xref: /linux/sound/soc/fsl/fsl_sai.c (revision 8d50870695aaf5535c9c0a70a3fee71d954f5e9b)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/pinctrl/consumer.h>
13 #include <linux/pm_qos.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
23 
24 #include "fsl_sai.h"
25 #include "fsl_utils.h"
26 #include "imx-pcm.h"
27 
28 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
29 		       FSL_SAI_CSR_FEIE)
30 
31 static const unsigned int fsl_sai_rates[] = {
32 	8000, 11025, 12000, 16000, 22050,
33 	24000, 32000, 44100, 48000, 64000,
34 	88200, 96000, 176400, 192000, 352800,
35 	384000, 705600, 768000, 1411200, 2822400,
36 };
37 
38 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
39 	.count = ARRAY_SIZE(fsl_sai_rates),
40 	.list = fsl_sai_rates,
41 };
42 
43 /**
44  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
45  *
46  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
47  * or Receiver's for both streams. This function is used to check if clocks of
48  * the stream's are synced by the opposite stream.
49  *
50  * @sai: SAI context
51  * @dir: stream direction
52  */
fsl_sai_dir_is_synced(struct fsl_sai * sai,int dir)53 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
54 {
55 	int adir = (dir == TX) ? RX : TX;
56 
57 	/* current dir in async mode while opposite dir in sync mode */
58 	return !sai->synchronous[dir] && sai->synchronous[adir];
59 }
60 
fsl_sai_get_pins_state(struct fsl_sai * sai,u32 bclk)61 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
62 {
63 	struct pinctrl_state *state = NULL;
64 
65 	if (sai->is_pdm_mode) {
66 		/* DSD512@44.1kHz, DSD512@48kHz */
67 		if (bclk >= 22579200)
68 			state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
69 
70 		/* Get default DSD state */
71 		if (IS_ERR_OR_NULL(state))
72 			state = pinctrl_lookup_state(sai->pinctrl, "dsd");
73 	} else {
74 		/* 706k32b2c, 768k32b2c, etc */
75 		if (bclk >= 45158400)
76 			state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
77 	}
78 
79 	/* Get default state */
80 	if (IS_ERR_OR_NULL(state))
81 		state = pinctrl_lookup_state(sai->pinctrl, "default");
82 
83 	return state;
84 }
85 
fsl_sai_isr(int irq,void * devid)86 static irqreturn_t fsl_sai_isr(int irq, void *devid)
87 {
88 	struct fsl_sai *sai = (struct fsl_sai *)devid;
89 	unsigned int ofs = sai->soc_data->reg_offset;
90 	struct device *dev = &sai->pdev->dev;
91 	u32 flags, xcsr, mask;
92 	irqreturn_t iret = IRQ_NONE;
93 
94 	/*
95 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
96 	 * different shifts. And we here create a mask only for those
97 	 * IRQs that we activated.
98 	 */
99 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
100 
101 	/* Tx IRQ */
102 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
103 	flags = xcsr & mask;
104 
105 	if (flags)
106 		iret = IRQ_HANDLED;
107 	else
108 		goto irq_rx;
109 
110 	if (flags & FSL_SAI_CSR_WSF)
111 		dev_dbg(dev, "isr: Start of Tx word detected\n");
112 
113 	if (flags & FSL_SAI_CSR_SEF)
114 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
115 
116 	if (flags & FSL_SAI_CSR_FEF)
117 		dev_dbg(dev, "isr: Transmit underrun detected\n");
118 
119 	if (flags & FSL_SAI_CSR_FWF)
120 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
121 
122 	if (flags & FSL_SAI_CSR_FRF)
123 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
124 
125 	flags &= FSL_SAI_CSR_xF_W_MASK;
126 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
127 
128 	if (flags)
129 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
130 
131 irq_rx:
132 	/* Rx IRQ */
133 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
134 	flags = xcsr & mask;
135 
136 	if (flags)
137 		iret = IRQ_HANDLED;
138 	else
139 		goto out;
140 
141 	if (flags & FSL_SAI_CSR_WSF)
142 		dev_dbg(dev, "isr: Start of Rx word detected\n");
143 
144 	if (flags & FSL_SAI_CSR_SEF)
145 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
146 
147 	if (flags & FSL_SAI_CSR_FEF)
148 		dev_dbg(dev, "isr: Receive overflow detected\n");
149 
150 	if (flags & FSL_SAI_CSR_FWF)
151 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
152 
153 	if (flags & FSL_SAI_CSR_FRF)
154 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
155 
156 	flags &= FSL_SAI_CSR_xF_W_MASK;
157 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
158 
159 	if (flags)
160 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
161 
162 out:
163 	return iret;
164 }
165 
fsl_sai_set_dai_tdm_slot_tx(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)166 static int fsl_sai_set_dai_tdm_slot_tx(struct snd_soc_dai *cpu_dai, u32 tx_mask,
167 				       u32 rx_mask, int slots, int slot_width)
168 {
169 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
170 	bool tx = true;
171 
172 	sai->slots[tx] = slots;
173 	sai->slot_width[tx] = slot_width;
174 
175 	return 0;
176 }
177 
fsl_sai_set_dai_tdm_slot_rx(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)178 static int fsl_sai_set_dai_tdm_slot_rx(struct snd_soc_dai *cpu_dai, u32 tx_mask,
179 				       u32 rx_mask, int slots, int slot_width)
180 {
181 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
182 	bool tx = false;
183 
184 	sai->slots[tx] = slots;
185 	sai->slot_width[tx] = slot_width;
186 
187 	return 0;
188 }
189 
fsl_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)190 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
191 				    u32 rx_mask, int slots, int slot_width)
192 {
193 	int ret;
194 
195 	ret = fsl_sai_set_dai_tdm_slot_tx(cpu_dai, tx_mask, rx_mask, slots, slot_width);
196 	if (ret)
197 		return ret;
198 
199 	return fsl_sai_set_dai_tdm_slot_rx(cpu_dai, tx_mask, rx_mask, slots, slot_width);
200 }
201 
fsl_sai_xlate_tdm_slot_mask(unsigned int slots,unsigned int * tx_mask,unsigned int * rx_mask)202 static int fsl_sai_xlate_tdm_slot_mask(unsigned int slots,
203 				       unsigned int *tx_mask, unsigned int *rx_mask)
204 {
205 	/* Leave it empty, don't change the value of tx_mask and rx_mask */
206 	return 0;
207 }
208 
fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai * dai,unsigned int ratio)209 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
210 				      unsigned int ratio)
211 {
212 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
213 
214 	sai->bclk_ratio = ratio;
215 
216 	return 0;
217 }
218 
fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,bool tx)219 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
220 		int clk_id, unsigned int freq, bool tx)
221 {
222 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
223 	unsigned int ofs = sai->soc_data->reg_offset;
224 	u32 val_cr2 = 0;
225 
226 	switch (clk_id) {
227 	case FSL_SAI_CLK_BUS:
228 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
229 		break;
230 	case FSL_SAI_CLK_MAST1:
231 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
232 		break;
233 	case FSL_SAI_CLK_MAST2:
234 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
235 		break;
236 	case FSL_SAI_CLK_MAST3:
237 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
238 		break;
239 	default:
240 		return -EINVAL;
241 	}
242 
243 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
244 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
245 
246 	return 0;
247 }
248 
fsl_sai_set_mclk_rate(struct snd_soc_dai * dai,int clk_id,unsigned int freq)249 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
250 {
251 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
252 	int ret;
253 
254 	fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
255 				     sai->pll8k_clk, sai->pll11k_clk, freq);
256 
257 	ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
258 	if (ret < 0)
259 		dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
260 
261 	return ret;
262 }
263 
fsl_sai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)264 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
265 		int clk_id, unsigned int freq, int dir)
266 {
267 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
268 	int ret;
269 
270 	if (dir == SND_SOC_CLOCK_IN)
271 		return 0;
272 
273 	if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
274 		dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
275 		return -EINVAL;
276 	}
277 
278 	if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
279 		dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
280 		return -EINVAL;
281 	}
282 
283 	if (sai->mclk_streams == 0 && freq > 0) {
284 		ret = fsl_sai_set_mclk_rate(cpu_dai,
285 					    clk_id ? clk_id : FSL_SAI_CLK_MAST1,
286 					    freq);
287 		if (ret < 0)
288 			return ret;
289 	}
290 
291 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
292 	if (ret) {
293 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
294 		return ret;
295 	}
296 
297 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
298 	if (ret)
299 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
300 
301 	return ret;
302 }
303 
fsl_sai_set_dai_fmt_tr(struct snd_soc_dai * cpu_dai,unsigned int fmt,bool tx)304 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
305 				unsigned int fmt, bool tx)
306 {
307 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
308 	unsigned int ofs = sai->soc_data->reg_offset;
309 	u32 val_cr2 = 0, val_cr4 = 0;
310 
311 	if (!sai->is_lsb_first)
312 		val_cr4 |= FSL_SAI_CR4_MF;
313 
314 	sai->is_pdm_mode = false;
315 	sai->is_dsp_mode[tx] = false;
316 	/* DAI mode */
317 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
318 	case SND_SOC_DAIFMT_I2S:
319 		/*
320 		 * Frame low, 1clk before data, one word length for frame sync,
321 		 * frame sync starts one serial clock cycle earlier,
322 		 * that is, together with the last bit of the previous
323 		 * data word.
324 		 */
325 		val_cr2 |= FSL_SAI_CR2_BCP;
326 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
327 		break;
328 	case SND_SOC_DAIFMT_LEFT_J:
329 		/*
330 		 * Frame high, one word length for frame sync,
331 		 * frame sync asserts with the first bit of the frame.
332 		 */
333 		val_cr2 |= FSL_SAI_CR2_BCP;
334 		break;
335 	case SND_SOC_DAIFMT_DSP_A:
336 		/*
337 		 * Frame high, 1clk before data, one bit for frame sync,
338 		 * frame sync starts one serial clock cycle earlier,
339 		 * that is, together with the last bit of the previous
340 		 * data word.
341 		 */
342 		val_cr2 |= FSL_SAI_CR2_BCP;
343 		val_cr4 |= FSL_SAI_CR4_FSE;
344 		sai->is_dsp_mode[tx] = true;
345 		break;
346 	case SND_SOC_DAIFMT_DSP_B:
347 		/*
348 		 * Frame high, one bit for frame sync,
349 		 * frame sync asserts with the first bit of the frame.
350 		 */
351 		val_cr2 |= FSL_SAI_CR2_BCP;
352 		sai->is_dsp_mode[tx] = true;
353 		break;
354 	case SND_SOC_DAIFMT_PDM:
355 		val_cr2 |= FSL_SAI_CR2_BCP;
356 		sai->is_pdm_mode = true;
357 		break;
358 	case SND_SOC_DAIFMT_RIGHT_J:
359 		/* To be done */
360 	default:
361 		return -EINVAL;
362 	}
363 
364 	/* DAI clock inversion */
365 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
366 	case SND_SOC_DAIFMT_IB_IF:
367 		/* Invert both clocks */
368 		val_cr2 ^= FSL_SAI_CR2_BCP;
369 		val_cr4 ^= FSL_SAI_CR4_FSP;
370 		break;
371 	case SND_SOC_DAIFMT_IB_NF:
372 		/* Invert bit clock */
373 		val_cr2 ^= FSL_SAI_CR2_BCP;
374 		break;
375 	case SND_SOC_DAIFMT_NB_IF:
376 		/* Invert frame clock */
377 		val_cr4 ^= FSL_SAI_CR4_FSP;
378 		break;
379 	case SND_SOC_DAIFMT_NB_NF:
380 		/* Nothing to do for both normal cases */
381 		break;
382 	default:
383 		return -EINVAL;
384 	}
385 
386 	/* DAI clock provider masks */
387 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
388 	case SND_SOC_DAIFMT_BP_FP:
389 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
390 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
391 		sai->is_consumer_mode[tx] = false;
392 		break;
393 	case SND_SOC_DAIFMT_BC_FC:
394 		sai->is_consumer_mode[tx] = true;
395 		break;
396 	case SND_SOC_DAIFMT_BP_FC:
397 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
398 		sai->is_consumer_mode[tx] = false;
399 		break;
400 	case SND_SOC_DAIFMT_BC_FP:
401 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
402 		sai->is_consumer_mode[tx] = true;
403 		break;
404 	default:
405 		return -EINVAL;
406 	}
407 
408 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
409 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
410 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
411 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
412 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
413 
414 	return 0;
415 }
416 
fsl_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)417 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
418 {
419 	int ret;
420 
421 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
422 	if (ret) {
423 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
424 		return ret;
425 	}
426 
427 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
428 	if (ret)
429 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
430 
431 	return ret;
432 }
433 
fsl_sai_set_dai_fmt_tx(struct snd_soc_dai * cpu_dai,unsigned int fmt)434 static int fsl_sai_set_dai_fmt_tx(struct snd_soc_dai *cpu_dai, unsigned int fmt)
435 {
436 	return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
437 }
438 
fsl_sai_set_dai_fmt_rx(struct snd_soc_dai * cpu_dai,unsigned int fmt)439 static int fsl_sai_set_dai_fmt_rx(struct snd_soc_dai *cpu_dai, unsigned int fmt)
440 {
441 	return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
442 }
443 
fsl_sai_set_bclk(struct snd_soc_dai * dai,bool tx,u32 freq)444 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
445 {
446 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
447 	unsigned int reg, ofs = sai->soc_data->reg_offset;
448 	unsigned long clk_rate;
449 	u32 savediv = 0, ratio, bestdiff = freq;
450 	int adir = tx ? RX : TX;
451 	int dir = tx ? TX : RX;
452 	u32 id;
453 	bool support_1_1_ratio = sai->verid.version >= 0x0301;
454 
455 	/* Don't apply to consumer mode */
456 	if (sai->is_consumer_mode[tx])
457 		return 0;
458 
459 	/*
460 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
461 	 * And given that MQS use case has to use MCLK1 though two clocks
462 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
463 	 */
464 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
465 
466 	for (; id < FSL_SAI_MCLK_MAX; id++) {
467 		int diff;
468 
469 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
470 		if (!clk_rate)
471 			continue;
472 
473 		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
474 		if (!ratio || ratio > 512)
475 			continue;
476 		if (ratio == 1 && !support_1_1_ratio)
477 			continue;
478 		if ((ratio & 1) && ratio > 1)
479 			continue;
480 
481 		diff = abs((long)clk_rate - ratio * freq);
482 
483 		/*
484 		 * Drop the source that can not be
485 		 * divided into the required rate.
486 		 */
487 		if (diff != 0 && clk_rate / diff < 1000)
488 			continue;
489 
490 		dev_dbg(dai->dev,
491 			"ratio %d for freq %dHz based on clock %ldHz\n",
492 			ratio, freq, clk_rate);
493 
494 
495 		if (diff < bestdiff) {
496 			savediv = ratio;
497 			sai->mclk_id[tx] = id;
498 			bestdiff = diff;
499 		}
500 
501 		if (diff == 0)
502 			break;
503 	}
504 
505 	if (savediv == 0) {
506 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
507 				tx ? 'T' : 'R', freq);
508 		return -EINVAL;
509 	}
510 
511 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
512 			sai->mclk_id[tx], savediv, bestdiff);
513 
514 	/*
515 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
516 	 *    set TCR2 register for playback.
517 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
518 	 *    and capture.
519 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
520 	 *    and capture.
521 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
522 	 *    ignore it.
523 	 */
524 	if (fsl_sai_dir_is_synced(sai, adir))
525 		reg = FSL_SAI_xCR2(!tx, ofs);
526 	else if (!sai->synchronous[dir])
527 		reg = FSL_SAI_xCR2(tx, ofs);
528 	else
529 		return 0;
530 
531 	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
532 			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
533 
534 	if (savediv == 1) {
535 		regmap_update_bits(sai->regmap, reg,
536 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
537 				   FSL_SAI_CR2_BYP);
538 		if (fsl_sai_dir_is_synced(sai, adir))
539 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
540 					   FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
541 		else
542 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
543 					   FSL_SAI_CR2_BCI, 0);
544 	} else {
545 		regmap_update_bits(sai->regmap, reg,
546 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
547 				   savediv / 2 - 1);
548 	}
549 
550 	return 0;
551 }
552 
fsl_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)553 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
554 		struct snd_pcm_hw_params *params,
555 		struct snd_soc_dai *cpu_dai)
556 {
557 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
558 	unsigned int ofs = sai->soc_data->reg_offset;
559 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
560 	unsigned int channels = params_channels(params);
561 	struct snd_dmaengine_dai_dma_data *dma_params;
562 	struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
563 	u32 word_width = params_width(params);
564 	int trce_mask = 0, dl_cfg_idx = 0;
565 	int dl_cfg_cnt = sai->dl_cfg_cnt;
566 	u32 dl_type = FSL_SAI_DL_I2S;
567 	u32 val_cr4 = 0, val_cr5 = 0;
568 	u32 slots = (channels == 1) ? 2 : channels;
569 	u32 slot_width = word_width;
570 	int adir = tx ? RX : TX;
571 	u32 pins, bclk;
572 	u32 watermark;
573 	int ret, i;
574 
575 	if (sai->slot_width[tx])
576 		slot_width = sai->slot_width[tx];
577 
578 	if (sai->slots[tx])
579 		slots = sai->slots[tx];
580 	else if (sai->bclk_ratio)
581 		slots = sai->bclk_ratio / slot_width;
582 
583 	pins = DIV_ROUND_UP(channels, slots);
584 
585 	/*
586 	 * PDM mode, channels are independent
587 	 * each channels are on one dataline/FIFO.
588 	 */
589 	if (sai->is_pdm_mode) {
590 		pins = channels;
591 		dl_type = FSL_SAI_DL_PDM;
592 	}
593 
594 	for (i = 0; i < dl_cfg_cnt; i++) {
595 		if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
596 			dl_cfg_idx = i;
597 			break;
598 		}
599 	}
600 
601 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
602 		dev_err(cpu_dai->dev, "channel not supported\n");
603 		return -EINVAL;
604 	}
605 
606 	bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
607 
608 	if (!IS_ERR_OR_NULL(sai->pinctrl)) {
609 		sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
610 		if (!IS_ERR_OR_NULL(sai->pins_state)) {
611 			ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
612 			if (ret) {
613 				dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
614 				return ret;
615 			}
616 		}
617 	}
618 
619 	if (!sai->is_consumer_mode[tx]) {
620 		ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
621 		if (ret)
622 			return ret;
623 
624 		/* Do not enable the clock if it is already enabled */
625 		if (!(sai->mclk_streams & BIT(substream->stream))) {
626 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
627 			if (ret)
628 				return ret;
629 
630 			sai->mclk_streams |= BIT(substream->stream);
631 		}
632 	}
633 
634 	if (!sai->is_dsp_mode[tx] && !sai->is_pdm_mode)
635 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
636 
637 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
638 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
639 
640 	if (sai->is_lsb_first)
641 		val_cr5 |= FSL_SAI_CR5_FBT(0);
642 	else
643 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
644 
645 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
646 
647 	/* Set to avoid channel swap */
648 	val_cr4 |= FSL_SAI_CR4_FCONT;
649 
650 	/* Set to output mode to avoid tri-stated data pins */
651 	if (tx)
652 		val_cr4 |= FSL_SAI_CR4_CHMOD;
653 
654 	/*
655 	 * When Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will provide bclk and
656 	 * frame clock for Tx(Rx). We should set RCR4(TCR4), RCR5(TCR5)
657 	 * for playback(capture), or there will be sync error.
658 	 */
659 
660 	if (fsl_sai_dir_is_synced(sai, adir)) {
661 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
662 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
663 				   FSL_SAI_CR4_CHMOD_MASK,
664 				   val_cr4);
665 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
666 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
667 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
668 	}
669 
670 	/*
671 	 * Combine mode has limation:
672 	 * - Can't used for singel dataline/FIFO case except the FIFO0
673 	 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
674 	 *   are successive and start from FIFO0
675 	 *
676 	 * So for common usage, all multi fifo case disable the combine mode.
677 	 */
678 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
679 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
680 				   FSL_SAI_CR4_FCOMB_MASK, 0);
681 	else
682 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
683 				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
684 
685 	dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
686 	dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
687 			   dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
688 
689 	if (sai->is_multi_fifo_dma) {
690 		sai->audio_config[tx].words_per_fifo = min(slots, channels);
691 		if (tx) {
692 			sai->audio_config[tx].n_fifos_dst = pins;
693 			sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
694 		} else {
695 			sai->audio_config[tx].n_fifos_src = pins;
696 			sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
697 		}
698 		dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
699 		dma_params->peripheral_config = &sai->audio_config[tx];
700 		dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
701 
702 		watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
703 				 (dma_params->maxburst - 1);
704 		regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
705 				   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
706 				   watermark);
707 	}
708 
709 	/* Find a proper tcre setting */
710 	for (i = 0; i < sai->soc_data->pins; i++) {
711 		trce_mask = (1 << (i + 1)) - 1;
712 		if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
713 			break;
714 	}
715 
716 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
717 			   FSL_SAI_CR3_TRCE_MASK,
718 			   FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
719 
720 	/*
721 	 * When the TERE and FSD_MSTR enabled before configuring the word width
722 	 * There will be no frame sync clock issue, because word width impact
723 	 * the generation of frame sync clock.
724 	 *
725 	 * TERE enabled earlier only for i.MX8MP case for the hardware limitation,
726 	 * We need to disable FSD_MSTR before configuring word width, then enable
727 	 * FSD_MSTR bit for this specific case.
728 	 */
729 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
730 	    !sai->is_consumer_mode[tx])
731 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
732 				   FSL_SAI_CR4_FSD_MSTR, 0);
733 
734 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
735 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
736 			   FSL_SAI_CR4_CHMOD_MASK | FSL_SAI_CR4_FCONT_MASK,
737 			   val_cr4);
738 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
739 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
740 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
741 
742 	/* Enable FSD_MSTR after configuring word width */
743 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
744 	    !sai->is_consumer_mode[tx])
745 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
746 				   FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR);
747 
748 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
749 		     ~0UL - ((1 << min(channels, slots)) - 1));
750 
751 	return 0;
752 }
753 
fsl_sai_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)754 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
755 		struct snd_soc_dai *cpu_dai)
756 {
757 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
758 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
759 	unsigned int ofs = sai->soc_data->reg_offset;
760 
761 	/* Clear xMR to avoid channel swap with mclk_with_tere enabled case */
762 	regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0);
763 
764 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
765 			   FSL_SAI_CR3_TRCE_MASK, 0);
766 
767 	if (!sai->is_consumer_mode[tx] &&
768 	    sai->mclk_streams & BIT(substream->stream)) {
769 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
770 		sai->mclk_streams &= ~BIT(substream->stream);
771 	}
772 
773 	return 0;
774 }
775 
fsl_sai_config_disable(struct fsl_sai * sai,int dir)776 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
777 {
778 	unsigned int ofs = sai->soc_data->reg_offset;
779 	bool tx = dir == TX;
780 	u32 xcsr, count = 100, mask;
781 
782 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
783 		mask = FSL_SAI_CSR_TERE;
784 	else
785 		mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE;
786 
787 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
788 			   mask, 0);
789 
790 	/* TERE will remain set till the end of current frame */
791 	do {
792 		udelay(10);
793 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
794 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
795 
796 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
797 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
798 
799 	/*
800 	 * For sai master mode, after several open/close sai,
801 	 * there will be no frame clock, and can't recover
802 	 * anymore. Add software reset to fix this issue.
803 	 * This is a hardware bug, and will be fix in the
804 	 * next sai version.
805 	 *
806 	 * In consumer mode, this can happen even after a
807 	 * single open/close, especially if both tx and rx
808 	 * are running concurrently.
809 	 */
810 	/* Software Reset */
811 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
812 	/* Clear SR bit to finish the reset */
813 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR, 0);
814 }
815 
fsl_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)816 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
817 		struct snd_soc_dai *cpu_dai)
818 {
819 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
820 	unsigned int ofs = sai->soc_data->reg_offset;
821 
822 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
823 	int adir = tx ? RX : TX;
824 	int dir = tx ? TX : RX;
825 	u32 xcsr;
826 
827 	/*
828 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
829 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
830 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
831 	 */
832 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
833 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
834 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
835 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
836 
837 	/*
838 	 * It is recommended that the transmitter is the last enabled
839 	 * and the first disabled.
840 	 */
841 	switch (cmd) {
842 	case SNDRV_PCM_TRIGGER_START:
843 	case SNDRV_PCM_TRIGGER_RESUME:
844 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
845 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
846 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
847 
848 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
849 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
850 		/*
851 		 * Enable the opposite direction for synchronous mode
852 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
853 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
854 		 *
855 		 * RM recommends to enable RE after TE for case 1 and to enable
856 		 * TE after RE for case 2, but we here may not always guarantee
857 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
858 		 * TE after RE, which is against what RM recommends but should
859 		 * be safe to do, judging by years of testing results.
860 		 */
861 		if (fsl_sai_dir_is_synced(sai, adir))
862 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
863 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
864 
865 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
866 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
867 		break;
868 	case SNDRV_PCM_TRIGGER_STOP:
869 	case SNDRV_PCM_TRIGGER_SUSPEND:
870 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
871 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
872 				   FSL_SAI_CSR_FRDE, 0);
873 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
874 				   FSL_SAI_CSR_xIE_MASK, 0);
875 
876 		/* Check if the opposite FRDE is also disabled */
877 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
878 
879 		/*
880 		 * If opposite stream provides clocks for synchronous mode and
881 		 * it is inactive, disable it before disabling the current one
882 		 */
883 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
884 			fsl_sai_config_disable(sai, adir);
885 
886 		/*
887 		 * Disable current stream if either of:
888 		 * 1. current stream doesn't provide clocks for synchronous mode
889 		 * 2. current stream provides clocks for synchronous mode but no
890 		 *    more stream is active.
891 		 */
892 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
893 			fsl_sai_config_disable(sai, dir);
894 
895 		break;
896 	default:
897 		return -EINVAL;
898 	}
899 
900 	return 0;
901 }
902 
fsl_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)903 static int fsl_sai_startup(struct snd_pcm_substream *substream,
904 		struct snd_soc_dai *cpu_dai)
905 {
906 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
907 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
908 	int ret;
909 
910 	/*
911 	 * EDMA controller needs period size to be a multiple of
912 	 * tx/rx maxburst
913 	 */
914 	if (sai->soc_data->use_edma)
915 		snd_pcm_hw_constraint_step(substream->runtime, 0,
916 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
917 					   tx ? sai->dma_params_tx.maxburst :
918 					   sai->dma_params_rx.maxburst);
919 
920 	if (sai->is_consumer_mode[tx])
921 		ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
922 						 SNDRV_PCM_HW_PARAM_RATE,
923 						 &fsl_sai_rate_constraints);
924 	else
925 		ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
926 						 SNDRV_PCM_HW_PARAM_RATE,
927 						 &sai->constraint_rates);
928 
929 	return ret;
930 }
931 
fsl_sai_dai_probe(struct snd_soc_dai * cpu_dai)932 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
933 {
934 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
935 	unsigned int ofs = sai->soc_data->reg_offset;
936 
937 	/* Software Reset for both Tx and Rx */
938 	regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
939 	regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
940 	/* Clear SR bit to finish the reset */
941 	regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, 0);
942 	regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, 0);
943 
944 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
945 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
946 			   sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst);
947 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
948 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
949 			   sai->dma_params_rx.maxburst - 1);
950 
951 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
952 				&sai->dma_params_rx);
953 
954 	return 0;
955 }
956 
957 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
958 	.probe		= fsl_sai_dai_probe,
959 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
960 	.set_sysclk	= fsl_sai_set_dai_sysclk,
961 	.set_fmt	= fsl_sai_set_dai_fmt,
962 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
963 	.hw_params	= fsl_sai_hw_params,
964 	.hw_free	= fsl_sai_hw_free,
965 	.trigger	= fsl_sai_trigger,
966 	.startup	= fsl_sai_startup,
967 };
968 
969 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_tx_ops = {
970 	.probe		= fsl_sai_dai_probe,
971 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
972 	.set_sysclk	= fsl_sai_set_dai_sysclk,
973 	.set_fmt	= fsl_sai_set_dai_fmt_tx,
974 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot_tx,
975 	.xlate_tdm_slot_mask = fsl_sai_xlate_tdm_slot_mask,
976 	.hw_params	= fsl_sai_hw_params,
977 	.hw_free	= fsl_sai_hw_free,
978 	.trigger	= fsl_sai_trigger,
979 	.startup	= fsl_sai_startup,
980 };
981 
982 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_rx_ops = {
983 	.probe		= fsl_sai_dai_probe,
984 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
985 	.set_sysclk	= fsl_sai_set_dai_sysclk,
986 	.set_fmt	= fsl_sai_set_dai_fmt_rx,
987 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot_rx,
988 	.xlate_tdm_slot_mask = fsl_sai_xlate_tdm_slot_mask,
989 	.hw_params	= fsl_sai_hw_params,
990 	.hw_free	= fsl_sai_hw_free,
991 	.trigger	= fsl_sai_trigger,
992 	.startup	= fsl_sai_startup,
993 };
994 
fsl_sai_dai_resume(struct snd_soc_component * component)995 static int fsl_sai_dai_resume(struct snd_soc_component *component)
996 {
997 	struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
998 	struct device *dev = &sai->pdev->dev;
999 	int ret;
1000 
1001 	if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
1002 		ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
1003 		if (ret) {
1004 			dev_err(dev, "failed to set proper pins state: %d\n", ret);
1005 			return ret;
1006 		}
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 static struct snd_soc_dai_driver fsl_sai_dai_template[] = {
1013 	{
1014 		.name = "sai-tx-rx",
1015 		.playback = {
1016 			.stream_name = "CPU-Playback",
1017 			.channels_min = 1,
1018 			.channels_max = 32,
1019 			.rate_min = 8000,
1020 			.rate_max = 2822400,
1021 			.rates = SNDRV_PCM_RATE_KNOT,
1022 			.formats = FSL_SAI_FORMATS,
1023 		},
1024 		.capture = {
1025 			.stream_name = "CPU-Capture",
1026 			.channels_min = 1,
1027 			.channels_max = 32,
1028 			.rate_min = 8000,
1029 			.rate_max = 2822400,
1030 			.rates = SNDRV_PCM_RATE_KNOT,
1031 			.formats = FSL_SAI_FORMATS,
1032 		},
1033 		.ops = &fsl_sai_pcm_dai_ops,
1034 	},
1035 	{
1036 		.name = "sai-tx",
1037 		.playback = {
1038 			.stream_name = "SAI-Playback",
1039 			.channels_min = 1,
1040 			.channels_max = 32,
1041 			.rate_min = 8000,
1042 			.rate_max = 2822400,
1043 			.rates = SNDRV_PCM_RATE_KNOT,
1044 			.formats = FSL_SAI_FORMATS,
1045 		},
1046 		.ops = &fsl_sai_pcm_dai_tx_ops,
1047 	},
1048 	{
1049 		.name = "sai-rx",
1050 		.capture = {
1051 			.stream_name = "SAI-Capture",
1052 			.channels_min = 1,
1053 			.channels_max = 32,
1054 			.rate_min = 8000,
1055 			.rate_max = 2822400,
1056 			.rates = SNDRV_PCM_RATE_KNOT,
1057 			.formats = FSL_SAI_FORMATS,
1058 		},
1059 		.ops = &fsl_sai_pcm_dai_rx_ops,
1060 	},
1061 };
1062 
1063 static const struct snd_soc_component_driver fsl_component = {
1064 	.name			= "fsl-sai",
1065 	.resume			= fsl_sai_dai_resume,
1066 	.legacy_dai_naming	= 1,
1067 };
1068 
1069 static const struct reg_default fsl_sai_reg_defaults_ofs0[] = {
1070 	{FSL_SAI_TCR1(0), 0},
1071 	{FSL_SAI_TCR2(0), 0},
1072 	{FSL_SAI_TCR3(0), 0},
1073 	{FSL_SAI_TCR4(0), 0},
1074 	{FSL_SAI_TCR5(0), 0},
1075 	{FSL_SAI_TDR0, 0},
1076 	{FSL_SAI_TDR1, 0},
1077 	{FSL_SAI_TDR2, 0},
1078 	{FSL_SAI_TDR3, 0},
1079 	{FSL_SAI_TDR4, 0},
1080 	{FSL_SAI_TDR5, 0},
1081 	{FSL_SAI_TDR6, 0},
1082 	{FSL_SAI_TDR7, 0},
1083 	{FSL_SAI_TMR, 0},
1084 	{FSL_SAI_TTCTL, 0},
1085 	{FSL_SAI_RCR1(0), 0},
1086 	{FSL_SAI_RCR2(0), 0},
1087 	{FSL_SAI_RCR3(0), 0},
1088 	{FSL_SAI_RCR4(0), 0},
1089 	{FSL_SAI_RCR5(0), 0},
1090 	{FSL_SAI_RMR, 0},
1091 };
1092 
1093 static const struct reg_default fsl_sai_reg_defaults_ofs8[] = {
1094 	{FSL_SAI_TCR1(8), 0},
1095 	{FSL_SAI_TCR2(8), 0},
1096 	{FSL_SAI_TCR3(8), 0},
1097 	{FSL_SAI_TCR4(8), 0},
1098 	{FSL_SAI_TCR5(8), 0},
1099 	{FSL_SAI_TDR0, 0},
1100 	{FSL_SAI_TDR1, 0},
1101 	{FSL_SAI_TDR2, 0},
1102 	{FSL_SAI_TDR3, 0},
1103 	{FSL_SAI_TDR4, 0},
1104 	{FSL_SAI_TDR5, 0},
1105 	{FSL_SAI_TDR6, 0},
1106 	{FSL_SAI_TDR7, 0},
1107 	{FSL_SAI_TMR, 0},
1108 	{FSL_SAI_TTCTL, 0},
1109 	{FSL_SAI_RCR1(8), 0},
1110 	{FSL_SAI_RCR2(8), 0},
1111 	{FSL_SAI_RCR3(8), 0},
1112 	{FSL_SAI_RCR4(8), 0},
1113 	{FSL_SAI_RCR5(8), 0},
1114 	{FSL_SAI_RMR, 0},
1115 	{FSL_SAI_RTCTL, 0},
1116 	{FSL_SAI_MCTL, 0},
1117 	{FSL_SAI_MDIV, 0},
1118 };
1119 
fsl_sai_readable_reg(struct device * dev,unsigned int reg)1120 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
1121 {
1122 	struct fsl_sai *sai = dev_get_drvdata(dev);
1123 	unsigned int ofs = sai->soc_data->reg_offset;
1124 
1125 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1126 		return true;
1127 
1128 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1129 		return true;
1130 
1131 	switch (reg) {
1132 	case FSL_SAI_TFR0:
1133 	case FSL_SAI_TFR1:
1134 	case FSL_SAI_TFR2:
1135 	case FSL_SAI_TFR3:
1136 	case FSL_SAI_TFR4:
1137 	case FSL_SAI_TFR5:
1138 	case FSL_SAI_TFR6:
1139 	case FSL_SAI_TFR7:
1140 	case FSL_SAI_TMR:
1141 	case FSL_SAI_RDR0:
1142 	case FSL_SAI_RDR1:
1143 	case FSL_SAI_RDR2:
1144 	case FSL_SAI_RDR3:
1145 	case FSL_SAI_RDR4:
1146 	case FSL_SAI_RDR5:
1147 	case FSL_SAI_RDR6:
1148 	case FSL_SAI_RDR7:
1149 	case FSL_SAI_RFR0:
1150 	case FSL_SAI_RFR1:
1151 	case FSL_SAI_RFR2:
1152 	case FSL_SAI_RFR3:
1153 	case FSL_SAI_RFR4:
1154 	case FSL_SAI_RFR5:
1155 	case FSL_SAI_RFR6:
1156 	case FSL_SAI_RFR7:
1157 	case FSL_SAI_RMR:
1158 	case FSL_SAI_MCTL:
1159 	case FSL_SAI_MDIV:
1160 	case FSL_SAI_VERID:
1161 	case FSL_SAI_PARAM:
1162 	case FSL_SAI_TTCTN:
1163 	case FSL_SAI_RTCTN:
1164 	case FSL_SAI_TTCTL:
1165 	case FSL_SAI_TBCTN:
1166 	case FSL_SAI_TTCAP:
1167 	case FSL_SAI_RTCTL:
1168 	case FSL_SAI_RBCTN:
1169 	case FSL_SAI_RTCAP:
1170 		return true;
1171 	default:
1172 		return false;
1173 	}
1174 }
1175 
fsl_sai_volatile_reg(struct device * dev,unsigned int reg)1176 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1177 {
1178 	struct fsl_sai *sai = dev_get_drvdata(dev);
1179 	unsigned int ofs = sai->soc_data->reg_offset;
1180 
1181 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1182 		return true;
1183 
1184 	/* Set VERID and PARAM be volatile for reading value in probe */
1185 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1186 		return true;
1187 
1188 	switch (reg) {
1189 	case FSL_SAI_TFR0:
1190 	case FSL_SAI_TFR1:
1191 	case FSL_SAI_TFR2:
1192 	case FSL_SAI_TFR3:
1193 	case FSL_SAI_TFR4:
1194 	case FSL_SAI_TFR5:
1195 	case FSL_SAI_TFR6:
1196 	case FSL_SAI_TFR7:
1197 	case FSL_SAI_RFR0:
1198 	case FSL_SAI_RFR1:
1199 	case FSL_SAI_RFR2:
1200 	case FSL_SAI_RFR3:
1201 	case FSL_SAI_RFR4:
1202 	case FSL_SAI_RFR5:
1203 	case FSL_SAI_RFR6:
1204 	case FSL_SAI_RFR7:
1205 	case FSL_SAI_RDR0:
1206 	case FSL_SAI_RDR1:
1207 	case FSL_SAI_RDR2:
1208 	case FSL_SAI_RDR3:
1209 	case FSL_SAI_RDR4:
1210 	case FSL_SAI_RDR5:
1211 	case FSL_SAI_RDR6:
1212 	case FSL_SAI_RDR7:
1213 		return true;
1214 	default:
1215 		return false;
1216 	}
1217 }
1218 
fsl_sai_writeable_reg(struct device * dev,unsigned int reg)1219 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1220 {
1221 	struct fsl_sai *sai = dev_get_drvdata(dev);
1222 	unsigned int ofs = sai->soc_data->reg_offset;
1223 
1224 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1225 		return true;
1226 
1227 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1228 		return true;
1229 
1230 	switch (reg) {
1231 	case FSL_SAI_TDR0:
1232 	case FSL_SAI_TDR1:
1233 	case FSL_SAI_TDR2:
1234 	case FSL_SAI_TDR3:
1235 	case FSL_SAI_TDR4:
1236 	case FSL_SAI_TDR5:
1237 	case FSL_SAI_TDR6:
1238 	case FSL_SAI_TDR7:
1239 	case FSL_SAI_TMR:
1240 	case FSL_SAI_RMR:
1241 	case FSL_SAI_MCTL:
1242 	case FSL_SAI_MDIV:
1243 	case FSL_SAI_TTCTL:
1244 	case FSL_SAI_RTCTL:
1245 		return true;
1246 	default:
1247 		return false;
1248 	}
1249 }
1250 
1251 static struct regmap_config fsl_sai_regmap_config = {
1252 	.reg_bits = 32,
1253 	.reg_stride = 4,
1254 	.val_bits = 32,
1255 
1256 	.max_register = FSL_SAI_RMR,
1257 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
1258 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1259 	.readable_reg = fsl_sai_readable_reg,
1260 	.volatile_reg = fsl_sai_volatile_reg,
1261 	.writeable_reg = fsl_sai_writeable_reg,
1262 	.cache_type = REGCACHE_FLAT,
1263 };
1264 
fsl_sai_check_version(struct device * dev)1265 static int fsl_sai_check_version(struct device *dev)
1266 {
1267 	struct fsl_sai *sai = dev_get_drvdata(dev);
1268 	unsigned char ofs = sai->soc_data->reg_offset;
1269 	unsigned int val;
1270 	int ret;
1271 
1272 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1273 		return 0;
1274 
1275 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1276 	if (ret < 0)
1277 		return ret;
1278 
1279 	dev_dbg(dev, "VERID: 0x%016X\n", val);
1280 
1281 	sai->verid.version = val &
1282 		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1283 	sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1284 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1285 
1286 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1287 	if (ret < 0)
1288 		return ret;
1289 
1290 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
1291 
1292 	/* Max slots per frame, power of 2 */
1293 	sai->param.slot_num = 1 <<
1294 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1295 
1296 	/* Words per fifo, power of 2 */
1297 	sai->param.fifo_depth = 1 <<
1298 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1299 
1300 	/* Number of datalines implemented */
1301 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1302 
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Calculate the offset between first two datalines, don't
1308  * different offset in one case.
1309  */
fsl_sai_calc_dl_off(unsigned long dl_mask)1310 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1311 {
1312 	int fbidx, nbidx, offset;
1313 
1314 	fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1315 	nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1316 	offset = nbidx - fbidx - 1;
1317 
1318 	return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1319 }
1320 
1321 /*
1322  * read the fsl,dataline property from dts file.
1323  * It has 3 value for each configuration, first one means the type:
1324  * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1325  * dataline mask for 'tx'. for example
1326  *
1327  * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1328  *
1329  * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1330  * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1331  *
1332  */
fsl_sai_read_dlcfg(struct fsl_sai * sai)1333 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1334 {
1335 	struct platform_device *pdev = sai->pdev;
1336 	struct device_node *np = pdev->dev.of_node;
1337 	struct device *dev = &pdev->dev;
1338 	int ret, elems, i, index, num_cfg;
1339 	char *propname = "fsl,dataline";
1340 	struct fsl_sai_dl_cfg *cfg;
1341 	unsigned long dl_mask;
1342 	unsigned int soc_dl;
1343 	u32 rx, tx, type;
1344 
1345 	elems = of_property_count_u32_elems(np, propname);
1346 
1347 	if (elems <= 0) {
1348 		elems = 0;
1349 	} else if (elems % 3) {
1350 		dev_err(dev, "Number of elements must be divisible to 3.\n");
1351 		return -EINVAL;
1352 	}
1353 
1354 	num_cfg = elems / 3;
1355 	/*  Add one more for default value */
1356 	cfg = devm_kcalloc(&pdev->dev, num_cfg + 1, sizeof(*cfg), GFP_KERNEL);
1357 	if (!cfg)
1358 		return -ENOMEM;
1359 
1360 	/* Consider default value "0 0xFF 0xFF" if property is missing */
1361 	soc_dl = BIT(sai->soc_data->pins) - 1;
1362 	cfg[0].type = FSL_SAI_DL_DEFAULT;
1363 	cfg[0].pins[0] = sai->soc_data->pins;
1364 	cfg[0].mask[0] = soc_dl;
1365 	cfg[0].start_off[0] = 0;
1366 	cfg[0].next_off[0] = 0;
1367 
1368 	cfg[0].pins[1] = sai->soc_data->pins;
1369 	cfg[0].mask[1] = soc_dl;
1370 	cfg[0].start_off[1] = 0;
1371 	cfg[0].next_off[1] = 0;
1372 	for (i = 1, index = 0; i < num_cfg + 1; i++) {
1373 		/*
1374 		 * type of dataline
1375 		 * 0 means default mode
1376 		 * 1 means I2S mode
1377 		 * 2 means PDM mode
1378 		 */
1379 		ret = of_property_read_u32_index(np, propname, index++, &type);
1380 		if (ret)
1381 			return -EINVAL;
1382 
1383 		ret = of_property_read_u32_index(np, propname, index++, &rx);
1384 		if (ret)
1385 			return -EINVAL;
1386 
1387 		ret = of_property_read_u32_index(np, propname, index++, &tx);
1388 		if (ret)
1389 			return -EINVAL;
1390 
1391 		if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1392 			dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1393 			return -EINVAL;
1394 		}
1395 
1396 		rx = rx & soc_dl;
1397 		tx = tx & soc_dl;
1398 
1399 		cfg[i].type = type;
1400 		cfg[i].pins[0] = hweight8(rx);
1401 		cfg[i].mask[0] = rx;
1402 		dl_mask = rx;
1403 		cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1404 		cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1405 
1406 		cfg[i].pins[1] = hweight8(tx);
1407 		cfg[i].mask[1] = tx;
1408 		dl_mask = tx;
1409 		cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1410 		cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1411 	}
1412 
1413 	sai->dl_cfg = cfg;
1414 	sai->dl_cfg_cnt = num_cfg + 1;
1415 	return 0;
1416 }
1417 
1418 static int fsl_sai_runtime_suspend(struct device *dev);
1419 static int fsl_sai_runtime_resume(struct device *dev);
1420 
fsl_sai_probe(struct platform_device * pdev)1421 static int fsl_sai_probe(struct platform_device *pdev)
1422 {
1423 	struct device_node *np = pdev->dev.of_node;
1424 	struct device *dev = &pdev->dev;
1425 	struct fsl_sai *sai;
1426 	struct regmap *gpr;
1427 	void __iomem *base;
1428 	char tmp[8];
1429 	int irq, ret, i;
1430 	int index;
1431 	u32 dmas[4];
1432 
1433 	sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1434 	if (!sai)
1435 		return -ENOMEM;
1436 
1437 	sai->pdev = pdev;
1438 	sai->soc_data = of_device_get_match_data(dev);
1439 
1440 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1441 
1442 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1443 	if (IS_ERR(base))
1444 		return PTR_ERR(base);
1445 
1446 	if (sai->soc_data->reg_offset == 8) {
1447 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1448 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1449 		fsl_sai_regmap_config.num_reg_defaults =
1450 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1451 	}
1452 
1453 	sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1454 	if (IS_ERR(sai->regmap)) {
1455 		dev_err(dev, "regmap init failed\n");
1456 		return PTR_ERR(sai->regmap);
1457 	}
1458 
1459 	sai->bus_clk = devm_clk_get(dev, "bus");
1460 	/* Compatible with old DTB cases */
1461 	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1462 		sai->bus_clk = devm_clk_get(dev, "sai");
1463 	if (IS_ERR(sai->bus_clk)) {
1464 		dev_err(dev, "failed to get bus clock: %ld\n",
1465 				PTR_ERR(sai->bus_clk));
1466 		/* -EPROBE_DEFER */
1467 		return PTR_ERR(sai->bus_clk);
1468 	}
1469 
1470 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1471 		sprintf(tmp, "mclk%d", i);
1472 		sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1473 		if (IS_ERR(sai->mclk_clk[i])) {
1474 			dev_err(dev, "failed to get mclk%d clock: %ld\n",
1475 					i, PTR_ERR(sai->mclk_clk[i]));
1476 			sai->mclk_clk[i] = NULL;
1477 		}
1478 	}
1479 
1480 	if (sai->soc_data->mclk0_is_mclk1)
1481 		sai->mclk_clk[0] = sai->mclk_clk[1];
1482 	else
1483 		sai->mclk_clk[0] = sai->bus_clk;
1484 
1485 	fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1486 				&sai->pll11k_clk);
1487 
1488 	fsl_asoc_constrain_rates(&sai->constraint_rates,
1489 				 &fsl_sai_rate_constraints,
1490 				 sai->pll8k_clk, sai->pll11k_clk, NULL,
1491 				 sai->constraint_rates_list);
1492 
1493 	/* Use Multi FIFO mode depending on the support from SDMA script */
1494 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1495 	if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1496 		sai->is_multi_fifo_dma = true;
1497 
1498 	/* read dataline mask for rx and tx*/
1499 	ret = fsl_sai_read_dlcfg(sai);
1500 	if (ret < 0) {
1501 		dev_err(dev, "failed to read dlcfg %d\n", ret);
1502 		return ret;
1503 	}
1504 
1505 	irq = platform_get_irq(pdev, 0);
1506 	if (irq < 0)
1507 		return irq;
1508 
1509 	ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1510 			       np->name, sai);
1511 	if (ret) {
1512 		dev_err(dev, "failed to claim irq %u\n", irq);
1513 		return ret;
1514 	}
1515 
1516 	memcpy(&sai->cpu_dai_drv, fsl_sai_dai_template,
1517 	       sizeof(*fsl_sai_dai_template) * ARRAY_SIZE(fsl_sai_dai_template));
1518 
1519 	/* Sync Tx with Rx as default by following old DT binding */
1520 	sai->synchronous[RX] = true;
1521 	sai->synchronous[TX] = false;
1522 	sai->cpu_dai_drv[0].symmetric_rate = 1;
1523 	sai->cpu_dai_drv[0].symmetric_channels = 1;
1524 	sai->cpu_dai_drv[0].symmetric_sample_bits = 1;
1525 
1526 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1527 	    of_property_read_bool(np, "fsl,sai-asynchronous")) {
1528 		/* error out if both synchronous and asynchronous are present */
1529 		dev_err(dev, "invalid binding for synchronous mode\n");
1530 		return -EINVAL;
1531 	}
1532 
1533 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1534 		/* Sync Rx with Tx */
1535 		sai->synchronous[RX] = false;
1536 		sai->synchronous[TX] = true;
1537 	} else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1538 		/* Discard all settings for asynchronous mode */
1539 		sai->synchronous[RX] = false;
1540 		sai->synchronous[TX] = false;
1541 		sai->cpu_dai_drv[0].symmetric_rate = 0;
1542 		sai->cpu_dai_drv[0].symmetric_channels = 0;
1543 		sai->cpu_dai_drv[0].symmetric_sample_bits = 0;
1544 	}
1545 
1546 	sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1547 
1548 	if (sai->mclk_direction_output &&
1549 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1550 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1551 		if (IS_ERR(gpr)) {
1552 			dev_err(dev, "cannot find iomuxc registers\n");
1553 			return PTR_ERR(gpr);
1554 		}
1555 
1556 		index = of_alias_get_id(np, "sai");
1557 		if (index < 0)
1558 			return index;
1559 
1560 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1561 				   MCLK_DIR(index));
1562 	}
1563 
1564 	sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1565 	sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1566 	sai->dma_params_rx.maxburst =
1567 		sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX;
1568 	sai->dma_params_tx.maxburst =
1569 		sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX;
1570 
1571 	sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1572 
1573 	platform_set_drvdata(pdev, sai);
1574 	pm_runtime_enable(dev);
1575 	if (!pm_runtime_enabled(dev)) {
1576 		ret = fsl_sai_runtime_resume(dev);
1577 		if (ret)
1578 			goto err_pm_disable;
1579 	}
1580 
1581 	ret = pm_runtime_resume_and_get(dev);
1582 	if (ret < 0)
1583 		goto err_pm_get_sync;
1584 
1585 	/* Get sai version */
1586 	ret = fsl_sai_check_version(dev);
1587 	if (ret < 0)
1588 		dev_warn(dev, "Error reading SAI version: %d\n", ret);
1589 
1590 	/* Select MCLK direction */
1591 	if (sai->mclk_direction_output &&
1592 	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
1593 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1594 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1595 	}
1596 
1597 	ret = pm_runtime_put_sync(dev);
1598 	if (ret < 0 && ret != -ENOSYS)
1599 		goto err_pm_get_sync;
1600 
1601 	/*
1602 	 * Register platform component before registering cpu dai for there
1603 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1604 	 */
1605 	if (sai->soc_data->use_imx_pcm) {
1606 		ret = imx_pcm_dma_init(pdev);
1607 		if (ret) {
1608 			dev_err_probe(dev, ret, "PCM DMA init failed\n");
1609 			if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1610 				dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1611 			goto err_pm_get_sync;
1612 		}
1613 	} else {
1614 		ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1615 		if (ret) {
1616 			dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n");
1617 			goto err_pm_get_sync;
1618 		}
1619 	}
1620 
1621 	ret = devm_snd_soc_register_component(dev, &fsl_component,
1622 					      sai->cpu_dai_drv, ARRAY_SIZE(fsl_sai_dai_template));
1623 	if (ret)
1624 		goto err_pm_get_sync;
1625 
1626 	return ret;
1627 
1628 err_pm_get_sync:
1629 	if (!pm_runtime_status_suspended(dev))
1630 		fsl_sai_runtime_suspend(dev);
1631 err_pm_disable:
1632 	pm_runtime_disable(dev);
1633 
1634 	return ret;
1635 }
1636 
fsl_sai_remove(struct platform_device * pdev)1637 static void fsl_sai_remove(struct platform_device *pdev)
1638 {
1639 	pm_runtime_disable(&pdev->dev);
1640 	if (!pm_runtime_status_suspended(&pdev->dev))
1641 		fsl_sai_runtime_suspend(&pdev->dev);
1642 }
1643 
1644 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1645 	.use_imx_pcm = false,
1646 	.use_edma = false,
1647 	.fifo_depth = 32,
1648 	.pins = 1,
1649 	.reg_offset = 0,
1650 	.mclk0_is_mclk1 = false,
1651 	.flags = 0,
1652 	.max_register = FSL_SAI_RMR,
1653 };
1654 
1655 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1656 	.use_imx_pcm = true,
1657 	.use_edma = false,
1658 	.fifo_depth = 32,
1659 	.pins = 1,
1660 	.reg_offset = 0,
1661 	.mclk0_is_mclk1 = true,
1662 	.flags = 0,
1663 	.max_register = FSL_SAI_RMR,
1664 };
1665 
1666 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1667 	.use_imx_pcm = true,
1668 	.use_edma = false,
1669 	.fifo_depth = 16,
1670 	.pins = 2,
1671 	.reg_offset = 8,
1672 	.mclk0_is_mclk1 = false,
1673 	.flags = PMQOS_CPU_LATENCY,
1674 	.max_register = FSL_SAI_RMR,
1675 };
1676 
1677 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1678 	.use_imx_pcm = true,
1679 	.use_edma = false,
1680 	.fifo_depth = 128,
1681 	.pins = 8,
1682 	.reg_offset = 8,
1683 	.mclk0_is_mclk1 = false,
1684 	.flags = 0,
1685 	.max_register = FSL_SAI_RMR,
1686 };
1687 
1688 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1689 	.use_imx_pcm = true,
1690 	.use_edma = true,
1691 	.fifo_depth = 64,
1692 	.pins = 4,
1693 	.reg_offset = 0,
1694 	.mclk0_is_mclk1 = false,
1695 	.flags = 0,
1696 	.max_register = FSL_SAI_RMR,
1697 };
1698 
1699 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1700 	.use_imx_pcm = true,
1701 	.use_edma = false,
1702 	.fifo_depth = 128,
1703 	.reg_offset = 8,
1704 	.mclk0_is_mclk1 = false,
1705 	.pins = 8,
1706 	.flags = 0,
1707 	.max_register = FSL_SAI_MCTL,
1708 };
1709 
1710 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1711 	.use_imx_pcm = true,
1712 	.use_edma = false,
1713 	.fifo_depth = 128,
1714 	.reg_offset = 8,
1715 	.mclk0_is_mclk1 = false,
1716 	.pins = 8,
1717 	.flags = 0,
1718 	.max_register = FSL_SAI_MDIV,
1719 };
1720 
1721 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1722 	.use_imx_pcm = true,
1723 	.use_edma = false,
1724 	.fifo_depth = 128,
1725 	.reg_offset = 8,
1726 	.mclk0_is_mclk1 = false,
1727 	.pins = 8,
1728 	.flags = 0,
1729 	.max_register = FSL_SAI_MDIV,
1730 	.mclk_with_tere = true,
1731 };
1732 
1733 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1734 	.use_imx_pcm = true,
1735 	.use_edma = true,
1736 	.fifo_depth = 16,
1737 	.reg_offset = 8,
1738 	.mclk0_is_mclk1 = false,
1739 	.pins = 4,
1740 	.flags = PMQOS_CPU_LATENCY,
1741 	.max_register = FSL_SAI_RTCAP,
1742 };
1743 
1744 static const struct fsl_sai_soc_data fsl_sai_imx93_data = {
1745 	.use_imx_pcm = true,
1746 	.use_edma = true,
1747 	.fifo_depth = 128,
1748 	.reg_offset = 8,
1749 	.mclk0_is_mclk1 = false,
1750 	.pins = 4,
1751 	.flags = 0,
1752 	.max_register = FSL_SAI_MCTL,
1753 	.max_burst = {8, 8},
1754 };
1755 
1756 static const struct fsl_sai_soc_data fsl_sai_imx95_data = {
1757 	.use_imx_pcm = true,
1758 	.use_edma = true,
1759 	.fifo_depth = 128,
1760 	.reg_offset = 8,
1761 	.mclk0_is_mclk1 = false,
1762 	.pins = 8,
1763 	.flags = 0,
1764 	.max_register = FSL_SAI_MCTL,
1765 	.max_burst = {8, 8},
1766 };
1767 
1768 static const struct of_device_id fsl_sai_ids[] = {
1769 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1770 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1771 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1772 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1773 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1774 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1775 	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1776 	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1777 	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1778 	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1779 	{ .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data },
1780 	{ .compatible = "fsl,imx95-sai", .data = &fsl_sai_imx95_data },
1781 	{ /* sentinel */ }
1782 };
1783 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1784 
fsl_sai_runtime_suspend(struct device * dev)1785 static int fsl_sai_runtime_suspend(struct device *dev)
1786 {
1787 	struct fsl_sai *sai = dev_get_drvdata(dev);
1788 
1789 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1790 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1791 
1792 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1793 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1794 
1795 	clk_disable_unprepare(sai->bus_clk);
1796 
1797 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1798 		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1799 
1800 	regcache_cache_only(sai->regmap, true);
1801 
1802 	return 0;
1803 }
1804 
fsl_sai_runtime_resume(struct device * dev)1805 static int fsl_sai_runtime_resume(struct device *dev)
1806 {
1807 	struct fsl_sai *sai = dev_get_drvdata(dev);
1808 	unsigned int ofs = sai->soc_data->reg_offset;
1809 	int ret;
1810 
1811 	ret = clk_prepare_enable(sai->bus_clk);
1812 	if (ret) {
1813 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1814 		return ret;
1815 	}
1816 
1817 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1818 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1819 		if (ret)
1820 			goto disable_bus_clk;
1821 	}
1822 
1823 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1824 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1825 		if (ret)
1826 			goto disable_tx_clk;
1827 	}
1828 
1829 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1830 		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1831 
1832 	regcache_cache_only(sai->regmap, false);
1833 	regcache_mark_dirty(sai->regmap);
1834 	regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
1835 	regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
1836 	usleep_range(1000, 2000);
1837 	regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, 0);
1838 	regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, 0);
1839 
1840 	ret = regcache_sync(sai->regmap);
1841 	if (ret)
1842 		goto disable_rx_clk;
1843 
1844 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1845 		regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1846 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1847 
1848 	return 0;
1849 
1850 disable_rx_clk:
1851 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1852 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1853 disable_tx_clk:
1854 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1855 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1856 disable_bus_clk:
1857 	clk_disable_unprepare(sai->bus_clk);
1858 
1859 	return ret;
1860 }
1861 
1862 static const struct dev_pm_ops fsl_sai_pm_ops = {
1863 	RUNTIME_PM_OPS(fsl_sai_runtime_suspend, fsl_sai_runtime_resume, NULL)
1864 	SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
1865 };
1866 
1867 static struct platform_driver fsl_sai_driver = {
1868 	.probe = fsl_sai_probe,
1869 	.remove = fsl_sai_remove,
1870 	.driver = {
1871 		.name = "fsl-sai",
1872 		.pm = pm_ptr(&fsl_sai_pm_ops),
1873 		.of_match_table = fsl_sai_ids,
1874 	},
1875 };
1876 module_platform_driver(fsl_sai_driver);
1877 
1878 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1879 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1880 MODULE_ALIAS("platform:fsl-sai");
1881 MODULE_LICENSE("GPL");
1882