xref: /linux/arch/powerpc/kernel/watchdog.c (revision 13b2d15d991b3f0f4ebfffbed081dbff27ac1c9d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9 
10 #define pr_fmt(fmt) "watchdog: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/processor.h>
28 #include <linux/smp.h>
29 #include <linux/sys_info.h>
30 
31 #include <asm/interrupt.h>
32 #include <asm/paca.h>
33 #include <asm/nmi.h>
34 
35 /*
36  * The powerpc watchdog ensures that each CPU is able to service timers.
37  * The watchdog sets up a simple timer on each CPU to run once per timer
38  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
39  * the heartbeat.
40  *
41  * Then there are two systems to check that the heartbeat is still running.
42  * The local soft-NMI, and the SMP checker.
43  *
44  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
45  * are disabled with local_irq_disable(), platforms that use soft-masking
46  * can leave hardware interrupts enabled and handle them with a masked
47  * interrupt handler. The masked handler can send the timer interrupt to the
48  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
49  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
50  *
51  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
52  * with the current time, and take action if the difference exceeds the
53  * watchdog threshold.
54  *
55  * The limitation of the soft-NMI watchdog is that it does not work when
56  * interrupts are hard disabled or otherwise not being serviced. This is
57  * solved by also having a SMP watchdog where all CPUs check all other
58  * CPUs heartbeat.
59  *
60  * The SMP checker can detect lockups on other CPUs. A global "pending"
61  * cpumask is kept, containing all CPUs which enable the watchdog. Each
62  * CPU clears their pending bit in their heartbeat timer. When the bitmask
63  * becomes empty, the last CPU to clear its pending bit updates a global
64  * timestamp and refills the pending bitmask.
65  *
66  * In the heartbeat timer, if any CPU notices that the global timestamp has
67  * not been updated for a period exceeding the watchdog threshold, then it
68  * means the CPU(s) with their bit still set in the pending mask have had
69  * their heartbeat stop, and action is taken.
70  *
71  * Some platforms implement true NMI IPIs, which can be used by the SMP
72  * watchdog to detect an unresponsive CPU and pull it out of its stuck
73  * state with the NMI IPI, to get crash/debug data from it. This way the
74  * SMP watchdog can detect hardware interrupts off lockups.
75  */
76 
77 static cpumask_t wd_cpus_enabled __read_mostly;
78 
79 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
80 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
81 
82 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
83 
84 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
85 static DEFINE_PER_CPU(u64, wd_timer_tb);
86 
87 /* SMP checker bits */
88 static unsigned long __wd_smp_lock;
89 static unsigned long __wd_reporting;
90 static unsigned long __wd_nmi_output;
91 static cpumask_t wd_smp_cpus_pending;
92 static cpumask_t wd_smp_cpus_stuck;
93 static u64 wd_smp_last_reset_tb;
94 
95 #ifdef CONFIG_PPC_PSERIES
96 static u64 wd_timeout_pct;
97 #endif
98 
99 /*
100  * Try to take the exclusive watchdog action / NMI IPI / printing lock.
101  * wd_smp_lock must be held. If this fails, we should return and wait
102  * for the watchdog to kick in again (or another CPU to trigger it).
103  *
104  * Importantly, if hardlockup_panic is set, wd_try_report failure should
105  * not delay the panic, because whichever other CPU is reporting will
106  * call panic.
107  */
wd_try_report(void)108 static bool wd_try_report(void)
109 {
110 	if (__wd_reporting)
111 		return false;
112 	__wd_reporting = 1;
113 	return true;
114 }
115 
116 /* End printing after successful wd_try_report. wd_smp_lock not required. */
wd_end_reporting(void)117 static void wd_end_reporting(void)
118 {
119 	smp_mb(); /* End printing "critical section" */
120 	WARN_ON_ONCE(__wd_reporting == 0);
121 	WRITE_ONCE(__wd_reporting, 0);
122 }
123 
wd_smp_lock(unsigned long * flags)124 static inline void wd_smp_lock(unsigned long *flags)
125 {
126 	/*
127 	 * Avoid locking layers if possible.
128 	 * This may be called from low level interrupt handlers at some
129 	 * point in future.
130 	 */
131 	raw_local_irq_save(*flags);
132 	hard_irq_disable(); /* Make it soft-NMI safe */
133 	while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
134 		raw_local_irq_restore(*flags);
135 		spin_until_cond(!test_bit(0, &__wd_smp_lock));
136 		raw_local_irq_save(*flags);
137 		hard_irq_disable();
138 	}
139 }
140 
wd_smp_unlock(unsigned long * flags)141 static inline void wd_smp_unlock(unsigned long *flags)
142 {
143 	clear_bit_unlock(0, &__wd_smp_lock);
144 	raw_local_irq_restore(*flags);
145 }
146 
wd_lockup_ipi(struct pt_regs * regs)147 static void wd_lockup_ipi(struct pt_regs *regs)
148 {
149 	int cpu = raw_smp_processor_id();
150 	u64 tb = get_tb();
151 
152 	pr_emerg("CPU %d Hard LOCKUP\n", cpu);
153 	pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
154 		 cpu, tb, per_cpu(wd_timer_tb, cpu),
155 		 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
156 	print_modules();
157 	print_irqtrace_events(current);
158 	if (regs)
159 		show_regs(regs);
160 	else
161 		dump_stack();
162 
163 	/*
164 	 * __wd_nmi_output must be set after we printk from NMI context.
165 	 *
166 	 * printk from NMI context defers printing to the console to irq_work.
167 	 * If that NMI was taken in some code that is hard-locked, then irqs
168 	 * are disabled so irq_work will never fire. That can result in the
169 	 * hard lockup messages being delayed (indefinitely, until something
170 	 * else kicks the console drivers).
171 	 *
172 	 * Setting __wd_nmi_output will cause another CPU to notice and kick
173 	 * the console drivers for us.
174 	 *
175 	 * xchg is not needed here (it could be a smp_mb and store), but xchg
176 	 * gives the memory ordering and atomicity required.
177 	 */
178 	xchg(&__wd_nmi_output, 1);
179 
180 	/* Do not panic from here because that can recurse into NMI IPI layer */
181 }
182 
set_cpu_stuck(int cpu)183 static bool set_cpu_stuck(int cpu)
184 {
185 	cpumask_set_cpu(cpu, &wd_smp_cpus_stuck);
186 	cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
187 	/*
188 	 * See wd_smp_clear_cpu_pending()
189 	 */
190 	smp_mb();
191 	if (cpumask_empty(&wd_smp_cpus_pending)) {
192 		wd_smp_last_reset_tb = get_tb();
193 		cpumask_andnot(&wd_smp_cpus_pending,
194 				&wd_cpus_enabled,
195 				&wd_smp_cpus_stuck);
196 		return true;
197 	}
198 	return false;
199 }
200 
watchdog_smp_panic(int cpu)201 static void watchdog_smp_panic(int cpu)
202 {
203 	static cpumask_t wd_smp_cpus_ipi; // protected by reporting
204 	unsigned long flags;
205 	u64 tb, last_reset;
206 	int c;
207 
208 	wd_smp_lock(&flags);
209 	/* Double check some things under lock */
210 	tb = get_tb();
211 	last_reset = wd_smp_last_reset_tb;
212 	if ((s64)(tb - last_reset) < (s64)wd_smp_panic_timeout_tb)
213 		goto out;
214 	if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
215 		goto out;
216 	if (!wd_try_report())
217 		goto out;
218 	for_each_online_cpu(c) {
219 		if (!cpumask_test_cpu(c, &wd_smp_cpus_pending))
220 			continue;
221 		if (c == cpu)
222 			continue; // should not happen
223 
224 		__cpumask_set_cpu(c, &wd_smp_cpus_ipi);
225 		if (set_cpu_stuck(c))
226 			break;
227 	}
228 	if (cpumask_empty(&wd_smp_cpus_ipi)) {
229 		wd_end_reporting();
230 		goto out;
231 	}
232 	wd_smp_unlock(&flags);
233 
234 	pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
235 		 cpu, cpumask_pr_args(&wd_smp_cpus_ipi));
236 	pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
237 		 cpu, tb, last_reset, tb_to_ns(tb - last_reset) / 1000000);
238 
239 	if (sysctl_hardlockup_all_cpu_backtrace ||
240 	    (hardlockup_si_mask & SYS_INFO_ALL_BT)) {
241 		trigger_allbutcpu_cpu_backtrace(cpu);
242 		cpumask_clear(&wd_smp_cpus_ipi);
243 	} else {
244 		/*
245 		 * Try to trigger the stuck CPUs, unless we are going to
246 		 * get a backtrace on all of them anyway.
247 		 */
248 		for_each_cpu(c, &wd_smp_cpus_ipi) {
249 			smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
250 			__cpumask_clear_cpu(c, &wd_smp_cpus_ipi);
251 		}
252 	}
253 
254 	sys_info(hardlockup_si_mask & ~SYS_INFO_ALL_BT);
255 	if (hardlockup_panic)
256 		nmi_panic(NULL, "Hard LOCKUP");
257 
258 	wd_end_reporting();
259 
260 	return;
261 
262 out:
263 	wd_smp_unlock(&flags);
264 }
265 
wd_smp_clear_cpu_pending(int cpu)266 static void wd_smp_clear_cpu_pending(int cpu)
267 {
268 	if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
269 		if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
270 			struct pt_regs *regs = get_irq_regs();
271 			unsigned long flags;
272 
273 			pr_emerg("CPU %d became unstuck TB:%lld\n",
274 				 cpu, get_tb());
275 			print_irqtrace_events(current);
276 			if (regs)
277 				show_regs(regs);
278 			else
279 				dump_stack();
280 
281 			wd_smp_lock(&flags);
282 			cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
283 			wd_smp_unlock(&flags);
284 		} else {
285 			/*
286 			 * The last CPU to clear pending should have reset the
287 			 * watchdog so we generally should not find it empty
288 			 * here if our CPU was clear. However it could happen
289 			 * due to a rare race with another CPU taking the
290 			 * last CPU out of the mask concurrently.
291 			 *
292 			 * We can't add a warning for it. But just in case
293 			 * there is a problem with the watchdog that is causing
294 			 * the mask to not be reset, try to kick it along here.
295 			 */
296 			if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
297 				goto none_pending;
298 		}
299 		return;
300 	}
301 
302 	/*
303 	 * All other updates to wd_smp_cpus_pending are performed under
304 	 * wd_smp_lock. All of them are atomic except the case where the
305 	 * mask becomes empty and is reset. This will not happen here because
306 	 * cpu was tested to be in the bitmap (above), and a CPU only clears
307 	 * its own bit. _Except_ in the case where another CPU has detected a
308 	 * hard lockup on our CPU and takes us out of the pending mask. So in
309 	 * normal operation there will be no race here, no problem.
310 	 *
311 	 * In the lockup case, this atomic clear-bit vs a store that refills
312 	 * other bits in the accessed word wll not be a problem. The bit clear
313 	 * is atomic so it will not cause the store to get lost, and the store
314 	 * will never set this bit so it will not overwrite the bit clear. The
315 	 * only way for a stuck CPU to return to the pending bitmap is to
316 	 * become unstuck itself.
317 	 */
318 	cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
319 
320 	/*
321 	 * Order the store to clear pending with the load(s) to check all
322 	 * words in the pending mask to check they are all empty. This orders
323 	 * with the same barrier on another CPU. This prevents two CPUs
324 	 * clearing the last 2 pending bits, but neither seeing the other's
325 	 * store when checking if the mask is empty, and missing an empty
326 	 * mask, which ends with a false positive.
327 	 */
328 	smp_mb();
329 	if (cpumask_empty(&wd_smp_cpus_pending)) {
330 		unsigned long flags;
331 
332 none_pending:
333 		/*
334 		 * Double check under lock because more than one CPU could see
335 		 * a clear mask with the lockless check after clearing their
336 		 * pending bits.
337 		 */
338 		wd_smp_lock(&flags);
339 		if (cpumask_empty(&wd_smp_cpus_pending)) {
340 			wd_smp_last_reset_tb = get_tb();
341 			cpumask_andnot(&wd_smp_cpus_pending,
342 					&wd_cpus_enabled,
343 					&wd_smp_cpus_stuck);
344 		}
345 		wd_smp_unlock(&flags);
346 	}
347 }
348 
watchdog_timer_interrupt(int cpu)349 static void watchdog_timer_interrupt(int cpu)
350 {
351 	u64 tb = get_tb();
352 
353 	per_cpu(wd_timer_tb, cpu) = tb;
354 
355 	wd_smp_clear_cpu_pending(cpu);
356 
357 	if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
358 		watchdog_smp_panic(cpu);
359 
360 	if (__wd_nmi_output && xchg(&__wd_nmi_output, 0)) {
361 		/*
362 		 * Something has called printk from NMI context. It might be
363 		 * stuck, so this triggers a flush that will get that
364 		 * printk output to the console.
365 		 *
366 		 * See wd_lockup_ipi.
367 		 */
368 		printk_trigger_flush();
369 	}
370 }
371 
DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)372 DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
373 {
374 	unsigned long flags;
375 	int cpu = raw_smp_processor_id();
376 	u64 tb;
377 
378 	/* should only arrive from kernel, with irqs disabled */
379 	WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
380 
381 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
382 		return 0;
383 
384 	__this_cpu_inc(irq_stat.soft_nmi_irqs);
385 
386 	tb = get_tb();
387 	if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
388 		/*
389 		 * Taking wd_smp_lock here means it is a soft-NMI lock, which
390 		 * means we can't take any regular or irqsafe spin locks while
391 		 * holding this lock. This is why timers can't printk while
392 		 * holding the lock.
393 		 */
394 		wd_smp_lock(&flags);
395 		if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
396 			wd_smp_unlock(&flags);
397 			return 0;
398 		}
399 		if (!wd_try_report()) {
400 			wd_smp_unlock(&flags);
401 			/* Couldn't report, try again in 100ms */
402 			mtspr(SPRN_DEC, 100 * tb_ticks_per_usec * 1000);
403 			return 0;
404 		}
405 
406 		set_cpu_stuck(cpu);
407 
408 		wd_smp_unlock(&flags);
409 
410 		pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
411 			 cpu, (void *)regs->nip);
412 		pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
413 			 cpu, tb, per_cpu(wd_timer_tb, cpu),
414 			 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
415 		print_modules();
416 		print_irqtrace_events(current);
417 		show_regs(regs);
418 
419 		xchg(&__wd_nmi_output, 1); // see wd_lockup_ipi
420 
421 		if (sysctl_hardlockup_all_cpu_backtrace ||
422 		    (hardlockup_si_mask & SYS_INFO_ALL_BT))
423 			trigger_allbutcpu_cpu_backtrace(cpu);
424 
425 		sys_info(hardlockup_si_mask & ~SYS_INFO_ALL_BT);
426 		if (hardlockup_panic)
427 			nmi_panic(regs, "Hard LOCKUP");
428 
429 		wd_end_reporting();
430 	}
431 	/*
432 	 * We are okay to change DEC in soft_nmi_interrupt because the masked
433 	 * handler has marked a DEC as pending, so the timer interrupt will be
434 	 * replayed as soon as local irqs are enabled again.
435 	 */
436 	if (wd_panic_timeout_tb < 0x7fffffff)
437 		mtspr(SPRN_DEC, wd_panic_timeout_tb);
438 
439 	return 0;
440 }
441 
watchdog_timer_fn(struct hrtimer * hrtimer)442 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
443 {
444 	int cpu = smp_processor_id();
445 
446 	if (!(watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED))
447 		return HRTIMER_NORESTART;
448 
449 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
450 		return HRTIMER_NORESTART;
451 
452 	watchdog_timer_interrupt(cpu);
453 
454 	hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
455 
456 	return HRTIMER_RESTART;
457 }
458 
arch_touch_nmi_watchdog(void)459 void arch_touch_nmi_watchdog(void)
460 {
461 	unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
462 	int cpu = smp_processor_id();
463 	u64 tb;
464 
465 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
466 		return;
467 
468 	tb = get_tb();
469 	if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
470 		per_cpu(wd_timer_tb, cpu) = tb;
471 		wd_smp_clear_cpu_pending(cpu);
472 	}
473 }
474 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
475 
start_watchdog(void * arg)476 static void start_watchdog(void *arg)
477 {
478 	struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
479 	int cpu = smp_processor_id();
480 	unsigned long flags;
481 
482 	if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
483 		WARN_ON(1);
484 		return;
485 	}
486 
487 	if (!(watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED))
488 		return;
489 
490 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
491 		return;
492 
493 	wd_smp_lock(&flags);
494 	cpumask_set_cpu(cpu, &wd_cpus_enabled);
495 	if (cpumask_weight(&wd_cpus_enabled) == 1) {
496 		cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
497 		wd_smp_last_reset_tb = get_tb();
498 	}
499 	wd_smp_unlock(&flags);
500 
501 	*this_cpu_ptr(&wd_timer_tb) = get_tb();
502 
503 	hrtimer_setup(hrtimer, watchdog_timer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
504 	hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
505 		      HRTIMER_MODE_REL_PINNED);
506 }
507 
start_watchdog_on_cpu(unsigned int cpu)508 static int start_watchdog_on_cpu(unsigned int cpu)
509 {
510 	return smp_call_function_single(cpu, start_watchdog, NULL, true);
511 }
512 
stop_watchdog(void * arg)513 static void stop_watchdog(void *arg)
514 {
515 	struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
516 	int cpu = smp_processor_id();
517 	unsigned long flags;
518 
519 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
520 		return; /* Can happen in CPU unplug case */
521 
522 	hrtimer_cancel(hrtimer);
523 
524 	wd_smp_lock(&flags);
525 	cpumask_clear_cpu(cpu, &wd_cpus_enabled);
526 	wd_smp_unlock(&flags);
527 
528 	wd_smp_clear_cpu_pending(cpu);
529 }
530 
stop_watchdog_on_cpu(unsigned int cpu)531 static int stop_watchdog_on_cpu(unsigned int cpu)
532 {
533 	return smp_call_function_single(cpu, stop_watchdog, NULL, true);
534 }
535 
watchdog_calc_timeouts(void)536 static void watchdog_calc_timeouts(void)
537 {
538 	u64 threshold = watchdog_thresh;
539 
540 #ifdef CONFIG_PPC_PSERIES
541 	threshold += (READ_ONCE(wd_timeout_pct) * threshold) / 100;
542 #endif
543 
544 	wd_panic_timeout_tb = threshold * ppc_tb_freq;
545 
546 	/* Have the SMP detector trigger a bit later */
547 	wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
548 
549 	/* 2/5 is the factor that the perf based detector uses */
550 	wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
551 }
552 
watchdog_hardlockup_stop(void)553 void watchdog_hardlockup_stop(void)
554 {
555 	int cpu;
556 
557 	for_each_cpu(cpu, &wd_cpus_enabled)
558 		stop_watchdog_on_cpu(cpu);
559 }
560 
watchdog_hardlockup_start(void)561 void watchdog_hardlockup_start(void)
562 {
563 	int cpu;
564 
565 	watchdog_calc_timeouts();
566 	for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
567 		start_watchdog_on_cpu(cpu);
568 }
569 
570 /*
571  * Invoked from core watchdog init.
572  */
watchdog_hardlockup_probe(void)573 int __init watchdog_hardlockup_probe(void)
574 {
575 	int err;
576 
577 	err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
578 					"powerpc/watchdog:online",
579 					start_watchdog_on_cpu,
580 					stop_watchdog_on_cpu);
581 	if (err < 0) {
582 		pr_warn("could not be initialized");
583 		return err;
584 	}
585 	return 0;
586 }
587 
588 #ifdef CONFIG_PPC_PSERIES
watchdog_hardlockup_set_timeout_pct(u64 pct)589 void watchdog_hardlockup_set_timeout_pct(u64 pct)
590 {
591 	pr_info("Set the NMI watchdog timeout factor to %llu%%\n", pct);
592 	WRITE_ONCE(wd_timeout_pct, pct);
593 	lockup_detector_reconfigure();
594 }
595 #endif
596