1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
4 * john@geolog.com
5 * jshiffle@netcom.com
6 */
7
8 /*
9 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
10 * provided much of the inspiration and some of the code for this
11 * driver. Everything I know about Amiga DMA was gleaned from careful
12 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
13 * borrowed shamelessly from all over that source. Thanks Hamish!
14 *
15 * _This_ driver is (I feel) an improvement over the old one in
16 * several respects:
17 *
18 * - Target Disconnection/Reconnection is now supported. Any
19 * system with more than one device active on the SCSI bus
20 * will benefit from this. The driver defaults to what I
21 * call 'adaptive disconnect' - meaning that each command
22 * is evaluated individually as to whether or not it should
23 * be run with the option to disconnect/reselect (if the
24 * device chooses), or as a "SCSI-bus-hog".
25 *
26 * - Synchronous data transfers are now supported. Because of
27 * a few devices that choke after telling the driver that
28 * they can do sync transfers, we don't automatically use
29 * this faster protocol - it can be enabled via the command-
30 * line on a device-by-device basis.
31 *
32 * - Runtime operating parameters can now be specified through
33 * the 'amiboot' or the 'insmod' command line. For amiboot do:
34 * "amiboot [usual stuff] wd33c93=blah,blah,blah"
35 * The defaults should be good for most people. See the comment
36 * for 'setup_strings' below for more details.
37 *
38 * - The old driver relied exclusively on what the Western Digital
39 * docs call "Combination Level 2 Commands", which are a great
40 * idea in that the CPU is relieved of a lot of interrupt
41 * overhead. However, by accepting a certain (user-settable)
42 * amount of additional interrupts, this driver achieves
43 * better control over the SCSI bus, and data transfers are
44 * almost as fast while being much easier to define, track,
45 * and debug.
46 *
47 *
48 * TODO:
49 * more speed. linked commands.
50 *
51 *
52 * People with bug reports, wish-lists, complaints, comments,
53 * or improvements are asked to pah-leeez email me (John Shifflett)
54 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
55 * this thing into as good a shape as possible, and I'm positive
56 * there are lots of lurking bugs and "Stupid Places".
57 *
58 * Updates:
59 *
60 * Added support for pre -A chips, which don't have advanced features
61 * and will generate CSR_RESEL rather than CSR_RESEL_AM.
62 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000
63 *
64 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
65 * default_sx_per for asynchronous data transfers. Added adjustment
66 * of transfer periods in sx_table to the actual input-clock.
67 * peter fuerst <post@pfrst.de> February 2007
68 */
69
70 #include <linux/module.h>
71
72 #include <linux/string.h>
73 #include <linux/delay.h>
74 #include <linux/init.h>
75 #include <linux/interrupt.h>
76 #include <linux/blkdev.h>
77
78 #include <scsi/scsi.h>
79 #include <scsi/scsi_cmnd.h>
80 #include <scsi/scsi_device.h>
81 #include <scsi/scsi_host.h>
82
83 #include <asm/irq.h>
84
85 #include "wd33c93.h"
86
87 #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns
88
89
90 #define WD33C93_VERSION "1.26++"
91 #define WD33C93_DATE "10/Feb/2007"
92
93 MODULE_AUTHOR("John Shifflett");
94 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
95 MODULE_LICENSE("GPL");
96
97 /*
98 * 'setup_strings' is a single string used to pass operating parameters and
99 * settings from the kernel/module command-line to the driver. 'setup_args[]'
100 * is an array of strings that define the compile-time default values for
101 * these settings. If Linux boots with an amiboot or insmod command-line,
102 * those settings are combined with 'setup_args[]'. Note that amiboot
103 * command-lines are prefixed with "wd33c93=" while insmod uses a
104 * "setup_strings=" prefix. The driver recognizes the following keywords
105 * (lower case required) and arguments:
106 *
107 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
108 * the 7 possible SCSI devices. Set a bit to negotiate for
109 * asynchronous transfers on that device. To maintain
110 * backwards compatibility, a command-line such as
111 * "wd33c93=255" will be automatically translated to
112 * "wd33c93=nosync:0xff".
113 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is
114 * optional - if not present, same as "nodma:1".
115 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
116 * period. Default is 500; acceptable values are 250 - 1000.
117 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
118 * x = 1 does 'adaptive' disconnects, which is the default
119 * and generally the best choice.
120 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
121 * various types of debug output to printed - see the DB_xxx
122 * defines in wd33c93.h
123 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values
124 * would be from 8 through 20. Default is 8.
125 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
126 * Single Byte DMA, which is the default. Argument is
127 * optional - if not present, same as "burst:1".
128 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with
129 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
130 * it, which is the default. Argument is optional - if not
131 * present, same as "fast:1".
132 * - next -No argument. Used to separate blocks of keywords when
133 * there's more than one host adapter in the system.
134 *
135 * Syntax Notes:
136 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
137 * _must_ be a colon between a keyword and its numeric argument, with no
138 * spaces.
139 * - Keywords are separated by commas, no spaces, in the standard kernel
140 * command-line manner.
141 * - A keyword in the 'nth' comma-separated command-line member will overwrite
142 * the 'nth' element of setup_args[]. A blank command-line member (in
143 * other words, a comma with no preceding keyword) will _not_ overwrite
144 * the corresponding setup_args[] element.
145 * - If a keyword is used more than once, the first one applies to the first
146 * SCSI host found, the second to the second card, etc, unless the 'next'
147 * keyword is used to change the order.
148 *
149 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
150 * - wd33c93=nosync:255
151 * - wd33c93=nodma
152 * - wd33c93=nodma:1
153 * - wd33c93=disconnect:2,nosync:0x08,period:250
154 * - wd33c93=debug:0x1c
155 */
156
157 /* Normally, no defaults are specified */
158 static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };
159
160 static char *setup_strings;
161 module_param(setup_strings, charp, 0);
162
163 static void wd33c93_execute(struct Scsi_Host *instance);
164
165 static inline uchar
read_wd33c93(const wd33c93_regs regs,uchar reg_num)166 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
167 {
168 *regs.SASR = reg_num;
169 mb();
170 return (*regs.SCMD);
171 }
172
173 static unsigned long
read_wd33c93_count(const wd33c93_regs regs)174 read_wd33c93_count(const wd33c93_regs regs)
175 {
176 unsigned long value;
177
178 *regs.SASR = WD_TRANSFER_COUNT_MSB;
179 mb();
180 value = *regs.SCMD << 16;
181 value |= *regs.SCMD << 8;
182 value |= *regs.SCMD;
183 mb();
184 return value;
185 }
186
187 static inline uchar
read_aux_stat(const wd33c93_regs regs)188 read_aux_stat(const wd33c93_regs regs)
189 {
190 return *regs.SASR;
191 }
192
193 static inline void
write_wd33c93(const wd33c93_regs regs,uchar reg_num,uchar value)194 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
195 {
196 *regs.SASR = reg_num;
197 mb();
198 *regs.SCMD = value;
199 mb();
200 }
201
202 static void
write_wd33c93_count(const wd33c93_regs regs,unsigned long value)203 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
204 {
205 *regs.SASR = WD_TRANSFER_COUNT_MSB;
206 mb();
207 *regs.SCMD = value >> 16;
208 *regs.SCMD = value >> 8;
209 *regs.SCMD = value;
210 mb();
211 }
212
213 static inline void
write_wd33c93_cmd(const wd33c93_regs regs,uchar cmd)214 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
215 {
216 *regs.SASR = WD_COMMAND;
217 mb();
218 *regs.SCMD = cmd;
219 mb();
220 }
221
222 static inline void
write_wd33c93_cdb(const wd33c93_regs regs,uint len,uchar cmnd[])223 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
224 {
225 int i;
226
227 *regs.SASR = WD_CDB_1;
228 for (i = 0; i < len; i++)
229 *regs.SCMD = cmnd[i];
230 }
231
232 static inline uchar
read_1_byte(const wd33c93_regs regs)233 read_1_byte(const wd33c93_regs regs)
234 {
235 uchar asr;
236 uchar x = 0;
237
238 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
239 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
240 do {
241 asr = read_aux_stat(regs);
242 if (asr & ASR_DBR)
243 x = read_wd33c93(regs, WD_DATA);
244 } while (!(asr & ASR_INT));
245 return x;
246 }
247
248 static int
round_period(unsigned int period,const struct sx_period * sx_table)249 round_period(unsigned int period, const struct sx_period *sx_table)
250 {
251 int x;
252
253 for (x = 1; sx_table[x].period_ns; x++) {
254 if ((period <= sx_table[x - 0].period_ns) &&
255 (period > sx_table[x - 1].period_ns)) {
256 return x;
257 }
258 }
259 return 7;
260 }
261
262 /*
263 * Calculate Synchronous Transfer Register value from SDTR code.
264 */
265 static uchar
calc_sync_xfer(unsigned int period,unsigned int offset,unsigned int fast,const struct sx_period * sx_table)266 calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
267 const struct sx_period *sx_table)
268 {
269 /* When doing Fast SCSI synchronous data transfers, the corresponding
270 * value in 'sx_table' is two times the actually used transfer period.
271 */
272 uchar result;
273
274 if (offset && fast) {
275 fast = STR_FSS;
276 period *= 2;
277 } else {
278 fast = 0;
279 }
280 period *= 4; /* convert SDTR code to ns */
281 result = sx_table[round_period(period,sx_table)].reg_value;
282 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
283 result |= fast;
284 return result;
285 }
286
287 /*
288 * Calculate SDTR code bytes [3],[4] from period and offset.
289 */
290 static inline void
calc_sync_msg(unsigned int period,unsigned int offset,unsigned int fast,uchar msg[2])291 calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
292 uchar msg[2])
293 {
294 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
295 * actually used transfer period for Fast SCSI synchronous data
296 * transfers is half that value.
297 */
298 period /= 4;
299 if (offset && fast)
300 period /= 2;
301 msg[0] = period;
302 msg[1] = offset;
303 }
304
wd33c93_queuecommand_lck(struct scsi_cmnd * cmd)305 static int wd33c93_queuecommand_lck(struct scsi_cmnd *cmd)
306 {
307 struct scsi_pointer *scsi_pointer = WD33C93_scsi_pointer(cmd);
308 struct WD33C93_hostdata *hostdata;
309 struct scsi_cmnd *tmp;
310
311 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
312
313 DB(DB_QUEUE_COMMAND,
314 printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0]))
315
316 /* Set up a few fields in the scsi_cmnd structure for our own use:
317 * - host_scribble is the pointer to the next cmd in the input queue
318 * - result is what you'd expect
319 */
320 cmd->host_scribble = NULL;
321 cmd->result = 0;
322
323 /* We use the Scsi_Pointer structure that's included with each command
324 * as a scratchpad (as it's intended to be used!). The handy thing about
325 * the SCp.xxx fields is that they're always associated with a given
326 * cmd, and are preserved across disconnect-reselect. This means we
327 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
328 * if we keep all the critical pointers and counters in SCp:
329 * - SCp.ptr is the pointer into the RAM buffer
330 * - SCp.this_residual is the size of that buffer
331 * - SCp.buffer points to the current scatter-gather buffer
332 * - SCp.buffers_residual tells us how many S.G. buffers there are
333 * - SCp.have_data_in is not used
334 * - SCp.sent_command is not used
335 * - SCp.phase records this command's SRCID_ER bit setting
336 */
337
338 if (scsi_bufflen(cmd)) {
339 scsi_pointer->buffer = scsi_sglist(cmd);
340 scsi_pointer->buffers_residual = scsi_sg_count(cmd) - 1;
341 scsi_pointer->ptr = sg_virt(scsi_pointer->buffer);
342 scsi_pointer->this_residual = scsi_pointer->buffer->length;
343 } else {
344 scsi_pointer->buffer = NULL;
345 scsi_pointer->buffers_residual = 0;
346 scsi_pointer->ptr = NULL;
347 scsi_pointer->this_residual = 0;
348 }
349
350 /* WD docs state that at the conclusion of a "LEVEL2" command, the
351 * status byte can be retrieved from the LUN register. Apparently,
352 * this is the case only for *uninterrupted* LEVEL2 commands! If
353 * there are any unexpected phases entered, even if they are 100%
354 * legal (different devices may choose to do things differently),
355 * the LEVEL2 command sequence is exited. This often occurs prior
356 * to receiving the status byte, in which case the driver does a
357 * status phase interrupt and gets the status byte on its own.
358 * While such a command can then be "resumed" (ie restarted to
359 * finish up as a LEVEL2 command), the LUN register will NOT be
360 * a valid status byte at the command's conclusion, and we must
361 * use the byte obtained during the earlier interrupt. Here, we
362 * preset SCp.Status to an illegal value (0xff) so that when
363 * this command finally completes, we can tell where the actual
364 * status byte is stored.
365 */
366
367 scsi_pointer->Status = ILLEGAL_STATUS_BYTE;
368
369 /*
370 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
371 * commands are added to the head of the queue so that the desired
372 * sense data is not lost before REQUEST_SENSE executes.
373 */
374
375 spin_lock_irq(&hostdata->lock);
376
377 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
378 cmd->host_scribble = (uchar *) hostdata->input_Q;
379 hostdata->input_Q = cmd;
380 } else { /* find the end of the queue */
381 for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
382 tmp->host_scribble;
383 tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
384 tmp->host_scribble = (uchar *) cmd;
385 }
386
387 /* We know that there's at least one command in 'input_Q' now.
388 * Go see if any of them are runnable!
389 */
390
391 wd33c93_execute(cmd->device->host);
392
393 DB(DB_QUEUE_COMMAND, printk(")Q "))
394
395 spin_unlock_irq(&hostdata->lock);
396 return 0;
397 }
398
DEF_SCSI_QCMD(wd33c93_queuecommand)399 DEF_SCSI_QCMD(wd33c93_queuecommand)
400
401 /*
402 * This routine attempts to start a scsi command. If the host_card is
403 * already connected, we give up immediately. Otherwise, look through
404 * the input_Q, using the first command we find that's intended
405 * for a currently non-busy target/lun.
406 *
407 * wd33c93_execute() is always called with interrupts disabled or from
408 * the wd33c93_intr itself, which means that a wd33c93 interrupt
409 * cannot occur while we are in here.
410 */
411 static void
412 wd33c93_execute(struct Scsi_Host *instance)
413 {
414 struct scsi_pointer *scsi_pointer;
415 struct WD33C93_hostdata *hostdata =
416 (struct WD33C93_hostdata *) instance->hostdata;
417 const wd33c93_regs regs = hostdata->regs;
418 struct scsi_cmnd *cmd, *prev;
419
420 DB(DB_EXECUTE, printk("EX("))
421 if (hostdata->selecting || hostdata->connected) {
422 DB(DB_EXECUTE, printk(")EX-0 "))
423 return;
424 }
425
426 /*
427 * Search through the input_Q for a command destined
428 * for an idle target/lun.
429 */
430
431 cmd = (struct scsi_cmnd *) hostdata->input_Q;
432 prev = NULL;
433 while (cmd) {
434 if (!(hostdata->busy[cmd->device->id] &
435 (1 << (cmd->device->lun & 0xff))))
436 break;
437 prev = cmd;
438 cmd = (struct scsi_cmnd *) cmd->host_scribble;
439 }
440
441 /* quit if queue empty or all possible targets are busy */
442
443 if (!cmd) {
444 DB(DB_EXECUTE, printk(")EX-1 "))
445 return;
446 }
447
448 /* remove command from queue */
449
450 if (prev)
451 prev->host_scribble = cmd->host_scribble;
452 else
453 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;
454
455 #ifdef PROC_STATISTICS
456 hostdata->cmd_cnt[cmd->device->id]++;
457 #endif
458
459 /*
460 * Start the selection process
461 */
462
463 if (cmd->sc_data_direction == DMA_TO_DEVICE)
464 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
465 else
466 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
467
468 /* Now we need to figure out whether or not this command is a good
469 * candidate for disconnect/reselect. We guess to the best of our
470 * ability, based on a set of hierarchical rules. When several
471 * devices are operating simultaneously, disconnects are usually
472 * an advantage. In a single device system, or if only 1 device
473 * is being accessed, transfers usually go faster if disconnects
474 * are not allowed:
475 *
476 * + Commands should NEVER disconnect if hostdata->disconnect =
477 * DIS_NEVER (this holds for tape drives also), and ALWAYS
478 * disconnect if hostdata->disconnect = DIS_ALWAYS.
479 * + Tape drive commands should always be allowed to disconnect.
480 * + Disconnect should be allowed if disconnected_Q isn't empty.
481 * + Commands should NOT disconnect if input_Q is empty.
482 * + Disconnect should be allowed if there are commands in input_Q
483 * for a different target/lun. In this case, the other commands
484 * should be made disconnect-able, if not already.
485 *
486 * I know, I know - this code would flunk me out of any
487 * "C Programming 101" class ever offered. But it's easy
488 * to change around and experiment with for now.
489 */
490
491 scsi_pointer = WD33C93_scsi_pointer(cmd);
492 scsi_pointer->phase = 0; /* assume no disconnect */
493 if (hostdata->disconnect == DIS_NEVER)
494 goto no;
495 if (hostdata->disconnect == DIS_ALWAYS)
496 goto yes;
497 if (cmd->device->type == 1) /* tape drive? */
498 goto yes;
499 if (hostdata->disconnected_Q) /* other commands disconnected? */
500 goto yes;
501 if (!(hostdata->input_Q)) /* input_Q empty? */
502 goto no;
503 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
504 prev = (struct scsi_cmnd *) prev->host_scribble) {
505 if ((prev->device->id != cmd->device->id) ||
506 (prev->device->lun != cmd->device->lun)) {
507 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
508 prev = (struct scsi_cmnd *) prev->host_scribble)
509 WD33C93_scsi_pointer(prev)->phase = 1;
510 goto yes;
511 }
512 }
513
514 goto no;
515
516 yes:
517 scsi_pointer->phase = 1;
518
519 #ifdef PROC_STATISTICS
520 hostdata->disc_allowed_cnt[cmd->device->id]++;
521 #endif
522
523 no:
524
525 write_wd33c93(regs, WD_SOURCE_ID, scsi_pointer->phase ? SRCID_ER : 0);
526
527 write_wd33c93(regs, WD_TARGET_LUN, (u8)cmd->device->lun);
528 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
529 hostdata->sync_xfer[cmd->device->id]);
530 hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF));
531
532 if ((hostdata->level2 == L2_NONE) ||
533 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
534
535 /*
536 * Do a 'Select-With-ATN' command. This will end with
537 * one of the following interrupts:
538 * CSR_RESEL_AM: failure - can try again later.
539 * CSR_TIMEOUT: failure - give up.
540 * CSR_SELECT: success - proceed.
541 */
542
543 hostdata->selecting = cmd;
544
545 /* Every target has its own synchronous transfer setting, kept in the
546 * sync_xfer array, and a corresponding status byte in sync_stat[].
547 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
548 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
549 * means that the parameters are undetermined as yet, and that we
550 * need to send an SDTR message to this device after selection is
551 * complete: We set SS_FIRST to tell the interrupt routine to do so.
552 * If we've been asked not to try synchronous transfers on this
553 * target (and _all_ luns within it), we'll still send the SDTR message
554 * later, but at that time we'll negotiate for async by specifying a
555 * sync fifo depth of 0.
556 */
557 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
558 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
559 hostdata->state = S_SELECTING;
560 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
561 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
562 } else {
563
564 /*
565 * Do a 'Select-With-ATN-Xfer' command. This will end with
566 * one of the following interrupts:
567 * CSR_RESEL_AM: failure - can try again later.
568 * CSR_TIMEOUT: failure - give up.
569 * anything else: success - proceed.
570 */
571
572 hostdata->connected = cmd;
573 write_wd33c93(regs, WD_COMMAND_PHASE, 0);
574
575 /* copy command_descriptor_block into WD chip
576 * (take advantage of auto-incrementing)
577 */
578
579 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);
580
581 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
582 * it's doing a 'select-and-transfer'. To be safe, we write the
583 * size of the CDB into the OWN_ID register for every case. This
584 * way there won't be problems with vendor-unique, audio, etc.
585 */
586
587 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);
588
589 /* When doing a non-disconnect command with DMA, we can save
590 * ourselves a DATA phase interrupt later by setting everything
591 * up ahead of time.
592 */
593
594 if (scsi_pointer->phase == 0 && hostdata->no_dma == 0) {
595 if (hostdata->dma_setup(cmd,
596 (cmd->sc_data_direction == DMA_TO_DEVICE) ?
597 DATA_OUT_DIR : DATA_IN_DIR))
598 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
599 else {
600 write_wd33c93_count(regs,
601 scsi_pointer->this_residual);
602 write_wd33c93(regs, WD_CONTROL,
603 CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
604 hostdata->dma = D_DMA_RUNNING;
605 }
606 } else
607 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
608
609 hostdata->state = S_RUNNING_LEVEL2;
610 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
611 }
612
613 /*
614 * Since the SCSI bus can handle only 1 connection at a time,
615 * we get out of here now. If the selection fails, or when
616 * the command disconnects, we'll come back to this routine
617 * to search the input_Q again...
618 */
619
620 DB(DB_EXECUTE,
621 printk("%s)EX-2 ", scsi_pointer->phase ? "d:" : ""))
622 }
623
624 static void
transfer_pio(const wd33c93_regs regs,uchar * buf,int cnt,int data_in_dir,struct WD33C93_hostdata * hostdata)625 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
626 int data_in_dir, struct WD33C93_hostdata *hostdata)
627 {
628 uchar asr;
629
630 DB(DB_TRANSFER,
631 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))
632
633 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
634 write_wd33c93_count(regs, cnt);
635 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
636 if (data_in_dir) {
637 do {
638 asr = read_aux_stat(regs);
639 if (asr & ASR_DBR)
640 *buf++ = read_wd33c93(regs, WD_DATA);
641 } while (!(asr & ASR_INT));
642 } else {
643 do {
644 asr = read_aux_stat(regs);
645 if (asr & ASR_DBR)
646 write_wd33c93(regs, WD_DATA, *buf++);
647 } while (!(asr & ASR_INT));
648 }
649
650 /* Note: we are returning with the interrupt UN-cleared.
651 * Since (presumably) an entire I/O operation has
652 * completed, the bus phase is probably different, and
653 * the interrupt routine will discover this when it
654 * responds to the uncleared int.
655 */
656
657 }
658
659 static void
transfer_bytes(const wd33c93_regs regs,struct scsi_cmnd * cmd,int data_in_dir)660 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
661 int data_in_dir)
662 {
663 struct scsi_pointer *scsi_pointer = WD33C93_scsi_pointer(cmd);
664 struct WD33C93_hostdata *hostdata;
665 unsigned long length;
666
667 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
668
669 /* Normally, you'd expect 'this_residual' to be non-zero here.
670 * In a series of scatter-gather transfers, however, this
671 * routine will usually be called with 'this_residual' equal
672 * to 0 and 'buffers_residual' non-zero. This means that a
673 * previous transfer completed, clearing 'this_residual', and
674 * now we need to setup the next scatter-gather buffer as the
675 * source or destination for THIS transfer.
676 */
677 if (!scsi_pointer->this_residual && scsi_pointer->buffers_residual) {
678 scsi_pointer->buffer = sg_next(scsi_pointer->buffer);
679 --scsi_pointer->buffers_residual;
680 scsi_pointer->this_residual = scsi_pointer->buffer->length;
681 scsi_pointer->ptr = sg_virt(scsi_pointer->buffer);
682 }
683 if (!scsi_pointer->this_residual) /* avoid bogus setups */
684 return;
685
686 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
687 hostdata->sync_xfer[cmd->device->id]);
688
689 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
690 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
691 */
692
693 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
694 #ifdef PROC_STATISTICS
695 hostdata->pio_cnt++;
696 #endif
697 transfer_pio(regs, (uchar *) scsi_pointer->ptr,
698 scsi_pointer->this_residual, data_in_dir,
699 hostdata);
700 length = scsi_pointer->this_residual;
701 scsi_pointer->this_residual = read_wd33c93_count(regs);
702 scsi_pointer->ptr += length - scsi_pointer->this_residual;
703 }
704
705 /* We are able to do DMA (in fact, the Amiga hardware is
706 * already going!), so start up the wd33c93 in DMA mode.
707 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
708 * transfer completes and causes an interrupt, we're
709 * reminded to tell the Amiga to shut down its end. We'll
710 * postpone the updating of 'this_residual' and 'ptr'
711 * until then.
712 */
713
714 else {
715 #ifdef PROC_STATISTICS
716 hostdata->dma_cnt++;
717 #endif
718 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
719 write_wd33c93_count(regs, scsi_pointer->this_residual);
720
721 if ((hostdata->level2 >= L2_DATA) ||
722 (hostdata->level2 == L2_BASIC && scsi_pointer->phase == 0)) {
723 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
724 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
725 hostdata->state = S_RUNNING_LEVEL2;
726 } else
727 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
728
729 hostdata->dma = D_DMA_RUNNING;
730 }
731 }
732
733 void
wd33c93_intr(struct Scsi_Host * instance)734 wd33c93_intr(struct Scsi_Host *instance)
735 {
736 struct scsi_pointer *scsi_pointer;
737 struct WD33C93_hostdata *hostdata =
738 (struct WD33C93_hostdata *) instance->hostdata;
739 const wd33c93_regs regs = hostdata->regs;
740 struct scsi_cmnd *patch, *cmd;
741 uchar asr, sr, phs, id, lun, *ucp, msg;
742 unsigned long length, flags;
743
744 asr = read_aux_stat(regs);
745 if (!(asr & ASR_INT) || (asr & ASR_BSY))
746 return;
747
748 spin_lock_irqsave(&hostdata->lock, flags);
749
750 #ifdef PROC_STATISTICS
751 hostdata->int_cnt++;
752 #endif
753
754 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */
755 scsi_pointer = WD33C93_scsi_pointer(cmd);
756 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */
757 phs = read_wd33c93(regs, WD_COMMAND_PHASE);
758
759 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
760
761 /* After starting a DMA transfer, the next interrupt
762 * is guaranteed to be in response to completion of
763 * the transfer. Since the Amiga DMA hardware runs in
764 * in an open-ended fashion, it needs to be told when
765 * to stop; do that here if D_DMA_RUNNING is true.
766 * Also, we have to update 'this_residual' and 'ptr'
767 * based on the contents of the TRANSFER_COUNT register,
768 * in case the device decided to do an intermediate
769 * disconnect (a device may do this if it has to do a
770 * seek, or just to be nice and let other devices have
771 * some bus time during long transfers). After doing
772 * whatever is needed, we go on and service the WD3393
773 * interrupt normally.
774 */
775 if (hostdata->dma == D_DMA_RUNNING) {
776 DB(DB_TRANSFER,
777 printk("[%p/%d:", scsi_pointer->ptr, scsi_pointer->this_residual))
778 hostdata->dma_stop(cmd->device->host, cmd, 1);
779 hostdata->dma = D_DMA_OFF;
780 length = scsi_pointer->this_residual;
781 scsi_pointer->this_residual = read_wd33c93_count(regs);
782 scsi_pointer->ptr += length - scsi_pointer->this_residual;
783 DB(DB_TRANSFER,
784 printk("%p/%d]", scsi_pointer->ptr, scsi_pointer->this_residual))
785 }
786
787 /* Respond to the specific WD3393 interrupt - there are quite a few! */
788 switch (sr) {
789 case CSR_TIMEOUT:
790 DB(DB_INTR, printk("TIMEOUT"))
791
792 if (hostdata->state == S_RUNNING_LEVEL2)
793 hostdata->connected = NULL;
794 else {
795 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */
796 hostdata->selecting = NULL;
797 }
798
799 cmd->result = DID_NO_CONNECT << 16;
800 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
801 hostdata->state = S_UNCONNECTED;
802 scsi_done(cmd);
803
804 /* From esp.c:
805 * There is a window of time within the scsi_done() path
806 * of execution where interrupts are turned back on full
807 * blast and left that way. During that time we could
808 * reconnect to a disconnected command, then we'd bomb
809 * out below. We could also end up executing two commands
810 * at _once_. ...just so you know why the restore_flags()
811 * is here...
812 */
813
814 spin_unlock_irqrestore(&hostdata->lock, flags);
815
816 /* We are not connected to a target - check to see if there
817 * are commands waiting to be executed.
818 */
819
820 wd33c93_execute(instance);
821 break;
822
823 /* Note: this interrupt should not occur in a LEVEL2 command */
824
825 case CSR_SELECT:
826 DB(DB_INTR, printk("SELECT"))
827 hostdata->connected = cmd =
828 (struct scsi_cmnd *) hostdata->selecting;
829 hostdata->selecting = NULL;
830
831 /* construct an IDENTIFY message with correct disconnect bit */
832
833 hostdata->outgoing_msg[0] = IDENTIFY(0, cmd->device->lun);
834 if (WD33C93_scsi_pointer(cmd)->phase)
835 hostdata->outgoing_msg[0] |= 0x40;
836
837 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
838
839 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
840
841 /* Tack on a 2nd message to ask about synchronous transfers. If we've
842 * been asked to do only asynchronous transfers on this device, we
843 * request a fifo depth of 0, which is equivalent to async - should
844 * solve the problems some people have had with GVP's Guru ROM.
845 */
846
847 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
848 hostdata->outgoing_msg[2] = 3;
849 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
850 if (hostdata->no_sync & (1 << cmd->device->id)) {
851 calc_sync_msg(hostdata->default_sx_per, 0,
852 0, hostdata->outgoing_msg + 4);
853 } else {
854 calc_sync_msg(optimum_sx_per(hostdata),
855 OPTIMUM_SX_OFF,
856 hostdata->fast,
857 hostdata->outgoing_msg + 4);
858 }
859 hostdata->outgoing_len = 6;
860 #ifdef SYNC_DEBUG
861 ucp = hostdata->outgoing_msg + 1;
862 printk(" sending SDTR %02x03%02x%02x%02x ",
863 ucp[0], ucp[2], ucp[3], ucp[4]);
864 #endif
865 } else
866 hostdata->outgoing_len = 1;
867
868 hostdata->state = S_CONNECTED;
869 spin_unlock_irqrestore(&hostdata->lock, flags);
870 break;
871
872 case CSR_XFER_DONE | PHS_DATA_IN:
873 case CSR_UNEXP | PHS_DATA_IN:
874 case CSR_SRV_REQ | PHS_DATA_IN:
875 DB(DB_INTR,
876 printk("IN-%d.%d", scsi_pointer->this_residual,
877 scsi_pointer->buffers_residual))
878 transfer_bytes(regs, cmd, DATA_IN_DIR);
879 if (hostdata->state != S_RUNNING_LEVEL2)
880 hostdata->state = S_CONNECTED;
881 spin_unlock_irqrestore(&hostdata->lock, flags);
882 break;
883
884 case CSR_XFER_DONE | PHS_DATA_OUT:
885 case CSR_UNEXP | PHS_DATA_OUT:
886 case CSR_SRV_REQ | PHS_DATA_OUT:
887 DB(DB_INTR,
888 printk("OUT-%d.%d", scsi_pointer->this_residual,
889 scsi_pointer->buffers_residual))
890 transfer_bytes(regs, cmd, DATA_OUT_DIR);
891 if (hostdata->state != S_RUNNING_LEVEL2)
892 hostdata->state = S_CONNECTED;
893 spin_unlock_irqrestore(&hostdata->lock, flags);
894 break;
895
896 /* Note: this interrupt should not occur in a LEVEL2 command */
897
898 case CSR_XFER_DONE | PHS_COMMAND:
899 case CSR_UNEXP | PHS_COMMAND:
900 case CSR_SRV_REQ | PHS_COMMAND:
901 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
902 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
903 hostdata);
904 hostdata->state = S_CONNECTED;
905 spin_unlock_irqrestore(&hostdata->lock, flags);
906 break;
907
908 case CSR_XFER_DONE | PHS_STATUS:
909 case CSR_UNEXP | PHS_STATUS:
910 case CSR_SRV_REQ | PHS_STATUS:
911 DB(DB_INTR, printk("STATUS="))
912 scsi_pointer->Status = read_1_byte(regs);
913 DB(DB_INTR, printk("%02x", scsi_pointer->Status))
914 if (hostdata->level2 >= L2_BASIC) {
915 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
916 udelay(7);
917 hostdata->state = S_RUNNING_LEVEL2;
918 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
919 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
920 } else {
921 hostdata->state = S_CONNECTED;
922 }
923 spin_unlock_irqrestore(&hostdata->lock, flags);
924 break;
925
926 case CSR_XFER_DONE | PHS_MESS_IN:
927 case CSR_UNEXP | PHS_MESS_IN:
928 case CSR_SRV_REQ | PHS_MESS_IN:
929 DB(DB_INTR, printk("MSG_IN="))
930
931 msg = read_1_byte(regs);
932 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
933 udelay(7);
934
935 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
936 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
937 msg = EXTENDED_MESSAGE;
938 else
939 hostdata->incoming_ptr = 0;
940
941 scsi_pointer->Message = msg;
942 switch (msg) {
943
944 case COMMAND_COMPLETE:
945 DB(DB_INTR, printk("CCMP"))
946 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
947 hostdata->state = S_PRE_CMP_DISC;
948 break;
949
950 case SAVE_POINTERS:
951 DB(DB_INTR, printk("SDP"))
952 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
953 hostdata->state = S_CONNECTED;
954 break;
955
956 case RESTORE_POINTERS:
957 DB(DB_INTR, printk("RDP"))
958 if (hostdata->level2 >= L2_BASIC) {
959 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
960 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
961 hostdata->state = S_RUNNING_LEVEL2;
962 } else {
963 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
964 hostdata->state = S_CONNECTED;
965 }
966 break;
967
968 case DISCONNECT:
969 DB(DB_INTR, printk("DIS"))
970 cmd->device->disconnect = 1;
971 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
972 hostdata->state = S_PRE_TMP_DISC;
973 break;
974
975 case MESSAGE_REJECT:
976 DB(DB_INTR, printk("REJ"))
977 #ifdef SYNC_DEBUG
978 printk("-REJ-");
979 #endif
980 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
981 hostdata->sync_stat[cmd->device->id] = SS_SET;
982 /* we want default_sx_per, not DEFAULT_SX_PER */
983 hostdata->sync_xfer[cmd->device->id] =
984 calc_sync_xfer(hostdata->default_sx_per
985 / 4, 0, 0, hostdata->sx_table);
986 }
987 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
988 hostdata->state = S_CONNECTED;
989 break;
990
991 case EXTENDED_MESSAGE:
992 DB(DB_INTR, printk("EXT"))
993
994 ucp = hostdata->incoming_msg;
995
996 #ifdef SYNC_DEBUG
997 printk("%02x", ucp[hostdata->incoming_ptr]);
998 #endif
999 /* Is this the last byte of the extended message? */
1000
1001 if ((hostdata->incoming_ptr >= 2) &&
1002 (hostdata->incoming_ptr == (ucp[1] + 1))) {
1003
1004 switch (ucp[2]) { /* what's the EXTENDED code? */
1005 case EXTENDED_SDTR:
1006 /* default to default async period */
1007 id = calc_sync_xfer(hostdata->
1008 default_sx_per / 4, 0,
1009 0, hostdata->sx_table);
1010 if (hostdata->sync_stat[cmd->device->id] !=
1011 SS_WAITING) {
1012
1013 /* A device has sent an unsolicited SDTR message; rather than go
1014 * through the effort of decoding it and then figuring out what
1015 * our reply should be, we're just gonna say that we have a
1016 * synchronous fifo depth of 0. This will result in asynchronous
1017 * transfers - not ideal but so much easier.
1018 * Actually, this is OK because it assures us that if we don't
1019 * specifically ask for sync transfers, we won't do any.
1020 */
1021
1022 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1023 hostdata->outgoing_msg[0] =
1024 EXTENDED_MESSAGE;
1025 hostdata->outgoing_msg[1] = 3;
1026 hostdata->outgoing_msg[2] =
1027 EXTENDED_SDTR;
1028 calc_sync_msg(hostdata->
1029 default_sx_per, 0,
1030 0, hostdata->outgoing_msg + 3);
1031 hostdata->outgoing_len = 5;
1032 } else {
1033 if (ucp[4]) /* well, sync transfer */
1034 id = calc_sync_xfer(ucp[3], ucp[4],
1035 hostdata->fast,
1036 hostdata->sx_table);
1037 else if (ucp[3]) /* very unlikely... */
1038 id = calc_sync_xfer(ucp[3], ucp[4],
1039 0, hostdata->sx_table);
1040 }
1041 hostdata->sync_xfer[cmd->device->id] = id;
1042 #ifdef SYNC_DEBUG
1043 printk(" sync_xfer=%02x\n",
1044 hostdata->sync_xfer[cmd->device->id]);
1045 #endif
1046 hostdata->sync_stat[cmd->device->id] =
1047 SS_SET;
1048 write_wd33c93_cmd(regs,
1049 WD_CMD_NEGATE_ACK);
1050 hostdata->state = S_CONNECTED;
1051 break;
1052 case EXTENDED_WDTR:
1053 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1054 printk("sending WDTR ");
1055 hostdata->outgoing_msg[0] =
1056 EXTENDED_MESSAGE;
1057 hostdata->outgoing_msg[1] = 2;
1058 hostdata->outgoing_msg[2] =
1059 EXTENDED_WDTR;
1060 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1061 hostdata->outgoing_len = 4;
1062 write_wd33c93_cmd(regs,
1063 WD_CMD_NEGATE_ACK);
1064 hostdata->state = S_CONNECTED;
1065 break;
1066 default:
1067 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1068 printk
1069 ("Rejecting Unknown Extended Message(%02x). ",
1070 ucp[2]);
1071 hostdata->outgoing_msg[0] =
1072 MESSAGE_REJECT;
1073 hostdata->outgoing_len = 1;
1074 write_wd33c93_cmd(regs,
1075 WD_CMD_NEGATE_ACK);
1076 hostdata->state = S_CONNECTED;
1077 break;
1078 }
1079 hostdata->incoming_ptr = 0;
1080 }
1081
1082 /* We need to read more MESS_IN bytes for the extended message */
1083
1084 else {
1085 hostdata->incoming_ptr++;
1086 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1087 hostdata->state = S_CONNECTED;
1088 }
1089 break;
1090
1091 default:
1092 printk("Rejecting Unknown Message(%02x) ", msg);
1093 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1094 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1095 hostdata->outgoing_len = 1;
1096 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1097 hostdata->state = S_CONNECTED;
1098 }
1099 spin_unlock_irqrestore(&hostdata->lock, flags);
1100 break;
1101
1102 /* Note: this interrupt will occur only after a LEVEL2 command */
1103
1104 case CSR_SEL_XFER_DONE:
1105
1106 /* Make sure that reselection is enabled at this point - it may
1107 * have been turned off for the command that just completed.
1108 */
1109
1110 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1111 if (phs == 0x60) {
1112 DB(DB_INTR, printk("SX-DONE"))
1113 scsi_pointer->Message = COMMAND_COMPLETE;
1114 lun = read_wd33c93(regs, WD_TARGET_LUN);
1115 DB(DB_INTR, printk(":%d.%d", scsi_pointer->Status, lun))
1116 hostdata->connected = NULL;
1117 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1118 hostdata->state = S_UNCONNECTED;
1119 if (scsi_pointer->Status == ILLEGAL_STATUS_BYTE)
1120 scsi_pointer->Status = lun;
1121 if (cmd->cmnd[0] == REQUEST_SENSE
1122 && scsi_pointer->Status != SAM_STAT_GOOD) {
1123 set_host_byte(cmd, DID_ERROR);
1124 } else {
1125 set_host_byte(cmd, DID_OK);
1126 scsi_msg_to_host_byte(cmd, scsi_pointer->Message);
1127 set_status_byte(cmd, scsi_pointer->Status);
1128 }
1129 scsi_done(cmd);
1130
1131 /* We are no longer connected to a target - check to see if
1132 * there are commands waiting to be executed.
1133 */
1134 spin_unlock_irqrestore(&hostdata->lock, flags);
1135 wd33c93_execute(instance);
1136 } else {
1137 printk
1138 ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---",
1139 asr, sr, phs);
1140 spin_unlock_irqrestore(&hostdata->lock, flags);
1141 }
1142 break;
1143
1144 /* Note: this interrupt will occur only after a LEVEL2 command */
1145
1146 case CSR_SDP:
1147 DB(DB_INTR, printk("SDP"))
1148 hostdata->state = S_RUNNING_LEVEL2;
1149 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
1150 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1151 spin_unlock_irqrestore(&hostdata->lock, flags);
1152 break;
1153
1154 case CSR_XFER_DONE | PHS_MESS_OUT:
1155 case CSR_UNEXP | PHS_MESS_OUT:
1156 case CSR_SRV_REQ | PHS_MESS_OUT:
1157 DB(DB_INTR, printk("MSG_OUT="))
1158
1159 /* To get here, we've probably requested MESSAGE_OUT and have
1160 * already put the correct bytes in outgoing_msg[] and filled
1161 * in outgoing_len. We simply send them out to the SCSI bus.
1162 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1163 * it - like when our SDTR message is rejected by a target. Some
1164 * targets send the REJECT before receiving all of the extended
1165 * message, and then seem to go back to MESSAGE_OUT for a byte
1166 * or two. Not sure why, or if I'm doing something wrong to
1167 * cause this to happen. Regardless, it seems that sending
1168 * NOP messages in these situations results in no harm and
1169 * makes everyone happy.
1170 */
1171 if (hostdata->outgoing_len == 0) {
1172 hostdata->outgoing_len = 1;
1173 hostdata->outgoing_msg[0] = NOP;
1174 }
1175 transfer_pio(regs, hostdata->outgoing_msg,
1176 hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1177 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1178 hostdata->outgoing_len = 0;
1179 hostdata->state = S_CONNECTED;
1180 spin_unlock_irqrestore(&hostdata->lock, flags);
1181 break;
1182
1183 case CSR_UNEXP_DISC:
1184
1185 /* I think I've seen this after a request-sense that was in response
1186 * to an error condition, but not sure. We certainly need to do
1187 * something when we get this interrupt - the question is 'what?'.
1188 * Let's think positively, and assume some command has finished
1189 * in a legal manner (like a command that provokes a request-sense),
1190 * so we treat it as a normal command-complete-disconnect.
1191 */
1192
1193 /* Make sure that reselection is enabled at this point - it may
1194 * have been turned off for the command that just completed.
1195 */
1196
1197 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1198 if (cmd == NULL) {
1199 printk(" - Already disconnected! ");
1200 hostdata->state = S_UNCONNECTED;
1201 spin_unlock_irqrestore(&hostdata->lock, flags);
1202 return;
1203 }
1204 DB(DB_INTR, printk("UNEXP_DISC"))
1205 hostdata->connected = NULL;
1206 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1207 hostdata->state = S_UNCONNECTED;
1208 if (cmd->cmnd[0] == REQUEST_SENSE &&
1209 scsi_pointer->Status != SAM_STAT_GOOD) {
1210 set_host_byte(cmd, DID_ERROR);
1211 } else {
1212 set_host_byte(cmd, DID_OK);
1213 scsi_msg_to_host_byte(cmd, scsi_pointer->Message);
1214 set_status_byte(cmd, scsi_pointer->Status);
1215 }
1216 scsi_done(cmd);
1217
1218 /* We are no longer connected to a target - check to see if
1219 * there are commands waiting to be executed.
1220 */
1221 /* look above for comments on scsi_done() */
1222 spin_unlock_irqrestore(&hostdata->lock, flags);
1223 wd33c93_execute(instance);
1224 break;
1225
1226 case CSR_DISC:
1227
1228 /* Make sure that reselection is enabled at this point - it may
1229 * have been turned off for the command that just completed.
1230 */
1231
1232 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1233 DB(DB_INTR, printk("DISC"))
1234 if (cmd == NULL) {
1235 printk(" - Already disconnected! ");
1236 hostdata->state = S_UNCONNECTED;
1237 }
1238 switch (hostdata->state) {
1239 case S_PRE_CMP_DISC:
1240 hostdata->connected = NULL;
1241 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1242 hostdata->state = S_UNCONNECTED;
1243 DB(DB_INTR, printk(":%d", scsi_pointer->Status))
1244 if (cmd->cmnd[0] == REQUEST_SENSE
1245 && scsi_pointer->Status != SAM_STAT_GOOD) {
1246 set_host_byte(cmd, DID_ERROR);
1247 } else {
1248 set_host_byte(cmd, DID_OK);
1249 scsi_msg_to_host_byte(cmd, scsi_pointer->Message);
1250 set_status_byte(cmd, scsi_pointer->Status);
1251 }
1252 scsi_done(cmd);
1253 break;
1254 case S_PRE_TMP_DISC:
1255 case S_RUNNING_LEVEL2:
1256 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1257 hostdata->disconnected_Q = cmd;
1258 hostdata->connected = NULL;
1259 hostdata->state = S_UNCONNECTED;
1260
1261 #ifdef PROC_STATISTICS
1262 hostdata->disc_done_cnt[cmd->device->id]++;
1263 #endif
1264
1265 break;
1266 default:
1267 printk("*** Unexpected DISCONNECT interrupt! ***");
1268 hostdata->state = S_UNCONNECTED;
1269 }
1270
1271 /* We are no longer connected to a target - check to see if
1272 * there are commands waiting to be executed.
1273 */
1274 spin_unlock_irqrestore(&hostdata->lock, flags);
1275 wd33c93_execute(instance);
1276 break;
1277
1278 case CSR_RESEL_AM:
1279 case CSR_RESEL:
1280 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))
1281
1282 /* Old chips (pre -A ???) don't have advanced features and will
1283 * generate CSR_RESEL. In that case we have to extract the LUN the
1284 * hard way (see below).
1285 * First we have to make sure this reselection didn't
1286 * happen during Arbitration/Selection of some other device.
1287 * If yes, put losing command back on top of input_Q.
1288 */
1289 if (hostdata->level2 <= L2_NONE) {
1290
1291 if (hostdata->selecting) {
1292 cmd = (struct scsi_cmnd *) hostdata->selecting;
1293 hostdata->selecting = NULL;
1294 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1295 cmd->host_scribble =
1296 (uchar *) hostdata->input_Q;
1297 hostdata->input_Q = cmd;
1298 }
1299 }
1300
1301 else {
1302
1303 if (cmd) {
1304 if (phs == 0x00) {
1305 hostdata->busy[cmd->device->id] &=
1306 ~(1 << (cmd->device->lun & 0xff));
1307 cmd->host_scribble =
1308 (uchar *) hostdata->input_Q;
1309 hostdata->input_Q = cmd;
1310 } else {
1311 printk
1312 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
1313 asr, sr, phs);
1314 while (1)
1315 printk("\r");
1316 }
1317 }
1318
1319 }
1320
1321 /* OK - find out which device reselected us. */
1322
1323 id = read_wd33c93(regs, WD_SOURCE_ID);
1324 id &= SRCID_MASK;
1325
1326 /* and extract the lun from the ID message. (Note that we don't
1327 * bother to check for a valid message here - I guess this is
1328 * not the right way to go, but...)
1329 */
1330
1331 if (sr == CSR_RESEL_AM) {
1332 lun = read_wd33c93(regs, WD_DATA);
1333 if (hostdata->level2 < L2_RESELECT)
1334 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1335 lun &= 7;
1336 } else {
1337 /* Old chip; wait for msgin phase to pick up the LUN. */
1338 for (lun = 255; lun; lun--) {
1339 if ((asr = read_aux_stat(regs)) & ASR_INT)
1340 break;
1341 udelay(10);
1342 }
1343 if (!(asr & ASR_INT)) {
1344 printk
1345 ("wd33c93: Reselected without IDENTIFY\n");
1346 lun = 0;
1347 } else {
1348 /* Verify this is a change to MSG_IN and read the message */
1349 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1350 udelay(7);
1351 if (sr == (CSR_ABORT | PHS_MESS_IN) ||
1352 sr == (CSR_UNEXP | PHS_MESS_IN) ||
1353 sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
1354 /* Got MSG_IN, grab target LUN */
1355 lun = read_1_byte(regs);
1356 /* Now we expect a 'paused with ACK asserted' int.. */
1357 asr = read_aux_stat(regs);
1358 if (!(asr & ASR_INT)) {
1359 udelay(10);
1360 asr = read_aux_stat(regs);
1361 if (!(asr & ASR_INT))
1362 printk
1363 ("wd33c93: No int after LUN on RESEL (%02x)\n",
1364 asr);
1365 }
1366 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1367 udelay(7);
1368 if (sr != CSR_MSGIN)
1369 printk
1370 ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
1371 sr);
1372 lun &= 7;
1373 write_wd33c93_cmd(regs,
1374 WD_CMD_NEGATE_ACK);
1375 } else {
1376 printk
1377 ("wd33c93: Not MSG_IN on reselect (%02x)\n",
1378 sr);
1379 lun = 0;
1380 }
1381 }
1382 }
1383
1384 /* Now we look for the command that's reconnecting. */
1385
1386 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
1387 patch = NULL;
1388 while (cmd) {
1389 if (id == cmd->device->id && lun == (u8)cmd->device->lun)
1390 break;
1391 patch = cmd;
1392 cmd = (struct scsi_cmnd *) cmd->host_scribble;
1393 }
1394
1395 /* Hmm. Couldn't find a valid command.... What to do? */
1396
1397 if (!cmd) {
1398 printk
1399 ("---TROUBLE: target %d.%d not in disconnect queue---",
1400 id, (u8)lun);
1401 spin_unlock_irqrestore(&hostdata->lock, flags);
1402 return;
1403 }
1404
1405 /* Ok, found the command - now start it up again. */
1406
1407 if (patch)
1408 patch->host_scribble = cmd->host_scribble;
1409 else
1410 hostdata->disconnected_Q =
1411 (struct scsi_cmnd *) cmd->host_scribble;
1412 hostdata->connected = cmd;
1413
1414 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1415 * because these things are preserved over a disconnect.
1416 * But we DO need to fix the DPD bit so it's correct for this command.
1417 */
1418
1419 if (cmd->sc_data_direction == DMA_TO_DEVICE)
1420 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
1421 else
1422 write_wd33c93(regs, WD_DESTINATION_ID,
1423 cmd->device->id | DSTID_DPD);
1424 if (hostdata->level2 >= L2_RESELECT) {
1425 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */
1426 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1427 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1428 hostdata->state = S_RUNNING_LEVEL2;
1429 } else
1430 hostdata->state = S_CONNECTED;
1431
1432 spin_unlock_irqrestore(&hostdata->lock, flags);
1433 break;
1434
1435 default:
1436 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1437 spin_unlock_irqrestore(&hostdata->lock, flags);
1438 }
1439
1440 DB(DB_INTR, printk("} "))
1441
1442 }
1443
1444 static void
reset_wd33c93(struct Scsi_Host * instance)1445 reset_wd33c93(struct Scsi_Host *instance)
1446 {
1447 struct WD33C93_hostdata *hostdata =
1448 (struct WD33C93_hostdata *) instance->hostdata;
1449 const wd33c93_regs regs = hostdata->regs;
1450 uchar sr;
1451
1452 #ifdef CONFIG_SGI_IP22
1453 {
1454 int busycount = 0;
1455 extern void sgiwd93_reset(unsigned long);
1456 /* wait 'til the chip gets some time for us */
1457 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
1458 udelay (10);
1459 /*
1460 * there are scsi devices out there, which manage to lock up
1461 * the wd33c93 in a busy condition. In this state it won't
1462 * accept the reset command. The only way to solve this is to
1463 * give the chip a hardware reset (if possible). The code below
1464 * does this for the SGI Indy, where this is possible
1465 */
1466 /* still busy ? */
1467 if (read_aux_stat(regs) & ASR_BSY)
1468 sgiwd93_reset(instance->base); /* yeah, give it the hard one */
1469 }
1470 #endif
1471
1472 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
1473 instance->this_id | hostdata->clock_freq);
1474 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1475 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
1476 calc_sync_xfer(hostdata->default_sx_per / 4,
1477 DEFAULT_SX_OFF, 0, hostdata->sx_table));
1478 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);
1479
1480
1481 #ifdef CONFIG_MVME147_SCSI
1482 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */
1483 #endif
1484
1485 while (!(read_aux_stat(regs) & ASR_INT))
1486 ;
1487 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1488
1489 hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
1490 if (sr == 0x00)
1491 hostdata->chip = C_WD33C93;
1492 else if (sr == 0x01) {
1493 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */
1494 sr = read_wd33c93(regs, WD_QUEUE_TAG);
1495 if (sr == 0xa5) {
1496 hostdata->chip = C_WD33C93B;
1497 write_wd33c93(regs, WD_QUEUE_TAG, 0);
1498 } else
1499 hostdata->chip = C_WD33C93A;
1500 } else
1501 hostdata->chip = C_UNKNOWN_CHIP;
1502
1503 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */
1504 hostdata->fast = 0;
1505
1506 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1507 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1508 }
1509
1510 int
wd33c93_host_reset(struct scsi_cmnd * SCpnt)1511 wd33c93_host_reset(struct scsi_cmnd * SCpnt)
1512 {
1513 struct Scsi_Host *instance;
1514 struct WD33C93_hostdata *hostdata;
1515 int i;
1516
1517 instance = SCpnt->device->host;
1518 spin_lock_irq(instance->host_lock);
1519 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1520
1521 printk("scsi%d: reset. ", instance->host_no);
1522 disable_irq(instance->irq);
1523
1524 hostdata->dma_stop(instance, NULL, 0);
1525 for (i = 0; i < 8; i++) {
1526 hostdata->busy[i] = 0;
1527 hostdata->sync_xfer[i] =
1528 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1529 0, hostdata->sx_table);
1530 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1531 }
1532 hostdata->input_Q = NULL;
1533 hostdata->selecting = NULL;
1534 hostdata->connected = NULL;
1535 hostdata->disconnected_Q = NULL;
1536 hostdata->state = S_UNCONNECTED;
1537 hostdata->dma = D_DMA_OFF;
1538 hostdata->incoming_ptr = 0;
1539 hostdata->outgoing_len = 0;
1540
1541 reset_wd33c93(instance);
1542 SCpnt->result = DID_RESET << 16;
1543 enable_irq(instance->irq);
1544 spin_unlock_irq(instance->host_lock);
1545 return SUCCESS;
1546 }
1547
1548 int
wd33c93_abort(struct scsi_cmnd * cmd)1549 wd33c93_abort(struct scsi_cmnd * cmd)
1550 {
1551 struct Scsi_Host *instance;
1552 struct WD33C93_hostdata *hostdata;
1553 wd33c93_regs regs;
1554 struct scsi_cmnd *tmp, *prev;
1555
1556 disable_irq(cmd->device->host->irq);
1557
1558 instance = cmd->device->host;
1559 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1560 regs = hostdata->regs;
1561
1562 /*
1563 * Case 1 : If the command hasn't been issued yet, we simply remove it
1564 * from the input_Q.
1565 */
1566
1567 tmp = (struct scsi_cmnd *) hostdata->input_Q;
1568 prev = NULL;
1569 while (tmp) {
1570 if (tmp == cmd) {
1571 if (prev)
1572 prev->host_scribble = cmd->host_scribble;
1573 else
1574 hostdata->input_Q =
1575 (struct scsi_cmnd *) cmd->host_scribble;
1576 cmd->host_scribble = NULL;
1577 cmd->result = DID_ABORT << 16;
1578 printk
1579 ("scsi%d: Abort - removing command from input_Q. ",
1580 instance->host_no);
1581 enable_irq(cmd->device->host->irq);
1582 scsi_done(cmd);
1583 return SUCCESS;
1584 }
1585 prev = tmp;
1586 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1587 }
1588
1589 /*
1590 * Case 2 : If the command is connected, we're going to fail the abort
1591 * and let the high level SCSI driver retry at a later time or
1592 * issue a reset.
1593 *
1594 * Timeouts, and therefore aborted commands, will be highly unlikely
1595 * and handling them cleanly in this situation would make the common
1596 * case of noresets less efficient, and would pollute our code. So,
1597 * we fail.
1598 */
1599
1600 if (hostdata->connected == cmd) {
1601 uchar sr, asr;
1602 unsigned long timeout;
1603
1604 printk("scsi%d: Aborting connected command - ",
1605 instance->host_no);
1606
1607 printk("stopping DMA - ");
1608 if (hostdata->dma == D_DMA_RUNNING) {
1609 hostdata->dma_stop(instance, cmd, 0);
1610 hostdata->dma = D_DMA_OFF;
1611 }
1612
1613 printk("sending wd33c93 ABORT command - ");
1614 write_wd33c93(regs, WD_CONTROL,
1615 CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1616 write_wd33c93_cmd(regs, WD_CMD_ABORT);
1617
1618 /* Now we have to attempt to flush out the FIFO... */
1619
1620 printk("flushing fifo - ");
1621 timeout = 1000000;
1622 do {
1623 asr = read_aux_stat(regs);
1624 if (asr & ASR_DBR)
1625 read_wd33c93(regs, WD_DATA);
1626 } while (!(asr & ASR_INT) && timeout-- > 0);
1627 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1628 printk
1629 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1630 asr, sr, read_wd33c93_count(regs), timeout);
1631
1632 /*
1633 * Abort command processed.
1634 * Still connected.
1635 * We must disconnect.
1636 */
1637
1638 printk("sending wd33c93 DISCONNECT command - ");
1639 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);
1640
1641 timeout = 1000000;
1642 asr = read_aux_stat(regs);
1643 while ((asr & ASR_CIP) && timeout-- > 0)
1644 asr = read_aux_stat(regs);
1645 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1646 printk("asr=%02x, sr=%02x.", asr, sr);
1647
1648 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1649 hostdata->connected = NULL;
1650 hostdata->state = S_UNCONNECTED;
1651 cmd->result = DID_ABORT << 16;
1652
1653 /* sti();*/
1654 wd33c93_execute(instance);
1655
1656 enable_irq(cmd->device->host->irq);
1657 scsi_done(cmd);
1658 return SUCCESS;
1659 }
1660
1661 /*
1662 * Case 3: If the command is currently disconnected from the bus,
1663 * we're not going to expend much effort here: Let's just return
1664 * an ABORT_SNOOZE and hope for the best...
1665 */
1666
1667 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
1668 while (tmp) {
1669 if (tmp == cmd) {
1670 printk
1671 ("scsi%d: Abort - command found on disconnected_Q - ",
1672 instance->host_no);
1673 printk("Abort SNOOZE. ");
1674 enable_irq(cmd->device->host->irq);
1675 return FAILED;
1676 }
1677 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1678 }
1679
1680 /*
1681 * Case 4 : If we reached this point, the command was not found in any of
1682 * the queues.
1683 *
1684 * We probably reached this point because of an unlikely race condition
1685 * between the command completing successfully and the abortion code,
1686 * so we won't panic, but we will notify the user in case something really
1687 * broke.
1688 */
1689
1690 /* sti();*/
1691 wd33c93_execute(instance);
1692
1693 enable_irq(cmd->device->host->irq);
1694 printk("scsi%d: warning : SCSI command probably completed successfully"
1695 " before abortion. ", instance->host_no);
1696 return FAILED;
1697 }
1698
1699 #define MAX_WD33C93_HOSTS 4
1700 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1701 #define SETUP_BUFFER_SIZE 200
1702 static char setup_buffer[SETUP_BUFFER_SIZE];
1703 static char setup_used[MAX_SETUP_ARGS];
1704 static int done_setup = 0;
1705
1706 static int
wd33c93_setup(char * str)1707 wd33c93_setup(char *str)
1708 {
1709 int i;
1710 char *p1, *p2;
1711
1712 /* The kernel does some processing of the command-line before calling
1713 * this function: If it begins with any decimal or hex number arguments,
1714 * ints[0] = how many numbers found and ints[1] through [n] are the values
1715 * themselves. str points to where the non-numeric arguments (if any)
1716 * start: We do our own parsing of those. We construct synthetic 'nosync'
1717 * keywords out of numeric args (to maintain compatibility with older
1718 * versions) and then add the rest of the arguments.
1719 */
1720
1721 p1 = setup_buffer;
1722 *p1 = '\0';
1723 if (str)
1724 strscpy(p1, str, SETUP_BUFFER_SIZE);
1725 i = 0;
1726 while (*p1 && (i < MAX_SETUP_ARGS)) {
1727 p2 = strchr(p1, ',');
1728 if (p2) {
1729 *p2 = '\0';
1730 if (p1 != p2)
1731 setup_args[i] = p1;
1732 p1 = p2 + 1;
1733 i++;
1734 } else {
1735 setup_args[i] = p1;
1736 break;
1737 }
1738 }
1739 for (i = 0; i < MAX_SETUP_ARGS; i++)
1740 setup_used[i] = 0;
1741 done_setup = 1;
1742
1743 return 1;
1744 }
1745 __setup("wd33c93=", wd33c93_setup);
1746
1747 /* check_setup_args() returns index if key found, 0 if not
1748 */
1749 static int
check_setup_args(char * key,int * flags,int * val,char * buf)1750 check_setup_args(char *key, int *flags, int *val, char *buf)
1751 {
1752 int x;
1753 char *cp;
1754
1755 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1756 if (setup_used[x])
1757 continue;
1758 if (!strncmp(setup_args[x], key, strlen(key)))
1759 break;
1760 if (!strncmp(setup_args[x], "next", strlen("next")))
1761 return 0;
1762 }
1763 if (x == MAX_SETUP_ARGS)
1764 return 0;
1765 setup_used[x] = 1;
1766 cp = setup_args[x] + strlen(key);
1767 *val = -1;
1768 if (*cp != ':')
1769 return ++x;
1770 cp++;
1771 if ((*cp >= '0') && (*cp <= '9')) {
1772 *val = simple_strtoul(cp, NULL, 0);
1773 }
1774 return ++x;
1775 }
1776
1777 /*
1778 * Calculate internal data-transfer-clock cycle from input-clock
1779 * frequency (/MHz) and fill 'sx_table'.
1780 *
1781 * The original driver used to rely on a fixed sx_table, containing periods
1782 * for (only) the lower limits of the respective input-clock-frequency ranges
1783 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with
1784 * this setting so far, it might be desirable to adjust the transfer periods
1785 * closer to the really attached, possibly 25% higher, input-clock, since
1786 * - the wd33c93 may really use a significant shorter period, than it has
1787 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
1788 * instead).
1789 * - the wd33c93 may ask the target for a lower transfer rate, than the target
1790 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of
1791 * possible 200ns, which indeed shows up in tests as an approx. 10% lower
1792 * transfer rate).
1793 */
1794 static inline unsigned int
round_4(unsigned int x)1795 round_4(unsigned int x)
1796 {
1797 switch (x & 3) {
1798 case 1: --x;
1799 break;
1800 case 2: ++x;
1801 fallthrough;
1802 case 3: ++x;
1803 }
1804 return x;
1805 }
1806
1807 static void
calc_sx_table(unsigned int mhz,struct sx_period sx_table[9])1808 calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
1809 {
1810 unsigned int d, i;
1811 if (mhz < 11)
1812 d = 2; /* divisor for 8-10 MHz input-clock */
1813 else if (mhz < 16)
1814 d = 3; /* divisor for 12-15 MHz input-clock */
1815 else
1816 d = 4; /* divisor for 16-20 MHz input-clock */
1817
1818 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */
1819
1820 sx_table[0].period_ns = 1;
1821 sx_table[0].reg_value = 0x20;
1822 for (i = 1; i < 8; i++) {
1823 sx_table[i].period_ns = round_4((i+1)*d / 100);
1824 sx_table[i].reg_value = (i+1)*0x10;
1825 }
1826 sx_table[7].reg_value = 0;
1827 sx_table[8].period_ns = 0;
1828 sx_table[8].reg_value = 0;
1829 }
1830
1831 /*
1832 * check and, maybe, map an init- or "clock:"- argument.
1833 */
1834 static uchar
set_clk_freq(int freq,int * mhz)1835 set_clk_freq(int freq, int *mhz)
1836 {
1837 int x = freq;
1838 if (WD33C93_FS_8_10 == freq)
1839 freq = 8;
1840 else if (WD33C93_FS_12_15 == freq)
1841 freq = 12;
1842 else if (WD33C93_FS_16_20 == freq)
1843 freq = 16;
1844 else if (freq > 7 && freq < 11)
1845 x = WD33C93_FS_8_10;
1846 else if (freq > 11 && freq < 16)
1847 x = WD33C93_FS_12_15;
1848 else if (freq > 15 && freq < 21)
1849 x = WD33C93_FS_16_20;
1850 else {
1851 /* Hmm, wouldn't it be safer to assume highest freq here? */
1852 x = WD33C93_FS_8_10;
1853 freq = 8;
1854 }
1855 *mhz = freq;
1856 return x;
1857 }
1858
1859 /*
1860 * to be used with the resync: fast: ... options
1861 */
set_resync(struct WD33C93_hostdata * hd,int mask)1862 static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
1863 {
1864 int i;
1865 for (i = 0; i < 8; i++)
1866 if (mask & (1 << i))
1867 hd->sync_stat[i] = SS_UNSET;
1868 }
1869
1870 void
wd33c93_init(struct Scsi_Host * instance,const wd33c93_regs regs,dma_setup_t setup,dma_stop_t stop,int clock_freq)1871 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
1872 dma_setup_t setup, dma_stop_t stop, int clock_freq)
1873 {
1874 struct WD33C93_hostdata *hostdata;
1875 int i;
1876 int flags;
1877 int val;
1878 char buf[32];
1879
1880 if (!done_setup && setup_strings)
1881 wd33c93_setup(setup_strings);
1882
1883 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1884
1885 hostdata->regs = regs;
1886 hostdata->clock_freq = set_clk_freq(clock_freq, &i);
1887 calc_sx_table(i, hostdata->sx_table);
1888 hostdata->dma_setup = setup;
1889 hostdata->dma_stop = stop;
1890 hostdata->dma_bounce_buffer = NULL;
1891 hostdata->dma_bounce_len = 0;
1892 for (i = 0; i < 8; i++) {
1893 hostdata->busy[i] = 0;
1894 hostdata->sync_xfer[i] =
1895 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1896 0, hostdata->sx_table);
1897 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1898 #ifdef PROC_STATISTICS
1899 hostdata->cmd_cnt[i] = 0;
1900 hostdata->disc_allowed_cnt[i] = 0;
1901 hostdata->disc_done_cnt[i] = 0;
1902 #endif
1903 }
1904 hostdata->input_Q = NULL;
1905 hostdata->selecting = NULL;
1906 hostdata->connected = NULL;
1907 hostdata->disconnected_Q = NULL;
1908 hostdata->state = S_UNCONNECTED;
1909 hostdata->dma = D_DMA_OFF;
1910 hostdata->level2 = L2_BASIC;
1911 hostdata->disconnect = DIS_ADAPTIVE;
1912 hostdata->args = DEBUG_DEFAULTS;
1913 hostdata->incoming_ptr = 0;
1914 hostdata->outgoing_len = 0;
1915 hostdata->default_sx_per = DEFAULT_SX_PER;
1916 hostdata->no_dma = 0; /* default is DMA enabled */
1917
1918 #ifdef PROC_INTERFACE
1919 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
1920 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
1921 #ifdef PROC_STATISTICS
1922 hostdata->dma_cnt = 0;
1923 hostdata->pio_cnt = 0;
1924 hostdata->int_cnt = 0;
1925 #endif
1926 #endif
1927
1928 if (check_setup_args("clock", &flags, &val, buf)) {
1929 hostdata->clock_freq = set_clk_freq(val, &val);
1930 calc_sx_table(val, hostdata->sx_table);
1931 }
1932
1933 if (check_setup_args("nosync", &flags, &val, buf))
1934 hostdata->no_sync = val;
1935
1936 if (check_setup_args("nodma", &flags, &val, buf))
1937 hostdata->no_dma = (val == -1) ? 1 : val;
1938
1939 if (check_setup_args("period", &flags, &val, buf))
1940 hostdata->default_sx_per =
1941 hostdata->sx_table[round_period((unsigned int) val,
1942 hostdata->sx_table)].period_ns;
1943
1944 if (check_setup_args("disconnect", &flags, &val, buf)) {
1945 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
1946 hostdata->disconnect = val;
1947 else
1948 hostdata->disconnect = DIS_ADAPTIVE;
1949 }
1950
1951 if (check_setup_args("level2", &flags, &val, buf))
1952 hostdata->level2 = val;
1953
1954 if (check_setup_args("debug", &flags, &val, buf))
1955 hostdata->args = val & DB_MASK;
1956
1957 if (check_setup_args("burst", &flags, &val, buf))
1958 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;
1959
1960 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
1961 && check_setup_args("fast", &flags, &val, buf))
1962 hostdata->fast = !!val;
1963
1964 if ((i = check_setup_args("next", &flags, &val, buf))) {
1965 while (i)
1966 setup_used[--i] = 1;
1967 }
1968 #ifdef PROC_INTERFACE
1969 if (check_setup_args("proc", &flags, &val, buf))
1970 hostdata->proc = val;
1971 #endif
1972
1973 spin_lock_irq(&hostdata->lock);
1974 reset_wd33c93(instance);
1975 spin_unlock_irq(&hostdata->lock);
1976
1977 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
1978 instance->host_no,
1979 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
1980 C_WD33C93A) ?
1981 "WD33c93A" : (hostdata->chip ==
1982 C_WD33C93B) ? "WD33c93B" : "unknown",
1983 hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
1984 #ifdef DEBUGGING_ON
1985 printk(" debug_flags=0x%02x\n", hostdata->args);
1986 #else
1987 printk(" debugging=OFF\n");
1988 #endif
1989 printk(" setup_args=");
1990 for (i = 0; i < MAX_SETUP_ARGS; i++)
1991 printk("%s,", setup_args[i]);
1992 printk("\n");
1993 printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE);
1994 }
1995
wd33c93_write_info(struct Scsi_Host * instance,char * buf,int len)1996 int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len)
1997 {
1998 #ifdef PROC_INTERFACE
1999 char *bp;
2000 struct WD33C93_hostdata *hd;
2001 int x;
2002
2003 hd = (struct WD33C93_hostdata *) instance->hostdata;
2004
2005 /* We accept the following
2006 * keywords (same format as command-line, but arguments are not optional):
2007 * debug
2008 * disconnect
2009 * period
2010 * resync
2011 * proc
2012 * nodma
2013 * level2
2014 * burst
2015 * fast
2016 * nosync
2017 */
2018
2019 buf[len] = '\0';
2020 for (bp = buf; *bp; ) {
2021 while (',' == *bp || ' ' == *bp)
2022 ++bp;
2023 if (!strncmp(bp, "debug:", 6)) {
2024 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
2025 } else if (!strncmp(bp, "disconnect:", 11)) {
2026 x = simple_strtoul(bp+11, &bp, 0);
2027 if (x < DIS_NEVER || x > DIS_ALWAYS)
2028 x = DIS_ADAPTIVE;
2029 hd->disconnect = x;
2030 } else if (!strncmp(bp, "period:", 7)) {
2031 x = simple_strtoul(bp+7, &bp, 0);
2032 hd->default_sx_per =
2033 hd->sx_table[round_period((unsigned int) x,
2034 hd->sx_table)].period_ns;
2035 } else if (!strncmp(bp, "resync:", 7)) {
2036 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
2037 } else if (!strncmp(bp, "proc:", 5)) {
2038 hd->proc = simple_strtoul(bp+5, &bp, 0);
2039 } else if (!strncmp(bp, "nodma:", 6)) {
2040 hd->no_dma = simple_strtoul(bp+6, &bp, 0);
2041 } else if (!strncmp(bp, "level2:", 7)) {
2042 hd->level2 = simple_strtoul(bp+7, &bp, 0);
2043 } else if (!strncmp(bp, "burst:", 6)) {
2044 hd->dma_mode =
2045 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
2046 } else if (!strncmp(bp, "fast:", 5)) {
2047 x = !!simple_strtol(bp+5, &bp, 0);
2048 if (x != hd->fast)
2049 set_resync(hd, 0xff);
2050 hd->fast = x;
2051 } else if (!strncmp(bp, "nosync:", 7)) {
2052 x = simple_strtoul(bp+7, &bp, 0);
2053 set_resync(hd, x ^ hd->no_sync);
2054 hd->no_sync = x;
2055 } else {
2056 break; /* unknown keyword,syntax-error,... */
2057 }
2058 }
2059 return len;
2060 #else
2061 return 0;
2062 #endif
2063 }
2064
2065 int
wd33c93_show_info(struct seq_file * m,struct Scsi_Host * instance)2066 wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance)
2067 {
2068 #ifdef PROC_INTERFACE
2069 struct WD33C93_hostdata *hd;
2070 struct scsi_cmnd *cmd;
2071 int x;
2072
2073 hd = (struct WD33C93_hostdata *) instance->hostdata;
2074
2075 spin_lock_irq(&hd->lock);
2076 if (hd->proc & PR_VERSION)
2077 seq_printf(m, "\nVersion %s - %s.",
2078 WD33C93_VERSION, WD33C93_DATE);
2079
2080 if (hd->proc & PR_INFO) {
2081 seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
2082 " dma_mode=%02x fast=%d",
2083 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
2084 seq_puts(m, "\nsync_xfer[] = ");
2085 for (x = 0; x < 7; x++)
2086 seq_printf(m, "\t%02x", hd->sync_xfer[x]);
2087 seq_puts(m, "\nsync_stat[] = ");
2088 for (x = 0; x < 7; x++)
2089 seq_printf(m, "\t%02x", hd->sync_stat[x]);
2090 }
2091 #ifdef PROC_STATISTICS
2092 if (hd->proc & PR_STATISTICS) {
2093 seq_puts(m, "\ncommands issued: ");
2094 for (x = 0; x < 7; x++)
2095 seq_printf(m, "\t%ld", hd->cmd_cnt[x]);
2096 seq_puts(m, "\ndisconnects allowed:");
2097 for (x = 0; x < 7; x++)
2098 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]);
2099 seq_puts(m, "\ndisconnects done: ");
2100 for (x = 0; x < 7; x++)
2101 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]);
2102 seq_printf(m,
2103 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
2104 hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
2105 }
2106 #endif
2107 if (hd->proc & PR_CONNECTED) {
2108 seq_puts(m, "\nconnected: ");
2109 if (hd->connected) {
2110 cmd = (struct scsi_cmnd *) hd->connected;
2111 seq_printf(m, " %d:%llu(%02x)",
2112 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2113 }
2114 }
2115 if (hd->proc & PR_INPUTQ) {
2116 seq_puts(m, "\ninput_Q: ");
2117 cmd = (struct scsi_cmnd *) hd->input_Q;
2118 while (cmd) {
2119 seq_printf(m, " %d:%llu(%02x)",
2120 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2121 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2122 }
2123 }
2124 if (hd->proc & PR_DISCQ) {
2125 seq_puts(m, "\ndisconnected_Q:");
2126 cmd = (struct scsi_cmnd *) hd->disconnected_Q;
2127 while (cmd) {
2128 seq_printf(m, " %d:%llu(%02x)",
2129 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2130 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2131 }
2132 }
2133 seq_putc(m, '\n');
2134 spin_unlock_irq(&hd->lock);
2135 #endif /* PROC_INTERFACE */
2136 return 0;
2137 }
2138
2139 EXPORT_SYMBOL(wd33c93_host_reset);
2140 EXPORT_SYMBOL(wd33c93_init);
2141 EXPORT_SYMBOL(wd33c93_abort);
2142 EXPORT_SYMBOL(wd33c93_queuecommand);
2143 EXPORT_SYMBOL(wd33c93_intr);
2144 EXPORT_SYMBOL(wd33c93_show_info);
2145 EXPORT_SYMBOL(wd33c93_write_info);
2146