xref: /linux/include/linux/clocksource.h (revision c25ca0c2e42c77e0241411d374d44c41e253b3f5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*  linux/include/linux/clocksource.h
3  *
4  *  This file contains the structure definitions for clocksources.
5  *
6  *  If you are not a clocksource, or timekeeping code, you should
7  *  not be including this file!
8  */
9 #ifndef _LINUX_CLOCKSOURCE_H
10 #define _LINUX_CLOCKSOURCE_H
11 
12 #include <linux/types.h>
13 #include <linux/timex.h>
14 #include <linux/time.h>
15 #include <linux/list.h>
16 #include <linux/cache.h>
17 #include <linux/timer.h>
18 #include <linux/init.h>
19 #include <linux/of.h>
20 #include <linux/clocksource_ids.h>
21 #include <asm/div64.h>
22 #include <asm/io.h>
23 
24 struct clocksource_base;
25 struct clocksource;
26 struct module;
27 
28 #if defined(CONFIG_ARCH_CLOCKSOURCE_DATA) || \
29     defined(CONFIG_GENERIC_GETTIMEOFDAY)
30 #include <asm/clocksource.h>
31 #endif
32 
33 #include <vdso/clocksource.h>
34 
35 /**
36  * struct clocksource - hardware abstraction for a free running counter
37  *	Provides mostly state-free accessors to the underlying hardware.
38  *	This is the structure used for system time.
39  *
40  * @read:		Returns a cycle value, passes clocksource as argument
41  * @mask:		Bitmask for two's complement
42  *			subtraction of non 64 bit counters
43  * @mult:		Cycle to nanosecond multiplier
44  * @shift:		Cycle to nanosecond divisor (power of two)
45  * @max_idle_ns:	Maximum idle time permitted by the clocksource (nsecs)
46  * @maxadj:		Maximum adjustment value to mult (~11%)
47  * @uncertainty_margin:	Maximum uncertainty in nanoseconds per half second.
48  *			Zero says to use default WATCHDOG_THRESHOLD.
49  * @archdata:		Optional arch-specific data
50  * @max_cycles:		Maximum safe cycle value which won't overflow on
51  *			multiplication
52  * @max_raw_delta:	Maximum safe delta value for negative motion detection
53  * @name:		Pointer to clocksource name
54  * @list:		List head for registration (internal)
55  * @freq_khz:		Clocksource frequency in khz.
56  * @rating:		Rating value for selection (higher is better)
57  *			To avoid rating inflation the following
58  *			list should give you a guide as to how
59  *			to assign your clocksource a rating
60  *			1-99: Unfit for real use
61  *				Only available for bootup and testing purposes.
62  *			100-199: Base level usability.
63  *				Functional for real use, but not desired.
64  *			200-299: Good.
65  *				A correct and usable clocksource.
66  *			300-399: Desired.
67  *				A reasonably fast and accurate clocksource.
68  *			400-499: Perfect
69  *				The ideal clocksource. A must-use where
70  *				available.
71  * @id:			Defaults to CSID_GENERIC. The id value is captured
72  *			in certain snapshot functions to allow callers to
73  *			validate the clocksource from which the snapshot was
74  *			taken.
75  * @flags:		Flags describing special properties
76  * @base:		Hardware abstraction for clock on which a clocksource
77  *			is based
78  * @enable:		Optional function to enable the clocksource
79  * @disable:		Optional function to disable the clocksource
80  * @suspend:		Optional suspend function for the clocksource
81  * @resume:		Optional resume function for the clocksource
82  * @mark_unstable:	Optional function to inform the clocksource driver that
83  *			the watchdog marked the clocksource unstable
84  * @tick_stable:        Optional function called periodically from the watchdog
85  *			code to provide stable synchronization points
86  * @wd_list:		List head to enqueue into the watchdog list (internal)
87  * @cs_last:		Last clocksource value for clocksource watchdog
88  * @wd_last:		Last watchdog value corresponding to @cs_last
89  * @owner:		Module reference, must be set by clocksource in modules
90  *
91  * Note: This struct is not used in hotpathes of the timekeeping code
92  * because the timekeeper caches the hot path fields in its own data
93  * structure, so no cache line alignment is required,
94  *
95  * The pointer to the clocksource itself is handed to the read
96  * callback. If you need extra information there you can wrap struct
97  * clocksource into your own struct. Depending on the amount of
98  * information you need you should consider to cache line align that
99  * structure.
100  */
101 struct clocksource {
102 	u64			(*read)(struct clocksource *cs);
103 	u64			mask;
104 	u32			mult;
105 	u32			shift;
106 	u64			max_idle_ns;
107 	u32			maxadj;
108 	u32			uncertainty_margin;
109 #ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
110 	struct arch_clocksource_data archdata;
111 #endif
112 	u64			max_cycles;
113 	u64			max_raw_delta;
114 	const char		*name;
115 	struct list_head	list;
116 	u32			freq_khz;
117 	int			rating;
118 	enum clocksource_ids	id;
119 	enum vdso_clock_mode	vdso_clock_mode;
120 	unsigned long		flags;
121 	struct clocksource_base *base;
122 
123 	int			(*enable)(struct clocksource *cs);
124 	void			(*disable)(struct clocksource *cs);
125 	void			(*suspend)(struct clocksource *cs);
126 	void			(*resume)(struct clocksource *cs);
127 	void			(*mark_unstable)(struct clocksource *cs);
128 	void			(*tick_stable)(struct clocksource *cs);
129 
130 	/* private: */
131 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
132 	/* Watchdog related data, used by the framework */
133 	struct list_head	wd_list;
134 	u64			cs_last;
135 	u64			wd_last;
136 #endif
137 	struct module		*owner;
138 };
139 
140 /*
141  * Clock source flags bits::
142  */
143 #define CLOCK_SOURCE_IS_CONTINUOUS		0x01
144 #define CLOCK_SOURCE_MUST_VERIFY		0x02
145 
146 #define CLOCK_SOURCE_WATCHDOG			0x10
147 #define CLOCK_SOURCE_VALID_FOR_HRES		0x20
148 #define CLOCK_SOURCE_UNSTABLE			0x40
149 #define CLOCK_SOURCE_SUSPEND_NONSTOP		0x80
150 #define CLOCK_SOURCE_RESELECT			0x100
151 #define CLOCK_SOURCE_VERIFY_PERCPU		0x200
152 /* simplify initialization of mask field */
153 #define CLOCKSOURCE_MASK(bits) GENMASK_ULL((bits) - 1, 0)
154 
clocksource_freq2mult(u32 freq,u32 shift_constant,u64 from)155 static inline u32 clocksource_freq2mult(u32 freq, u32 shift_constant, u64 from)
156 {
157 	/*  freq = cyc/from
158 	 *  mult/2^shift  = ns/cyc
159 	 *  mult = ns/cyc * 2^shift
160 	 *  mult = from/freq * 2^shift
161 	 *  mult = from * 2^shift / freq
162 	 *  mult = (from<<shift) / freq
163 	 */
164 	u64 tmp = ((u64)from) << shift_constant;
165 
166 	tmp += freq/2; /* round for do_div */
167 	do_div(tmp, freq);
168 
169 	return (u32)tmp;
170 }
171 
172 /**
173  * clocksource_khz2mult - calculates mult from khz and shift
174  * @khz:		Clocksource frequency in KHz
175  * @shift_constant:	Clocksource shift factor
176  *
177  * Helper functions that converts a khz counter frequency to a timsource
178  * multiplier, given the clocksource shift value
179  */
clocksource_khz2mult(u32 khz,u32 shift_constant)180 static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
181 {
182 	return clocksource_freq2mult(khz, shift_constant, NSEC_PER_MSEC);
183 }
184 
185 /**
186  * clocksource_hz2mult - calculates mult from hz and shift
187  * @hz:			Clocksource frequency in Hz
188  * @shift_constant:	Clocksource shift factor
189  *
190  * Helper functions that converts a hz counter
191  * frequency to a timsource multiplier, given the
192  * clocksource shift value
193  */
clocksource_hz2mult(u32 hz,u32 shift_constant)194 static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant)
195 {
196 	return clocksource_freq2mult(hz, shift_constant, NSEC_PER_SEC);
197 }
198 
199 /**
200  * clocksource_cyc2ns - converts clocksource cycles to nanoseconds
201  * @cycles:	cycles
202  * @mult:	cycle to nanosecond multiplier
203  * @shift:	cycle to nanosecond divisor (power of two)
204  *
205  * Converts clocksource cycles to nanoseconds, using the given @mult and @shift.
206  * The code is optimized for performance and is not intended to work
207  * with absolute clocksource cycles (as those will easily overflow),
208  * but is only intended to be used with relative (delta) clocksource cycles.
209  *
210  * XXX - This could use some mult_lxl_ll() asm optimization
211  */
clocksource_cyc2ns(u64 cycles,u32 mult,u32 shift)212 static inline s64 clocksource_cyc2ns(u64 cycles, u32 mult, u32 shift)
213 {
214 	return ((u64) cycles * mult) >> shift;
215 }
216 
217 
218 extern int clocksource_unregister(struct clocksource*);
219 extern void clocksource_touch_watchdog(void);
220 extern void clocksource_suspend(void);
221 extern void clocksource_resume(void);
222 extern struct clocksource * __init clocksource_default_clock(void);
223 extern void clocksource_mark_unstable(struct clocksource *cs);
224 extern void
225 clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles);
226 extern u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 now);
227 
228 extern u64
229 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cycles);
230 extern void
231 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);
232 
233 /*
234  * Don't call __clocksource_register_scale directly, use
235  * clocksource_register_hz/khz
236  */
237 extern int
238 __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq);
239 extern void
240 __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq);
241 
242 /*
243  * Don't call this unless you are a default clocksource
244  * (AKA: jiffies) and absolutely have to.
245  */
__clocksource_register(struct clocksource * cs)246 static inline int __clocksource_register(struct clocksource *cs)
247 {
248 	return __clocksource_register_scale(cs, 1, 0);
249 }
250 
clocksource_register_hz(struct clocksource * cs,u32 hz)251 static inline int clocksource_register_hz(struct clocksource *cs, u32 hz)
252 {
253 	return __clocksource_register_scale(cs, 1, hz);
254 }
255 
clocksource_register_khz(struct clocksource * cs,u32 khz)256 static inline int clocksource_register_khz(struct clocksource *cs, u32 khz)
257 {
258 	return __clocksource_register_scale(cs, 1000, khz);
259 }
260 
__clocksource_update_freq_hz(struct clocksource * cs,u32 hz)261 static inline void __clocksource_update_freq_hz(struct clocksource *cs, u32 hz)
262 {
263 	__clocksource_update_freq_scale(cs, 1, hz);
264 }
265 
__clocksource_update_freq_khz(struct clocksource * cs,u32 khz)266 static inline void __clocksource_update_freq_khz(struct clocksource *cs, u32 khz)
267 {
268 	__clocksource_update_freq_scale(cs, 1000, khz);
269 }
270 
271 #ifdef CONFIG_ARCH_CLOCKSOURCE_INIT
272 extern void clocksource_arch_init(struct clocksource *cs);
273 #else
clocksource_arch_init(struct clocksource * cs)274 static inline void clocksource_arch_init(struct clocksource *cs) { }
275 #endif
276 
277 extern int timekeeping_notify(struct clocksource *clock);
278 
279 extern u64 clocksource_mmio_readl_up(struct clocksource *);
280 extern u64 clocksource_mmio_readl_down(struct clocksource *);
281 extern u64 clocksource_mmio_readw_up(struct clocksource *);
282 extern u64 clocksource_mmio_readw_down(struct clocksource *);
283 
284 extern int clocksource_mmio_init(void __iomem *, const char *,
285 	unsigned long, int, unsigned, u64 (*)(struct clocksource *));
286 
287 extern int clocksource_i8253_init(void);
288 
289 #define TIMER_OF_DECLARE(name, compat, fn) \
290 	OF_DECLARE_1_RET(timer, name, compat, fn)
291 
292 #ifdef CONFIG_TIMER_PROBE
293 extern void timer_probe(void);
294 #else
timer_probe(void)295 static inline void timer_probe(void) {}
296 #endif
297 
298 #define TIMER_ACPI_DECLARE(name, table_id, fn)		\
299 	ACPI_DECLARE_PROBE_ENTRY(timer, name, table_id, 0, NULL, 0, fn)
300 
clocksource_get_max_watchdog_retry(void)301 static inline unsigned int clocksource_get_max_watchdog_retry(void)
302 {
303 	/*
304 	 * When system is in the boot phase or under heavy workload, there
305 	 * can be random big latencies during the clocksource/watchdog
306 	 * read, so allow retries to filter the noise latency. As the
307 	 * latency's frequency and maximum value goes up with the number of
308 	 * CPUs, scale the number of retries with the number of online
309 	 * CPUs.
310 	 */
311 	return (ilog2(num_online_cpus()) / 2) + 1;
312 }
313 
314 void clocksource_verify_percpu(struct clocksource *cs);
315 
316 /**
317  * struct clocksource_base - hardware abstraction for clock on which a clocksource
318  *			is based
319  * @id:			Defaults to CSID_GENERIC. The id value is used for conversion
320  *			functions which require that the current clocksource is based
321  *			on a clocksource_base with a particular ID in certain snapshot
322  *			functions to allow callers to validate the clocksource from
323  *			which the snapshot was taken.
324  * @freq_khz:		Nominal frequency of the base clock in kHz
325  * @offset:		Offset between the base clock and the clocksource
326  * @numerator:		Numerator of the clock ratio between base clock and the clocksource
327  * @denominator:	Denominator of the clock ratio between base clock and the clocksource
328  */
329 struct clocksource_base {
330 	enum clocksource_ids	id;
331 	u32			freq_khz;
332 	u64			offset;
333 	u32			numerator;
334 	u32			denominator;
335 };
336 
337 #endif /* _LINUX_CLOCKSOURCE_H */
338