1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * buffered writeback throttling. loosely based on CoDel. We can't drop 4 * packets for IO scheduling, so the logic is something like this: 5 * 6 * - Monitor latencies in a defined window of time. 7 * - If the minimum latency in the above window exceeds some target, increment 8 * scaling step and scale down queue depth by a factor of 2x. The monitoring 9 * window is then shrunk to 100 / sqrt(scaling step + 1). 10 * - For any window where we don't have solid data on what the latencies 11 * look like, retain status quo. 12 * - If latencies look good, decrement scaling step. 13 * - If we're only doing writes, allow the scaling step to go negative. This 14 * will temporarily boost write performance, snapping back to a stable 15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike 16 * positive scaling steps where we shrink the monitoring window, a negative 17 * scaling step retains the default step==0 window size. 18 * 19 * Copyright (C) 2016 Jens Axboe 20 * 21 */ 22 #include <linux/kernel.h> 23 #include <linux/blk_types.h> 24 #include <linux/slab.h> 25 #include <linux/backing-dev.h> 26 #include <linux/swap.h> 27 28 #include "blk-stat.h" 29 #include "blk-wbt.h" 30 #include "blk-rq-qos.h" 31 #include "elevator.h" 32 #include "blk.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/wbt.h> 36 37 enum wbt_flags { 38 WBT_TRACKED = 1, /* write, tracked for throttling */ 39 WBT_READ = 2, /* read */ 40 WBT_SWAP = 4, /* write, from swap_writeout() */ 41 WBT_DISCARD = 8, /* discard */ 42 43 WBT_NR_BITS = 4, /* number of bits */ 44 }; 45 46 enum { 47 WBT_RWQ_BG = 0, 48 WBT_RWQ_SWAP, 49 WBT_RWQ_DISCARD, 50 WBT_NUM_RWQ, 51 }; 52 53 /* 54 * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other 55 * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered 56 * to WBT_STATE_OFF/ON_MANUAL. 57 */ 58 enum { 59 WBT_STATE_ON_DEFAULT = 1, /* on by default */ 60 WBT_STATE_ON_MANUAL = 2, /* on manually by sysfs */ 61 WBT_STATE_OFF_DEFAULT = 3, /* off by default */ 62 WBT_STATE_OFF_MANUAL = 4, /* off manually by sysfs */ 63 }; 64 65 struct rq_wb { 66 /* 67 * Settings that govern how we throttle 68 */ 69 unsigned int wb_background; /* background writeback */ 70 unsigned int wb_normal; /* normal writeback */ 71 72 short enable_state; /* WBT_STATE_* */ 73 74 /* 75 * Number of consecutive periods where we don't have enough 76 * information to make a firm scale up/down decision. 77 */ 78 unsigned int unknown_cnt; 79 80 u64 win_nsec; /* default window size */ 81 u64 cur_win_nsec; /* current window size */ 82 83 struct blk_stat_callback *cb; 84 85 u64 sync_issue; 86 void *sync_cookie; 87 88 unsigned long last_issue; /* issue time of last read rq */ 89 unsigned long last_comp; /* completion time of last read rq */ 90 unsigned long min_lat_nsec; 91 struct rq_qos rqos; 92 struct rq_wait rq_wait[WBT_NUM_RWQ]; 93 struct rq_depth rq_depth; 94 }; 95 96 static int wbt_init(struct gendisk *disk, struct rq_wb *rwb); 97 98 static inline struct rq_wb *RQWB(struct rq_qos *rqos) 99 { 100 return container_of(rqos, struct rq_wb, rqos); 101 } 102 103 static inline void wbt_clear_state(struct request *rq) 104 { 105 rq->wbt_flags = 0; 106 } 107 108 static inline enum wbt_flags wbt_flags(struct request *rq) 109 { 110 return rq->wbt_flags; 111 } 112 113 static inline bool wbt_is_tracked(struct request *rq) 114 { 115 return rq->wbt_flags & WBT_TRACKED; 116 } 117 118 static inline bool wbt_is_read(struct request *rq) 119 { 120 return rq->wbt_flags & WBT_READ; 121 } 122 123 enum { 124 /* 125 * Default setting, we'll scale up (to 75% of QD max) or down (min 1) 126 * from here depending on device stats 127 */ 128 RWB_DEF_DEPTH = 16, 129 130 /* 131 * 100msec window 132 */ 133 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL, 134 135 /* 136 * Disregard stats, if we don't meet this minimum 137 */ 138 RWB_MIN_WRITE_SAMPLES = 3, 139 140 /* 141 * If we have this number of consecutive windows without enough 142 * information to scale up or down, slowly return to center state 143 * (step == 0). 144 */ 145 RWB_UNKNOWN_BUMP = 5, 146 }; 147 148 static inline bool rwb_enabled(struct rq_wb *rwb) 149 { 150 return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT && 151 rwb->enable_state != WBT_STATE_OFF_MANUAL; 152 } 153 154 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) 155 { 156 if (rwb_enabled(rwb)) { 157 const unsigned long cur = jiffies; 158 159 if (cur != *var) 160 *var = cur; 161 } 162 } 163 164 /* 165 * If a task was rate throttled in balance_dirty_pages() within the last 166 * second or so, use that to indicate a higher cleaning rate. 167 */ 168 static bool wb_recent_wait(struct rq_wb *rwb) 169 { 170 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 171 172 return time_before(jiffies, bdi->last_bdp_sleep + HZ); 173 } 174 175 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, 176 enum wbt_flags wb_acct) 177 { 178 if (wb_acct & WBT_SWAP) 179 return &rwb->rq_wait[WBT_RWQ_SWAP]; 180 else if (wb_acct & WBT_DISCARD) 181 return &rwb->rq_wait[WBT_RWQ_DISCARD]; 182 183 return &rwb->rq_wait[WBT_RWQ_BG]; 184 } 185 186 static void rwb_wake_all(struct rq_wb *rwb) 187 { 188 int i; 189 190 for (i = 0; i < WBT_NUM_RWQ; i++) { 191 struct rq_wait *rqw = &rwb->rq_wait[i]; 192 193 if (wq_has_sleeper(&rqw->wait)) 194 wake_up_all(&rqw->wait); 195 } 196 } 197 198 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw, 199 enum wbt_flags wb_acct) 200 { 201 int inflight, limit; 202 203 inflight = atomic_dec_return(&rqw->inflight); 204 205 /* 206 * For discards, our limit is always the background. For writes, if 207 * the device does write back caching, drop further down before we 208 * wake people up. 209 */ 210 if (wb_acct & WBT_DISCARD) 211 limit = rwb->wb_background; 212 else if (blk_queue_write_cache(rwb->rqos.disk->queue) && 213 !wb_recent_wait(rwb)) 214 limit = 0; 215 else 216 limit = rwb->wb_normal; 217 218 /* 219 * Don't wake anyone up if we are above the normal limit. 220 */ 221 if (inflight && inflight >= limit) 222 return; 223 224 if (wq_has_sleeper(&rqw->wait)) { 225 int diff = limit - inflight; 226 227 if (!inflight || diff >= rwb->wb_background / 2) 228 wake_up_all(&rqw->wait); 229 } 230 } 231 232 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct) 233 { 234 struct rq_wb *rwb = RQWB(rqos); 235 struct rq_wait *rqw; 236 237 if (!(wb_acct & WBT_TRACKED)) 238 return; 239 240 rqw = get_rq_wait(rwb, wb_acct); 241 wbt_rqw_done(rwb, rqw, wb_acct); 242 } 243 244 /* 245 * Called on completion of a request. Note that it's also called when 246 * a request is merged, when the request gets freed. 247 */ 248 static void wbt_done(struct rq_qos *rqos, struct request *rq) 249 { 250 struct rq_wb *rwb = RQWB(rqos); 251 252 if (!wbt_is_tracked(rq)) { 253 if (wbt_is_read(rq)) { 254 if (rwb->sync_cookie == rq) { 255 rwb->sync_issue = 0; 256 rwb->sync_cookie = NULL; 257 } 258 259 wb_timestamp(rwb, &rwb->last_comp); 260 } 261 } else { 262 WARN_ON_ONCE(rq == rwb->sync_cookie); 263 __wbt_done(rqos, wbt_flags(rq)); 264 } 265 wbt_clear_state(rq); 266 } 267 268 static inline bool stat_sample_valid(struct blk_rq_stat *stat) 269 { 270 /* 271 * We need at least one read sample, and a minimum of 272 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know 273 * that it's writes impacting us, and not just some sole read on 274 * a device that is in a lower power state. 275 */ 276 return (stat[READ].nr_samples >= 1 && 277 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES); 278 } 279 280 static u64 rwb_sync_issue_lat(struct rq_wb *rwb) 281 { 282 u64 issue = READ_ONCE(rwb->sync_issue); 283 284 if (!issue || !rwb->sync_cookie) 285 return 0; 286 287 return blk_time_get_ns() - issue; 288 } 289 290 static inline unsigned int wbt_inflight(struct rq_wb *rwb) 291 { 292 unsigned int i, ret = 0; 293 294 for (i = 0; i < WBT_NUM_RWQ; i++) 295 ret += atomic_read(&rwb->rq_wait[i].inflight); 296 297 return ret; 298 } 299 300 enum { 301 LAT_OK = 1, 302 LAT_UNKNOWN, 303 LAT_UNKNOWN_WRITES, 304 LAT_EXCEEDED, 305 }; 306 307 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) 308 { 309 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 310 struct rq_depth *rqd = &rwb->rq_depth; 311 u64 thislat; 312 313 /* 314 * If our stored sync issue exceeds the window size, or it 315 * exceeds our min target AND we haven't logged any entries, 316 * flag the latency as exceeded. wbt works off completion latencies, 317 * but for a flooded device, a single sync IO can take a long time 318 * to complete after being issued. If this time exceeds our 319 * monitoring window AND we didn't see any other completions in that 320 * window, then count that sync IO as a violation of the latency. 321 */ 322 thislat = rwb_sync_issue_lat(rwb); 323 if (thislat > rwb->cur_win_nsec || 324 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) { 325 trace_wbt_lat(bdi, thislat); 326 return LAT_EXCEEDED; 327 } 328 329 /* 330 * No read/write mix, if stat isn't valid 331 */ 332 if (!stat_sample_valid(stat)) { 333 /* 334 * If we had writes in this stat window and the window is 335 * current, we're only doing writes. If a task recently 336 * waited or still has writes in flights, consider us doing 337 * just writes as well. 338 */ 339 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) || 340 wbt_inflight(rwb)) 341 return LAT_UNKNOWN_WRITES; 342 return LAT_UNKNOWN; 343 } 344 345 /* 346 * If the 'min' latency exceeds our target, step down. 347 */ 348 if (stat[READ].min > rwb->min_lat_nsec) { 349 trace_wbt_lat(bdi, stat[READ].min); 350 trace_wbt_stat(bdi, stat); 351 return LAT_EXCEEDED; 352 } 353 354 if (rqd->scale_step) 355 trace_wbt_stat(bdi, stat); 356 357 return LAT_OK; 358 } 359 360 static void rwb_trace_step(struct rq_wb *rwb, const char *msg) 361 { 362 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 363 struct rq_depth *rqd = &rwb->rq_depth; 364 365 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec, 366 rwb->wb_background, rwb->wb_normal, rqd->max_depth); 367 } 368 369 static void calc_wb_limits(struct rq_wb *rwb) 370 { 371 if (rwb->min_lat_nsec == 0) { 372 rwb->wb_normal = rwb->wb_background = 0; 373 } else if (rwb->rq_depth.max_depth <= 2) { 374 rwb->wb_normal = rwb->rq_depth.max_depth; 375 rwb->wb_background = 1; 376 } else { 377 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2; 378 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4; 379 } 380 } 381 382 static void scale_up(struct rq_wb *rwb) 383 { 384 if (!rq_depth_scale_up(&rwb->rq_depth)) 385 return; 386 calc_wb_limits(rwb); 387 rwb->unknown_cnt = 0; 388 rwb_wake_all(rwb); 389 rwb_trace_step(rwb, tracepoint_string("scale up")); 390 } 391 392 static void scale_down(struct rq_wb *rwb, bool hard_throttle) 393 { 394 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle)) 395 return; 396 calc_wb_limits(rwb); 397 rwb->unknown_cnt = 0; 398 rwb_trace_step(rwb, tracepoint_string("scale down")); 399 } 400 401 static void rwb_arm_timer(struct rq_wb *rwb) 402 { 403 struct rq_depth *rqd = &rwb->rq_depth; 404 405 if (rqd->scale_step > 0) { 406 /* 407 * We should speed this up, using some variant of a fast 408 * integer inverse square root calculation. Since we only do 409 * this for every window expiration, it's not a huge deal, 410 * though. 411 */ 412 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, 413 int_sqrt((rqd->scale_step + 1) << 8)); 414 } else { 415 /* 416 * For step < 0, we don't want to increase/decrease the 417 * window size. 418 */ 419 rwb->cur_win_nsec = rwb->win_nsec; 420 } 421 422 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec); 423 } 424 425 static void wb_timer_fn(struct blk_stat_callback *cb) 426 { 427 struct rq_wb *rwb = cb->data; 428 struct rq_depth *rqd = &rwb->rq_depth; 429 unsigned int inflight = wbt_inflight(rwb); 430 int status; 431 432 if (!rwb->rqos.disk) 433 return; 434 435 status = latency_exceeded(rwb, cb->stat); 436 437 trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight); 438 439 /* 440 * If we exceeded the latency target, step down. If we did not, 441 * step one level up. If we don't know enough to say either exceeded 442 * or ok, then don't do anything. 443 */ 444 switch (status) { 445 case LAT_EXCEEDED: 446 scale_down(rwb, true); 447 break; 448 case LAT_OK: 449 scale_up(rwb); 450 break; 451 case LAT_UNKNOWN_WRITES: 452 /* 453 * We don't have a valid read/write sample, but we do have 454 * writes going on. Allow step to go negative, to increase 455 * write performance. 456 */ 457 scale_up(rwb); 458 break; 459 case LAT_UNKNOWN: 460 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) 461 break; 462 /* 463 * We get here when previously scaled reduced depth, and we 464 * currently don't have a valid read/write sample. For that 465 * case, slowly return to center state (step == 0). 466 */ 467 if (rqd->scale_step > 0) 468 scale_up(rwb); 469 else if (rqd->scale_step < 0) 470 scale_down(rwb, false); 471 break; 472 default: 473 break; 474 } 475 476 /* 477 * Re-arm timer, if we have IO in flight 478 */ 479 if (rqd->scale_step || inflight) 480 rwb_arm_timer(rwb); 481 } 482 483 static void wbt_update_limits(struct rq_wb *rwb) 484 { 485 struct rq_depth *rqd = &rwb->rq_depth; 486 487 rqd->scale_step = 0; 488 rqd->scaled_max = false; 489 490 rq_depth_calc_max_depth(rqd); 491 calc_wb_limits(rwb); 492 493 rwb_wake_all(rwb); 494 } 495 496 bool wbt_disabled(struct request_queue *q) 497 { 498 struct rq_qos *rqos = wbt_rq_qos(q); 499 500 return !rqos || !rwb_enabled(RQWB(rqos)); 501 } 502 503 u64 wbt_get_min_lat(struct request_queue *q) 504 { 505 struct rq_qos *rqos = wbt_rq_qos(q); 506 if (!rqos) 507 return 0; 508 return RQWB(rqos)->min_lat_nsec; 509 } 510 511 static void wbt_set_min_lat(struct request_queue *q, u64 val) 512 { 513 struct rq_qos *rqos = wbt_rq_qos(q); 514 if (!rqos) 515 return; 516 517 RQWB(rqos)->min_lat_nsec = val; 518 if (val) 519 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL; 520 else 521 RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL; 522 523 wbt_update_limits(RQWB(rqos)); 524 } 525 526 527 static bool close_io(struct rq_wb *rwb) 528 { 529 const unsigned long now = jiffies; 530 531 return time_before(now, rwb->last_issue + HZ / 10) || 532 time_before(now, rwb->last_comp + HZ / 10); 533 } 534 535 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO | REQ_SWAP) 536 537 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf) 538 { 539 unsigned int limit; 540 541 if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD) 542 return rwb->wb_background; 543 544 /* 545 * At this point we know it's a buffered write. If this is 546 * swap trying to free memory, or REQ_SYNC is set, then 547 * it's WB_SYNC_ALL writeback, and we'll use the max limit for 548 * that. If the write is marked as a background write, then use 549 * the idle limit, or go to normal if we haven't had competing 550 * IO for a bit. 551 */ 552 if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb)) 553 limit = rwb->rq_depth.max_depth; 554 else if ((opf & REQ_BACKGROUND) || close_io(rwb)) { 555 /* 556 * If less than 100ms since we completed unrelated IO, 557 * limit us to half the depth for background writeback. 558 */ 559 limit = rwb->wb_background; 560 } else 561 limit = rwb->wb_normal; 562 563 return limit; 564 } 565 566 struct wbt_wait_data { 567 struct rq_wb *rwb; 568 enum wbt_flags wb_acct; 569 blk_opf_t opf; 570 }; 571 572 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data) 573 { 574 struct wbt_wait_data *data = private_data; 575 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf)); 576 } 577 578 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data) 579 { 580 struct wbt_wait_data *data = private_data; 581 wbt_rqw_done(data->rwb, rqw, data->wb_acct); 582 } 583 584 /* 585 * Block if we will exceed our limit, or if we are currently waiting for 586 * the timer to kick off queuing again. 587 */ 588 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct, 589 blk_opf_t opf) 590 { 591 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct); 592 struct wbt_wait_data data = { 593 .rwb = rwb, 594 .wb_acct = wb_acct, 595 .opf = opf, 596 }; 597 598 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb); 599 } 600 601 static inline bool wbt_should_throttle(struct bio *bio) 602 { 603 switch (bio_op(bio)) { 604 case REQ_OP_WRITE: 605 /* 606 * Don't throttle WRITE_ODIRECT 607 */ 608 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == 609 (REQ_SYNC | REQ_IDLE)) 610 return false; 611 fallthrough; 612 case REQ_OP_DISCARD: 613 return true; 614 default: 615 return false; 616 } 617 } 618 619 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio) 620 { 621 enum wbt_flags flags = 0; 622 623 if (!rwb_enabled(rwb)) 624 return 0; 625 626 if (bio_op(bio) == REQ_OP_READ) { 627 flags = WBT_READ; 628 } else if (wbt_should_throttle(bio)) { 629 if (bio->bi_opf & REQ_SWAP) 630 flags |= WBT_SWAP; 631 if (bio_op(bio) == REQ_OP_DISCARD) 632 flags |= WBT_DISCARD; 633 flags |= WBT_TRACKED; 634 } 635 return flags; 636 } 637 638 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio) 639 { 640 struct rq_wb *rwb = RQWB(rqos); 641 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio); 642 __wbt_done(rqos, flags); 643 } 644 645 /* May sleep, if we have exceeded the writeback limits. */ 646 static void wbt_wait(struct rq_qos *rqos, struct bio *bio) 647 { 648 struct rq_wb *rwb = RQWB(rqos); 649 enum wbt_flags flags; 650 651 flags = bio_to_wbt_flags(rwb, bio); 652 if (!(flags & WBT_TRACKED)) { 653 if (flags & WBT_READ) 654 wb_timestamp(rwb, &rwb->last_issue); 655 return; 656 } 657 658 __wbt_wait(rwb, flags, bio->bi_opf); 659 660 if (!blk_stat_is_active(rwb->cb)) 661 rwb_arm_timer(rwb); 662 } 663 664 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) 665 { 666 struct rq_wb *rwb = RQWB(rqos); 667 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio); 668 } 669 670 static void wbt_issue(struct rq_qos *rqos, struct request *rq) 671 { 672 struct rq_wb *rwb = RQWB(rqos); 673 674 if (!rwb_enabled(rwb)) 675 return; 676 677 /* 678 * Track sync issue, in case it takes a long time to complete. Allows us 679 * to react quicker, if a sync IO takes a long time to complete. Note 680 * that this is just a hint. The request can go away when it completes, 681 * so it's important we never dereference it. We only use the address to 682 * compare with, which is why we store the sync_issue time locally. 683 */ 684 if (wbt_is_read(rq) && !rwb->sync_issue) { 685 rwb->sync_cookie = rq; 686 rwb->sync_issue = rq->io_start_time_ns; 687 } 688 } 689 690 static void wbt_requeue(struct rq_qos *rqos, struct request *rq) 691 { 692 struct rq_wb *rwb = RQWB(rqos); 693 if (!rwb_enabled(rwb)) 694 return; 695 if (rq == rwb->sync_cookie) { 696 rwb->sync_issue = 0; 697 rwb->sync_cookie = NULL; 698 } 699 } 700 701 static int wbt_data_dir(const struct request *rq) 702 { 703 const enum req_op op = req_op(rq); 704 705 if (op == REQ_OP_READ) 706 return READ; 707 else if (op_is_write(op)) 708 return WRITE; 709 710 /* don't account */ 711 return -1; 712 } 713 714 static struct rq_wb *wbt_alloc(void) 715 { 716 struct rq_wb *rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); 717 718 if (!rwb) 719 return NULL; 720 721 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb); 722 if (!rwb->cb) { 723 kfree(rwb); 724 return NULL; 725 } 726 727 return rwb; 728 } 729 730 static void wbt_free(struct rq_wb *rwb) 731 { 732 blk_stat_free_callback(rwb->cb); 733 kfree(rwb); 734 } 735 736 /* 737 * Enable wbt if defaults are configured that way 738 */ 739 static bool __wbt_enable_default(struct gendisk *disk) 740 { 741 struct request_queue *q = disk->queue; 742 struct rq_qos *rqos; 743 bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ); 744 745 mutex_lock(&disk->rqos_state_mutex); 746 747 if (blk_queue_disable_wbt(q)) 748 enable = false; 749 750 /* Throttling already enabled? */ 751 rqos = wbt_rq_qos(q); 752 if (rqos) { 753 if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT) 754 RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT; 755 mutex_unlock(&disk->rqos_state_mutex); 756 return false; 757 } 758 mutex_unlock(&disk->rqos_state_mutex); 759 760 /* Queue not registered? Maybe shutting down... */ 761 if (!blk_queue_registered(q)) 762 return false; 763 764 if (queue_is_mq(q) && enable) 765 return true; 766 return false; 767 } 768 769 void wbt_enable_default(struct gendisk *disk) 770 { 771 __wbt_enable_default(disk); 772 } 773 EXPORT_SYMBOL_GPL(wbt_enable_default); 774 775 void wbt_init_enable_default(struct gendisk *disk) 776 { 777 struct request_queue *q = disk->queue; 778 struct rq_wb *rwb; 779 780 if (!__wbt_enable_default(disk)) 781 return; 782 783 rwb = wbt_alloc(); 784 if (WARN_ON_ONCE(!rwb)) 785 return; 786 787 if (WARN_ON_ONCE(wbt_init(disk, rwb))) { 788 wbt_free(rwb); 789 return; 790 } 791 792 mutex_lock(&q->debugfs_mutex); 793 blk_mq_debugfs_register_rq_qos(q); 794 mutex_unlock(&q->debugfs_mutex); 795 } 796 797 static u64 wbt_default_latency_nsec(struct request_queue *q) 798 { 799 /* 800 * We default to 2msec for non-rotational storage, and 75msec 801 * for rotational storage. 802 */ 803 if (blk_queue_rot(q)) 804 return 75000000ULL; 805 return 2000000ULL; 806 } 807 808 static void wbt_queue_depth_changed(struct rq_qos *rqos) 809 { 810 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue); 811 wbt_update_limits(RQWB(rqos)); 812 } 813 814 static void wbt_exit(struct rq_qos *rqos) 815 { 816 struct rq_wb *rwb = RQWB(rqos); 817 818 blk_stat_remove_callback(rqos->disk->queue, rwb->cb); 819 wbt_free(rwb); 820 } 821 822 /* 823 * Disable wbt, if enabled by default. 824 */ 825 void wbt_disable_default(struct gendisk *disk) 826 { 827 struct rq_qos *rqos = wbt_rq_qos(disk->queue); 828 struct rq_wb *rwb; 829 if (!rqos) 830 return; 831 mutex_lock(&disk->rqos_state_mutex); 832 rwb = RQWB(rqos); 833 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) { 834 blk_stat_deactivate(rwb->cb); 835 rwb->enable_state = WBT_STATE_OFF_DEFAULT; 836 } 837 mutex_unlock(&disk->rqos_state_mutex); 838 } 839 EXPORT_SYMBOL_GPL(wbt_disable_default); 840 841 #ifdef CONFIG_BLK_DEBUG_FS 842 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m) 843 { 844 struct rq_qos *rqos = data; 845 struct rq_wb *rwb = RQWB(rqos); 846 847 seq_printf(m, "%llu\n", rwb->cur_win_nsec); 848 return 0; 849 } 850 851 static int wbt_enabled_show(void *data, struct seq_file *m) 852 { 853 struct rq_qos *rqos = data; 854 struct rq_wb *rwb = RQWB(rqos); 855 856 seq_printf(m, "%d\n", rwb->enable_state); 857 return 0; 858 } 859 860 static int wbt_id_show(void *data, struct seq_file *m) 861 { 862 struct rq_qos *rqos = data; 863 864 seq_printf(m, "%u\n", rqos->id); 865 return 0; 866 } 867 868 static int wbt_inflight_show(void *data, struct seq_file *m) 869 { 870 struct rq_qos *rqos = data; 871 struct rq_wb *rwb = RQWB(rqos); 872 int i; 873 874 for (i = 0; i < WBT_NUM_RWQ; i++) 875 seq_printf(m, "%d: inflight %d\n", i, 876 atomic_read(&rwb->rq_wait[i].inflight)); 877 return 0; 878 } 879 880 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m) 881 { 882 struct rq_qos *rqos = data; 883 struct rq_wb *rwb = RQWB(rqos); 884 885 seq_printf(m, "%lu\n", rwb->min_lat_nsec); 886 return 0; 887 } 888 889 static int wbt_unknown_cnt_show(void *data, struct seq_file *m) 890 { 891 struct rq_qos *rqos = data; 892 struct rq_wb *rwb = RQWB(rqos); 893 894 seq_printf(m, "%u\n", rwb->unknown_cnt); 895 return 0; 896 } 897 898 static int wbt_normal_show(void *data, struct seq_file *m) 899 { 900 struct rq_qos *rqos = data; 901 struct rq_wb *rwb = RQWB(rqos); 902 903 seq_printf(m, "%u\n", rwb->wb_normal); 904 return 0; 905 } 906 907 static int wbt_background_show(void *data, struct seq_file *m) 908 { 909 struct rq_qos *rqos = data; 910 struct rq_wb *rwb = RQWB(rqos); 911 912 seq_printf(m, "%u\n", rwb->wb_background); 913 return 0; 914 } 915 916 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = { 917 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show}, 918 {"enabled", 0400, wbt_enabled_show}, 919 {"id", 0400, wbt_id_show}, 920 {"inflight", 0400, wbt_inflight_show}, 921 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show}, 922 {"unknown_cnt", 0400, wbt_unknown_cnt_show}, 923 {"wb_normal", 0400, wbt_normal_show}, 924 {"wb_background", 0400, wbt_background_show}, 925 {}, 926 }; 927 #endif 928 929 static const struct rq_qos_ops wbt_rqos_ops = { 930 .throttle = wbt_wait, 931 .issue = wbt_issue, 932 .track = wbt_track, 933 .requeue = wbt_requeue, 934 .done = wbt_done, 935 .cleanup = wbt_cleanup, 936 .queue_depth_changed = wbt_queue_depth_changed, 937 .exit = wbt_exit, 938 #ifdef CONFIG_BLK_DEBUG_FS 939 .debugfs_attrs = wbt_debugfs_attrs, 940 #endif 941 }; 942 943 static int wbt_init(struct gendisk *disk, struct rq_wb *rwb) 944 { 945 struct request_queue *q = disk->queue; 946 int ret; 947 int i; 948 949 for (i = 0; i < WBT_NUM_RWQ; i++) 950 rq_wait_init(&rwb->rq_wait[i]); 951 952 rwb->last_comp = rwb->last_issue = jiffies; 953 rwb->win_nsec = RWB_WINDOW_NSEC; 954 rwb->enable_state = WBT_STATE_ON_DEFAULT; 955 rwb->rq_depth.default_depth = RWB_DEF_DEPTH; 956 rwb->min_lat_nsec = wbt_default_latency_nsec(q); 957 rwb->rq_depth.queue_depth = blk_queue_depth(q); 958 wbt_update_limits(rwb); 959 960 /* 961 * Assign rwb and add the stats callback. 962 */ 963 mutex_lock(&q->rq_qos_mutex); 964 ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops); 965 mutex_unlock(&q->rq_qos_mutex); 966 if (ret) 967 return ret; 968 969 blk_stat_add_callback(q, rwb->cb); 970 return 0; 971 } 972 973 int wbt_set_lat(struct gendisk *disk, s64 val) 974 { 975 struct request_queue *q = disk->queue; 976 struct rq_qos *rqos = wbt_rq_qos(q); 977 struct rq_wb *rwb = NULL; 978 unsigned int memflags; 979 int ret = 0; 980 981 if (!rqos) { 982 rwb = wbt_alloc(); 983 if (!rwb) 984 return -ENOMEM; 985 } 986 987 /* 988 * Ensure that the queue is idled, in case the latency update 989 * ends up either enabling or disabling wbt completely. We can't 990 * have IO inflight if that happens. 991 */ 992 memflags = blk_mq_freeze_queue(q); 993 if (!rqos) { 994 ret = wbt_init(disk, rwb); 995 if (ret) { 996 wbt_free(rwb); 997 goto out; 998 } 999 } 1000 1001 if (val == -1) 1002 val = wbt_default_latency_nsec(q); 1003 else if (val >= 0) 1004 val *= 1000ULL; 1005 1006 if (wbt_get_min_lat(q) == val) 1007 goto out; 1008 1009 blk_mq_quiesce_queue(q); 1010 1011 mutex_lock(&disk->rqos_state_mutex); 1012 wbt_set_min_lat(q, val); 1013 mutex_unlock(&disk->rqos_state_mutex); 1014 1015 blk_mq_unquiesce_queue(q); 1016 out: 1017 blk_mq_unfreeze_queue(q, memflags); 1018 mutex_lock(&q->debugfs_mutex); 1019 blk_mq_debugfs_register_rq_qos(q); 1020 mutex_unlock(&q->debugfs_mutex); 1021 1022 return ret; 1023 } 1024