone_info *zone_info,
1427 				      unsigned long *active,
1428 				      u64 last_alloc)
1429 {
1430 	struct btrfs_fs_info *fs_info = bg->fs_info;
1431 
1432 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1433 		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1434 		return -EINVAL;
1435 	}
1436 
1437 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1438 
1439 	if (unlikely(zone_info[0].alloc_offset == WP_MISSING_DEV)) {
1440 		btrfs_err(bg->fs_info,
1441 			  "zoned: cannot recover write pointer for zone %llu",
1442 			  zone_info[0].physical);
1443 		return -EIO;
1444 	}
1445 	if (unlikely(zone_info[1].alloc_offset == WP_MISSING_DEV)) {
1446 		btrfs_err(bg->fs_info,
1447 			  "zoned: cannot recover write pointer for zone %llu",
1448 			  zone_info[1].physical);
1449 		return -EIO;
1450 	}
1451 
1452 	if (zone_info[0].alloc_offset == WP_CONVENTIONAL)
1453 		zone_info[0].alloc_offset = last_alloc;
1454 
1455 	if (zone_info[1].alloc_offset == WP_CONVENTIONAL)
1456 		zone_info[1].alloc_offset = last_alloc;
1457 
1458 	if (unlikely(zone_info[0].alloc_offset != zone_info[1].alloc_offset)) {
1459 		btrfs_err(bg->fs_info,
1460 			  "zoned: write pointer offset mismatch of zones in DUP profile");
1461 		return -EIO;
1462 	}
1463 
1464 	if (test_bit(0, active) != test_bit(1, active)) {
1465 		if (unlikely(!btrfs_zone_activate(bg)))
1466 			return -EIO;
1467 	} else if (test_bit(0, active)) {
1468 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1469 	}
1470 
1471 	bg->alloc_offset = zone_info[0].alloc_offset;
1472 	return 0;
1473 }
1474 
btrfs_load_block_group_raid1(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1475 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1476 					struct btrfs_chunk_map *map,
1477 					struct zone_info *zone_info,
1478 					unsigned long *active,
1479 					u64 last_alloc)
1480 {
1481 	struct btrfs_fs_info *fs_info = bg->fs_info;
1482 	int i;
1483 
1484 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1485 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1486 			  btrfs_bg_type_to_raid_name(map->type));
1487 		return -EINVAL;
1488 	}
1489 
1490 	/* In case a device is missing we have a cap of 0, so don't use it. */
1491 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1492 
1493 	for (i = 0; i < map->num_stripes; i++) {
1494 		if (zone_info[i].alloc_offset == WP_MISSING_DEV)
1495 			continue;
1496 
1497 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1498 			zone_info[i].alloc_offset = last_alloc;
1499 
1500 		if (unlikely((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1501 			     !btrfs_test_opt(fs_info, DEGRADED))) {
1502 			btrfs_err(fs_info,
1503 			"zoned: write pointer offset mismatch of zones in %s profile",
1504 				  btrfs_bg_type_to_raid_name(map->type));
1505 			return -EIO;
1506 		}
1507 		if (test_bit(0, active) != test_bit(i, active)) {
1508 			if (unlikely(!btrfs_test_opt(fs_info, DEGRADED) &&
1509 				     !btrfs_zone_activate(bg))) {
1510 				return -EIO;
1511 			}
1512 		} else {
1513 			if (test_bit(0, active))
1514 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1515 		}
1516 	}
1517 
1518 	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1519 		bg->alloc_offset = zone_info[0].alloc_offset;
1520 	else
1521 		bg->alloc_offset = zone_info[i - 1].alloc_offset;
1522 
1523 	return 0;
1524 }
1525 
btrfs_load_block_group_raid0(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1526 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1527 					struct btrfs_chunk_map *map,
1528 					struct zone_info *zone_info,
1529 					unsigned long *active,
1530 					u64 last_alloc)
1531 {
1532 	struct btrfs_fs_info *fs_info = bg->fs_info;
1533 	u64 stripe_nr = 0, stripe_offset = 0;
1534 	u32 stripe_index = 0;
1535 
1536 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1537 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1538 			  btrfs_bg_type_to_raid_name(map->type));
1539 		return -EINVAL;
1540 	}
1541 
1542 	if (last_alloc) {
1543 		u32 factor = map->num_stripes;
1544 
1545 		stripe_nr = last_alloc >> BTRFS_STRIPE_LEN_SHIFT;
1546 		stripe_offset = last_alloc & BTRFS_STRIPE_LEN_MASK;
1547 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
1548 	}
1549 
1550 	for (int i = 0; i < map->num_stripes; i++) {
1551 		if (zone_info[i].alloc_offset == WP_MISSING_DEV)
1552 			continue;
1553 
1554 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL) {
1555 
1556 			zone_info[i].alloc_offset = btrfs_stripe_nr_to_offset(stripe_nr);
1557 
1558 			if (stripe_index > i)
1559 				zone_info[i].alloc_offset += BTRFS_STRIPE_LEN;
1560 			else if (stripe_index == i)
1561 				zone_info[i].alloc_offset += stripe_offset;
1562 		}
1563 
1564 		if (test_bit(0, active) != test_bit(i, active)) {
1565 			if (unlikely(!btrfs_zone_activate(bg)))
1566 				return -EIO;
1567 		} else {
1568 			if (test_bit(0, active))
1569 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1570 		}
1571 		bg->zone_capacity += zone_info[i].capacity;
1572 		bg->alloc_offset += zone_info[i].alloc_offset;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
btrfs_load_block_group_raid10(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1578 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1579 					 struct btrfs_chunk_map *map,
1580 					 struct zone_info *zone_info,
1581 					 unsigned long *active,
1582 					 u64 last_alloc)
1583 {
1584 	struct btrfs_fs_info *fs_info = bg->fs_info;
1585 	u64 stripe_nr = 0, stripe_offset = 0;
1586 	u32 stripe_index = 0;
1587 
1588 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1589 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1590 			  btrfs_bg_type_to_raid_name(map->type));
1591 		return -EINVAL;
1592 	}
1593 
1594 	if (last_alloc) {
1595 		u32 factor = map->num_stripes / map->sub_stripes;
1596 
1597 		stripe_nr = last_alloc >> BTRFS_STRIPE_LEN_SHIFT;
1598 		stripe_offset = last_alloc & BTRFS_STRIPE_LEN_MASK;
1599 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
1600 	}
1601 
1602 	for (int i = 0; i < map->num_stripes; i++) {
1603 		if (zone_info[i].alloc_offset == WP_MISSING_DEV)
1604 			continue;
1605 
1606 		if (test_bit(0, active) != test_bit(i, active)) {
1607 			if (unlikely(!btrfs_zone_activate(bg)))
1608 				return -EIO;
1609 		} else {
1610 			if (test_bit(0, active))
1611 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1612 		}
1613 
1614 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL) {
1615 			zone_info[i].alloc_offset = btrfs_stripe_nr_to_offset(stripe_nr);
1616 
1617 			if (stripe_index > (i / map->sub_stripes))
1618 				zone_info[i].alloc_offset += BTRFS_STRIPE_LEN;
1619 			else if (stripe_index == (i / map->sub_stripes))
1620 				zone_info[i].alloc_offset += stripe_offset;
1621 		}
1622 
1623 		if ((i % map->sub_stripes) == 0) {
1624 			bg->zone_capacity += zone_info[i].capacity;
1625 			bg->alloc_offset += zone_info[i].alloc_offset;
1626 		}
1627 	}
1628 
1629 	return 0;
1630 }
1631 
btrfs_load_block_group_zone_info(struct btrfs_block_group * cache,bool new)1632 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1633 {
1634 	struct btrfs_fs_info *fs_info = cache->fs_info;
1635 	struct btrfs_chunk_map *map;
1636 	u64 logical = cache->start;
1637 	u64 length = cache->length;
1638 	struct zone_info AUTO_KFREE(zone_info);
1639 	int ret;
1640 	int i;
1641 	unsigned long *active = NULL;
1642 	u64 last_alloc = 0;
1643 	u32 num_sequential = 0, num_conventional = 0;
1644 	u64 profile;
1645 
1646 	if (!btrfs_is_zoned(fs_info))
1647 		return 0;
1648 
1649 	/* Sanity check */
1650 	if (unlikely(!IS_ALIGNED(length, fs_info->zone_size))) {
1651 		btrfs_err(fs_info,
1652 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1653 			  logical, length, fs_info->zone_size);
1654 		return -EIO;
1655 	}
1656 
1657 	map = btrfs_find_chunk_map(fs_info, logical, length);
1658 	if (!map)
1659 		return -EINVAL;
1660 
1661 	cache->physical_map = map;
1662 
1663 	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1664 	if (!zone_info) {
1665 		ret = -ENOMEM;
1666 		goto out;
1667 	}
1668 
1669 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1670 	if (!active) {
1671 		ret = -ENOMEM;
1672 		goto out;
1673 	}
1674 
1675 	for (i = 0; i < map->num_stripes; i++) {
1676 		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map, new);
1677 		if (ret)
1678 			goto out;
1679 
1680 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1681 			num_conventional++;
1682 		else
1683 			num_sequential++;
1684 	}
1685 
1686 	if (num_sequential > 0)
1687 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1688 
1689 	if (num_conventional > 0) {
1690 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1691 		if (ret) {
1692 			btrfs_err(fs_info,
1693 			"zoned: failed to determine allocation offset of bg %llu",
1694 				  cache->start);
1695 			goto out;
1696 		} else if (map->num_stripes == num_conventional) {
1697 			cache->alloc_offset = last_alloc;
1698 			cache->zone_capacity = cache->length;
1699 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1700 			goto out;
1701 		}
1702 	}
1703 
1704 	profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1705 	switch (profile) {
1706 	case 0: /* single */
1707 		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1708 		break;
1709 	case BTRFS_BLOCK_GROUP_DUP:
1710 		ret = btrfs_load_block_group_dup(cache, map, zone_info, active,
1711 						 last_alloc);
1712 		break;
1713 	case BTRFS_BLOCK_GROUP_RAID1:
1714 	case BTRFS_BLOCK_GROUP_RAID1C3:
1715 	case BTRFS_BLOCK_GROUP_RAID1C4:
1716 		ret = btrfs_load_block_group_raid1(cache, map, zone_info,
1717 						   active, last_alloc);
1718 		break;
1719 	case BTRFS_BLOCK_GROUP_RAID0:
1720 		ret = btrfs_load_block_group_raid0(cache, map, zone_info,
1721 						   active, last_alloc);
1722 		break;
1723 	case BTRFS_BLOCK_GROUP_RAID10:
1724 		ret = btrfs_load_block_group_raid10(cache, map, zone_info,
1725 						    active, last_alloc);
1726 		break;
1727 	case BTRFS_BLOCK_GROUP_RAID5:
1728 	case BTRFS_BLOCK_GROUP_RAID6:
1729 	default:
1730 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1731 			  btrfs_bg_type_to_raid_name(map->type));
1732 		ret = -EINVAL;
1733 		goto out;
1734 	}
1735 
1736 	if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1737 	    profile != BTRFS_BLOCK_GROUP_RAID10) {
1738 		/*
1739 		 * Detected broken write pointer.  Make this block group
1740 		 * unallocatable by setting the allocation pointer at the end of
1741 		 * allocatable region. Relocating this block group will fix the
1742 		 * mismatch.
1743 		 *
1744 		 * Currently, we cannot handle RAID0 or RAID10 case like this
1745 		 * because we don't have a proper zone_capacity value. But,
1746 		 * reading from this block group won't work anyway by a missing
1747 		 * stripe.
1748 		 */
1749 		cache->alloc_offset = cache->zone_capacity;
1750 	}
1751 
1752 out:
1753 	/* Reject non SINGLE data profiles without RST */
1754 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1755 	    (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1756 	    !fs_info->stripe_root) {
1757 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1758 			  btrfs_bg_type_to_raid_name(map->type));
1759 		ret = -EINVAL;
1760 	}
1761 
1762 	if (unlikely(cache->alloc_offset > cache->zone_capacity)) {
1763 		btrfs_err(fs_info,
1764 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1765 			  cache->alloc_offset, cache->zone_capacity,
1766 			  cache->start);
1767 		ret = -EIO;
1768 	}
1769 
1770 	/* An extent is allocated after the write pointer */
1771 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1772 		btrfs_err(fs_info,
1773 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1774 			  logical, last_alloc, cache->alloc_offset);
1775 		ret = -EIO;
1776 	}
1777 
1778 	if (!ret) {
1779 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1780 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1781 			btrfs_get_block_group(cache);
1782 			spin_lock(&fs_info->zone_active_bgs_lock);
1783 			list_add_tail(&cache->active_bg_list,
1784 				      &fs_info->zone_active_bgs);
1785 			spin_unlock(&fs_info->zone_active_bgs_lock);
1786 		}
1787 	} else {
1788 		btrfs_free_chunk_map(cache->physical_map);
1789 		cache->physical_map = NULL;
1790 	}
1791 	bitmap_free(active);
1792 
1793 	return ret;
1794 }
1795 
btrfs_calc_zone_unusable(struct btrfs_block_group * cache)1796 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1797 {
1798 	u64 unusable, free;
1799 
1800 	if (!btrfs_is_zoned(cache->fs_info))
1801 		return;
1802 
1803 	WARN_ON(cache->bytes_super != 0);
1804 	unusable = (cache->alloc_offset - cache->used) +
1805 		   (cache->length - cache->zone_capacity);
1806 	free = cache->zone_capacity - cache->alloc_offset;
1807 
1808 	/* We only need ->free_space in ALLOC_SEQ block groups */
1809 	cache->cached = BTRFS_CACHE_FINISHED;
1810 	cache->free_space_ctl->free_space = free;
1811 	cache->zone_unusable = unusable;
1812 }
1813 
btrfs_use_zone_append(struct btrfs_bio * bbio)1814 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1815 {
1816 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1817 	struct btrfs_inode *inode = bbio->inode;
1818 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1819 	struct btrfs_block_group *cache;
1820 	bool ret = false;
1821 
1822 	if (!btrfs_is_zoned(fs_info))
1823 		return false;
1824 
1825 	if (!is_data_inode(inode))
1826 		return false;
1827 
1828 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1829 		return false;
1830 
1831 	/*
1832 	 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the
1833 	 * extent layout the relocation code has.
1834 	 * Furthermore we have set aside own block-group from which only the
1835 	 * relocation "process" can allocate and make sure only one process at a
1836 	 * time can add pages to an extent that gets relocated, so it's safe to
1837 	 * use regular REQ_OP_WRITE for this special case.
1838 	 */
1839 	if (btrfs_is_data_reloc_root(inode->root))
1840 		return false;
1841 
1842 	cache = btrfs_lookup_block_group(fs_info, start);
1843 	ASSERT(cache);
1844 	if (!cache)
1845 		return false;
1846 
1847 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1848 	btrfs_put_block_group(cache);
1849 
1850 	return ret;
1851 }
1852 
btrfs_record_physical_zoned(struct btrfs_bio * bbio)1853 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1854 {
1855 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1856 	struct btrfs_ordered_sum *sum = bbio->sums;
1857 
1858 	if (physical < bbio->orig_physical)
1859 		sum->logical -= bbio->orig_physical - physical;
1860 	else
1861 		sum->logical += physical - bbio->orig_physical;
1862 }
1863 
btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent * ordered,u64 logical)1864 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1865 					u64 logical)
1866 {
1867 	struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1868 	struct extent_map *em;
1869 
1870 	ordered->disk_bytenr = logical;
1871 
1872 	write_lock(&em_tree->lock);
1873 	em = btrfs_search_extent_mapping(em_tree, ordered->file_offset,
1874 					 ordered->num_bytes);
1875 	/* The em should be a new COW extent, thus it should not have an offset. */
1876 	ASSERT(em->offset == 0, "em->offset=%llu", em->offset);
1877 	em->disk_bytenr = logical;
1878 	btrfs_free_extent_map(em);
1879 	write_unlock(&em_tree->lock);
1880 }
1881 
btrfs_zoned_split_ordered(struct btrfs_ordered_extent * ordered,u64 logical,u64 len)1882 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1883 				      u64 logical, u64 len)
1884 {
1885 	struct btrfs_ordered_extent *new;
1886 
1887 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1888 	    btrfs_split_extent_map(ordered->inode, ordered->file_offset,
1889 				   ordered->num_bytes, len, logical))
1890 		return false;
1891 
1892 	new = btrfs_split_ordered_extent(ordered, len);
1893 	if (IS_ERR(new))
1894 		return false;
1895 	new->disk_bytenr = logical;
1896 	btrfs_finish_one_ordered(new);
1897 	return true;
1898 }
1899 
btrfs_finish_ordered_zoned(struct btrfs_ordered_extent * ordered)1900 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1901 {
1902 	struct btrfs_inode *inode = ordered->inode;
1903 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1904 	struct btrfs_ordered_sum *sum;
1905 	u64 logical, len;
1906 
1907 	/*
1908 	 * Write to pre-allocated region is for the data relocation, and so
1909 	 * it should use WRITE operation. No split/rewrite are necessary.
1910 	 */
1911 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1912 		return;
1913 
1914 	ASSERT(!list_empty(&ordered->list));
1915 	/* The ordered->list can be empty in the above pre-alloc case. */
1916 	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1917 	logical = sum->logical;
1918 	len = sum->len;
1919 
1920 	while (len < ordered->disk_num_bytes) {
1921 		sum = list_next_entry(sum, list);
1922 		if (sum->logical == logical + len) {
1923 			len += sum->len;
1924 			continue;
1925 		}
1926 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1927 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1928 			btrfs_err(fs_info, "failed to split ordered extent");
1929 			goto out;
1930 		}
1931 		logical = sum->logical;
1932 		len = sum->len;
1933 	}
1934 
1935 	if (ordered->disk_bytenr != logical)
1936 		btrfs_rewrite_logical_zoned(ordered, logical);
1937 
1938 out:
1939 	/*
1940 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1941 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1942 	 * addresses and don't contain actual checksums.  We thus must free them
1943 	 * here so that we don't attempt to log the csums later.
1944 	 */
1945 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1946 	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1947 		while ((sum = list_first_entry_or_null(&ordered->list,
1948 						       typeof(*sum), list))) {
1949 			list_del(&sum->list);
1950 			kfree(sum);
1951 		}
1952 	}
1953 }
1954 
check_bg_is_active(struct btrfs_eb_write_context * ctx,struct btrfs_block_group ** active_bg)1955 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1956 			       struct btrfs_block_group **active_bg)
1957 {
1958 	const struct writeback_control *wbc = ctx->wbc;
1959 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1960 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1961 
1962 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1963 		return true;
1964 
1965 	if (fs_info->treelog_bg == block_group->start) {
1966 		if (!btrfs_zone_activate(block_group)) {
1967 			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1968 
1969 			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1970 				return false;
1971 		}
1972 	} else if (*active_bg != block_group) {
1973 		struct btrfs_block_group *tgt = *active_bg;
1974 
1975 		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1976 		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1977 
1978 		if (tgt) {
1979 			/*
1980 			 * If there is an unsent IO left in the allocated area,
1981 			 * we cannot wait for them as it may cause a deadlock.
1982 			 */
1983 			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1984 				if (wbc->sync_mode == WB_SYNC_NONE ||
1985 				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1986 					return false;
1987 			}
1988 
1989 			/* Pivot active metadata/system block group. */
1990 			btrfs_zoned_meta_io_unlock(fs_info);
1991 			wait_eb_writebacks(tgt);
1992 			do_zone_finish(tgt, true);
1993 			btrfs_zoned_meta_io_lock(fs_info);
1994 			if (*active_bg == tgt) {
1995 				btrfs_put_block_group(tgt);
1996 				*active_bg = NULL;
1997 			}
1998 		}
1999 		if (!btrfs_zone_activate(block_group))
2000 			return false;
2001 		if (*active_bg != block_group) {
2002 			ASSERT(*active_bg == NULL);
2003 			*active_bg = block_group;
2004 			btrfs_get_block_group(block_group);
2005 		}
2006 	}
2007 
2008 	return true;
2009 }
2010 
2011 /*
2012  * Check if @ctx->eb is aligned to the write pointer.
2013  *
2014  * Return:
2015  *   0:        @ctx->eb is at the write pointer. You can write it.
2016  *   -EAGAIN:  There is a hole. The caller should handle the case.
2017  *   -EBUSY:   There is a hole, but the caller can just bail out.
2018  */
btrfs_check_meta_write_pointer(struct btrfs_fs_info * fs_info,struct btrfs_eb_write_context * ctx)2019 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
2020 				   struct btrfs_eb_write_context *ctx)
2021 {
2022 	const struct writeback_control *wbc = ctx->wbc;
2023 	const struct extent_buffer *eb = ctx->eb;
2024 	struct btrfs_block_group *block_group = ctx->zoned_bg;
2025 
2026 	if (!btrfs_is_zoned(fs_info))
2027 		return 0;
2028 
2029 	if (block_group) {
2030 		if (block_group->start > eb->start ||
2031 		    block_group->start + block_group->length <= eb->start) {
2032 			btrfs_put_block_group(block_group);
2033 			block_group = NULL;
2034 			ctx->zoned_bg = NULL;
2035 		}
2036 	}
2037 
2038 	if (!block_group) {
2039 		block_group = btrfs_lookup_block_group(fs_info, eb->start);
2040 		if (!block_group)
2041 			return 0;
2042 		ctx->zoned_bg = block_group;
2043 	}
2044 
2045 	if (block_group->meta_write_pointer == eb->start) {
2046 		struct btrfs_block_group **tgt;
2047 
2048 		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2049 			return 0;
2050 
2051 		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2052 			tgt = &fs_info->active_system_bg;
2053 		else
2054 			tgt = &fs_info->active_meta_bg;
2055 		if (check_bg_is_active(ctx, tgt))
2056 			return 0;
2057 	}
2058 
2059 	/*
2060 	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
2061 	 * start writing this eb. In that case, we can just bail out.
2062 	 */
2063 	if (block_group->meta_write_pointer > eb->start)
2064 		return -EBUSY;
2065 
2066 	/* If for_sync, this hole will be filled with transaction commit. */
2067 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2068 		return -EAGAIN;
2069 	return -EBUSY;
2070 }
2071 
btrfs_zoned_issue_zeroout(struct btrfs_device * device,u64 physical,u64 length)2072 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
2073 {
2074 	if (!btrfs_dev_is_sequential(device, physical))
2075 		return -EOPNOTSUPP;
2076 
2077 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
2078 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
2079 }
2080 
read_zone_info(struct btrfs_fs_info * fs_info,u64 logical,struct blk_zone * zone)2081 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
2082 			  struct blk_zone *zone)
2083 {
2084 	struct btrfs_io_context *bioc = NULL;
2085 	u64 mapped_length = PAGE_SIZE;
2086 	unsigned int nofs_flag;
2087 	int nmirrors;
2088 	int i, ret;
2089 
2090 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2091 			      &mapped_length, &bioc, NULL, NULL);
2092 	if (unlikely(ret || !bioc || mapped_length < PAGE_SIZE)) {
2093 		ret = -EIO;
2094 		goto out_put_bioc;
2095 	}
2096 
2097 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2098 		ret = -EINVAL;
2099 		goto out_put_bioc;
2100 	}
2101 
2102 	nofs_flag = memalloc_nofs_save();
2103 	nmirrors = (int)bioc->num_stripes;
2104 	for (i = 0; i < nmirrors; i++) {
2105 		u64 physical = bioc->stripes[i].physical;
2106 		struct btrfs_device *dev = bioc->stripes[i].dev;
2107 
2108 		/* Missing device */
2109 		if (!dev->bdev)
2110 			continue;
2111 
2112 		ret = btrfs_get_dev_zone(dev, physical, zone);
2113 		/* Failing device */
2114 		if (ret == -EIO || ret == -EOPNOTSUPP)
2115 			continue;
2116 		break;
2117 	}
2118 	memalloc_nofs_restore(nofs_flag);
2119 out_put_bioc:
2120 	btrfs_put_bioc(bioc);
2121 	return ret;
2122 }
2123 
2124 /*
2125  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2126  * filling zeros between @physical_pos to a write pointer of dev-replace
2127  * source device.
2128  */
btrfs_sync_zone_write_pointer(struct btrfs_device * tgt_dev,u64 logical,u64 physical_start,u64 physical_pos)2129 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2130 				    u64 physical_start, u64 physical_pos)
2131 {
2132 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2133 	struct blk_zone zone;
2134 	u64 length;
2135 	u64 wp;
2136 	int ret;
2137 
2138 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2139 		return 0;
2140 
2141 	ret = read_zone_info(fs_info, logical, &zone);
2142 	if (ret)
2143 		return ret;
2144 
2145 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2146 
2147 	if (physical_pos == wp)
2148 		return 0;
2149 
2150 	if (unlikely(physical_pos > wp))
2151 		return -EUCLEAN;
2152 
2153 	length = wp - physical_pos;
2154 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2155 }
2156 
2157 /*
2158  * Activate block group and underlying device zones
2159  *
2160  * @block_group: the block group to activate
2161  *
2162  * Return: true on success, false otherwise
2163  */
btrfs_zone_activate(struct btrfs_block_group * block_group)2164 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2165 {
2166 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2167 	struct btrfs_chunk_map *map;
2168 	struct btrfs_device *device;
2169 	u64 physical;
2170 	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2171 	bool ret;
2172 	int i;
2173 
2174 	if (!btrfs_is_zoned(block_group->fs_info))
2175 		return true;
2176 
2177 	map = block_group->physical_map;
2178 
2179 	spin_lock(&fs_info->zone_active_bgs_lock);
2180 	spin_lock(&block_group->lock);
2181 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2182 		ret = true;
2183 		goto out_unlock;
2184 	}
2185 
2186 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) {
2187 		/* The caller should check if the block group is full. */
2188 		if (WARN_ON_ONCE(btrfs_zoned_bg_is_full(block_group))) {
2189 			ret = false;
2190 			goto out_unlock;
2191 		}
2192 	} else {
2193 		/* Since it is already written, it should have been active. */
2194 		WARN_ON_ONCE(block_group->meta_write_pointer != block_group->start);
2195 	}
2196 
2197 	for (i = 0; i < map->num_stripes; i++) {
2198 		struct btrfs_zoned_device_info *zinfo;
2199 		int reserved = 0;
2200 
2201 		device = map->stripes[i].dev;
2202 		physical = map->stripes[i].physical;
2203 		zinfo = device->zone_info;
2204 
2205 		if (!device->bdev)
2206 			continue;
2207 
2208 		if (zinfo->max_active_zones == 0)
2209 			continue;
2210 
2211 		if (is_data)
2212 			reserved = zinfo->reserved_active_zones;
2213 		/*
2214 		 * For the data block group, leave active zones for one
2215 		 * metadata block group and one system block group.
2216 		 */
2217 		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2218 			ret = false;
2219 			goto out_unlock;
2220 		}
2221 
2222 		if (!btrfs_dev_set_active_zone(device, physical)) {
2223 			/* Cannot activate the zone */
2224 			ret = false;
2225 			goto out_unlock;
2226 		}
2227 		if (!is_data)
2228 			zinfo->reserved_active_zones--;
2229 	}
2230 
2231 	/* Successfully activated all the zones */
2232 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2233 	spin_unlock(&block_group->lock);
2234 
2235 	/* For the active block group list */
2236 	btrfs_get_block_group(block_group);
2237 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2238 	spin_unlock(&fs_info->zone_active_bgs_lock);
2239 
2240 	return true;
2241 
2242 out_unlock:
2243 	spin_unlock(&block_group->lock);
2244 	spin_unlock(&fs_info->zone_active_bgs_lock);
2245 	return ret;
2246 }
2247 
wait_eb_writebacks(struct btrfs_block_group * block_group)2248 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2249 {
2250 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2251 	const u64 end = block_group->start + block_group->length;
2252 	struct extent_buffer *eb;
2253 	unsigned long index, start = (block_group->start >> fs_info->nodesize_bits);
2254 
2255 	rcu_read_lock();
2256 	xa_for_each_start(&fs_info->buffer_tree, index, eb, start) {
2257 		if (eb->start < block_group->start)
2258 			continue;
2259 		if (eb->start >= end)
2260 			break;
2261 		rcu_read_unlock();
2262 		wait_on_extent_buffer_writeback(eb);
2263 		rcu_read_lock();
2264 	}
2265 	rcu_read_unlock();
2266 }
2267 
call_zone_finish(struct btrfs_block_group * block_group,struct btrfs_io_stripe * stripe)2268 static int call_zone_finish(struct btrfs_block_group *block_group,
2269 			    struct btrfs_io_stripe *stripe)
2270 {
2271 	struct btrfs_device *device = stripe->dev;
2272 	const u64 physical = stripe->physical;
2273 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
2274 	int ret;
2275 
2276 	if (!device->bdev)
2277 		return 0;
2278 
2279 	if (zinfo->max_active_zones == 0)
2280 		return 0;
2281 
2282 	if (btrfs_dev_is_sequential(device, physical)) {
2283 		unsigned int nofs_flags;
2284 
2285 		nofs_flags = memalloc_nofs_save();
2286 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2287 				       physical >> SECTOR_SHIFT,
2288 				       zinfo->zone_size >> SECTOR_SHIFT);
2289 		memalloc_nofs_restore(nofs_flags);
2290 
2291 		if (ret)
2292 			return ret;
2293 	}
2294 
2295 	if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2296 		zinfo->reserved_active_zones++;
2297 	btrfs_dev_clear_active_zone(device, physical);
2298 
2299 	return 0;
2300 }
2301 
do_zone_finish(struct btrfs_block_group * block_group,bool fully_written)2302 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2303 {
2304 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2305 	struct btrfs_chunk_map *map;
2306 	const bool is_metadata = (block_group->flags &
2307 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2308 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2309 	int ret = 0;
2310 	int i;
2311 
2312 	spin_lock(&block_group->lock);
2313 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2314 		spin_unlock(&block_group->lock);
2315 		return 0;
2316 	}
2317 
2318 	/* Check if we have unwritten allocated space */
2319 	if (is_metadata &&
2320 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2321 		spin_unlock(&block_group->lock);
2322 		return -EAGAIN;
2323 	}
2324 
2325 	/*
2326 	 * If we are sure that the block group is full (= no more room left for
2327 	 * new allocation) and the IO for the last usable block is completed, we
2328 	 * don't need to wait for the other IOs. This holds because we ensure
2329 	 * the sequential IO submissions using the ZONE_APPEND command for data
2330 	 * and block_group->meta_write_pointer for metadata.
2331 	 */
2332 	if (!fully_written) {
2333 		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2334 			spin_unlock(&block_group->lock);
2335 			return -EAGAIN;
2336 		}
2337 		spin_unlock(&block_group->lock);
2338 
2339 		ret = btrfs_inc_block_group_ro(block_group, false);
2340 		if (ret)
2341 			return ret;
2342 
2343 		/* Ensure all writes in this block group finish */
2344 		btrfs_wait_block_group_reservations(block_group);
2345 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2346 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2347 		/* Wait for extent buffers to be written. */
2348 		if (is_metadata)
2349 			wait_eb_writebacks(block_group);
2350 
2351 		spin_lock(&block_group->lock);
2352 
2353 		/*
2354 		 * Bail out if someone already deactivated the block group, or
2355 		 * allocated space is left in the block group.
2356 		 */
2357 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2358 			      &block_group->runtime_flags)) {
2359 			spin_unlock(&block_group->lock);
2360 			btrfs_dec_block_group_ro(block_group);
2361 			return 0;
2362 		}
2363 
2364 		if (block_group->reserved ||
2365 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2366 			     &block_group->runtime_flags)) {
2367 			spin_unlock(&block_group->lock);
2368 			btrfs_dec_block_group_ro(block_group);
2369 			return -EAGAIN;
2370 		}
2371 	}
2372 
2373 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2374 	block_group->alloc_offset = block_group->zone_capacity;
2375 	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2376 		block_group->meta_write_pointer = block_group->start +
2377 						  block_group->zone_capacity;
2378 	block_group->free_space_ctl->free_space = 0;
2379 	btrfs_clear_treelog_bg(block_group);
2380 	btrfs_clear_data_reloc_bg(block_group);
2381 	spin_unlock(&block_group->lock);
2382 
2383 	down_read(&dev_replace->rwsem);
2384 	map = block_group->physical_map;
2385 	for (i = 0; i < map->num_stripes; i++) {
2386 
2387 		ret = call_zone_finish(block_group, &map->stripes[i]);
2388 		if (ret) {
2389 			up_read(&dev_replace->rwsem);
2390 			return ret;
2391 		}
2392 	}
2393 	up_read(&dev_replace->rwsem);
2394 
2395 	if (!fully_written)
2396 		btrfs_dec_block_group_ro(block_group);
2397 
2398 	spin_lock(&fs_info->zone_active_bgs_lock);
2399 	ASSERT(!list_empty(&block_group->active_bg_list));
2400 	list_del_init(&block_group->active_bg_list);
2401 	spin_unlock(&fs_info->zone_active_bgs_lock);
2402 
2403 	/* For active_bg_list */
2404 	btrfs_put_block_group(block_group);
2405 
2406 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2407 
2408 	return 0;
2409 }
2410 
btrfs_zone_finish(struct btrfs_block_group * block_group)2411 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2412 {
2413 	if (!btrfs_is_zoned(block_group->fs_info))
2414 		return 0;
2415 
2416 	return do_zone_finish(block_group, false);
2417 }
2418 
btrfs_can_activate_zone(struct btrfs_fs_devices * fs_devices,u64 flags)2419 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2420 {
2421 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2422 	struct btrfs_device *device;
2423 	bool ret = false;
2424 
2425 	if (!btrfs_is_zoned(fs_info))
2426 		return true;
2427 
2428 	if (test_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags))
2429 		return false;
2430 
2431 	/* Check if there is a device with active zones left */
2432 	mutex_lock(&fs_info->chunk_mutex);
2433 	spin_lock(&fs_info->zone_active_bgs_lock);
2434 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2435 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2436 		int reserved = 0;
2437 
2438 		if (!device->bdev)
2439 			continue;
2440 
2441 		if (!zinfo->max_active_zones) {
2442 			ret = true;
2443 			break;
2444 		}
2445 
2446 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2447 			reserved = zinfo->reserved_active_zones;
2448 
2449 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2450 		case 0: /* single */
2451 			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2452 			break;
2453 		case BTRFS_BLOCK_GROUP_DUP:
2454 			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2455 			break;
2456 		}
2457 		if (ret)
2458 			break;
2459 	}
2460 	spin_unlock(&fs_info->zone_active_bgs_lock);
2461 	mutex_unlock(&fs_info->chunk_mutex);
2462 
2463 	if (!ret)
2464 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2465 
2466 	return ret;
2467 }
2468 
btrfs_zone_finish_endio(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2469 int btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2470 {
2471 	struct btrfs_block_group *block_group;
2472 	u64 min_alloc_bytes;
2473 
2474 	if (!btrfs_is_zoned(fs_info))
2475 		return 0;
2476 
2477 	block_group = btrfs_lookup_block_group(fs_info, logical);
2478 	if (WARN_ON_ONCE(!block_group))
2479 		return -ENOENT;
2480 
2481 	/* No MIXED_BG on zoned btrfs. */
2482 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2483 		min_alloc_bytes = fs_info->sectorsize;
2484 	else
2485 		min_alloc_bytes = fs_info->nodesize;
2486 
2487 	/* Bail out if we can allocate more data from this block group. */
2488 	if (logical + length + min_alloc_bytes <=
2489 	    block_group->start + block_group->zone_capacity)
2490 		goto out;
2491 
2492 	do_zone_finish(block_group, true);
2493 
2494 out:
2495 	btrfs_put_block_group(block_group);
2496 	return 0;
2497 }
2498 
btrfs_zone_finish_endio_workfn(struct work_struct * work)2499 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2500 {
2501 	int ret;
2502 	struct btrfs_block_group *bg =
2503 		container_of(work, struct btrfs_block_group, zone_finish_work);
2504 
2505 	wait_on_extent_buffer_writeback(bg->last_eb);
2506 	free_extent_buffer(bg->last_eb);
2507 	ret = do_zone_finish(bg, true);
2508 	if (ret)
2509 		btrfs_handle_fs_error(bg->fs_info, ret,
2510 				      "Failed to finish block-group's zone");
2511 	btrfs_put_block_group(bg);
2512 }
2513 
btrfs_schedule_zone_finish_bg(struct btrfs_block_group * bg,struct extent_buffer * eb)2514 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2515 				   struct extent_buffer *eb)
2516 {
2517 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2518 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2519 		return;
2520 
2521 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2522 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2523 			  bg->start);
2524 		return;
2525 	}
2526 
2527 	/* For the work */
2528 	btrfs_get_block_group(bg);
2529 	refcount_inc(&eb->refs);
2530 	bg->last_eb = eb;
2531 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2532 	queue_work(system_dfl_wq, &bg->zone_finish_work);
2533 }
2534 
btrfs_clear_data_reloc_bg(struct btrfs_block_group * bg)2535 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2536 {
2537 	struct btrfs_fs_info *fs_info = bg->fs_info;
2538 
2539 	spin_lock(&fs_info->relocation_bg_lock);
2540 	if (fs_info->data_reloc_bg == bg->start)
2541 		fs_info->data_reloc_bg = 0;
2542 	spin_unlock(&fs_info->relocation_bg_lock);
2543 }
2544 
btrfs_zoned_reserve_data_reloc_bg(struct btrfs_fs_info * fs_info)2545 void btrfs_zoned_reserve_data_reloc_bg(struct btrfs_fs_info *fs_info)
2546 {
2547 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
2548 	struct btrfs_space_info *space_info = data_sinfo;
2549 	struct btrfs_trans_handle *trans;
2550 	struct btrfs_block_group *bg;
2551 	struct list_head *bg_list;
2552 	u64 alloc_flags;
2553 	bool first = true;
2554 	bool did_chunk_alloc = false;
2555 	int index;
2556 	int ret;
2557 
2558 	if (!btrfs_is_zoned(fs_info))
2559 		return;
2560 
2561 	if (fs_info->data_reloc_bg)
2562 		return;
2563 
2564 	if (sb_rdonly(fs_info->sb))
2565 		return;
2566 
2567 	alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags);
2568 	index = btrfs_bg_flags_to_raid_index(alloc_flags);
2569 
2570 	/* Scan the data space_info to find empty block groups. Take the second one. */
2571 again:
2572 	bg_list = &space_info->block_groups[index];
2573 	list_for_each_entry(bg, bg_list, list) {
2574 		if (bg->alloc_offset != 0)
2575 			continue;
2576 
2577 		if (first) {
2578 			first = false;
2579 			continue;
2580 		}
2581 
2582 		if (space_info == data_sinfo) {
2583 			/* Migrate the block group to the data relocation space_info. */
2584 			struct btrfs_space_info *reloc_sinfo = data_sinfo->sub_group[0];
2585 			int factor;
2586 
2587 			ASSERT(reloc_sinfo->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC,
2588 			       "reloc_sinfo->subgroup_id=%d", reloc_sinfo->subgroup_id);
2589 			factor = btrfs_bg_type_to_factor(bg->flags);
2590 
2591 			down_write(&space_info->groups_sem);
2592 			list_del_init(&bg->list);
2593 			/* We can assume this as we choose the second empty one. */
2594 			ASSERT(!list_empty(&space_info->block_groups[index]));
2595 			up_write(&space_info->groups_sem);
2596 
2597 			spin_lock(&space_info->lock);
2598 			space_info->total_bytes -= bg->length;
2599 			space_info->disk_total -= bg->length * factor;
2600 			space_info->disk_total -= bg->zone_unusable;
2601 			/* There is no allocation ever happened. */
2602 			ASSERT(bg->used == 0, "bg->used=%llu", bg->used);
2603 			/* No super block in a block group on the zoned setup. */
2604 			ASSERT(bg->bytes_super == 0, "bg->bytes_super=%llu", bg->bytes_super);
2605 			spin_unlock(&space_info->lock);
2606 
2607 			bg->space_info = reloc_sinfo;
2608 			if (reloc_sinfo->block_group_kobjs[index] == NULL)
2609 				btrfs_sysfs_add_block_group_type(bg);
2610 
2611 			btrfs_add_bg_to_space_info(fs_info, bg);
2612 		}
2613 
2614 		fs_info->data_reloc_bg = bg->start;
2615 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &bg->runtime_flags);
2616 		btrfs_zone_activate(bg);
2617 
2618 		return;
2619 	}
2620 
2621 	if (did_chunk_alloc)
2622 		return;
2623 
2624 	trans = btrfs_join_transaction(fs_info->tree_root);
2625 	if (IS_ERR(trans))
2626 		return;
2627 
2628 	/* Allocate new BG in the data relocation space_info. */
2629 	space_info = data_sinfo->sub_group[0];
2630 	ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC,
2631 	       "space_info->subgroup_id=%d", space_info->subgroup_id);
2632 	ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
2633 	btrfs_end_transaction(trans);
2634 	if (ret == 1) {
2635 		/*
2636 		 * We allocated a new block group in the data relocation space_info. We
2637 		 * can take that one.
2638 		 */
2639 		first = false;
2640 		did_chunk_alloc = true;
2641 		goto again;
2642 	}
2643 }
2644 
btrfs_free_zone_cache(struct btrfs_fs_info * fs_info)2645 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2646 {
2647 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2648 	struct btrfs_device *device;
2649 
2650 	if (!btrfs_is_zoned(fs_info))
2651 		return;
2652 
2653 	mutex_lock(&fs_devices->device_list_mutex);
2654 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2655 		if (device->zone_info) {
2656 			vfree(device->zone_info->zone_cache);
2657 			device->zone_info->zone_cache = NULL;
2658 		}
2659 	}
2660 	mutex_unlock(&fs_devices->device_list_mutex);
2661 }
2662 
btrfs_zoned_should_reclaim(const struct btrfs_fs_info * fs_info)2663 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
2664 {
2665 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2666 	struct btrfs_device *device;
2667 	u64 total = btrfs_super_total_bytes(fs_info->super_copy);
2668 	u64 used = 0;
2669 	u64 factor;
2670 
2671 	ASSERT(btrfs_is_zoned(fs_info));
2672 
2673 	if (fs_info->bg_reclaim_threshold == 0)
2674 		return false;
2675 
2676 	mutex_lock(&fs_devices->device_list_mutex);
2677 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2678 		if (!device->bdev)
2679 			continue;
2680 
2681 		used += device->bytes_used;
2682 	}
2683 	mutex_unlock(&fs_devices->device_list_mutex);
2684 
2685 	factor = div64_u64(used * 100, total);
2686 	return factor >= fs_info->bg_reclaim_threshold;
2687 }
2688 
btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2689 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2690 				       u64 length)
2691 {
2692 	struct btrfs_block_group *block_group;
2693 
2694 	if (!btrfs_is_zoned(fs_info))
2695 		return;
2696 
2697 	block_group = btrfs_lookup_block_group(fs_info, logical);
2698 	/* It should be called on a previous data relocation block group. */
2699 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2700 
2701 	spin_lock(&block_group->lock);
2702 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2703 		goto out;
2704 
2705 	/* All relocation extents are written. */
2706 	if (block_group->start + block_group->alloc_offset == logical + length) {
2707 		/*
2708 		 * Now, release this block group for further allocations and
2709 		 * zone finish.
2710 		 */
2711 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2712 			  &block_group->runtime_flags);
2713 	}
2714 
2715 out:
2716 	spin_unlock(&block_group->lock);
2717 	btrfs_put_block_group(block_group);
2718 }
2719 
btrfs_zone_finish_one_bg(struct btrfs_fs_info * fs_info)2720 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2721 {
2722 	struct btrfs_block_group *block_group;
2723 	struct btrfs_block_group *min_bg = NULL;
2724 	u64 min_avail = U64_MAX;
2725 	int ret;
2726 
2727 	spin_lock(&fs_info->zone_active_bgs_lock);
2728 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2729 			    active_bg_list) {
2730 		u64 avail;
2731 
2732 		spin_lock(&block_group->lock);
2733 		if (block_group->reserved || block_group->alloc_offset == 0 ||
2734 		    !(block_group->flags & BTRFS_BLOCK_GROUP_DATA) ||
2735 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2736 			spin_unlock(&block_group->lock);
2737 			continue;
2738 		}
2739 
2740 		avail = block_group->zone_capacity - block_group->alloc_offset;
2741 		if (min_avail > avail) {
2742 			if (min_bg)
2743 				btrfs_put_block_group(min_bg);
2744 			min_bg = block_group;
2745 			min_avail = avail;
2746 			btrfs_get_block_group(min_bg);
2747 		}
2748 		spin_unlock(&block_group->lock);
2749 	}
2750 	spin_unlock(&fs_info->zone_active_bgs_lock);
2751 
2752 	if (!min_bg)
2753 		return 0;
2754 
2755 	ret = btrfs_zone_finish(min_bg);
2756 	btrfs_put_block_group(min_bg);
2757 
2758 	return ret < 0 ? ret : 1;
2759 }
2760 
btrfs_zoned_activate_one_bg(struct btrfs_space_info * space_info,bool do_finish)2761 int btrfs_zoned_activate_one_bg(struct btrfs_space_info *space_info, bool do_finish)
2762 {
2763 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2764 	struct btrfs_block_group *bg;
2765 	int index;
2766 
2767 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2768 		return 0;
2769 
2770 	for (;;) {
2771 		int ret;
2772 		bool need_finish = false;
2773 
2774 		down_read(&space_info->groups_sem);
2775 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2776 			list_for_each_entry(bg, &space_info->block_groups[index],
2777 					    list) {
2778 				if (!spin_trylock(&bg->lock))
2779 					continue;
2780 				if (btrfs_zoned_bg_is_full(bg) ||
2781 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2782 					     &bg->runtime_flags)) {
2783 					spin_unlock(&bg->lock);
2784 					continue;
2785 				}
2786 				spin_unlock(&bg->lock);
2787 
2788 				if (btrfs_zone_activate(bg)) {
2789 					up_read(&space_info->groups_sem);
2790 					return 1;
2791 				}
2792 
2793 				need_finish = true;
2794 			}
2795 		}
2796 		up_read(&space_info->groups_sem);
2797 
2798 		if (!do_finish || !need_finish)
2799 			break;
2800 
2801 		ret = btrfs_zone_finish_one_bg(fs_info);
2802 		if (ret == 0)
2803 			break;
2804 		if (ret < 0)
2805 			return ret;
2806 	}
2807 
2808 	return 0;
2809 }
2810 
2811 /*
2812  * Reserve zones for one metadata block group, one tree-log block group, and one
2813  * system block group.
2814  */
btrfs_check_active_zone_reservation(struct btrfs_fs_info * fs_info)2815 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2816 {
2817 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2818 	struct btrfs_block_group *block_group;
2819 	struct btrfs_device *device;
2820 	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2821 	unsigned int metadata_reserve = 2;
2822 	/* Reserve a zone for SINGLE system block group. */
2823 	unsigned int system_reserve = 1;
2824 
2825 	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2826 		return;
2827 
2828 	/*
2829 	 * This function is called from the mount context. So, there is no
2830 	 * parallel process touching the bits. No need for read_seqretry().
2831 	 */
2832 	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2833 		metadata_reserve = 4;
2834 	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2835 		system_reserve = 2;
2836 
2837 	/* Apply the reservation on all the devices. */
2838 	mutex_lock(&fs_devices->device_list_mutex);
2839 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2840 		if (!device->bdev)
2841 			continue;
2842 
2843 		device->zone_info->reserved_active_zones =
2844 			metadata_reserve + system_reserve;
2845 	}
2846 	mutex_unlock(&fs_devices->device_list_mutex);
2847 
2848 	/* Release reservation for currently active block groups. */
2849 	spin_lock(&fs_info->zone_active_bgs_lock);
2850 	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2851 		struct btrfs_chunk_map *map = block_group->physical_map;
2852 
2853 		if (!(block_group->flags &
2854 		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2855 			continue;
2856 
2857 		for (int i = 0; i < map->num_stripes; i++)
2858 			map->stripes[i].dev->zone_info->reserved_active_zones--;
2859 	}
2860 	spin_unlock(&fs_info->zone_active_bgs_lock);
2861 }
2862 
2863 /*
2864  * Reset the zones of unused block groups from @space_info->bytes_zone_unusable.
2865  *
2866  * @space_info:	the space to work on
2867  * @num_bytes:	targeting reclaim bytes
2868  *
2869  * This one resets the zones of a block group, so we can reuse the region
2870  * without removing the block group. On the other hand, btrfs_delete_unused_bgs()
2871  * just removes a block group and frees up the underlying zones. So, we still
2872  * need to allocate a new block group to reuse the zones.
2873  *
2874  * Resetting is faster than deleting/recreating a block group. It is similar
2875  * to freeing the logical space on the regular mode. However, we cannot change
2876  * the block group's profile with this operation.
2877  */
btrfs_reset_unused_block_groups(struct btrfs_space_info * space_info,u64 num_bytes)2878 int btrfs_reset_unused_block_groups(struct btrfs_space_info *space_info, u64 num_bytes)
2879 {
2880 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2881 	const sector_t zone_size_sectors = fs_info->zone_size >> SECTOR_SHIFT;
2882 
2883 	if (!btrfs_is_zoned(fs_info))
2884 		return 0;
2885 
2886 	while (num_bytes > 0) {
2887 		struct btrfs_chunk_map *map;
2888 		struct btrfs_block_group *bg = NULL;
2889 		bool found = false;
2890 		u64 reclaimed = 0;
2891 
2892 		/*
2893 		 * Here, we choose a fully zone_unusable block group. It's
2894 		 * technically possible to reset a partly zone_unusable block
2895 		 * group, which still has some free space left. However,
2896 		 * handling that needs to cope with the allocation side, which
2897 		 * makes the logic more complex. So, let's handle the easy case
2898 		 * for now.
2899 		 */
2900 		spin_lock(&fs_info->unused_bgs_lock);
2901 		list_for_each_entry(bg, &fs_info->unused_bgs, bg_list) {
2902 			if ((bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != space_info->flags)
2903 				continue;
2904 
2905 			/*
2906 			 * Use trylock to avoid locking order violation. In
2907 			 * btrfs_reclaim_bgs_work(), the lock order is
2908 			 * &bg->lock -> &fs_info->unused_bgs_lock. We skip a
2909 			 * block group if we cannot take its lock.
2910 			 */
2911 			if (!spin_trylock(&bg->lock))
2912 				continue;
2913 			if (btrfs_is_block_group_used(bg) || bg->zone_unusable < bg->length) {
2914 				spin_unlock(&bg->lock);
2915 				continue;
2916 			}
2917 			spin_unlock(&bg->lock);
2918 			found = true;
2919 			break;
2920 		}
2921 		if (!found) {
2922 			spin_unlock(&fs_info->unused_bgs_lock);
2923 			return 0;
2924 		}
2925 
2926 		list_del_init(&bg->bg_list);
2927 		btrfs_put_block_group(bg);
2928 		spin_unlock(&fs_info->unused_bgs_lock);
2929 
2930 		/*
2931 		 * Since the block group is fully zone_unusable and we cannot
2932 		 * allocate from this block group anymore, we don't need to set
2933 		 * this block group read-only.
2934 		 */
2935 
2936 		down_read(&fs_info->dev_replace.rwsem);
2937 		map = bg->physical_map;
2938 		for (int i = 0; i < map->num_stripes; i++) {
2939 			struct btrfs_io_stripe *stripe = &map->stripes[i];
2940 			unsigned int nofs_flags;
2941 			int ret;
2942 
2943 			nofs_flags = memalloc_nofs_save();
2944 			ret = blkdev_zone_mgmt(stripe->dev->bdev, REQ_OP_ZONE_RESET,
2945 					       stripe->physical >> SECTOR_SHIFT,
2946 					       zone_size_sectors);
2947 			memalloc_nofs_restore(nofs_flags);
2948 
2949 			if (ret) {
2950 				up_read(&fs_info->dev_replace.rwsem);
2951 				return ret;
2952 			}
2953 		}
2954 		up_read(&fs_info->dev_replace.rwsem);
2955 
2956 		spin_lock(&space_info->lock);
2957 		spin_lock(&bg->lock);
2958 		ASSERT(!btrfs_is_block_group_used(bg));
2959 		if (bg->ro) {
2960 			spin_unlock(&bg->lock);
2961 			spin_unlock(&space_info->lock);
2962 			continue;
2963 		}
2964 
2965 		reclaimed = bg->alloc_offset;
2966 		bg->zone_unusable = bg->length - bg->zone_capacity;
2967 		bg->alloc_offset = 0;
2968 		/*
2969 		 * This holds because we currently reset fully used then freed
2970 		 * block group.
2971 		 */
2972 		ASSERT(reclaimed == bg->zone_capacity,
2973 		       "reclaimed=%llu bg->zone_capacity=%llu", reclaimed, bg->zone_capacity);
2974 		bg->free_space_ctl->free_space += reclaimed;
2975 		space_info->bytes_zone_unusable -= reclaimed;
2976 		spin_unlock(&bg->lock);
2977 		btrfs_return_free_space(space_info, reclaimed);
2978 		spin_unlock(&space_info->lock);
2979 
2980 		if (num_bytes <= reclaimed)
2981 			break;
2982 		num_bytes -= reclaimed;
2983 	}
2984 
2985 	return 0;
2986 }
2987