1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/pinctrl/consumer.h>
13 #include <linux/pm_qos.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
23
24 #include "fsl_sai.h"
25 #include "fsl_utils.h"
26 #include "imx-pcm.h"
27
28 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
29 FSL_SAI_CSR_FEIE)
30
31 static const unsigned int fsl_sai_rates[] = {
32 8000, 11025, 12000, 16000, 22050,
33 24000, 32000, 44100, 48000, 64000,
34 88200, 96000, 176400, 192000, 352800,
35 384000, 705600, 768000, 1411200, 2822400,
36 };
37
38 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
39 .count = ARRAY_SIZE(fsl_sai_rates),
40 .list = fsl_sai_rates,
41 };
42
43 /**
44 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
45 *
46 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
47 * or Receiver's for both streams. This function is used to check if clocks of
48 * the stream's are synced by the opposite stream.
49 *
50 * @sai: SAI context
51 * @dir: stream direction
52 */
fsl_sai_dir_is_synced(struct fsl_sai * sai,int dir)53 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
54 {
55 int adir = (dir == TX) ? RX : TX;
56
57 /* current dir in async mode while opposite dir in sync mode */
58 return !sai->synchronous[dir] && sai->synchronous[adir];
59 }
60
fsl_sai_get_pins_state(struct fsl_sai * sai,u32 bclk)61 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
62 {
63 struct pinctrl_state *state = NULL;
64
65 if (sai->is_pdm_mode) {
66 /* DSD512@44.1kHz, DSD512@48kHz */
67 if (bclk >= 22579200)
68 state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
69
70 /* Get default DSD state */
71 if (IS_ERR_OR_NULL(state))
72 state = pinctrl_lookup_state(sai->pinctrl, "dsd");
73 } else {
74 /* 706k32b2c, 768k32b2c, etc */
75 if (bclk >= 45158400)
76 state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
77 }
78
79 /* Get default state */
80 if (IS_ERR_OR_NULL(state))
81 state = pinctrl_lookup_state(sai->pinctrl, "default");
82
83 return state;
84 }
85
fsl_sai_isr(int irq,void * devid)86 static irqreturn_t fsl_sai_isr(int irq, void *devid)
87 {
88 struct fsl_sai *sai = (struct fsl_sai *)devid;
89 unsigned int ofs = sai->soc_data->reg_offset;
90 struct device *dev = &sai->pdev->dev;
91 u32 flags, xcsr, mask;
92 irqreturn_t iret = IRQ_NONE;
93
94 /*
95 * Both IRQ status bits and IRQ mask bits are in the xCSR but
96 * different shifts. And we here create a mask only for those
97 * IRQs that we activated.
98 */
99 mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
100
101 /* Tx IRQ */
102 regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
103 flags = xcsr & mask;
104
105 if (flags)
106 iret = IRQ_HANDLED;
107 else
108 goto irq_rx;
109
110 if (flags & FSL_SAI_CSR_WSF)
111 dev_dbg(dev, "isr: Start of Tx word detected\n");
112
113 if (flags & FSL_SAI_CSR_SEF)
114 dev_dbg(dev, "isr: Tx Frame sync error detected\n");
115
116 if (flags & FSL_SAI_CSR_FEF)
117 dev_dbg(dev, "isr: Transmit underrun detected\n");
118
119 if (flags & FSL_SAI_CSR_FWF)
120 dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
121
122 if (flags & FSL_SAI_CSR_FRF)
123 dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
124
125 flags &= FSL_SAI_CSR_xF_W_MASK;
126 xcsr &= ~FSL_SAI_CSR_xF_MASK;
127
128 if (flags)
129 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
130
131 irq_rx:
132 /* Rx IRQ */
133 regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
134 flags = xcsr & mask;
135
136 if (flags)
137 iret = IRQ_HANDLED;
138 else
139 goto out;
140
141 if (flags & FSL_SAI_CSR_WSF)
142 dev_dbg(dev, "isr: Start of Rx word detected\n");
143
144 if (flags & FSL_SAI_CSR_SEF)
145 dev_dbg(dev, "isr: Rx Frame sync error detected\n");
146
147 if (flags & FSL_SAI_CSR_FEF)
148 dev_dbg(dev, "isr: Receive overflow detected\n");
149
150 if (flags & FSL_SAI_CSR_FWF)
151 dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
152
153 if (flags & FSL_SAI_CSR_FRF)
154 dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
155
156 flags &= FSL_SAI_CSR_xF_W_MASK;
157 xcsr &= ~FSL_SAI_CSR_xF_MASK;
158
159 if (flags)
160 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
161
162 out:
163 return iret;
164 }
165
fsl_sai_set_dai_tdm_slot_tx(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)166 static int fsl_sai_set_dai_tdm_slot_tx(struct snd_soc_dai *cpu_dai, u32 tx_mask,
167 u32 rx_mask, int slots, int slot_width)
168 {
169 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
170 bool tx = true;
171
172 sai->slots[tx] = slots;
173 sai->slot_width[tx] = slot_width;
174
175 return 0;
176 }
177
fsl_sai_set_dai_tdm_slot_rx(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)178 static int fsl_sai_set_dai_tdm_slot_rx(struct snd_soc_dai *cpu_dai, u32 tx_mask,
179 u32 rx_mask, int slots, int slot_width)
180 {
181 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
182 bool tx = false;
183
184 sai->slots[tx] = slots;
185 sai->slot_width[tx] = slot_width;
186
187 return 0;
188 }
189
fsl_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)190 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
191 u32 rx_mask, int slots, int slot_width)
192 {
193 int ret;
194
195 ret = fsl_sai_set_dai_tdm_slot_tx(cpu_dai, tx_mask, rx_mask, slots, slot_width);
196 if (ret)
197 return ret;
198
199 return fsl_sai_set_dai_tdm_slot_rx(cpu_dai, tx_mask, rx_mask, slots, slot_width);
200 }
201
fsl_sai_xlate_tdm_slot_mask(unsigned int slots,unsigned int * tx_mask,unsigned int * rx_mask)202 static int fsl_sai_xlate_tdm_slot_mask(unsigned int slots,
203 unsigned int *tx_mask, unsigned int *rx_mask)
204 {
205 /* Leave it empty, don't change the value of tx_mask and rx_mask */
206 return 0;
207 }
208
fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai * dai,unsigned int ratio)209 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
210 unsigned int ratio)
211 {
212 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
213
214 sai->bclk_ratio = ratio;
215
216 return 0;
217 }
218
fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,bool tx)219 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
220 int clk_id, unsigned int freq, bool tx)
221 {
222 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
223 unsigned int ofs = sai->soc_data->reg_offset;
224 u32 val_cr2 = 0;
225
226 switch (clk_id) {
227 case FSL_SAI_CLK_BUS:
228 val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
229 break;
230 case FSL_SAI_CLK_MAST1:
231 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
232 break;
233 case FSL_SAI_CLK_MAST2:
234 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
235 break;
236 case FSL_SAI_CLK_MAST3:
237 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
238 break;
239 default:
240 return -EINVAL;
241 }
242
243 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
244 FSL_SAI_CR2_MSEL_MASK, val_cr2);
245
246 return 0;
247 }
248
fsl_sai_set_mclk_rate(struct snd_soc_dai * dai,int clk_id,unsigned int freq)249 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
250 {
251 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
252 int ret;
253
254 fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
255 sai->pll8k_clk, sai->pll11k_clk, freq);
256
257 ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
258 if (ret < 0)
259 dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
260
261 return ret;
262 }
263
fsl_sai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)264 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
265 int clk_id, unsigned int freq, int dir)
266 {
267 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
268 int ret;
269
270 if (dir == SND_SOC_CLOCK_IN)
271 return 0;
272
273 if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
274 dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
275 return -EINVAL;
276 }
277
278 if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
279 dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
280 return -EINVAL;
281 }
282
283 if (sai->mclk_streams == 0 && freq > 0) {
284 ret = fsl_sai_set_mclk_rate(cpu_dai,
285 clk_id ? clk_id : FSL_SAI_CLK_MAST1,
286 freq);
287 if (ret < 0)
288 return ret;
289 }
290
291 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
292 if (ret) {
293 dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
294 return ret;
295 }
296
297 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
298 if (ret)
299 dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
300
301 return ret;
302 }
303
fsl_sai_set_dai_fmt_tr(struct snd_soc_dai * cpu_dai,unsigned int fmt,bool tx)304 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
305 unsigned int fmt, bool tx)
306 {
307 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
308 unsigned int ofs = sai->soc_data->reg_offset;
309 u32 val_cr2 = 0, val_cr4 = 0;
310
311 if (!sai->is_lsb_first)
312 val_cr4 |= FSL_SAI_CR4_MF;
313
314 sai->is_pdm_mode = false;
315 sai->is_dsp_mode[tx] = false;
316 /* DAI mode */
317 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
318 case SND_SOC_DAIFMT_I2S:
319 /*
320 * Frame low, 1clk before data, one word length for frame sync,
321 * frame sync starts one serial clock cycle earlier,
322 * that is, together with the last bit of the previous
323 * data word.
324 */
325 val_cr2 |= FSL_SAI_CR2_BCP;
326 val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
327 break;
328 case SND_SOC_DAIFMT_LEFT_J:
329 /*
330 * Frame high, one word length for frame sync,
331 * frame sync asserts with the first bit of the frame.
332 */
333 val_cr2 |= FSL_SAI_CR2_BCP;
334 break;
335 case SND_SOC_DAIFMT_DSP_A:
336 /*
337 * Frame high, 1clk before data, one bit for frame sync,
338 * frame sync starts one serial clock cycle earlier,
339 * that is, together with the last bit of the previous
340 * data word.
341 */
342 val_cr2 |= FSL_SAI_CR2_BCP;
343 val_cr4 |= FSL_SAI_CR4_FSE;
344 sai->is_dsp_mode[tx] = true;
345 break;
346 case SND_SOC_DAIFMT_DSP_B:
347 /*
348 * Frame high, one bit for frame sync,
349 * frame sync asserts with the first bit of the frame.
350 */
351 val_cr2 |= FSL_SAI_CR2_BCP;
352 sai->is_dsp_mode[tx] = true;
353 break;
354 case SND_SOC_DAIFMT_PDM:
355 val_cr2 |= FSL_SAI_CR2_BCP;
356 val_cr4 &= ~FSL_SAI_CR4_MF;
357 sai->is_pdm_mode = true;
358 break;
359 case SND_SOC_DAIFMT_RIGHT_J:
360 /* To be done */
361 default:
362 return -EINVAL;
363 }
364
365 /* DAI clock inversion */
366 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
367 case SND_SOC_DAIFMT_IB_IF:
368 /* Invert both clocks */
369 val_cr2 ^= FSL_SAI_CR2_BCP;
370 val_cr4 ^= FSL_SAI_CR4_FSP;
371 break;
372 case SND_SOC_DAIFMT_IB_NF:
373 /* Invert bit clock */
374 val_cr2 ^= FSL_SAI_CR2_BCP;
375 break;
376 case SND_SOC_DAIFMT_NB_IF:
377 /* Invert frame clock */
378 val_cr4 ^= FSL_SAI_CR4_FSP;
379 break;
380 case SND_SOC_DAIFMT_NB_NF:
381 /* Nothing to do for both normal cases */
382 break;
383 default:
384 return -EINVAL;
385 }
386
387 /* DAI clock provider masks */
388 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
389 case SND_SOC_DAIFMT_BP_FP:
390 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
391 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
392 sai->is_consumer_mode[tx] = false;
393 break;
394 case SND_SOC_DAIFMT_BC_FC:
395 sai->is_consumer_mode[tx] = true;
396 break;
397 case SND_SOC_DAIFMT_BP_FC:
398 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
399 sai->is_consumer_mode[tx] = false;
400 break;
401 case SND_SOC_DAIFMT_BC_FP:
402 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
403 sai->is_consumer_mode[tx] = true;
404 break;
405 default:
406 return -EINVAL;
407 }
408
409 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
410 FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
411 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
412 FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
413 FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
414
415 return 0;
416 }
417
fsl_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)418 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
419 {
420 int ret;
421
422 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
423 if (ret) {
424 dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
425 return ret;
426 }
427
428 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
429 if (ret)
430 dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
431
432 return ret;
433 }
434
fsl_sai_set_dai_fmt_tx(struct snd_soc_dai * cpu_dai,unsigned int fmt)435 static int fsl_sai_set_dai_fmt_tx(struct snd_soc_dai *cpu_dai, unsigned int fmt)
436 {
437 return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
438 }
439
fsl_sai_set_dai_fmt_rx(struct snd_soc_dai * cpu_dai,unsigned int fmt)440 static int fsl_sai_set_dai_fmt_rx(struct snd_soc_dai *cpu_dai, unsigned int fmt)
441 {
442 return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
443 }
444
fsl_sai_set_bclk(struct snd_soc_dai * dai,bool tx,u32 freq)445 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
446 {
447 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
448 unsigned int reg, ofs = sai->soc_data->reg_offset;
449 unsigned long clk_rate;
450 u32 savediv = 0, ratio, bestdiff = freq;
451 int adir = tx ? RX : TX;
452 int dir = tx ? TX : RX;
453 u32 id;
454 bool support_1_1_ratio = sai->verid.version >= 0x0301;
455
456 /* Don't apply to consumer mode */
457 if (sai->is_consumer_mode[tx])
458 return 0;
459
460 /*
461 * There is no point in polling MCLK0 if it is identical to MCLK1.
462 * And given that MQS use case has to use MCLK1 though two clocks
463 * are the same, we simply skip MCLK0 and start to find from MCLK1.
464 */
465 id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
466
467 for (; id < FSL_SAI_MCLK_MAX; id++) {
468 int diff;
469
470 clk_rate = clk_get_rate(sai->mclk_clk[id]);
471 if (!clk_rate)
472 continue;
473
474 ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
475 if (!ratio || ratio > 512)
476 continue;
477 if (ratio == 1 && !support_1_1_ratio)
478 continue;
479 if ((ratio & 1) && ratio > 1)
480 continue;
481
482 diff = abs((long)clk_rate - ratio * freq);
483
484 /*
485 * Drop the source that can not be
486 * divided into the required rate.
487 */
488 if (diff != 0 && clk_rate / diff < 1000)
489 continue;
490
491 dev_dbg(dai->dev,
492 "ratio %d for freq %dHz based on clock %ldHz\n",
493 ratio, freq, clk_rate);
494
495
496 if (diff < bestdiff) {
497 savediv = ratio;
498 sai->mclk_id[tx] = id;
499 bestdiff = diff;
500 }
501
502 if (diff == 0)
503 break;
504 }
505
506 if (savediv == 0) {
507 dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
508 tx ? 'T' : 'R', freq);
509 return -EINVAL;
510 }
511
512 dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
513 sai->mclk_id[tx], savediv, bestdiff);
514
515 /*
516 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
517 * set TCR2 register for playback.
518 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
519 * and capture.
520 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
521 * and capture.
522 * 4) For Tx and Rx are both Synchronous with another SAI, we just
523 * ignore it.
524 */
525 if (fsl_sai_dir_is_synced(sai, adir))
526 reg = FSL_SAI_xCR2(!tx, ofs);
527 else if (!sai->synchronous[dir])
528 reg = FSL_SAI_xCR2(tx, ofs);
529 else
530 return 0;
531
532 regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
533 FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
534
535 if (savediv == 1) {
536 regmap_update_bits(sai->regmap, reg,
537 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
538 FSL_SAI_CR2_BYP);
539 if (fsl_sai_dir_is_synced(sai, adir))
540 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
541 FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
542 else
543 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
544 FSL_SAI_CR2_BCI, 0);
545 } else {
546 regmap_update_bits(sai->regmap, reg,
547 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
548 savediv / 2 - 1);
549 }
550
551 return 0;
552 }
553
fsl_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)554 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
555 struct snd_pcm_hw_params *params,
556 struct snd_soc_dai *cpu_dai)
557 {
558 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
559 unsigned int ofs = sai->soc_data->reg_offset;
560 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
561 unsigned int channels = params_channels(params);
562 struct snd_dmaengine_dai_dma_data *dma_params;
563 struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
564 u32 word_width = params_width(params);
565 int trce_mask = 0, dl_cfg_idx = 0;
566 int dl_cfg_cnt = sai->dl_cfg_cnt;
567 u32 dl_type = FSL_SAI_DL_I2S;
568 u32 val_cr4 = 0, val_cr5 = 0;
569 u32 slots = (channels == 1) ? 2 : channels;
570 u32 slot_width = word_width;
571 int adir = tx ? RX : TX;
572 u32 pins, bclk;
573 u32 watermark;
574 int ret, i;
575
576 if (sai->slot_width[tx])
577 slot_width = sai->slot_width[tx];
578
579 if (sai->slots[tx])
580 slots = sai->slots[tx];
581 else if (sai->bclk_ratio)
582 slots = sai->bclk_ratio / slot_width;
583
584 pins = DIV_ROUND_UP(channels, slots);
585
586 /*
587 * PDM mode, channels are independent
588 * each channels are on one dataline/FIFO.
589 */
590 if (sai->is_pdm_mode) {
591 pins = channels;
592 dl_type = FSL_SAI_DL_PDM;
593 }
594
595 for (i = 0; i < dl_cfg_cnt; i++) {
596 if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
597 dl_cfg_idx = i;
598 break;
599 }
600 }
601
602 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
603 dev_err(cpu_dai->dev, "channel not supported\n");
604 return -EINVAL;
605 }
606
607 bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
608
609 if (!IS_ERR_OR_NULL(sai->pinctrl)) {
610 sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
611 if (!IS_ERR_OR_NULL(sai->pins_state)) {
612 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
613 if (ret) {
614 dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
615 return ret;
616 }
617 }
618 }
619
620 if (!sai->is_consumer_mode[tx]) {
621 ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
622 if (ret)
623 return ret;
624
625 /* Do not enable the clock if it is already enabled */
626 if (!(sai->mclk_streams & BIT(substream->stream))) {
627 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
628 if (ret)
629 return ret;
630
631 sai->mclk_streams |= BIT(substream->stream);
632 }
633 }
634
635 if (!sai->is_dsp_mode[tx] && !sai->is_pdm_mode)
636 val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
637
638 val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
639 val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
640
641 if (sai->is_lsb_first || sai->is_pdm_mode)
642 val_cr5 |= FSL_SAI_CR5_FBT(0);
643 else
644 val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
645
646 val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
647
648 /* Set to avoid channel swap */
649 val_cr4 |= FSL_SAI_CR4_FCONT;
650
651 /* Set to output mode to avoid tri-stated data pins */
652 if (tx)
653 val_cr4 |= FSL_SAI_CR4_CHMOD;
654
655 /*
656 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
657 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
658 * RCR5(TCR5) for playback(capture), or there will be sync error.
659 */
660
661 if (!sai->is_consumer_mode[tx] && fsl_sai_dir_is_synced(sai, adir)) {
662 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
663 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
664 FSL_SAI_CR4_CHMOD_MASK,
665 val_cr4);
666 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
667 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
668 FSL_SAI_CR5_FBT_MASK, val_cr5);
669 }
670
671 /*
672 * Combine mode has limation:
673 * - Can't used for singel dataline/FIFO case except the FIFO0
674 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
675 * are successive and start from FIFO0
676 *
677 * So for common usage, all multi fifo case disable the combine mode.
678 */
679 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
680 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
681 FSL_SAI_CR4_FCOMB_MASK, 0);
682 else
683 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
684 FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
685
686 dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
687 dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
688 dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
689
690 if (sai->is_multi_fifo_dma) {
691 sai->audio_config[tx].words_per_fifo = min(slots, channels);
692 if (tx) {
693 sai->audio_config[tx].n_fifos_dst = pins;
694 sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
695 } else {
696 sai->audio_config[tx].n_fifos_src = pins;
697 sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
698 }
699 dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
700 dma_params->peripheral_config = &sai->audio_config[tx];
701 dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
702
703 watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
704 (dma_params->maxburst - 1);
705 regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
706 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
707 watermark);
708 }
709
710 /* Find a proper tcre setting */
711 for (i = 0; i < sai->soc_data->pins; i++) {
712 trce_mask = (1 << (i + 1)) - 1;
713 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
714 break;
715 }
716
717 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
718 FSL_SAI_CR3_TRCE_MASK,
719 FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
720
721 /*
722 * When the TERE and FSD_MSTR enabled before configuring the word width
723 * There will be no frame sync clock issue, because word width impact
724 * the generation of frame sync clock.
725 *
726 * TERE enabled earlier only for i.MX8MP case for the hardware limitation,
727 * We need to disable FSD_MSTR before configuring word width, then enable
728 * FSD_MSTR bit for this specific case.
729 */
730 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
731 !sai->is_consumer_mode[tx])
732 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
733 FSL_SAI_CR4_FSD_MSTR, 0);
734
735 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
736 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
737 FSL_SAI_CR4_CHMOD_MASK | FSL_SAI_CR4_FCONT_MASK,
738 val_cr4);
739 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
740 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
741 FSL_SAI_CR5_FBT_MASK, val_cr5);
742
743 /* Enable FSD_MSTR after configuring word width */
744 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
745 !sai->is_consumer_mode[tx])
746 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
747 FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR);
748
749 regmap_write(sai->regmap, FSL_SAI_xMR(tx),
750 ~0UL - ((1 << min(channels, slots)) - 1));
751
752 return 0;
753 }
754
fsl_sai_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)755 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
756 struct snd_soc_dai *cpu_dai)
757 {
758 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
759 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
760 unsigned int ofs = sai->soc_data->reg_offset;
761
762 /* Clear xMR to avoid channel swap with mclk_with_tere enabled case */
763 regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0);
764
765 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
766 FSL_SAI_CR3_TRCE_MASK, 0);
767
768 if (!sai->is_consumer_mode[tx] &&
769 sai->mclk_streams & BIT(substream->stream)) {
770 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
771 sai->mclk_streams &= ~BIT(substream->stream);
772 }
773
774 return 0;
775 }
776
fsl_sai_config_disable(struct fsl_sai * sai,int dir)777 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
778 {
779 unsigned int ofs = sai->soc_data->reg_offset;
780 bool tx = dir == TX;
781 u32 xcsr, count = 100, mask;
782
783 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
784 mask = FSL_SAI_CSR_TERE;
785 else
786 mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE;
787
788 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
789 mask, 0);
790
791 /* TERE will remain set till the end of current frame */
792 do {
793 udelay(10);
794 regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
795 } while (--count && xcsr & FSL_SAI_CSR_TERE);
796
797 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
798 FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
799
800 /*
801 * For sai master mode, after several open/close sai,
802 * there will be no frame clock, and can't recover
803 * anymore. Add software reset to fix this issue.
804 * This is a hardware bug, and will be fix in the
805 * next sai version.
806 */
807 if (!sai->is_consumer_mode[tx]) {
808 /* Software Reset */
809 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
810 /* Clear SR bit to finish the reset */
811 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
812 }
813 }
814
fsl_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)815 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
816 struct snd_soc_dai *cpu_dai)
817 {
818 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
819 unsigned int ofs = sai->soc_data->reg_offset;
820
821 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
822 int adir = tx ? RX : TX;
823 int dir = tx ? TX : RX;
824 u32 xcsr;
825
826 /*
827 * Asynchronous mode: Clear SYNC for both Tx and Rx.
828 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
829 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
830 */
831 regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
832 sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
833 regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
834 sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
835
836 /*
837 * It is recommended that the transmitter is the last enabled
838 * and the first disabled.
839 */
840 switch (cmd) {
841 case SNDRV_PCM_TRIGGER_START:
842 case SNDRV_PCM_TRIGGER_RESUME:
843 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
844 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
845 FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
846
847 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
848 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
849 /*
850 * Enable the opposite direction for synchronous mode
851 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
852 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
853 *
854 * RM recommends to enable RE after TE for case 1 and to enable
855 * TE after RE for case 2, but we here may not always guarantee
856 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
857 * TE after RE, which is against what RM recommends but should
858 * be safe to do, judging by years of testing results.
859 */
860 if (fsl_sai_dir_is_synced(sai, adir))
861 regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
862 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
863
864 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
865 FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
866 break;
867 case SNDRV_PCM_TRIGGER_STOP:
868 case SNDRV_PCM_TRIGGER_SUSPEND:
869 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
870 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
871 FSL_SAI_CSR_FRDE, 0);
872 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
873 FSL_SAI_CSR_xIE_MASK, 0);
874
875 /* Check if the opposite FRDE is also disabled */
876 regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
877
878 /*
879 * If opposite stream provides clocks for synchronous mode and
880 * it is inactive, disable it before disabling the current one
881 */
882 if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
883 fsl_sai_config_disable(sai, adir);
884
885 /*
886 * Disable current stream if either of:
887 * 1. current stream doesn't provide clocks for synchronous mode
888 * 2. current stream provides clocks for synchronous mode but no
889 * more stream is active.
890 */
891 if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
892 fsl_sai_config_disable(sai, dir);
893
894 break;
895 default:
896 return -EINVAL;
897 }
898
899 return 0;
900 }
901
fsl_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)902 static int fsl_sai_startup(struct snd_pcm_substream *substream,
903 struct snd_soc_dai *cpu_dai)
904 {
905 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
906 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
907 int ret;
908
909 /*
910 * EDMA controller needs period size to be a multiple of
911 * tx/rx maxburst
912 */
913 if (sai->soc_data->use_edma)
914 snd_pcm_hw_constraint_step(substream->runtime, 0,
915 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
916 tx ? sai->dma_params_tx.maxburst :
917 sai->dma_params_rx.maxburst);
918
919 ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
920 SNDRV_PCM_HW_PARAM_RATE, &sai->constraint_rates);
921
922 return ret;
923 }
924
fsl_sai_dai_probe(struct snd_soc_dai * cpu_dai)925 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
926 {
927 struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
928 unsigned int ofs = sai->soc_data->reg_offset;
929
930 /* Software Reset for both Tx and Rx */
931 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
932 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
933 /* Clear SR bit to finish the reset */
934 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
935 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
936
937 regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
938 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
939 sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst);
940 regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
941 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
942 sai->dma_params_rx.maxburst - 1);
943
944 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
945 &sai->dma_params_rx);
946
947 return 0;
948 }
949
950 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
951 .probe = fsl_sai_dai_probe,
952 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
953 .set_sysclk = fsl_sai_set_dai_sysclk,
954 .set_fmt = fsl_sai_set_dai_fmt,
955 .set_tdm_slot = fsl_sai_set_dai_tdm_slot,
956 .hw_params = fsl_sai_hw_params,
957 .hw_free = fsl_sai_hw_free,
958 .trigger = fsl_sai_trigger,
959 .startup = fsl_sai_startup,
960 };
961
962 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_tx_ops = {
963 .probe = fsl_sai_dai_probe,
964 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
965 .set_sysclk = fsl_sai_set_dai_sysclk,
966 .set_fmt = fsl_sai_set_dai_fmt_tx,
967 .set_tdm_slot = fsl_sai_set_dai_tdm_slot_tx,
968 .xlate_tdm_slot_mask = fsl_sai_xlate_tdm_slot_mask,
969 .hw_params = fsl_sai_hw_params,
970 .hw_free = fsl_sai_hw_free,
971 .trigger = fsl_sai_trigger,
972 .startup = fsl_sai_startup,
973 };
974
975 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_rx_ops = {
976 .probe = fsl_sai_dai_probe,
977 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
978 .set_sysclk = fsl_sai_set_dai_sysclk,
979 .set_fmt = fsl_sai_set_dai_fmt_rx,
980 .set_tdm_slot = fsl_sai_set_dai_tdm_slot_rx,
981 .xlate_tdm_slot_mask = fsl_sai_xlate_tdm_slot_mask,
982 .hw_params = fsl_sai_hw_params,
983 .hw_free = fsl_sai_hw_free,
984 .trigger = fsl_sai_trigger,
985 .startup = fsl_sai_startup,
986 };
987
fsl_sai_dai_resume(struct snd_soc_component * component)988 static int fsl_sai_dai_resume(struct snd_soc_component *component)
989 {
990 struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
991 struct device *dev = &sai->pdev->dev;
992 int ret;
993
994 if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
995 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
996 if (ret) {
997 dev_err(dev, "failed to set proper pins state: %d\n", ret);
998 return ret;
999 }
1000 }
1001
1002 return 0;
1003 }
1004
1005 static struct snd_soc_dai_driver fsl_sai_dai_template[] = {
1006 {
1007 .name = "sai-tx-rx",
1008 .playback = {
1009 .stream_name = "CPU-Playback",
1010 .channels_min = 1,
1011 .channels_max = 32,
1012 .rate_min = 8000,
1013 .rate_max = 2822400,
1014 .rates = SNDRV_PCM_RATE_KNOT,
1015 .formats = FSL_SAI_FORMATS,
1016 },
1017 .capture = {
1018 .stream_name = "CPU-Capture",
1019 .channels_min = 1,
1020 .channels_max = 32,
1021 .rate_min = 8000,
1022 .rate_max = 2822400,
1023 .rates = SNDRV_PCM_RATE_KNOT,
1024 .formats = FSL_SAI_FORMATS,
1025 },
1026 .ops = &fsl_sai_pcm_dai_ops,
1027 },
1028 {
1029 .name = "sai-tx",
1030 .playback = {
1031 .stream_name = "SAI-Playback",
1032 .channels_min = 1,
1033 .channels_max = 32,
1034 .rate_min = 8000,
1035 .rate_max = 2822400,
1036 .rates = SNDRV_PCM_RATE_KNOT,
1037 .formats = FSL_SAI_FORMATS,
1038 },
1039 .ops = &fsl_sai_pcm_dai_tx_ops,
1040 },
1041 {
1042 .name = "sai-rx",
1043 .capture = {
1044 .stream_name = "SAI-Capture",
1045 .channels_min = 1,
1046 .channels_max = 32,
1047 .rate_min = 8000,
1048 .rate_max = 2822400,
1049 .rates = SNDRV_PCM_RATE_KNOT,
1050 .formats = FSL_SAI_FORMATS,
1051 },
1052 .ops = &fsl_sai_pcm_dai_rx_ops,
1053 },
1054 };
1055
1056 static const struct snd_soc_component_driver fsl_component = {
1057 .name = "fsl-sai",
1058 .resume = fsl_sai_dai_resume,
1059 .legacy_dai_naming = 1,
1060 };
1061
1062 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
1063 {FSL_SAI_TCR1(0), 0},
1064 {FSL_SAI_TCR2(0), 0},
1065 {FSL_SAI_TCR3(0), 0},
1066 {FSL_SAI_TCR4(0), 0},
1067 {FSL_SAI_TCR5(0), 0},
1068 {FSL_SAI_TDR0, 0},
1069 {FSL_SAI_TDR1, 0},
1070 {FSL_SAI_TDR2, 0},
1071 {FSL_SAI_TDR3, 0},
1072 {FSL_SAI_TDR4, 0},
1073 {FSL_SAI_TDR5, 0},
1074 {FSL_SAI_TDR6, 0},
1075 {FSL_SAI_TDR7, 0},
1076 {FSL_SAI_TMR, 0},
1077 {FSL_SAI_RCR1(0), 0},
1078 {FSL_SAI_RCR2(0), 0},
1079 {FSL_SAI_RCR3(0), 0},
1080 {FSL_SAI_RCR4(0), 0},
1081 {FSL_SAI_RCR5(0), 0},
1082 {FSL_SAI_RMR, 0},
1083 };
1084
1085 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
1086 {FSL_SAI_TCR1(8), 0},
1087 {FSL_SAI_TCR2(8), 0},
1088 {FSL_SAI_TCR3(8), 0},
1089 {FSL_SAI_TCR4(8), 0},
1090 {FSL_SAI_TCR5(8), 0},
1091 {FSL_SAI_TDR0, 0},
1092 {FSL_SAI_TDR1, 0},
1093 {FSL_SAI_TDR2, 0},
1094 {FSL_SAI_TDR3, 0},
1095 {FSL_SAI_TDR4, 0},
1096 {FSL_SAI_TDR5, 0},
1097 {FSL_SAI_TDR6, 0},
1098 {FSL_SAI_TDR7, 0},
1099 {FSL_SAI_TMR, 0},
1100 {FSL_SAI_RCR1(8), 0},
1101 {FSL_SAI_RCR2(8), 0},
1102 {FSL_SAI_RCR3(8), 0},
1103 {FSL_SAI_RCR4(8), 0},
1104 {FSL_SAI_RCR5(8), 0},
1105 {FSL_SAI_RMR, 0},
1106 {FSL_SAI_MCTL, 0},
1107 {FSL_SAI_MDIV, 0},
1108 };
1109
fsl_sai_readable_reg(struct device * dev,unsigned int reg)1110 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
1111 {
1112 struct fsl_sai *sai = dev_get_drvdata(dev);
1113 unsigned int ofs = sai->soc_data->reg_offset;
1114
1115 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1116 return true;
1117
1118 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1119 return true;
1120
1121 switch (reg) {
1122 case FSL_SAI_TFR0:
1123 case FSL_SAI_TFR1:
1124 case FSL_SAI_TFR2:
1125 case FSL_SAI_TFR3:
1126 case FSL_SAI_TFR4:
1127 case FSL_SAI_TFR5:
1128 case FSL_SAI_TFR6:
1129 case FSL_SAI_TFR7:
1130 case FSL_SAI_TMR:
1131 case FSL_SAI_RDR0:
1132 case FSL_SAI_RDR1:
1133 case FSL_SAI_RDR2:
1134 case FSL_SAI_RDR3:
1135 case FSL_SAI_RDR4:
1136 case FSL_SAI_RDR5:
1137 case FSL_SAI_RDR6:
1138 case FSL_SAI_RDR7:
1139 case FSL_SAI_RFR0:
1140 case FSL_SAI_RFR1:
1141 case FSL_SAI_RFR2:
1142 case FSL_SAI_RFR3:
1143 case FSL_SAI_RFR4:
1144 case FSL_SAI_RFR5:
1145 case FSL_SAI_RFR6:
1146 case FSL_SAI_RFR7:
1147 case FSL_SAI_RMR:
1148 case FSL_SAI_MCTL:
1149 case FSL_SAI_MDIV:
1150 case FSL_SAI_VERID:
1151 case FSL_SAI_PARAM:
1152 case FSL_SAI_TTCTN:
1153 case FSL_SAI_RTCTN:
1154 case FSL_SAI_TTCTL:
1155 case FSL_SAI_TBCTN:
1156 case FSL_SAI_TTCAP:
1157 case FSL_SAI_RTCTL:
1158 case FSL_SAI_RBCTN:
1159 case FSL_SAI_RTCAP:
1160 return true;
1161 default:
1162 return false;
1163 }
1164 }
1165
fsl_sai_volatile_reg(struct device * dev,unsigned int reg)1166 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1167 {
1168 struct fsl_sai *sai = dev_get_drvdata(dev);
1169 unsigned int ofs = sai->soc_data->reg_offset;
1170
1171 if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1172 return true;
1173
1174 /* Set VERID and PARAM be volatile for reading value in probe */
1175 if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1176 return true;
1177
1178 switch (reg) {
1179 case FSL_SAI_TFR0:
1180 case FSL_SAI_TFR1:
1181 case FSL_SAI_TFR2:
1182 case FSL_SAI_TFR3:
1183 case FSL_SAI_TFR4:
1184 case FSL_SAI_TFR5:
1185 case FSL_SAI_TFR6:
1186 case FSL_SAI_TFR7:
1187 case FSL_SAI_RFR0:
1188 case FSL_SAI_RFR1:
1189 case FSL_SAI_RFR2:
1190 case FSL_SAI_RFR3:
1191 case FSL_SAI_RFR4:
1192 case FSL_SAI_RFR5:
1193 case FSL_SAI_RFR6:
1194 case FSL_SAI_RFR7:
1195 case FSL_SAI_RDR0:
1196 case FSL_SAI_RDR1:
1197 case FSL_SAI_RDR2:
1198 case FSL_SAI_RDR3:
1199 case FSL_SAI_RDR4:
1200 case FSL_SAI_RDR5:
1201 case FSL_SAI_RDR6:
1202 case FSL_SAI_RDR7:
1203 return true;
1204 default:
1205 return false;
1206 }
1207 }
1208
fsl_sai_writeable_reg(struct device * dev,unsigned int reg)1209 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1210 {
1211 struct fsl_sai *sai = dev_get_drvdata(dev);
1212 unsigned int ofs = sai->soc_data->reg_offset;
1213
1214 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1215 return true;
1216
1217 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1218 return true;
1219
1220 switch (reg) {
1221 case FSL_SAI_TDR0:
1222 case FSL_SAI_TDR1:
1223 case FSL_SAI_TDR2:
1224 case FSL_SAI_TDR3:
1225 case FSL_SAI_TDR4:
1226 case FSL_SAI_TDR5:
1227 case FSL_SAI_TDR6:
1228 case FSL_SAI_TDR7:
1229 case FSL_SAI_TMR:
1230 case FSL_SAI_RMR:
1231 case FSL_SAI_MCTL:
1232 case FSL_SAI_MDIV:
1233 case FSL_SAI_TTCTL:
1234 case FSL_SAI_RTCTL:
1235 return true;
1236 default:
1237 return false;
1238 }
1239 }
1240
1241 static struct regmap_config fsl_sai_regmap_config = {
1242 .reg_bits = 32,
1243 .reg_stride = 4,
1244 .val_bits = 32,
1245 .fast_io = true,
1246
1247 .max_register = FSL_SAI_RMR,
1248 .reg_defaults = fsl_sai_reg_defaults_ofs0,
1249 .num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1250 .readable_reg = fsl_sai_readable_reg,
1251 .volatile_reg = fsl_sai_volatile_reg,
1252 .writeable_reg = fsl_sai_writeable_reg,
1253 .cache_type = REGCACHE_FLAT,
1254 };
1255
fsl_sai_check_version(struct device * dev)1256 static int fsl_sai_check_version(struct device *dev)
1257 {
1258 struct fsl_sai *sai = dev_get_drvdata(dev);
1259 unsigned char ofs = sai->soc_data->reg_offset;
1260 unsigned int val;
1261 int ret;
1262
1263 if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1264 return 0;
1265
1266 ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1267 if (ret < 0)
1268 return ret;
1269
1270 dev_dbg(dev, "VERID: 0x%016X\n", val);
1271
1272 sai->verid.version = val &
1273 (FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1274 sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1275 sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1276
1277 ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1278 if (ret < 0)
1279 return ret;
1280
1281 dev_dbg(dev, "PARAM: 0x%016X\n", val);
1282
1283 /* Max slots per frame, power of 2 */
1284 sai->param.slot_num = 1 <<
1285 ((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1286
1287 /* Words per fifo, power of 2 */
1288 sai->param.fifo_depth = 1 <<
1289 ((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1290
1291 /* Number of datalines implemented */
1292 sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1293
1294 return 0;
1295 }
1296
1297 /*
1298 * Calculate the offset between first two datalines, don't
1299 * different offset in one case.
1300 */
fsl_sai_calc_dl_off(unsigned long dl_mask)1301 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1302 {
1303 int fbidx, nbidx, offset;
1304
1305 fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1306 nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1307 offset = nbidx - fbidx - 1;
1308
1309 return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1310 }
1311
1312 /*
1313 * read the fsl,dataline property from dts file.
1314 * It has 3 value for each configuration, first one means the type:
1315 * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1316 * dataline mask for 'tx'. for example
1317 *
1318 * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1319 *
1320 * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1321 * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1322 *
1323 */
fsl_sai_read_dlcfg(struct fsl_sai * sai)1324 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1325 {
1326 struct platform_device *pdev = sai->pdev;
1327 struct device_node *np = pdev->dev.of_node;
1328 struct device *dev = &pdev->dev;
1329 int ret, elems, i, index, num_cfg;
1330 char *propname = "fsl,dataline";
1331 struct fsl_sai_dl_cfg *cfg;
1332 unsigned long dl_mask;
1333 unsigned int soc_dl;
1334 u32 rx, tx, type;
1335
1336 elems = of_property_count_u32_elems(np, propname);
1337
1338 if (elems <= 0) {
1339 elems = 0;
1340 } else if (elems % 3) {
1341 dev_err(dev, "Number of elements must be divisible to 3.\n");
1342 return -EINVAL;
1343 }
1344
1345 num_cfg = elems / 3;
1346 /* Add one more for default value */
1347 cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1348 if (!cfg)
1349 return -ENOMEM;
1350
1351 /* Consider default value "0 0xFF 0xFF" if property is missing */
1352 soc_dl = BIT(sai->soc_data->pins) - 1;
1353 cfg[0].type = FSL_SAI_DL_DEFAULT;
1354 cfg[0].pins[0] = sai->soc_data->pins;
1355 cfg[0].mask[0] = soc_dl;
1356 cfg[0].start_off[0] = 0;
1357 cfg[0].next_off[0] = 0;
1358
1359 cfg[0].pins[1] = sai->soc_data->pins;
1360 cfg[0].mask[1] = soc_dl;
1361 cfg[0].start_off[1] = 0;
1362 cfg[0].next_off[1] = 0;
1363 for (i = 1, index = 0; i < num_cfg + 1; i++) {
1364 /*
1365 * type of dataline
1366 * 0 means default mode
1367 * 1 means I2S mode
1368 * 2 means PDM mode
1369 */
1370 ret = of_property_read_u32_index(np, propname, index++, &type);
1371 if (ret)
1372 return -EINVAL;
1373
1374 ret = of_property_read_u32_index(np, propname, index++, &rx);
1375 if (ret)
1376 return -EINVAL;
1377
1378 ret = of_property_read_u32_index(np, propname, index++, &tx);
1379 if (ret)
1380 return -EINVAL;
1381
1382 if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1383 dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1384 return -EINVAL;
1385 }
1386
1387 rx = rx & soc_dl;
1388 tx = tx & soc_dl;
1389
1390 cfg[i].type = type;
1391 cfg[i].pins[0] = hweight8(rx);
1392 cfg[i].mask[0] = rx;
1393 dl_mask = rx;
1394 cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1395 cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1396
1397 cfg[i].pins[1] = hweight8(tx);
1398 cfg[i].mask[1] = tx;
1399 dl_mask = tx;
1400 cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1401 cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1402 }
1403
1404 sai->dl_cfg = cfg;
1405 sai->dl_cfg_cnt = num_cfg + 1;
1406 return 0;
1407 }
1408
1409 static int fsl_sai_runtime_suspend(struct device *dev);
1410 static int fsl_sai_runtime_resume(struct device *dev);
1411
fsl_sai_probe(struct platform_device * pdev)1412 static int fsl_sai_probe(struct platform_device *pdev)
1413 {
1414 struct device_node *np = pdev->dev.of_node;
1415 struct device *dev = &pdev->dev;
1416 struct fsl_sai *sai;
1417 struct regmap *gpr;
1418 void __iomem *base;
1419 char tmp[8];
1420 int irq, ret, i;
1421 int index;
1422 u32 dmas[4];
1423
1424 sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1425 if (!sai)
1426 return -ENOMEM;
1427
1428 sai->pdev = pdev;
1429 sai->soc_data = of_device_get_match_data(dev);
1430
1431 sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1432
1433 base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1434 if (IS_ERR(base))
1435 return PTR_ERR(base);
1436
1437 if (sai->soc_data->reg_offset == 8) {
1438 fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1439 fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1440 fsl_sai_regmap_config.num_reg_defaults =
1441 ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1442 }
1443
1444 sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1445 if (IS_ERR(sai->regmap)) {
1446 dev_err(dev, "regmap init failed\n");
1447 return PTR_ERR(sai->regmap);
1448 }
1449
1450 sai->bus_clk = devm_clk_get(dev, "bus");
1451 /* Compatible with old DTB cases */
1452 if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1453 sai->bus_clk = devm_clk_get(dev, "sai");
1454 if (IS_ERR(sai->bus_clk)) {
1455 dev_err(dev, "failed to get bus clock: %ld\n",
1456 PTR_ERR(sai->bus_clk));
1457 /* -EPROBE_DEFER */
1458 return PTR_ERR(sai->bus_clk);
1459 }
1460
1461 for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1462 sprintf(tmp, "mclk%d", i);
1463 sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1464 if (IS_ERR(sai->mclk_clk[i])) {
1465 dev_err(dev, "failed to get mclk%d clock: %ld\n",
1466 i, PTR_ERR(sai->mclk_clk[i]));
1467 sai->mclk_clk[i] = NULL;
1468 }
1469 }
1470
1471 if (sai->soc_data->mclk0_is_mclk1)
1472 sai->mclk_clk[0] = sai->mclk_clk[1];
1473 else
1474 sai->mclk_clk[0] = sai->bus_clk;
1475
1476 fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1477 &sai->pll11k_clk);
1478
1479 fsl_asoc_constrain_rates(&sai->constraint_rates,
1480 &fsl_sai_rate_constraints,
1481 sai->pll8k_clk, sai->pll11k_clk, NULL,
1482 sai->constraint_rates_list);
1483
1484 /* Use Multi FIFO mode depending on the support from SDMA script */
1485 ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1486 if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1487 sai->is_multi_fifo_dma = true;
1488
1489 /* read dataline mask for rx and tx*/
1490 ret = fsl_sai_read_dlcfg(sai);
1491 if (ret < 0) {
1492 dev_err(dev, "failed to read dlcfg %d\n", ret);
1493 return ret;
1494 }
1495
1496 irq = platform_get_irq(pdev, 0);
1497 if (irq < 0)
1498 return irq;
1499
1500 ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1501 np->name, sai);
1502 if (ret) {
1503 dev_err(dev, "failed to claim irq %u\n", irq);
1504 return ret;
1505 }
1506
1507 memcpy(&sai->cpu_dai_drv, fsl_sai_dai_template,
1508 sizeof(*fsl_sai_dai_template) * ARRAY_SIZE(fsl_sai_dai_template));
1509
1510 /* Sync Tx with Rx as default by following old DT binding */
1511 sai->synchronous[RX] = true;
1512 sai->synchronous[TX] = false;
1513 sai->cpu_dai_drv[0].symmetric_rate = 1;
1514 sai->cpu_dai_drv[0].symmetric_channels = 1;
1515 sai->cpu_dai_drv[0].symmetric_sample_bits = 1;
1516
1517 if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1518 of_property_read_bool(np, "fsl,sai-asynchronous")) {
1519 /* error out if both synchronous and asynchronous are present */
1520 dev_err(dev, "invalid binding for synchronous mode\n");
1521 return -EINVAL;
1522 }
1523
1524 if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1525 /* Sync Rx with Tx */
1526 sai->synchronous[RX] = false;
1527 sai->synchronous[TX] = true;
1528 } else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1529 /* Discard all settings for asynchronous mode */
1530 sai->synchronous[RX] = false;
1531 sai->synchronous[TX] = false;
1532 sai->cpu_dai_drv[0].symmetric_rate = 0;
1533 sai->cpu_dai_drv[0].symmetric_channels = 0;
1534 sai->cpu_dai_drv[0].symmetric_sample_bits = 0;
1535 }
1536
1537 sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1538
1539 if (sai->mclk_direction_output &&
1540 of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1541 gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1542 if (IS_ERR(gpr)) {
1543 dev_err(dev, "cannot find iomuxc registers\n");
1544 return PTR_ERR(gpr);
1545 }
1546
1547 index = of_alias_get_id(np, "sai");
1548 if (index < 0)
1549 return index;
1550
1551 regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1552 MCLK_DIR(index));
1553 }
1554
1555 sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1556 sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1557 sai->dma_params_rx.maxburst =
1558 sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX;
1559 sai->dma_params_tx.maxburst =
1560 sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX;
1561
1562 sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1563
1564 platform_set_drvdata(pdev, sai);
1565 pm_runtime_enable(dev);
1566 if (!pm_runtime_enabled(dev)) {
1567 ret = fsl_sai_runtime_resume(dev);
1568 if (ret)
1569 goto err_pm_disable;
1570 }
1571
1572 ret = pm_runtime_resume_and_get(dev);
1573 if (ret < 0)
1574 goto err_pm_get_sync;
1575
1576 /* Get sai version */
1577 ret = fsl_sai_check_version(dev);
1578 if (ret < 0)
1579 dev_warn(dev, "Error reading SAI version: %d\n", ret);
1580
1581 /* Select MCLK direction */
1582 if (sai->mclk_direction_output &&
1583 sai->soc_data->max_register >= FSL_SAI_MCTL) {
1584 regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1585 FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1586 }
1587
1588 ret = pm_runtime_put_sync(dev);
1589 if (ret < 0 && ret != -ENOSYS)
1590 goto err_pm_get_sync;
1591
1592 /*
1593 * Register platform component before registering cpu dai for there
1594 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1595 */
1596 if (sai->soc_data->use_imx_pcm) {
1597 ret = imx_pcm_dma_init(pdev);
1598 if (ret) {
1599 dev_err_probe(dev, ret, "PCM DMA init failed\n");
1600 if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1601 dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1602 goto err_pm_get_sync;
1603 }
1604 } else {
1605 ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1606 if (ret) {
1607 dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n");
1608 goto err_pm_get_sync;
1609 }
1610 }
1611
1612 ret = devm_snd_soc_register_component(dev, &fsl_component,
1613 sai->cpu_dai_drv, ARRAY_SIZE(fsl_sai_dai_template));
1614 if (ret)
1615 goto err_pm_get_sync;
1616
1617 return ret;
1618
1619 err_pm_get_sync:
1620 if (!pm_runtime_status_suspended(dev))
1621 fsl_sai_runtime_suspend(dev);
1622 err_pm_disable:
1623 pm_runtime_disable(dev);
1624
1625 return ret;
1626 }
1627
fsl_sai_remove(struct platform_device * pdev)1628 static void fsl_sai_remove(struct platform_device *pdev)
1629 {
1630 pm_runtime_disable(&pdev->dev);
1631 if (!pm_runtime_status_suspended(&pdev->dev))
1632 fsl_sai_runtime_suspend(&pdev->dev);
1633 }
1634
1635 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1636 .use_imx_pcm = false,
1637 .use_edma = false,
1638 .fifo_depth = 32,
1639 .pins = 1,
1640 .reg_offset = 0,
1641 .mclk0_is_mclk1 = false,
1642 .flags = 0,
1643 .max_register = FSL_SAI_RMR,
1644 };
1645
1646 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1647 .use_imx_pcm = true,
1648 .use_edma = false,
1649 .fifo_depth = 32,
1650 .pins = 1,
1651 .reg_offset = 0,
1652 .mclk0_is_mclk1 = true,
1653 .flags = 0,
1654 .max_register = FSL_SAI_RMR,
1655 };
1656
1657 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1658 .use_imx_pcm = true,
1659 .use_edma = false,
1660 .fifo_depth = 16,
1661 .pins = 2,
1662 .reg_offset = 8,
1663 .mclk0_is_mclk1 = false,
1664 .flags = PMQOS_CPU_LATENCY,
1665 .max_register = FSL_SAI_RMR,
1666 };
1667
1668 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1669 .use_imx_pcm = true,
1670 .use_edma = false,
1671 .fifo_depth = 128,
1672 .pins = 8,
1673 .reg_offset = 8,
1674 .mclk0_is_mclk1 = false,
1675 .flags = 0,
1676 .max_register = FSL_SAI_RMR,
1677 };
1678
1679 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1680 .use_imx_pcm = true,
1681 .use_edma = true,
1682 .fifo_depth = 64,
1683 .pins = 4,
1684 .reg_offset = 0,
1685 .mclk0_is_mclk1 = false,
1686 .flags = 0,
1687 .max_register = FSL_SAI_RMR,
1688 };
1689
1690 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1691 .use_imx_pcm = true,
1692 .use_edma = false,
1693 .fifo_depth = 128,
1694 .reg_offset = 8,
1695 .mclk0_is_mclk1 = false,
1696 .pins = 8,
1697 .flags = 0,
1698 .max_register = FSL_SAI_MCTL,
1699 };
1700
1701 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1702 .use_imx_pcm = true,
1703 .use_edma = false,
1704 .fifo_depth = 128,
1705 .reg_offset = 8,
1706 .mclk0_is_mclk1 = false,
1707 .pins = 8,
1708 .flags = 0,
1709 .max_register = FSL_SAI_MDIV,
1710 };
1711
1712 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1713 .use_imx_pcm = true,
1714 .use_edma = false,
1715 .fifo_depth = 128,
1716 .reg_offset = 8,
1717 .mclk0_is_mclk1 = false,
1718 .pins = 8,
1719 .flags = 0,
1720 .max_register = FSL_SAI_MDIV,
1721 .mclk_with_tere = true,
1722 };
1723
1724 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1725 .use_imx_pcm = true,
1726 .use_edma = true,
1727 .fifo_depth = 16,
1728 .reg_offset = 8,
1729 .mclk0_is_mclk1 = false,
1730 .pins = 4,
1731 .flags = PMQOS_CPU_LATENCY,
1732 .max_register = FSL_SAI_RTCAP,
1733 };
1734
1735 static const struct fsl_sai_soc_data fsl_sai_imx93_data = {
1736 .use_imx_pcm = true,
1737 .use_edma = true,
1738 .fifo_depth = 128,
1739 .reg_offset = 8,
1740 .mclk0_is_mclk1 = false,
1741 .pins = 4,
1742 .flags = 0,
1743 .max_register = FSL_SAI_MCTL,
1744 .max_burst = {8, 8},
1745 };
1746
1747 static const struct fsl_sai_soc_data fsl_sai_imx95_data = {
1748 .use_imx_pcm = true,
1749 .use_edma = true,
1750 .fifo_depth = 128,
1751 .reg_offset = 8,
1752 .mclk0_is_mclk1 = false,
1753 .pins = 8,
1754 .flags = 0,
1755 .max_register = FSL_SAI_MCTL,
1756 .max_burst = {8, 8},
1757 };
1758
1759 static const struct of_device_id fsl_sai_ids[] = {
1760 { .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1761 { .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1762 { .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1763 { .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1764 { .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1765 { .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1766 { .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1767 { .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1768 { .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1769 { .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1770 { .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data },
1771 { .compatible = "fsl,imx95-sai", .data = &fsl_sai_imx95_data },
1772 { /* sentinel */ }
1773 };
1774 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1775
fsl_sai_runtime_suspend(struct device * dev)1776 static int fsl_sai_runtime_suspend(struct device *dev)
1777 {
1778 struct fsl_sai *sai = dev_get_drvdata(dev);
1779
1780 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1781 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1782
1783 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1784 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1785
1786 clk_disable_unprepare(sai->bus_clk);
1787
1788 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1789 cpu_latency_qos_remove_request(&sai->pm_qos_req);
1790
1791 regcache_cache_only(sai->regmap, true);
1792
1793 return 0;
1794 }
1795
fsl_sai_runtime_resume(struct device * dev)1796 static int fsl_sai_runtime_resume(struct device *dev)
1797 {
1798 struct fsl_sai *sai = dev_get_drvdata(dev);
1799 unsigned int ofs = sai->soc_data->reg_offset;
1800 int ret;
1801
1802 ret = clk_prepare_enable(sai->bus_clk);
1803 if (ret) {
1804 dev_err(dev, "failed to enable bus clock: %d\n", ret);
1805 return ret;
1806 }
1807
1808 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1809 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1810 if (ret)
1811 goto disable_bus_clk;
1812 }
1813
1814 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1815 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1816 if (ret)
1817 goto disable_tx_clk;
1818 }
1819
1820 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1821 cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1822
1823 regcache_cache_only(sai->regmap, false);
1824 regcache_mark_dirty(sai->regmap);
1825 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1826 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1827 usleep_range(1000, 2000);
1828 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1829 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1830
1831 ret = regcache_sync(sai->regmap);
1832 if (ret)
1833 goto disable_rx_clk;
1834
1835 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1836 regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1837 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1838
1839 return 0;
1840
1841 disable_rx_clk:
1842 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1843 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1844 disable_tx_clk:
1845 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1846 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1847 disable_bus_clk:
1848 clk_disable_unprepare(sai->bus_clk);
1849
1850 return ret;
1851 }
1852
1853 static const struct dev_pm_ops fsl_sai_pm_ops = {
1854 RUNTIME_PM_OPS(fsl_sai_runtime_suspend, fsl_sai_runtime_resume, NULL)
1855 SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
1856 };
1857
1858 static struct platform_driver fsl_sai_driver = {
1859 .probe = fsl_sai_probe,
1860 .remove = fsl_sai_remove,
1861 .driver = {
1862 .name = "fsl-sai",
1863 .pm = pm_ptr(&fsl_sai_pm_ops),
1864 .of_match_table = fsl_sai_ids,
1865 },
1866 };
1867 module_platform_driver(fsl_sai_driver);
1868
1869 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1870 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1871 MODULE_ALIAS("platform:fsl-sai");
1872 MODULE_LICENSE("GPL");
1873