1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/pinctrl/consumer.h>
13 #include <linux/pm_qos.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
23
24 #include "fsl_sai.h"
25 #include "fsl_utils.h"
26 #include "imx-pcm.h"
27
28 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
29 FSL_SAI_CSR_FEIE)
30
31 static const unsigned int fsl_sai_rates[] = {
32 8000, 11025, 12000, 16000, 22050,
33 24000, 32000, 44100, 48000, 64000,
34 88200, 96000, 176400, 192000, 352800,
35 384000, 705600, 768000, 1411200, 2822400,
36 };
37
38 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
39 .count = ARRAY_SIZE(fsl_sai_rates),
40 .list = fsl_sai_rates,
41 };
42
43 /**
44 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
45 *
46 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
47 * or Receiver's for both streams. This function is used to check if clocks of
48 * the stream's are synced by the opposite stream.
49 *
50 * @sai: SAI context
51 * @dir: stream direction
52 */
fsl_sai_dir_is_synced(struct fsl_sai * sai,int dir)53 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
54 {
55 int adir = (dir == TX) ? RX : TX;
56
57 /* current dir in async mode while opposite dir in sync mode */
58 return !sai->synchronous[dir] && sai->synchronous[adir];
59 }
60
fsl_sai_get_pins_state(struct fsl_sai * sai,u32 bclk)61 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
62 {
63 struct pinctrl_state *state = NULL;
64
65 if (sai->is_pdm_mode) {
66 /* DSD512@44.1kHz, DSD512@48kHz */
67 if (bclk >= 22579200)
68 state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
69
70 /* Get default DSD state */
71 if (IS_ERR_OR_NULL(state))
72 state = pinctrl_lookup_state(sai->pinctrl, "dsd");
73 } else {
74 /* 706k32b2c, 768k32b2c, etc */
75 if (bclk >= 45158400)
76 state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
77 }
78
79 /* Get default state */
80 if (IS_ERR_OR_NULL(state))
81 state = pinctrl_lookup_state(sai->pinctrl, "default");
82
83 return state;
84 }
85
fsl_sai_isr(int irq,void * devid)86 static irqreturn_t fsl_sai_isr(int irq, void *devid)
87 {
88 struct fsl_sai *sai = (struct fsl_sai *)devid;
89 unsigned int ofs = sai->soc_data->reg_offset;
90 struct device *dev = &sai->pdev->dev;
91 u32 flags, xcsr, mask;
92 irqreturn_t iret = IRQ_NONE;
93
94 /*
95 * Both IRQ status bits and IRQ mask bits are in the xCSR but
96 * different shifts. And we here create a mask only for those
97 * IRQs that we activated.
98 */
99 mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
100
101 /* Tx IRQ */
102 regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
103 flags = xcsr & mask;
104
105 if (flags)
106 iret = IRQ_HANDLED;
107 else
108 goto irq_rx;
109
110 if (flags & FSL_SAI_CSR_WSF)
111 dev_dbg(dev, "isr: Start of Tx word detected\n");
112
113 if (flags & FSL_SAI_CSR_SEF)
114 dev_dbg(dev, "isr: Tx Frame sync error detected\n");
115
116 if (flags & FSL_SAI_CSR_FEF)
117 dev_dbg(dev, "isr: Transmit underrun detected\n");
118
119 if (flags & FSL_SAI_CSR_FWF)
120 dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
121
122 if (flags & FSL_SAI_CSR_FRF)
123 dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
124
125 flags &= FSL_SAI_CSR_xF_W_MASK;
126 xcsr &= ~FSL_SAI_CSR_xF_MASK;
127
128 if (flags)
129 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
130
131 irq_rx:
132 /* Rx IRQ */
133 regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
134 flags = xcsr & mask;
135
136 if (flags)
137 iret = IRQ_HANDLED;
138 else
139 goto out;
140
141 if (flags & FSL_SAI_CSR_WSF)
142 dev_dbg(dev, "isr: Start of Rx word detected\n");
143
144 if (flags & FSL_SAI_CSR_SEF)
145 dev_dbg(dev, "isr: Rx Frame sync error detected\n");
146
147 if (flags & FSL_SAI_CSR_FEF)
148 dev_dbg(dev, "isr: Receive overflow detected\n");
149
150 if (flags & FSL_SAI_CSR_FWF)
151 dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
152
153 if (flags & FSL_SAI_CSR_FRF)
154 dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
155
156 flags &= FSL_SAI_CSR_xF_W_MASK;
157 xcsr &= ~FSL_SAI_CSR_xF_MASK;
158
159 if (flags)
160 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
161
162 out:
163 return iret;
164 }
165
fsl_sai_set_dai_tdm_slot_tx(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)166 static int fsl_sai_set_dai_tdm_slot_tx(struct snd_soc_dai *cpu_dai, u32 tx_mask,
167 u32 rx_mask, int slots, int slot_width)
168 {
169 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
170 bool tx = true;
171
172 sai->slots[tx] = slots;
173 sai->slot_width[tx] = slot_width;
174
175 return 0;
176 }
177
fsl_sai_set_dai_tdm_slot_rx(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)178 static int fsl_sai_set_dai_tdm_slot_rx(struct snd_soc_dai *cpu_dai, u32 tx_mask,
179 u32 rx_mask, int slots, int slot_width)
180 {
181 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
182 bool tx = false;
183
184 sai->slots[tx] = slots;
185 sai->slot_width[tx] = slot_width;
186
187 return 0;
188 }
189
fsl_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)190 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
191 u32 rx_mask, int slots, int slot_width)
192 {
193 int ret;
194
195 ret = fsl_sai_set_dai_tdm_slot_tx(cpu_dai, tx_mask, rx_mask, slots, slot_width);
196 if (ret)
197 return ret;
198
199 return fsl_sai_set_dai_tdm_slot_rx(cpu_dai, tx_mask, rx_mask, slots, slot_width);
200 }
201
fsl_sai_xlate_tdm_slot_mask(unsigned int slots,unsigned int * tx_mask,unsigned int * rx_mask)202 static int fsl_sai_xlate_tdm_slot_mask(unsigned int slots,
203 unsigned int *tx_mask, unsigned int *rx_mask)
204 {
205 /* Leave it empty, don't change the value of tx_mask and rx_mask */
206 return 0;
207 }
208
fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai * dai,unsigned int ratio)209 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
210 unsigned int ratio)
211 {
212 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
213
214 sai->bclk_ratio = ratio;
215
216 return 0;
217 }
218
fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,bool tx)219 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
220 int clk_id, unsigned int freq, bool tx)
221 {
222 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
223 unsigned int ofs = sai->soc_data->reg_offset;
224 u32 val_cr2 = 0;
225
226 switch (clk_id) {
227 case FSL_SAI_CLK_BUS:
228 val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
229 break;
230 case FSL_SAI_CLK_MAST1:
231 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
232 break;
233 case FSL_SAI_CLK_MAST2:
234 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
235 break;
236 case FSL_SAI_CLK_MAST3:
237 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
238 break;
239 default:
240 return -EINVAL;
241 }
242
243 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
244 FSL_SAI_CR2_MSEL_MASK, val_cr2);
245
246 return 0;
247 }
248
fsl_sai_set_mclk_rate(struct snd_soc_dai * dai,int clk_id,unsigned int freq)249 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
250 {
251 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
252 int ret;
253
254 fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
255 sai->pll8k_clk, sai->pll11k_clk, freq);
256
257 ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
258 if (ret < 0)
259 dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
260
261 return ret;
262 }
263
fsl_sai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)264 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
265 int clk_id, unsigned int freq, int dir)
266 {
267 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
268 int ret;
269
270 if (dir == SND_SOC_CLOCK_IN)
271 return 0;
272
273 if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
274 dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
275 return -EINVAL;
276 }
277
278 if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
279 dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
280 return -EINVAL;
281 }
282
283 if (sai->mclk_streams == 0 && freq > 0) {
284 ret = fsl_sai_set_mclk_rate(cpu_dai,
285 clk_id ? clk_id : FSL_SAI_CLK_MAST1,
286 freq);
287 if (ret < 0)
288 return ret;
289 }
290
291 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
292 if (ret) {
293 dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
294 return ret;
295 }
296
297 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
298 if (ret)
299 dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
300
301 return ret;
302 }
303
fsl_sai_set_dai_fmt_tr(struct snd_soc_dai * cpu_dai,unsigned int fmt,bool tx)304 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
305 unsigned int fmt, bool tx)
306 {
307 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
308 unsigned int ofs = sai->soc_data->reg_offset;
309 u32 val_cr2 = 0, val_cr4 = 0;
310
311 if (!sai->is_lsb_first)
312 val_cr4 |= FSL_SAI_CR4_MF;
313
314 sai->is_pdm_mode = false;
315 sai->is_dsp_mode[tx] = false;
316 /* DAI mode */
317 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
318 case SND_SOC_DAIFMT_I2S:
319 /*
320 * Frame low, 1clk before data, one word length for frame sync,
321 * frame sync starts one serial clock cycle earlier,
322 * that is, together with the last bit of the previous
323 * data word.
324 */
325 val_cr2 |= FSL_SAI_CR2_BCP;
326 val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
327 break;
328 case SND_SOC_DAIFMT_LEFT_J:
329 /*
330 * Frame high, one word length for frame sync,
331 * frame sync asserts with the first bit of the frame.
332 */
333 val_cr2 |= FSL_SAI_CR2_BCP;
334 break;
335 case SND_SOC_DAIFMT_DSP_A:
336 /*
337 * Frame high, 1clk before data, one bit for frame sync,
338 * frame sync starts one serial clock cycle earlier,
339 * that is, together with the last bit of the previous
340 * data word.
341 */
342 val_cr2 |= FSL_SAI_CR2_BCP;
343 val_cr4 |= FSL_SAI_CR4_FSE;
344 sai->is_dsp_mode[tx] = true;
345 break;
346 case SND_SOC_DAIFMT_DSP_B:
347 /*
348 * Frame high, one bit for frame sync,
349 * frame sync asserts with the first bit of the frame.
350 */
351 val_cr2 |= FSL_SAI_CR2_BCP;
352 sai->is_dsp_mode[tx] = true;
353 break;
354 case SND_SOC_DAIFMT_PDM:
355 val_cr2 |= FSL_SAI_CR2_BCP;
356 sai->is_pdm_mode = true;
357 break;
358 case SND_SOC_DAIFMT_RIGHT_J:
359 /* To be done */
360 default:
361 return -EINVAL;
362 }
363
364 /* DAI clock inversion */
365 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
366 case SND_SOC_DAIFMT_IB_IF:
367 /* Invert both clocks */
368 val_cr2 ^= FSL_SAI_CR2_BCP;
369 val_cr4 ^= FSL_SAI_CR4_FSP;
370 break;
371 case SND_SOC_DAIFMT_IB_NF:
372 /* Invert bit clock */
373 val_cr2 ^= FSL_SAI_CR2_BCP;
374 break;
375 case SND_SOC_DAIFMT_NB_IF:
376 /* Invert frame clock */
377 val_cr4 ^= FSL_SAI_CR4_FSP;
378 break;
379 case SND_SOC_DAIFMT_NB_NF:
380 /* Nothing to do for both normal cases */
381 break;
382 default:
383 return -EINVAL;
384 }
385
386 /* DAI clock provider masks */
387 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
388 case SND_SOC_DAIFMT_BP_FP:
389 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
390 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
391 sai->is_consumer_mode[tx] = false;
392 break;
393 case SND_SOC_DAIFMT_BC_FC:
394 sai->is_consumer_mode[tx] = true;
395 break;
396 case SND_SOC_DAIFMT_BP_FC:
397 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
398 sai->is_consumer_mode[tx] = false;
399 break;
400 case SND_SOC_DAIFMT_BC_FP:
401 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
402 sai->is_consumer_mode[tx] = true;
403 break;
404 default:
405 return -EINVAL;
406 }
407
408 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
409 FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
410 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
411 FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
412 FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
413
414 return 0;
415 }
416
fsl_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)417 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
418 {
419 int ret;
420
421 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
422 if (ret) {
423 dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
424 return ret;
425 }
426
427 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
428 if (ret)
429 dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
430
431 return ret;
432 }
433
fsl_sai_set_dai_fmt_tx(struct snd_soc_dai * cpu_dai,unsigned int fmt)434 static int fsl_sai_set_dai_fmt_tx(struct snd_soc_dai *cpu_dai, unsigned int fmt)
435 {
436 return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
437 }
438
fsl_sai_set_dai_fmt_rx(struct snd_soc_dai * cpu_dai,unsigned int fmt)439 static int fsl_sai_set_dai_fmt_rx(struct snd_soc_dai *cpu_dai, unsigned int fmt)
440 {
441 return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
442 }
443
fsl_sai_set_bclk(struct snd_soc_dai * dai,bool tx,u32 freq)444 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
445 {
446 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
447 unsigned int reg, ofs = sai->soc_data->reg_offset;
448 unsigned long clk_rate;
449 u32 savediv = 0, ratio, bestdiff = freq;
450 int adir = tx ? RX : TX;
451 int dir = tx ? TX : RX;
452 u32 id;
453 bool support_1_1_ratio = sai->verid.version >= 0x0301;
454
455 /* Don't apply to consumer mode */
456 if (sai->is_consumer_mode[tx])
457 return 0;
458
459 /*
460 * There is no point in polling MCLK0 if it is identical to MCLK1.
461 * And given that MQS use case has to use MCLK1 though two clocks
462 * are the same, we simply skip MCLK0 and start to find from MCLK1.
463 */
464 id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
465
466 for (; id < FSL_SAI_MCLK_MAX; id++) {
467 int diff;
468
469 clk_rate = clk_get_rate(sai->mclk_clk[id]);
470 if (!clk_rate)
471 continue;
472
473 ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
474 if (!ratio || ratio > 512)
475 continue;
476 if (ratio == 1 && !support_1_1_ratio)
477 continue;
478 if ((ratio & 1) && ratio > 1)
479 continue;
480
481 diff = abs((long)clk_rate - ratio * freq);
482
483 /*
484 * Drop the source that can not be
485 * divided into the required rate.
486 */
487 if (diff != 0 && clk_rate / diff < 1000)
488 continue;
489
490 dev_dbg(dai->dev,
491 "ratio %d for freq %dHz based on clock %ldHz\n",
492 ratio, freq, clk_rate);
493
494
495 if (diff < bestdiff) {
496 savediv = ratio;
497 sai->mclk_id[tx] = id;
498 bestdiff = diff;
499 }
500
501 if (diff == 0)
502 break;
503 }
504
505 if (savediv == 0) {
506 dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
507 tx ? 'T' : 'R', freq);
508 return -EINVAL;
509 }
510
511 dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
512 sai->mclk_id[tx], savediv, bestdiff);
513
514 /*
515 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
516 * set TCR2 register for playback.
517 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
518 * and capture.
519 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
520 * and capture.
521 * 4) For Tx and Rx are both Synchronous with another SAI, we just
522 * ignore it.
523 */
524 if (fsl_sai_dir_is_synced(sai, adir))
525 reg = FSL_SAI_xCR2(!tx, ofs);
526 else if (!sai->synchronous[dir])
527 reg = FSL_SAI_xCR2(tx, ofs);
528 else
529 return 0;
530
531 regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
532 FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
533
534 if (savediv == 1) {
535 regmap_update_bits(sai->regmap, reg,
536 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
537 FSL_SAI_CR2_BYP);
538 if (fsl_sai_dir_is_synced(sai, adir))
539 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
540 FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
541 else
542 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
543 FSL_SAI_CR2_BCI, 0);
544 } else {
545 regmap_update_bits(sai->regmap, reg,
546 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
547 savediv / 2 - 1);
548 }
549
550 return 0;
551 }
552
fsl_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)553 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
554 struct snd_pcm_hw_params *params,
555 struct snd_soc_dai *cpu_dai)
556 {
557 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
558 unsigned int ofs = sai->soc_data->reg_offset;
559 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
560 unsigned int channels = params_channels(params);
561 struct snd_dmaengine_dai_dma_data *dma_params;
562 struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
563 u32 word_width = params_width(params);
564 int trce_mask = 0, dl_cfg_idx = 0;
565 int dl_cfg_cnt = sai->dl_cfg_cnt;
566 u32 dl_type = FSL_SAI_DL_I2S;
567 u32 val_cr4 = 0, val_cr5 = 0;
568 u32 slots = (channels == 1) ? 2 : channels;
569 u32 slot_width = word_width;
570 int adir = tx ? RX : TX;
571 u32 pins, bclk;
572 u32 watermark;
573 int ret, i;
574
575 if (sai->slot_width[tx])
576 slot_width = sai->slot_width[tx];
577
578 if (sai->slots[tx])
579 slots = sai->slots[tx];
580 else if (sai->bclk_ratio)
581 slots = sai->bclk_ratio / slot_width;
582
583 pins = DIV_ROUND_UP(channels, slots);
584
585 /*
586 * PDM mode, channels are independent
587 * each channels are on one dataline/FIFO.
588 */
589 if (sai->is_pdm_mode) {
590 pins = channels;
591 dl_type = FSL_SAI_DL_PDM;
592 }
593
594 for (i = 0; i < dl_cfg_cnt; i++) {
595 if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
596 dl_cfg_idx = i;
597 break;
598 }
599 }
600
601 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
602 dev_err(cpu_dai->dev, "channel not supported\n");
603 return -EINVAL;
604 }
605
606 bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
607
608 if (!IS_ERR_OR_NULL(sai->pinctrl)) {
609 sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
610 if (!IS_ERR_OR_NULL(sai->pins_state)) {
611 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
612 if (ret) {
613 dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
614 return ret;
615 }
616 }
617 }
618
619 if (!sai->is_consumer_mode[tx]) {
620 ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
621 if (ret)
622 return ret;
623
624 /* Do not enable the clock if it is already enabled */
625 if (!(sai->mclk_streams & BIT(substream->stream))) {
626 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
627 if (ret)
628 return ret;
629
630 sai->mclk_streams |= BIT(substream->stream);
631 }
632 }
633
634 if (!sai->is_dsp_mode[tx] && !sai->is_pdm_mode)
635 val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
636
637 val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
638 val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
639
640 if (sai->is_lsb_first)
641 val_cr5 |= FSL_SAI_CR5_FBT(0);
642 else
643 val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
644
645 val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
646
647 /* Set to avoid channel swap */
648 val_cr4 |= FSL_SAI_CR4_FCONT;
649
650 /* Set to output mode to avoid tri-stated data pins */
651 if (tx)
652 val_cr4 |= FSL_SAI_CR4_CHMOD;
653
654 /*
655 * When Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will provide bclk and
656 * frame clock for Tx(Rx). We should set RCR4(TCR4), RCR5(TCR5)
657 * for playback(capture), or there will be sync error.
658 */
659
660 if (fsl_sai_dir_is_synced(sai, adir)) {
661 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
662 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
663 FSL_SAI_CR4_CHMOD_MASK,
664 val_cr4);
665 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
666 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
667 FSL_SAI_CR5_FBT_MASK, val_cr5);
668 }
669
670 /*
671 * Combine mode has limation:
672 * - Can't used for singel dataline/FIFO case except the FIFO0
673 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
674 * are successive and start from FIFO0
675 *
676 * So for common usage, all multi fifo case disable the combine mode.
677 */
678 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
679 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
680 FSL_SAI_CR4_FCOMB_MASK, 0);
681 else
682 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
683 FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
684
685 dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
686 dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
687 dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
688
689 if (sai->is_multi_fifo_dma) {
690 sai->audio_config[tx].words_per_fifo = min(slots, channels);
691 if (tx) {
692 sai->audio_config[tx].n_fifos_dst = pins;
693 sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
694 } else {
695 sai->audio_config[tx].n_fifos_src = pins;
696 sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
697 }
698 dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
699 dma_params->peripheral_config = &sai->audio_config[tx];
700 dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
701
702 watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
703 (dma_params->maxburst - 1);
704 regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
705 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
706 watermark);
707 }
708
709 /* Find a proper tcre setting */
710 for (i = 0; i < sai->soc_data->pins; i++) {
711 trce_mask = (1 << (i + 1)) - 1;
712 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
713 break;
714 }
715
716 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
717 FSL_SAI_CR3_TRCE_MASK,
718 FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
719
720 /*
721 * When the TERE and FSD_MSTR enabled before configuring the word width
722 * There will be no frame sync clock issue, because word width impact
723 * the generation of frame sync clock.
724 *
725 * TERE enabled earlier only for i.MX8MP case for the hardware limitation,
726 * We need to disable FSD_MSTR before configuring word width, then enable
727 * FSD_MSTR bit for this specific case.
728 */
729 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
730 !sai->is_consumer_mode[tx])
731 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
732 FSL_SAI_CR4_FSD_MSTR, 0);
733
734 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
735 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
736 FSL_SAI_CR4_CHMOD_MASK | FSL_SAI_CR4_FCONT_MASK,
737 val_cr4);
738 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
739 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
740 FSL_SAI_CR5_FBT_MASK, val_cr5);
741
742 /* Enable FSD_MSTR after configuring word width */
743 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
744 !sai->is_consumer_mode[tx])
745 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
746 FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR);
747
748 regmap_write(sai->regmap, FSL_SAI_xMR(tx),
749 ~0UL - ((1 << min(channels, slots)) - 1));
750
751 return 0;
752 }
753
fsl_sai_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)754 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
755 struct snd_soc_dai *cpu_dai)
756 {
757 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
758 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
759 unsigned int ofs = sai->soc_data->reg_offset;
760
761 /* Clear xMR to avoid channel swap with mclk_with_tere enabled case */
762 regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0);
763
764 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
765 FSL_SAI_CR3_TRCE_MASK, 0);
766
767 if (!sai->is_consumer_mode[tx] &&
768 sai->mclk_streams & BIT(substream->stream)) {
769 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
770 sai->mclk_streams &= ~BIT(substream->stream);
771 }
772
773 return 0;
774 }
775
fsl_sai_config_disable(struct fsl_sai * sai,int dir)776 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
777 {
778 unsigned int ofs = sai->soc_data->reg_offset;
779 bool tx = dir == TX;
780 u32 xcsr, count = 100, mask;
781
782 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
783 mask = FSL_SAI_CSR_TERE;
784 else
785 mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE;
786
787 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
788 mask, 0);
789
790 /* TERE will remain set till the end of current frame */
791 do {
792 udelay(10);
793 regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
794 } while (--count && xcsr & FSL_SAI_CSR_TERE);
795
796 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
797 FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
798
799 /*
800 * For sai master mode, after several open/close sai,
801 * there will be no frame clock, and can't recover
802 * anymore. Add software reset to fix this issue.
803 * This is a hardware bug, and will be fix in the
804 * next sai version.
805 *
806 * In consumer mode, this can happen even after a
807 * single open/close, especially if both tx and rx
808 * are running concurrently.
809 */
810 /* Software Reset */
811 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
812 /* Clear SR bit to finish the reset */
813 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR, 0);
814 }
815
fsl_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)816 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
817 struct snd_soc_dai *cpu_dai)
818 {
819 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
820 unsigned int ofs = sai->soc_data->reg_offset;
821
822 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
823 int adir = tx ? RX : TX;
824 int dir = tx ? TX : RX;
825 u32 xcsr;
826
827 /*
828 * Asynchronous mode: Clear SYNC for both Tx and Rx.
829 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
830 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
831 */
832 regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
833 sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
834 regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
835 sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
836
837 /*
838 * It is recommended that the transmitter is the last enabled
839 * and the first disabled.
840 */
841 switch (cmd) {
842 case SNDRV_PCM_TRIGGER_START:
843 case SNDRV_PCM_TRIGGER_RESUME:
844 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
845 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
846 FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
847
848 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
849 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
850 /*
851 * Enable the opposite direction for synchronous mode
852 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
853 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
854 *
855 * RM recommends to enable RE after TE for case 1 and to enable
856 * TE after RE for case 2, but we here may not always guarantee
857 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
858 * TE after RE, which is against what RM recommends but should
859 * be safe to do, judging by years of testing results.
860 */
861 if (fsl_sai_dir_is_synced(sai, adir))
862 regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
863 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
864
865 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
866 FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
867 break;
868 case SNDRV_PCM_TRIGGER_STOP:
869 case SNDRV_PCM_TRIGGER_SUSPEND:
870 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
871 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
872 FSL_SAI_CSR_FRDE, 0);
873 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
874 FSL_SAI_CSR_xIE_MASK, 0);
875
876 /* Check if the opposite FRDE is also disabled */
877 regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
878
879 /*
880 * If opposite stream provides clocks for synchronous mode and
881 * it is inactive, disable it before disabling the current one
882 */
883 if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
884 fsl_sai_config_disable(sai, adir);
885
886 /*
887 * Disable current stream if either of:
888 * 1. current stream doesn't provide clocks for synchronous mode
889 * 2. current stream provides clocks for synchronous mode but no
890 * more stream is active.
891 */
892 if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
893 fsl_sai_config_disable(sai, dir);
894
895 break;
896 default:
897 return -EINVAL;
898 }
899
900 return 0;
901 }
902
fsl_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)903 static int fsl_sai_startup(struct snd_pcm_substream *substream,
904 struct snd_soc_dai *cpu_dai)
905 {
906 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
907 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
908 int ret;
909
910 /*
911 * EDMA controller needs period size to be a multiple of
912 * tx/rx maxburst
913 */
914 if (sai->soc_data->use_edma)
915 snd_pcm_hw_constraint_step(substream->runtime, 0,
916 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
917 tx ? sai->dma_params_tx.maxburst :
918 sai->dma_params_rx.maxburst);
919
920 if (sai->is_consumer_mode[tx])
921 ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
922 SNDRV_PCM_HW_PARAM_RATE,
923 &fsl_sai_rate_constraints);
924 else
925 ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
926 SNDRV_PCM_HW_PARAM_RATE,
927 &sai->constraint_rates);
928
929 return ret;
930 }
931
fsl_sai_dai_probe(struct snd_soc_dai * cpu_dai)932 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
933 {
934 struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
935 unsigned int ofs = sai->soc_data->reg_offset;
936
937 /* Software Reset for both Tx and Rx */
938 regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
939 regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
940 /* Clear SR bit to finish the reset */
941 regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, 0);
942 regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, 0);
943
944 regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
945 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
946 sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst);
947 regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
948 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
949 sai->dma_params_rx.maxburst - 1);
950
951 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
952 &sai->dma_params_rx);
953
954 return 0;
955 }
956
957 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
958 .probe = fsl_sai_dai_probe,
959 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
960 .set_sysclk = fsl_sai_set_dai_sysclk,
961 .set_fmt = fsl_sai_set_dai_fmt,
962 .set_tdm_slot = fsl_sai_set_dai_tdm_slot,
963 .hw_params = fsl_sai_hw_params,
964 .hw_free = fsl_sai_hw_free,
965 .trigger = fsl_sai_trigger,
966 .startup = fsl_sai_startup,
967 };
968
969 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_tx_ops = {
970 .probe = fsl_sai_dai_probe,
971 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
972 .set_sysclk = fsl_sai_set_dai_sysclk,
973 .set_fmt = fsl_sai_set_dai_fmt_tx,
974 .set_tdm_slot = fsl_sai_set_dai_tdm_slot_tx,
975 .xlate_tdm_slot_mask = fsl_sai_xlate_tdm_slot_mask,
976 .hw_params = fsl_sai_hw_params,
977 .hw_free = fsl_sai_hw_free,
978 .trigger = fsl_sai_trigger,
979 .startup = fsl_sai_startup,
980 };
981
982 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_rx_ops = {
983 .probe = fsl_sai_dai_probe,
984 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
985 .set_sysclk = fsl_sai_set_dai_sysclk,
986 .set_fmt = fsl_sai_set_dai_fmt_rx,
987 .set_tdm_slot = fsl_sai_set_dai_tdm_slot_rx,
988 .xlate_tdm_slot_mask = fsl_sai_xlate_tdm_slot_mask,
989 .hw_params = fsl_sai_hw_params,
990 .hw_free = fsl_sai_hw_free,
991 .trigger = fsl_sai_trigger,
992 .startup = fsl_sai_startup,
993 };
994
fsl_sai_dai_resume(struct snd_soc_component * component)995 static int fsl_sai_dai_resume(struct snd_soc_component *component)
996 {
997 struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
998 struct device *dev = &sai->pdev->dev;
999 int ret;
1000
1001 if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
1002 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
1003 if (ret) {
1004 dev_err(dev, "failed to set proper pins state: %d\n", ret);
1005 return ret;
1006 }
1007 }
1008
1009 return 0;
1010 }
1011
1012 static struct snd_soc_dai_driver fsl_sai_dai_template[] = {
1013 {
1014 .name = "sai-tx-rx",
1015 .playback = {
1016 .stream_name = "CPU-Playback",
1017 .channels_min = 1,
1018 .channels_max = 32,
1019 .rate_min = 8000,
1020 .rate_max = 2822400,
1021 .rates = SNDRV_PCM_RATE_KNOT,
1022 .formats = FSL_SAI_FORMATS,
1023 },
1024 .capture = {
1025 .stream_name = "CPU-Capture",
1026 .channels_min = 1,
1027 .channels_max = 32,
1028 .rate_min = 8000,
1029 .rate_max = 2822400,
1030 .rates = SNDRV_PCM_RATE_KNOT,
1031 .formats = FSL_SAI_FORMATS,
1032 },
1033 .ops = &fsl_sai_pcm_dai_ops,
1034 },
1035 {
1036 .name = "sai-tx",
1037 .playback = {
1038 .stream_name = "SAI-Playback",
1039 .channels_min = 1,
1040 .channels_max = 32,
1041 .rate_min = 8000,
1042 .rate_max = 2822400,
1043 .rates = SNDRV_PCM_RATE_KNOT,
1044 .formats = FSL_SAI_FORMATS,
1045 },
1046 .ops = &fsl_sai_pcm_dai_tx_ops,
1047 },
1048 {
1049 .name = "sai-rx",
1050 .capture = {
1051 .stream_name = "SAI-Capture",
1052 .channels_min = 1,
1053 .channels_max = 32,
1054 .rate_min = 8000,
1055 .rate_max = 2822400,
1056 .rates = SNDRV_PCM_RATE_KNOT,
1057 .formats = FSL_SAI_FORMATS,
1058 },
1059 .ops = &fsl_sai_pcm_dai_rx_ops,
1060 },
1061 };
1062
1063 static const struct snd_soc_component_driver fsl_component = {
1064 .name = "fsl-sai",
1065 .resume = fsl_sai_dai_resume,
1066 .legacy_dai_naming = 1,
1067 };
1068
1069 static const struct reg_default fsl_sai_reg_defaults_ofs0[] = {
1070 {FSL_SAI_TCR1(0), 0},
1071 {FSL_SAI_TCR2(0), 0},
1072 {FSL_SAI_TCR3(0), 0},
1073 {FSL_SAI_TCR4(0), 0},
1074 {FSL_SAI_TCR5(0), 0},
1075 {FSL_SAI_TDR0, 0},
1076 {FSL_SAI_TDR1, 0},
1077 {FSL_SAI_TDR2, 0},
1078 {FSL_SAI_TDR3, 0},
1079 {FSL_SAI_TDR4, 0},
1080 {FSL_SAI_TDR5, 0},
1081 {FSL_SAI_TDR6, 0},
1082 {FSL_SAI_TDR7, 0},
1083 {FSL_SAI_TMR, 0},
1084 {FSL_SAI_TTCTL, 0},
1085 {FSL_SAI_RCR1(0), 0},
1086 {FSL_SAI_RCR2(0), 0},
1087 {FSL_SAI_RCR3(0), 0},
1088 {FSL_SAI_RCR4(0), 0},
1089 {FSL_SAI_RCR5(0), 0},
1090 {FSL_SAI_RMR, 0},
1091 };
1092
1093 static const struct reg_default fsl_sai_reg_defaults_ofs8[] = {
1094 {FSL_SAI_TCR1(8), 0},
1095 {FSL_SAI_TCR2(8), 0},
1096 {FSL_SAI_TCR3(8), 0},
1097 {FSL_SAI_TCR4(8), 0},
1098 {FSL_SAI_TCR5(8), 0},
1099 {FSL_SAI_TDR0, 0},
1100 {FSL_SAI_TDR1, 0},
1101 {FSL_SAI_TDR2, 0},
1102 {FSL_SAI_TDR3, 0},
1103 {FSL_SAI_TDR4, 0},
1104 {FSL_SAI_TDR5, 0},
1105 {FSL_SAI_TDR6, 0},
1106 {FSL_SAI_TDR7, 0},
1107 {FSL_SAI_TMR, 0},
1108 {FSL_SAI_TTCTL, 0},
1109 {FSL_SAI_RCR1(8), 0},
1110 {FSL_SAI_RCR2(8), 0},
1111 {FSL_SAI_RCR3(8), 0},
1112 {FSL_SAI_RCR4(8), 0},
1113 {FSL_SAI_RCR5(8), 0},
1114 {FSL_SAI_RMR, 0},
1115 {FSL_SAI_RTCTL, 0},
1116 {FSL_SAI_MCTL, 0},
1117 {FSL_SAI_MDIV, 0},
1118 };
1119
fsl_sai_readable_reg(struct device * dev,unsigned int reg)1120 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
1121 {
1122 struct fsl_sai *sai = dev_get_drvdata(dev);
1123 unsigned int ofs = sai->soc_data->reg_offset;
1124
1125 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1126 return true;
1127
1128 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1129 return true;
1130
1131 switch (reg) {
1132 case FSL_SAI_TFR0:
1133 case FSL_SAI_TFR1:
1134 case FSL_SAI_TFR2:
1135 case FSL_SAI_TFR3:
1136 case FSL_SAI_TFR4:
1137 case FSL_SAI_TFR5:
1138 case FSL_SAI_TFR6:
1139 case FSL_SAI_TFR7:
1140 case FSL_SAI_TMR:
1141 case FSL_SAI_RDR0:
1142 case FSL_SAI_RDR1:
1143 case FSL_SAI_RDR2:
1144 case FSL_SAI_RDR3:
1145 case FSL_SAI_RDR4:
1146 case FSL_SAI_RDR5:
1147 case FSL_SAI_RDR6:
1148 case FSL_SAI_RDR7:
1149 case FSL_SAI_RFR0:
1150 case FSL_SAI_RFR1:
1151 case FSL_SAI_RFR2:
1152 case FSL_SAI_RFR3:
1153 case FSL_SAI_RFR4:
1154 case FSL_SAI_RFR5:
1155 case FSL_SAI_RFR6:
1156 case FSL_SAI_RFR7:
1157 case FSL_SAI_RMR:
1158 case FSL_SAI_MCTL:
1159 case FSL_SAI_MDIV:
1160 case FSL_SAI_VERID:
1161 case FSL_SAI_PARAM:
1162 case FSL_SAI_TTCTN:
1163 case FSL_SAI_RTCTN:
1164 case FSL_SAI_TTCTL:
1165 case FSL_SAI_TBCTN:
1166 case FSL_SAI_TTCAP:
1167 case FSL_SAI_RTCTL:
1168 case FSL_SAI_RBCTN:
1169 case FSL_SAI_RTCAP:
1170 return true;
1171 default:
1172 return false;
1173 }
1174 }
1175
fsl_sai_volatile_reg(struct device * dev,unsigned int reg)1176 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1177 {
1178 struct fsl_sai *sai = dev_get_drvdata(dev);
1179 unsigned int ofs = sai->soc_data->reg_offset;
1180
1181 if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1182 return true;
1183
1184 /* Set VERID and PARAM be volatile for reading value in probe */
1185 if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1186 return true;
1187
1188 switch (reg) {
1189 case FSL_SAI_TFR0:
1190 case FSL_SAI_TFR1:
1191 case FSL_SAI_TFR2:
1192 case FSL_SAI_TFR3:
1193 case FSL_SAI_TFR4:
1194 case FSL_SAI_TFR5:
1195 case FSL_SAI_TFR6:
1196 case FSL_SAI_TFR7:
1197 case FSL_SAI_RFR0:
1198 case FSL_SAI_RFR1:
1199 case FSL_SAI_RFR2:
1200 case FSL_SAI_RFR3:
1201 case FSL_SAI_RFR4:
1202 case FSL_SAI_RFR5:
1203 case FSL_SAI_RFR6:
1204 case FSL_SAI_RFR7:
1205 case FSL_SAI_RDR0:
1206 case FSL_SAI_RDR1:
1207 case FSL_SAI_RDR2:
1208 case FSL_SAI_RDR3:
1209 case FSL_SAI_RDR4:
1210 case FSL_SAI_RDR5:
1211 case FSL_SAI_RDR6:
1212 case FSL_SAI_RDR7:
1213 return true;
1214 default:
1215 return false;
1216 }
1217 }
1218
fsl_sai_writeable_reg(struct device * dev,unsigned int reg)1219 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1220 {
1221 struct fsl_sai *sai = dev_get_drvdata(dev);
1222 unsigned int ofs = sai->soc_data->reg_offset;
1223
1224 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1225 return true;
1226
1227 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1228 return true;
1229
1230 switch (reg) {
1231 case FSL_SAI_TDR0:
1232 case FSL_SAI_TDR1:
1233 case FSL_SAI_TDR2:
1234 case FSL_SAI_TDR3:
1235 case FSL_SAI_TDR4:
1236 case FSL_SAI_TDR5:
1237 case FSL_SAI_TDR6:
1238 case FSL_SAI_TDR7:
1239 case FSL_SAI_TMR:
1240 case FSL_SAI_RMR:
1241 case FSL_SAI_MCTL:
1242 case FSL_SAI_MDIV:
1243 case FSL_SAI_TTCTL:
1244 case FSL_SAI_RTCTL:
1245 return true;
1246 default:
1247 return false;
1248 }
1249 }
1250
1251 static struct regmap_config fsl_sai_regmap_config = {
1252 .reg_bits = 32,
1253 .reg_stride = 4,
1254 .val_bits = 32,
1255
1256 .max_register = FSL_SAI_RMR,
1257 .reg_defaults = fsl_sai_reg_defaults_ofs0,
1258 .num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1259 .readable_reg = fsl_sai_readable_reg,
1260 .volatile_reg = fsl_sai_volatile_reg,
1261 .writeable_reg = fsl_sai_writeable_reg,
1262 .cache_type = REGCACHE_FLAT,
1263 };
1264
fsl_sai_check_version(struct device * dev)1265 static int fsl_sai_check_version(struct device *dev)
1266 {
1267 struct fsl_sai *sai = dev_get_drvdata(dev);
1268 unsigned char ofs = sai->soc_data->reg_offset;
1269 unsigned int val;
1270 int ret;
1271
1272 if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1273 return 0;
1274
1275 ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1276 if (ret < 0)
1277 return ret;
1278
1279 dev_dbg(dev, "VERID: 0x%016X\n", val);
1280
1281 sai->verid.version = val &
1282 (FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1283 sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1284 sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1285
1286 ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1287 if (ret < 0)
1288 return ret;
1289
1290 dev_dbg(dev, "PARAM: 0x%016X\n", val);
1291
1292 /* Max slots per frame, power of 2 */
1293 sai->param.slot_num = 1 <<
1294 ((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1295
1296 /* Words per fifo, power of 2 */
1297 sai->param.fifo_depth = 1 <<
1298 ((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1299
1300 /* Number of datalines implemented */
1301 sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1302
1303 return 0;
1304 }
1305
1306 /*
1307 * Calculate the offset between first two datalines, don't
1308 * different offset in one case.
1309 */
fsl_sai_calc_dl_off(unsigned long dl_mask)1310 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1311 {
1312 int fbidx, nbidx, offset;
1313
1314 fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1315 nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1316 offset = nbidx - fbidx - 1;
1317
1318 return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1319 }
1320
1321 /*
1322 * read the fsl,dataline property from dts file.
1323 * It has 3 value for each configuration, first one means the type:
1324 * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1325 * dataline mask for 'tx'. for example
1326 *
1327 * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1328 *
1329 * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1330 * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1331 *
1332 */
fsl_sai_read_dlcfg(struct fsl_sai * sai)1333 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1334 {
1335 struct platform_device *pdev = sai->pdev;
1336 struct device_node *np = pdev->dev.of_node;
1337 struct device *dev = &pdev->dev;
1338 int ret, elems, i, index, num_cfg;
1339 char *propname = "fsl,dataline";
1340 struct fsl_sai_dl_cfg *cfg;
1341 unsigned long dl_mask;
1342 unsigned int soc_dl;
1343 u32 rx, tx, type;
1344
1345 elems = of_property_count_u32_elems(np, propname);
1346
1347 if (elems <= 0) {
1348 elems = 0;
1349 } else if (elems % 3) {
1350 dev_err(dev, "Number of elements must be divisible to 3.\n");
1351 return -EINVAL;
1352 }
1353
1354 num_cfg = elems / 3;
1355 /* Add one more for default value */
1356 cfg = devm_kcalloc(&pdev->dev, num_cfg + 1, sizeof(*cfg), GFP_KERNEL);
1357 if (!cfg)
1358 return -ENOMEM;
1359
1360 /* Consider default value "0 0xFF 0xFF" if property is missing */
1361 soc_dl = BIT(sai->soc_data->pins) - 1;
1362 cfg[0].type = FSL_SAI_DL_DEFAULT;
1363 cfg[0].pins[0] = sai->soc_data->pins;
1364 cfg[0].mask[0] = soc_dl;
1365 cfg[0].start_off[0] = 0;
1366 cfg[0].next_off[0] = 0;
1367
1368 cfg[0].pins[1] = sai->soc_data->pins;
1369 cfg[0].mask[1] = soc_dl;
1370 cfg[0].start_off[1] = 0;
1371 cfg[0].next_off[1] = 0;
1372 for (i = 1, index = 0; i < num_cfg + 1; i++) {
1373 /*
1374 * type of dataline
1375 * 0 means default mode
1376 * 1 means I2S mode
1377 * 2 means PDM mode
1378 */
1379 ret = of_property_read_u32_index(np, propname, index++, &type);
1380 if (ret)
1381 return -EINVAL;
1382
1383 ret = of_property_read_u32_index(np, propname, index++, &rx);
1384 if (ret)
1385 return -EINVAL;
1386
1387 ret = of_property_read_u32_index(np, propname, index++, &tx);
1388 if (ret)
1389 return -EINVAL;
1390
1391 if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1392 dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1393 return -EINVAL;
1394 }
1395
1396 rx = rx & soc_dl;
1397 tx = tx & soc_dl;
1398
1399 cfg[i].type = type;
1400 cfg[i].pins[0] = hweight8(rx);
1401 cfg[i].mask[0] = rx;
1402 dl_mask = rx;
1403 cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1404 cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1405
1406 cfg[i].pins[1] = hweight8(tx);
1407 cfg[i].mask[1] = tx;
1408 dl_mask = tx;
1409 cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1410 cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1411 }
1412
1413 sai->dl_cfg = cfg;
1414 sai->dl_cfg_cnt = num_cfg + 1;
1415 return 0;
1416 }
1417
1418 static int fsl_sai_runtime_suspend(struct device *dev);
1419 static int fsl_sai_runtime_resume(struct device *dev);
1420
fsl_sai_probe(struct platform_device * pdev)1421 static int fsl_sai_probe(struct platform_device *pdev)
1422 {
1423 struct device_node *np = pdev->dev.of_node;
1424 struct device *dev = &pdev->dev;
1425 struct fsl_sai *sai;
1426 struct regmap *gpr;
1427 void __iomem *base;
1428 char tmp[8];
1429 int irq, ret, i;
1430 int index;
1431 u32 dmas[4];
1432
1433 sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1434 if (!sai)
1435 return -ENOMEM;
1436
1437 sai->pdev = pdev;
1438 sai->soc_data = of_device_get_match_data(dev);
1439
1440 sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1441
1442 base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1443 if (IS_ERR(base))
1444 return PTR_ERR(base);
1445
1446 if (sai->soc_data->reg_offset == 8) {
1447 fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1448 fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1449 fsl_sai_regmap_config.num_reg_defaults =
1450 ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1451 }
1452
1453 sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1454 if (IS_ERR(sai->regmap)) {
1455 dev_err(dev, "regmap init failed\n");
1456 return PTR_ERR(sai->regmap);
1457 }
1458
1459 sai->bus_clk = devm_clk_get(dev, "bus");
1460 /* Compatible with old DTB cases */
1461 if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1462 sai->bus_clk = devm_clk_get(dev, "sai");
1463 if (IS_ERR(sai->bus_clk)) {
1464 dev_err(dev, "failed to get bus clock: %ld\n",
1465 PTR_ERR(sai->bus_clk));
1466 /* -EPROBE_DEFER */
1467 return PTR_ERR(sai->bus_clk);
1468 }
1469
1470 for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1471 sprintf(tmp, "mclk%d", i);
1472 sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1473 if (IS_ERR(sai->mclk_clk[i])) {
1474 dev_err(dev, "failed to get mclk%d clock: %ld\n",
1475 i, PTR_ERR(sai->mclk_clk[i]));
1476 sai->mclk_clk[i] = NULL;
1477 }
1478 }
1479
1480 if (sai->soc_data->mclk0_is_mclk1)
1481 sai->mclk_clk[0] = sai->mclk_clk[1];
1482 else
1483 sai->mclk_clk[0] = sai->bus_clk;
1484
1485 fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1486 &sai->pll11k_clk);
1487
1488 fsl_asoc_constrain_rates(&sai->constraint_rates,
1489 &fsl_sai_rate_constraints,
1490 sai->pll8k_clk, sai->pll11k_clk, NULL,
1491 sai->constraint_rates_list);
1492
1493 /* Use Multi FIFO mode depending on the support from SDMA script */
1494 ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1495 if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1496 sai->is_multi_fifo_dma = true;
1497
1498 /* read dataline mask for rx and tx*/
1499 ret = fsl_sai_read_dlcfg(sai);
1500 if (ret < 0) {
1501 dev_err(dev, "failed to read dlcfg %d\n", ret);
1502 return ret;
1503 }
1504
1505 irq = platform_get_irq(pdev, 0);
1506 if (irq < 0)
1507 return irq;
1508
1509 ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1510 np->name, sai);
1511 if (ret) {
1512 dev_err(dev, "failed to claim irq %u\n", irq);
1513 return ret;
1514 }
1515
1516 memcpy(&sai->cpu_dai_drv, fsl_sai_dai_template,
1517 sizeof(*fsl_sai_dai_template) * ARRAY_SIZE(fsl_sai_dai_template));
1518
1519 /* Sync Tx with Rx as default by following old DT binding */
1520 sai->synchronous[RX] = true;
1521 sai->synchronous[TX] = false;
1522 sai->cpu_dai_drv[0].symmetric_rate = 1;
1523 sai->cpu_dai_drv[0].symmetric_channels = 1;
1524 sai->cpu_dai_drv[0].symmetric_sample_bits = 1;
1525
1526 if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1527 of_property_read_bool(np, "fsl,sai-asynchronous")) {
1528 /* error out if both synchronous and asynchronous are present */
1529 dev_err(dev, "invalid binding for synchronous mode\n");
1530 return -EINVAL;
1531 }
1532
1533 if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1534 /* Sync Rx with Tx */
1535 sai->synchronous[RX] = false;
1536 sai->synchronous[TX] = true;
1537 } else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1538 /* Discard all settings for asynchronous mode */
1539 sai->synchronous[RX] = false;
1540 sai->synchronous[TX] = false;
1541 sai->cpu_dai_drv[0].symmetric_rate = 0;
1542 sai->cpu_dai_drv[0].symmetric_channels = 0;
1543 sai->cpu_dai_drv[0].symmetric_sample_bits = 0;
1544 }
1545
1546 sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1547
1548 if (sai->mclk_direction_output &&
1549 of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1550 gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1551 if (IS_ERR(gpr)) {
1552 dev_err(dev, "cannot find iomuxc registers\n");
1553 return PTR_ERR(gpr);
1554 }
1555
1556 index = of_alias_get_id(np, "sai");
1557 if (index < 0)
1558 return index;
1559
1560 regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1561 MCLK_DIR(index));
1562 }
1563
1564 sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1565 sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1566 sai->dma_params_rx.maxburst =
1567 sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX;
1568 sai->dma_params_tx.maxburst =
1569 sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX;
1570
1571 sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1572
1573 platform_set_drvdata(pdev, sai);
1574 pm_runtime_enable(dev);
1575 if (!pm_runtime_enabled(dev)) {
1576 ret = fsl_sai_runtime_resume(dev);
1577 if (ret)
1578 goto err_pm_disable;
1579 }
1580
1581 ret = pm_runtime_resume_and_get(dev);
1582 if (ret < 0)
1583 goto err_pm_get_sync;
1584
1585 /* Get sai version */
1586 ret = fsl_sai_check_version(dev);
1587 if (ret < 0)
1588 dev_warn(dev, "Error reading SAI version: %d\n", ret);
1589
1590 /* Select MCLK direction */
1591 if (sai->mclk_direction_output &&
1592 sai->soc_data->max_register >= FSL_SAI_MCTL) {
1593 regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1594 FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1595 }
1596
1597 ret = pm_runtime_put_sync(dev);
1598 if (ret < 0 && ret != -ENOSYS)
1599 goto err_pm_get_sync;
1600
1601 /*
1602 * Register platform component before registering cpu dai for there
1603 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1604 */
1605 if (sai->soc_data->use_imx_pcm) {
1606 ret = imx_pcm_dma_init(pdev);
1607 if (ret) {
1608 dev_err_probe(dev, ret, "PCM DMA init failed\n");
1609 if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1610 dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1611 goto err_pm_get_sync;
1612 }
1613 } else {
1614 ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1615 if (ret) {
1616 dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n");
1617 goto err_pm_get_sync;
1618 }
1619 }
1620
1621 ret = devm_snd_soc_register_component(dev, &fsl_component,
1622 sai->cpu_dai_drv, ARRAY_SIZE(fsl_sai_dai_template));
1623 if (ret)
1624 goto err_pm_get_sync;
1625
1626 return ret;
1627
1628 err_pm_get_sync:
1629 if (!pm_runtime_status_suspended(dev))
1630 fsl_sai_runtime_suspend(dev);
1631 err_pm_disable:
1632 pm_runtime_disable(dev);
1633
1634 return ret;
1635 }
1636
fsl_sai_remove(struct platform_device * pdev)1637 static void fsl_sai_remove(struct platform_device *pdev)
1638 {
1639 pm_runtime_disable(&pdev->dev);
1640 if (!pm_runtime_status_suspended(&pdev->dev))
1641 fsl_sai_runtime_suspend(&pdev->dev);
1642 }
1643
1644 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1645 .use_imx_pcm = false,
1646 .use_edma = false,
1647 .fifo_depth = 32,
1648 .pins = 1,
1649 .reg_offset = 0,
1650 .mclk0_is_mclk1 = false,
1651 .flags = 0,
1652 .max_register = FSL_SAI_RMR,
1653 };
1654
1655 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1656 .use_imx_pcm = true,
1657 .use_edma = false,
1658 .fifo_depth = 32,
1659 .pins = 1,
1660 .reg_offset = 0,
1661 .mclk0_is_mclk1 = true,
1662 .flags = 0,
1663 .max_register = FSL_SAI_RMR,
1664 };
1665
1666 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1667 .use_imx_pcm = true,
1668 .use_edma = false,
1669 .fifo_depth = 16,
1670 .pins = 2,
1671 .reg_offset = 8,
1672 .mclk0_is_mclk1 = false,
1673 .flags = PMQOS_CPU_LATENCY,
1674 .max_register = FSL_SAI_RMR,
1675 };
1676
1677 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1678 .use_imx_pcm = true,
1679 .use_edma = false,
1680 .fifo_depth = 128,
1681 .pins = 8,
1682 .reg_offset = 8,
1683 .mclk0_is_mclk1 = false,
1684 .flags = 0,
1685 .max_register = FSL_SAI_RMR,
1686 };
1687
1688 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1689 .use_imx_pcm = true,
1690 .use_edma = true,
1691 .fifo_depth = 64,
1692 .pins = 4,
1693 .reg_offset = 0,
1694 .mclk0_is_mclk1 = false,
1695 .flags = 0,
1696 .max_register = FSL_SAI_RMR,
1697 };
1698
1699 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1700 .use_imx_pcm = true,
1701 .use_edma = false,
1702 .fifo_depth = 128,
1703 .reg_offset = 8,
1704 .mclk0_is_mclk1 = false,
1705 .pins = 8,
1706 .flags = 0,
1707 .max_register = FSL_SAI_MCTL,
1708 };
1709
1710 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1711 .use_imx_pcm = true,
1712 .use_edma = false,
1713 .fifo_depth = 128,
1714 .reg_offset = 8,
1715 .mclk0_is_mclk1 = false,
1716 .pins = 8,
1717 .flags = 0,
1718 .max_register = FSL_SAI_MDIV,
1719 };
1720
1721 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1722 .use_imx_pcm = true,
1723 .use_edma = false,
1724 .fifo_depth = 128,
1725 .reg_offset = 8,
1726 .mclk0_is_mclk1 = false,
1727 .pins = 8,
1728 .flags = 0,
1729 .max_register = FSL_SAI_MDIV,
1730 .mclk_with_tere = true,
1731 };
1732
1733 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1734 .use_imx_pcm = true,
1735 .use_edma = true,
1736 .fifo_depth = 16,
1737 .reg_offset = 8,
1738 .mclk0_is_mclk1 = false,
1739 .pins = 4,
1740 .flags = PMQOS_CPU_LATENCY,
1741 .max_register = FSL_SAI_RTCAP,
1742 };
1743
1744 static const struct fsl_sai_soc_data fsl_sai_imx93_data = {
1745 .use_imx_pcm = true,
1746 .use_edma = true,
1747 .fifo_depth = 128,
1748 .reg_offset = 8,
1749 .mclk0_is_mclk1 = false,
1750 .pins = 4,
1751 .flags = 0,
1752 .max_register = FSL_SAI_MCTL,
1753 .max_burst = {8, 8},
1754 };
1755
1756 static const struct fsl_sai_soc_data fsl_sai_imx95_data = {
1757 .use_imx_pcm = true,
1758 .use_edma = true,
1759 .fifo_depth = 128,
1760 .reg_offset = 8,
1761 .mclk0_is_mclk1 = false,
1762 .pins = 8,
1763 .flags = 0,
1764 .max_register = FSL_SAI_MCTL,
1765 .max_burst = {8, 8},
1766 };
1767
1768 static const struct of_device_id fsl_sai_ids[] = {
1769 { .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1770 { .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1771 { .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1772 { .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1773 { .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1774 { .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1775 { .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1776 { .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1777 { .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1778 { .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1779 { .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data },
1780 { .compatible = "fsl,imx95-sai", .data = &fsl_sai_imx95_data },
1781 { /* sentinel */ }
1782 };
1783 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1784
fsl_sai_runtime_suspend(struct device * dev)1785 static int fsl_sai_runtime_suspend(struct device *dev)
1786 {
1787 struct fsl_sai *sai = dev_get_drvdata(dev);
1788
1789 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1790 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1791
1792 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1793 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1794
1795 clk_disable_unprepare(sai->bus_clk);
1796
1797 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1798 cpu_latency_qos_remove_request(&sai->pm_qos_req);
1799
1800 regcache_cache_only(sai->regmap, true);
1801
1802 return 0;
1803 }
1804
fsl_sai_runtime_resume(struct device * dev)1805 static int fsl_sai_runtime_resume(struct device *dev)
1806 {
1807 struct fsl_sai *sai = dev_get_drvdata(dev);
1808 unsigned int ofs = sai->soc_data->reg_offset;
1809 int ret;
1810
1811 ret = clk_prepare_enable(sai->bus_clk);
1812 if (ret) {
1813 dev_err(dev, "failed to enable bus clock: %d\n", ret);
1814 return ret;
1815 }
1816
1817 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1818 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1819 if (ret)
1820 goto disable_bus_clk;
1821 }
1822
1823 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1824 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1825 if (ret)
1826 goto disable_tx_clk;
1827 }
1828
1829 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1830 cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1831
1832 regcache_cache_only(sai->regmap, false);
1833 regcache_mark_dirty(sai->regmap);
1834 regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
1835 regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
1836 usleep_range(1000, 2000);
1837 regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, 0);
1838 regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, 0);
1839
1840 ret = regcache_sync(sai->regmap);
1841 if (ret)
1842 goto disable_rx_clk;
1843
1844 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1845 regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1846 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1847
1848 return 0;
1849
1850 disable_rx_clk:
1851 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1852 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1853 disable_tx_clk:
1854 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1855 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1856 disable_bus_clk:
1857 clk_disable_unprepare(sai->bus_clk);
1858
1859 return ret;
1860 }
1861
1862 static const struct dev_pm_ops fsl_sai_pm_ops = {
1863 RUNTIME_PM_OPS(fsl_sai_runtime_suspend, fsl_sai_runtime_resume, NULL)
1864 SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
1865 };
1866
1867 static struct platform_driver fsl_sai_driver = {
1868 .probe = fsl_sai_probe,
1869 .remove = fsl_sai_remove,
1870 .driver = {
1871 .name = "fsl-sai",
1872 .pm = pm_ptr(&fsl_sai_pm_ops),
1873 .of_match_table = fsl_sai_ids,
1874 },
1875 };
1876 module_platform_driver(fsl_sai_driver);
1877
1878 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1879 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1880 MODULE_ALIAS("platform:fsl-sai");
1881 MODULE_LICENSE("GPL");
1882