xref: /linux/security/landlock/fs.c (revision de5817bbfb569f22406970f81360ac3f694ba6e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Landlock LSM - Filesystem management and hooks
4  *
5  * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net>
6  * Copyright © 2018-2020 ANSSI
7  * Copyright © 2021-2022 Microsoft Corporation
8  * Copyright © 2022 Günther Noack <gnoack3000@gmail.com>
9  * Copyright © 2023-2024 Google LLC
10  */
11 
12 #include <asm/ioctls.h>
13 #include <kunit/test.h>
14 #include <linux/atomic.h>
15 #include <linux/bitops.h>
16 #include <linux/bits.h>
17 #include <linux/compiler_types.h>
18 #include <linux/dcache.h>
19 #include <linux/err.h>
20 #include <linux/falloc.h>
21 #include <linux/fs.h>
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/limits.h>
25 #include <linux/list.h>
26 #include <linux/lsm_hooks.h>
27 #include <linux/mount.h>
28 #include <linux/namei.h>
29 #include <linux/path.h>
30 #include <linux/rcupdate.h>
31 #include <linux/spinlock.h>
32 #include <linux/stat.h>
33 #include <linux/types.h>
34 #include <linux/wait_bit.h>
35 #include <linux/workqueue.h>
36 #include <uapi/linux/fiemap.h>
37 #include <uapi/linux/landlock.h>
38 
39 #include "access.h"
40 #include "common.h"
41 #include "cred.h"
42 #include "fs.h"
43 #include "limits.h"
44 #include "object.h"
45 #include "ruleset.h"
46 #include "setup.h"
47 
48 /* Underlying object management */
49 
release_inode(struct landlock_object * const object)50 static void release_inode(struct landlock_object *const object)
51 	__releases(object->lock)
52 {
53 	struct inode *const inode = object->underobj;
54 	struct super_block *sb;
55 
56 	if (!inode) {
57 		spin_unlock(&object->lock);
58 		return;
59 	}
60 
61 	/*
62 	 * Protects against concurrent use by hook_sb_delete() of the reference
63 	 * to the underlying inode.
64 	 */
65 	object->underobj = NULL;
66 	/*
67 	 * Makes sure that if the filesystem is concurrently unmounted,
68 	 * hook_sb_delete() will wait for us to finish iput().
69 	 */
70 	sb = inode->i_sb;
71 	atomic_long_inc(&landlock_superblock(sb)->inode_refs);
72 	spin_unlock(&object->lock);
73 	/*
74 	 * Because object->underobj was not NULL, hook_sb_delete() and
75 	 * get_inode_object() guarantee that it is safe to reset
76 	 * landlock_inode(inode)->object while it is not NULL.  It is therefore
77 	 * not necessary to lock inode->i_lock.
78 	 */
79 	rcu_assign_pointer(landlock_inode(inode)->object, NULL);
80 	/*
81 	 * Now, new rules can safely be tied to @inode with get_inode_object().
82 	 */
83 
84 	iput(inode);
85 	if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs))
86 		wake_up_var(&landlock_superblock(sb)->inode_refs);
87 }
88 
89 static const struct landlock_object_underops landlock_fs_underops = {
90 	.release = release_inode
91 };
92 
93 /* IOCTL helpers */
94 
95 /**
96  * is_masked_device_ioctl - Determine whether an IOCTL command is always
97  * permitted with Landlock for device files.  These commands can not be
98  * restricted on device files by enforcing a Landlock policy.
99  *
100  * @cmd: The IOCTL command that is supposed to be run.
101  *
102  * By default, any IOCTL on a device file requires the
103  * LANDLOCK_ACCESS_FS_IOCTL_DEV right.  However, we blanket-permit some
104  * commands, if:
105  *
106  * 1. The command is implemented in fs/ioctl.c's do_vfs_ioctl(),
107  *    not in f_ops->unlocked_ioctl() or f_ops->compat_ioctl().
108  *
109  * 2. The command is harmless when invoked on devices.
110  *
111  * We also permit commands that do not make sense for devices, but where the
112  * do_vfs_ioctl() implementation returns a more conventional error code.
113  *
114  * Any new IOCTL commands that are implemented in fs/ioctl.c's do_vfs_ioctl()
115  * should be considered for inclusion here.
116  *
117  * Returns: true if the IOCTL @cmd can not be restricted with Landlock for
118  * device files.
119  */
is_masked_device_ioctl(const unsigned int cmd)120 static __attribute_const__ bool is_masked_device_ioctl(const unsigned int cmd)
121 {
122 	switch (cmd) {
123 	/*
124 	 * FIOCLEX, FIONCLEX, FIONBIO and FIOASYNC manipulate the FD's
125 	 * close-on-exec and the file's buffered-IO and async flags.  These
126 	 * operations are also available through fcntl(2), and are
127 	 * unconditionally permitted in Landlock.
128 	 */
129 	case FIOCLEX:
130 	case FIONCLEX:
131 	case FIONBIO:
132 	case FIOASYNC:
133 	/*
134 	 * FIOQSIZE queries the size of a regular file, directory, or link.
135 	 *
136 	 * We still permit it, because it always returns -ENOTTY for
137 	 * other file types.
138 	 */
139 	case FIOQSIZE:
140 	/*
141 	 * FIFREEZE and FITHAW freeze and thaw the file system which the
142 	 * given file belongs to.  Requires CAP_SYS_ADMIN.
143 	 *
144 	 * These commands operate on the file system's superblock rather
145 	 * than on the file itself.  The same operations can also be
146 	 * done through any other file or directory on the same file
147 	 * system, so it is safe to permit these.
148 	 */
149 	case FIFREEZE:
150 	case FITHAW:
151 	/*
152 	 * FS_IOC_FIEMAP queries information about the allocation of
153 	 * blocks within a file.
154 	 *
155 	 * This IOCTL command only makes sense for regular files and is
156 	 * not implemented by devices. It is harmless to permit.
157 	 */
158 	case FS_IOC_FIEMAP:
159 	/*
160 	 * FIGETBSZ queries the file system's block size for a file or
161 	 * directory.
162 	 *
163 	 * This command operates on the file system's superblock rather
164 	 * than on the file itself.  The same operation can also be done
165 	 * through any other file or directory on the same file system,
166 	 * so it is safe to permit it.
167 	 */
168 	case FIGETBSZ:
169 	/*
170 	 * FICLONE, FICLONERANGE and FIDEDUPERANGE make files share
171 	 * their underlying storage ("reflink") between source and
172 	 * destination FDs, on file systems which support that.
173 	 *
174 	 * These IOCTL commands only apply to regular files
175 	 * and are harmless to permit for device files.
176 	 */
177 	case FICLONE:
178 	case FICLONERANGE:
179 	case FIDEDUPERANGE:
180 	/*
181 	 * FS_IOC_GETFSUUID and FS_IOC_GETFSSYSFSPATH both operate on
182 	 * the file system superblock, not on the specific file, so
183 	 * these operations are available through any other file on the
184 	 * same file system as well.
185 	 */
186 	case FS_IOC_GETFSUUID:
187 	case FS_IOC_GETFSSYSFSPATH:
188 		return true;
189 
190 	/*
191 	 * FIONREAD, FS_IOC_GETFLAGS, FS_IOC_SETFLAGS, FS_IOC_FSGETXATTR and
192 	 * FS_IOC_FSSETXATTR are forwarded to device implementations.
193 	 */
194 
195 	/*
196 	 * file_ioctl() commands (FIBMAP, FS_IOC_RESVSP, FS_IOC_RESVSP64,
197 	 * FS_IOC_UNRESVSP, FS_IOC_UNRESVSP64 and FS_IOC_ZERO_RANGE) are
198 	 * forwarded to device implementations, so not permitted.
199 	 */
200 
201 	/* Other commands are guarded by the access right. */
202 	default:
203 		return false;
204 	}
205 }
206 
207 /*
208  * is_masked_device_ioctl_compat - same as the helper above, but checking the
209  * "compat" IOCTL commands.
210  *
211  * The IOCTL commands with special handling in compat-mode should behave the
212  * same as their non-compat counterparts.
213  */
214 static __attribute_const__ bool
is_masked_device_ioctl_compat(const unsigned int cmd)215 is_masked_device_ioctl_compat(const unsigned int cmd)
216 {
217 	switch (cmd) {
218 	/* FICLONE is permitted, same as in the non-compat variant. */
219 	case FICLONE:
220 		return true;
221 
222 #if defined(CONFIG_X86_64)
223 	/*
224 	 * FS_IOC_RESVSP_32, FS_IOC_RESVSP64_32, FS_IOC_UNRESVSP_32,
225 	 * FS_IOC_UNRESVSP64_32, FS_IOC_ZERO_RANGE_32: not blanket-permitted,
226 	 * for consistency with their non-compat variants.
227 	 */
228 	case FS_IOC_RESVSP_32:
229 	case FS_IOC_RESVSP64_32:
230 	case FS_IOC_UNRESVSP_32:
231 	case FS_IOC_UNRESVSP64_32:
232 	case FS_IOC_ZERO_RANGE_32:
233 #endif
234 
235 	/*
236 	 * FS_IOC32_GETFLAGS, FS_IOC32_SETFLAGS are forwarded to their device
237 	 * implementations.
238 	 */
239 	case FS_IOC32_GETFLAGS:
240 	case FS_IOC32_SETFLAGS:
241 		return false;
242 	default:
243 		return is_masked_device_ioctl(cmd);
244 	}
245 }
246 
247 /* Ruleset management */
248 
get_inode_object(struct inode * const inode)249 static struct landlock_object *get_inode_object(struct inode *const inode)
250 {
251 	struct landlock_object *object, *new_object;
252 	struct landlock_inode_security *inode_sec = landlock_inode(inode);
253 
254 	rcu_read_lock();
255 retry:
256 	object = rcu_dereference(inode_sec->object);
257 	if (object) {
258 		if (likely(refcount_inc_not_zero(&object->usage))) {
259 			rcu_read_unlock();
260 			return object;
261 		}
262 		/*
263 		 * We are racing with release_inode(), the object is going
264 		 * away.  Wait for release_inode(), then retry.
265 		 */
266 		spin_lock(&object->lock);
267 		spin_unlock(&object->lock);
268 		goto retry;
269 	}
270 	rcu_read_unlock();
271 
272 	/*
273 	 * If there is no object tied to @inode, then create a new one (without
274 	 * holding any locks).
275 	 */
276 	new_object = landlock_create_object(&landlock_fs_underops, inode);
277 	if (IS_ERR(new_object))
278 		return new_object;
279 
280 	/*
281 	 * Protects against concurrent calls to get_inode_object() or
282 	 * hook_sb_delete().
283 	 */
284 	spin_lock(&inode->i_lock);
285 	if (unlikely(rcu_access_pointer(inode_sec->object))) {
286 		/* Someone else just created the object, bail out and retry. */
287 		spin_unlock(&inode->i_lock);
288 		kfree(new_object);
289 
290 		rcu_read_lock();
291 		goto retry;
292 	}
293 
294 	/*
295 	 * @inode will be released by hook_sb_delete() on its superblock
296 	 * shutdown, or by release_inode() when no more ruleset references the
297 	 * related object.
298 	 */
299 	ihold(inode);
300 	rcu_assign_pointer(inode_sec->object, new_object);
301 	spin_unlock(&inode->i_lock);
302 	return new_object;
303 }
304 
305 /* All access rights that can be tied to files. */
306 /* clang-format off */
307 #define ACCESS_FILE ( \
308 	LANDLOCK_ACCESS_FS_EXECUTE | \
309 	LANDLOCK_ACCESS_FS_WRITE_FILE | \
310 	LANDLOCK_ACCESS_FS_READ_FILE | \
311 	LANDLOCK_ACCESS_FS_TRUNCATE | \
312 	LANDLOCK_ACCESS_FS_IOCTL_DEV)
313 /* clang-format on */
314 
315 /*
316  * @path: Should have been checked by get_path_from_fd().
317  */
landlock_append_fs_rule(struct landlock_ruleset * const ruleset,const struct path * const path,access_mask_t access_rights)318 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
319 			    const struct path *const path,
320 			    access_mask_t access_rights)
321 {
322 	int err;
323 	struct landlock_id id = {
324 		.type = LANDLOCK_KEY_INODE,
325 	};
326 
327 	/* Files only get access rights that make sense. */
328 	if (!d_is_dir(path->dentry) &&
329 	    (access_rights | ACCESS_FILE) != ACCESS_FILE)
330 		return -EINVAL;
331 	if (WARN_ON_ONCE(ruleset->num_layers != 1))
332 		return -EINVAL;
333 
334 	/* Transforms relative access rights to absolute ones. */
335 	access_rights |= LANDLOCK_MASK_ACCESS_FS &
336 			 ~landlock_get_fs_access_mask(ruleset, 0);
337 	id.key.object = get_inode_object(d_backing_inode(path->dentry));
338 	if (IS_ERR(id.key.object))
339 		return PTR_ERR(id.key.object);
340 	mutex_lock(&ruleset->lock);
341 	err = landlock_insert_rule(ruleset, id, access_rights);
342 	mutex_unlock(&ruleset->lock);
343 	/*
344 	 * No need to check for an error because landlock_insert_rule()
345 	 * increments the refcount for the new object if needed.
346 	 */
347 	landlock_put_object(id.key.object);
348 	return err;
349 }
350 
351 /* Access-control management */
352 
353 /*
354  * The lifetime of the returned rule is tied to @domain.
355  *
356  * Returns NULL if no rule is found or if @dentry is negative.
357  */
358 static const struct landlock_rule *
find_rule(const struct landlock_ruleset * const domain,const struct dentry * const dentry)359 find_rule(const struct landlock_ruleset *const domain,
360 	  const struct dentry *const dentry)
361 {
362 	const struct landlock_rule *rule;
363 	const struct inode *inode;
364 	struct landlock_id id = {
365 		.type = LANDLOCK_KEY_INODE,
366 	};
367 
368 	/* Ignores nonexistent leafs. */
369 	if (d_is_negative(dentry))
370 		return NULL;
371 
372 	inode = d_backing_inode(dentry);
373 	rcu_read_lock();
374 	id.key.object = rcu_dereference(landlock_inode(inode)->object);
375 	rule = landlock_find_rule(domain, id);
376 	rcu_read_unlock();
377 	return rule;
378 }
379 
380 /*
381  * Allows access to pseudo filesystems that will never be mountable (e.g.
382  * sockfs, pipefs), but can still be reachable through
383  * /proc/<pid>/fd/<file-descriptor>
384  */
is_nouser_or_private(const struct dentry * dentry)385 static bool is_nouser_or_private(const struct dentry *dentry)
386 {
387 	return (dentry->d_sb->s_flags & SB_NOUSER) ||
388 	       (d_is_positive(dentry) &&
389 		unlikely(IS_PRIVATE(d_backing_inode(dentry))));
390 }
391 
392 static const struct access_masks any_fs = {
393 	.fs = ~0,
394 };
395 
get_current_fs_domain(void)396 static const struct landlock_ruleset *get_current_fs_domain(void)
397 {
398 	return landlock_get_applicable_domain(landlock_get_current_domain(),
399 					      any_fs);
400 }
401 
402 /*
403  * Check that a destination file hierarchy has more restrictions than a source
404  * file hierarchy.  This is only used for link and rename actions.
405  *
406  * @layer_masks_child2: Optional child masks.
407  */
no_more_access(const layer_mask_t (* const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],const layer_mask_t (* const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],const bool child1_is_directory,const layer_mask_t (* const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],const layer_mask_t (* const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],const bool child2_is_directory)408 static bool no_more_access(
409 	const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
410 	const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
411 	const bool child1_is_directory,
412 	const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
413 	const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
414 	const bool child2_is_directory)
415 {
416 	unsigned long access_bit;
417 
418 	for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2);
419 	     access_bit++) {
420 		/* Ignores accesses that only make sense for directories. */
421 		const bool is_file_access =
422 			!!(BIT_ULL(access_bit) & ACCESS_FILE);
423 
424 		if (child1_is_directory || is_file_access) {
425 			/*
426 			 * Checks if the destination restrictions are a
427 			 * superset of the source ones (i.e. inherited access
428 			 * rights without child exceptions):
429 			 * restrictions(parent2) >= restrictions(child1)
430 			 */
431 			if ((((*layer_masks_parent1)[access_bit] &
432 			      (*layer_masks_child1)[access_bit]) |
433 			     (*layer_masks_parent2)[access_bit]) !=
434 			    (*layer_masks_parent2)[access_bit])
435 				return false;
436 		}
437 
438 		if (!layer_masks_child2)
439 			continue;
440 		if (child2_is_directory || is_file_access) {
441 			/*
442 			 * Checks inverted restrictions for RENAME_EXCHANGE:
443 			 * restrictions(parent1) >= restrictions(child2)
444 			 */
445 			if ((((*layer_masks_parent2)[access_bit] &
446 			      (*layer_masks_child2)[access_bit]) |
447 			     (*layer_masks_parent1)[access_bit]) !=
448 			    (*layer_masks_parent1)[access_bit])
449 				return false;
450 		}
451 	}
452 	return true;
453 }
454 
455 #define NMA_TRUE(...) KUNIT_EXPECT_TRUE(test, no_more_access(__VA_ARGS__))
456 #define NMA_FALSE(...) KUNIT_EXPECT_FALSE(test, no_more_access(__VA_ARGS__))
457 
458 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
459 
test_no_more_access(struct kunit * const test)460 static void test_no_more_access(struct kunit *const test)
461 {
462 	const layer_mask_t rx0[LANDLOCK_NUM_ACCESS_FS] = {
463 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
464 		[BIT_INDEX(LANDLOCK_ACCESS_FS_READ_FILE)] = BIT_ULL(0),
465 	};
466 	const layer_mask_t mx0[LANDLOCK_NUM_ACCESS_FS] = {
467 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
468 		[BIT_INDEX(LANDLOCK_ACCESS_FS_MAKE_REG)] = BIT_ULL(0),
469 	};
470 	const layer_mask_t x0[LANDLOCK_NUM_ACCESS_FS] = {
471 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
472 	};
473 	const layer_mask_t x1[LANDLOCK_NUM_ACCESS_FS] = {
474 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(1),
475 	};
476 	const layer_mask_t x01[LANDLOCK_NUM_ACCESS_FS] = {
477 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0) |
478 							  BIT_ULL(1),
479 	};
480 	const layer_mask_t allows_all[LANDLOCK_NUM_ACCESS_FS] = {};
481 
482 	/* Checks without restriction. */
483 	NMA_TRUE(&x0, &allows_all, false, &allows_all, NULL, false);
484 	NMA_TRUE(&allows_all, &x0, false, &allows_all, NULL, false);
485 	NMA_FALSE(&x0, &x0, false, &allows_all, NULL, false);
486 
487 	/*
488 	 * Checks that we can only refer a file if no more access could be
489 	 * inherited.
490 	 */
491 	NMA_TRUE(&x0, &x0, false, &rx0, NULL, false);
492 	NMA_TRUE(&rx0, &rx0, false, &rx0, NULL, false);
493 	NMA_FALSE(&rx0, &rx0, false, &x0, NULL, false);
494 	NMA_FALSE(&rx0, &rx0, false, &x1, NULL, false);
495 
496 	/* Checks allowed referring with different nested domains. */
497 	NMA_TRUE(&x0, &x1, false, &x0, NULL, false);
498 	NMA_TRUE(&x1, &x0, false, &x0, NULL, false);
499 	NMA_TRUE(&x0, &x01, false, &x0, NULL, false);
500 	NMA_TRUE(&x0, &x01, false, &rx0, NULL, false);
501 	NMA_TRUE(&x01, &x0, false, &x0, NULL, false);
502 	NMA_TRUE(&x01, &x0, false, &rx0, NULL, false);
503 	NMA_FALSE(&x01, &x01, false, &x0, NULL, false);
504 
505 	/* Checks that file access rights are also enforced for a directory. */
506 	NMA_FALSE(&rx0, &rx0, true, &x0, NULL, false);
507 
508 	/* Checks that directory access rights don't impact file referring... */
509 	NMA_TRUE(&mx0, &mx0, false, &x0, NULL, false);
510 	/* ...but only directory referring. */
511 	NMA_FALSE(&mx0, &mx0, true, &x0, NULL, false);
512 
513 	/* Checks directory exchange. */
514 	NMA_TRUE(&mx0, &mx0, true, &mx0, &mx0, true);
515 	NMA_TRUE(&mx0, &mx0, true, &mx0, &x0, true);
516 	NMA_FALSE(&mx0, &mx0, true, &x0, &mx0, true);
517 	NMA_FALSE(&mx0, &mx0, true, &x0, &x0, true);
518 	NMA_FALSE(&mx0, &mx0, true, &x1, &x1, true);
519 
520 	/* Checks file exchange with directory access rights... */
521 	NMA_TRUE(&mx0, &mx0, false, &mx0, &mx0, false);
522 	NMA_TRUE(&mx0, &mx0, false, &mx0, &x0, false);
523 	NMA_TRUE(&mx0, &mx0, false, &x0, &mx0, false);
524 	NMA_TRUE(&mx0, &mx0, false, &x0, &x0, false);
525 	/* ...and with file access rights. */
526 	NMA_TRUE(&rx0, &rx0, false, &rx0, &rx0, false);
527 	NMA_TRUE(&rx0, &rx0, false, &rx0, &x0, false);
528 	NMA_FALSE(&rx0, &rx0, false, &x0, &rx0, false);
529 	NMA_FALSE(&rx0, &rx0, false, &x0, &x0, false);
530 	NMA_FALSE(&rx0, &rx0, false, &x1, &x1, false);
531 
532 	/*
533 	 * Allowing the following requests should not be a security risk
534 	 * because domain 0 denies execute access, and domain 1 is always
535 	 * nested with domain 0.  However, adding an exception for this case
536 	 * would mean to check all nested domains to make sure none can get
537 	 * more privileges (e.g. processes only sandboxed by domain 0).
538 	 * Moreover, this behavior (i.e. composition of N domains) could then
539 	 * be inconsistent compared to domain 1's ruleset alone (e.g. it might
540 	 * be denied to link/rename with domain 1's ruleset, whereas it would
541 	 * be allowed if nested on top of domain 0).  Another drawback would be
542 	 * to create a cover channel that could enable sandboxed processes to
543 	 * infer most of the filesystem restrictions from their domain.  To
544 	 * make it simple, efficient, safe, and more consistent, this case is
545 	 * always denied.
546 	 */
547 	NMA_FALSE(&x1, &x1, false, &x0, NULL, false);
548 	NMA_FALSE(&x1, &x1, false, &rx0, NULL, false);
549 	NMA_FALSE(&x1, &x1, true, &x0, NULL, false);
550 	NMA_FALSE(&x1, &x1, true, &rx0, NULL, false);
551 
552 	/* Checks the same case of exclusive domains with a file... */
553 	NMA_TRUE(&x1, &x1, false, &x01, NULL, false);
554 	NMA_FALSE(&x1, &x1, false, &x01, &x0, false);
555 	NMA_FALSE(&x1, &x1, false, &x01, &x01, false);
556 	NMA_FALSE(&x1, &x1, false, &x0, &x0, false);
557 	/* ...and with a directory. */
558 	NMA_FALSE(&x1, &x1, false, &x0, &x0, true);
559 	NMA_FALSE(&x1, &x1, true, &x0, &x0, false);
560 	NMA_FALSE(&x1, &x1, true, &x0, &x0, true);
561 }
562 
563 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
564 
565 #undef NMA_TRUE
566 #undef NMA_FALSE
567 
is_layer_masks_allowed(layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS])568 static bool is_layer_masks_allowed(
569 	layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
570 {
571 	return !memchr_inv(layer_masks, 0, sizeof(*layer_masks));
572 }
573 
574 /*
575  * Removes @layer_masks accesses that are not requested.
576  *
577  * Returns true if the request is allowed, false otherwise.
578  */
579 static bool
scope_to_request(const access_mask_t access_request,layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS])580 scope_to_request(const access_mask_t access_request,
581 		 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
582 {
583 	const unsigned long access_req = access_request;
584 	unsigned long access_bit;
585 
586 	if (WARN_ON_ONCE(!layer_masks))
587 		return true;
588 
589 	for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks))
590 		(*layer_masks)[access_bit] = 0;
591 
592 	return is_layer_masks_allowed(layer_masks);
593 }
594 
595 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
596 
test_scope_to_request_with_exec_none(struct kunit * const test)597 static void test_scope_to_request_with_exec_none(struct kunit *const test)
598 {
599 	/* Allows everything. */
600 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
601 
602 	/* Checks and scopes with execute. */
603 	KUNIT_EXPECT_TRUE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
604 						 &layer_masks));
605 	KUNIT_EXPECT_EQ(test, 0,
606 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
607 	KUNIT_EXPECT_EQ(test, 0,
608 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
609 }
610 
test_scope_to_request_with_exec_some(struct kunit * const test)611 static void test_scope_to_request_with_exec_some(struct kunit *const test)
612 {
613 	/* Denies execute and write. */
614 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
615 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
616 		[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
617 	};
618 
619 	/* Checks and scopes with execute. */
620 	KUNIT_EXPECT_FALSE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
621 						  &layer_masks));
622 	KUNIT_EXPECT_EQ(test, BIT_ULL(0),
623 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
624 	KUNIT_EXPECT_EQ(test, 0,
625 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
626 }
627 
test_scope_to_request_without_access(struct kunit * const test)628 static void test_scope_to_request_without_access(struct kunit *const test)
629 {
630 	/* Denies execute and write. */
631 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
632 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
633 		[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
634 	};
635 
636 	/* Checks and scopes without access request. */
637 	KUNIT_EXPECT_TRUE(test, scope_to_request(0, &layer_masks));
638 	KUNIT_EXPECT_EQ(test, 0,
639 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
640 	KUNIT_EXPECT_EQ(test, 0,
641 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
642 }
643 
644 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
645 
646 /*
647  * Returns true if there is at least one access right different than
648  * LANDLOCK_ACCESS_FS_REFER.
649  */
650 static bool
is_eacces(const layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS],const access_mask_t access_request)651 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
652 	  const access_mask_t access_request)
653 {
654 	unsigned long access_bit;
655 	/* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */
656 	const unsigned long access_check = access_request &
657 					   ~LANDLOCK_ACCESS_FS_REFER;
658 
659 	if (!layer_masks)
660 		return false;
661 
662 	for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) {
663 		if ((*layer_masks)[access_bit])
664 			return true;
665 	}
666 	return false;
667 }
668 
669 #define IE_TRUE(...) KUNIT_EXPECT_TRUE(test, is_eacces(__VA_ARGS__))
670 #define IE_FALSE(...) KUNIT_EXPECT_FALSE(test, is_eacces(__VA_ARGS__))
671 
672 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
673 
test_is_eacces_with_none(struct kunit * const test)674 static void test_is_eacces_with_none(struct kunit *const test)
675 {
676 	const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
677 
678 	IE_FALSE(&layer_masks, 0);
679 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
680 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
681 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
682 }
683 
test_is_eacces_with_refer(struct kunit * const test)684 static void test_is_eacces_with_refer(struct kunit *const test)
685 {
686 	const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
687 		[BIT_INDEX(LANDLOCK_ACCESS_FS_REFER)] = BIT_ULL(0),
688 	};
689 
690 	IE_FALSE(&layer_masks, 0);
691 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
692 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
693 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
694 }
695 
test_is_eacces_with_write(struct kunit * const test)696 static void test_is_eacces_with_write(struct kunit *const test)
697 {
698 	const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
699 		[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(0),
700 	};
701 
702 	IE_FALSE(&layer_masks, 0);
703 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
704 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
705 
706 	IE_TRUE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
707 }
708 
709 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
710 
711 #undef IE_TRUE
712 #undef IE_FALSE
713 
714 /**
715  * is_access_to_paths_allowed - Check accesses for requests with a common path
716  *
717  * @domain: Domain to check against.
718  * @path: File hierarchy to walk through.
719  * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
720  *     equal to @layer_masks_parent2 (if any).  This is tied to the unique
721  *     requested path for most actions, or the source in case of a refer action
722  *     (i.e. rename or link), or the source and destination in case of
723  *     RENAME_EXCHANGE.
724  * @layer_masks_parent1: Pointer to a matrix of layer masks per access
725  *     masks, identifying the layers that forbid a specific access.  Bits from
726  *     this matrix can be unset according to the @path walk.  An empty matrix
727  *     means that @domain allows all possible Landlock accesses (i.e. not only
728  *     those identified by @access_request_parent1).  This matrix can
729  *     initially refer to domain layer masks and, when the accesses for the
730  *     destination and source are the same, to requested layer masks.
731  * @dentry_child1: Dentry to the initial child of the parent1 path.  This
732  *     pointer must be NULL for non-refer actions (i.e. not link nor rename).
733  * @access_request_parent2: Similar to @access_request_parent1 but for a
734  *     request involving a source and a destination.  This refers to the
735  *     destination, except in case of RENAME_EXCHANGE where it also refers to
736  *     the source.  Must be set to 0 when using a simple path request.
737  * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
738  *     action.  This must be NULL otherwise.
739  * @dentry_child2: Dentry to the initial child of the parent2 path.  This
740  *     pointer is only set for RENAME_EXCHANGE actions and must be NULL
741  *     otherwise.
742  *
743  * This helper first checks that the destination has a superset of restrictions
744  * compared to the source (if any) for a common path.  Because of
745  * RENAME_EXCHANGE actions, source and destinations may be swapped.  It then
746  * checks that the collected accesses and the remaining ones are enough to
747  * allow the request.
748  *
749  * Returns:
750  * - true if the access request is granted;
751  * - false otherwise.
752  */
is_access_to_paths_allowed(const struct landlock_ruleset * const domain,const struct path * const path,const access_mask_t access_request_parent1,layer_mask_t (* const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],const struct dentry * const dentry_child1,const access_mask_t access_request_parent2,layer_mask_t (* const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],const struct dentry * const dentry_child2)753 static bool is_access_to_paths_allowed(
754 	const struct landlock_ruleset *const domain,
755 	const struct path *const path,
756 	const access_mask_t access_request_parent1,
757 	layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
758 	const struct dentry *const dentry_child1,
759 	const access_mask_t access_request_parent2,
760 	layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
761 	const struct dentry *const dentry_child2)
762 {
763 	bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check,
764 	     child1_is_directory = true, child2_is_directory = true;
765 	struct path walker_path;
766 	access_mask_t access_masked_parent1, access_masked_parent2;
767 	layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS],
768 		_layer_masks_child2[LANDLOCK_NUM_ACCESS_FS];
769 	layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL,
770 	(*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL;
771 
772 	if (!access_request_parent1 && !access_request_parent2)
773 		return true;
774 	if (WARN_ON_ONCE(!domain || !path))
775 		return true;
776 	if (is_nouser_or_private(path->dentry))
777 		return true;
778 	if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1))
779 		return false;
780 
781 	allowed_parent1 = is_layer_masks_allowed(layer_masks_parent1);
782 
783 	if (unlikely(layer_masks_parent2)) {
784 		if (WARN_ON_ONCE(!dentry_child1))
785 			return false;
786 
787 		allowed_parent2 = is_layer_masks_allowed(layer_masks_parent2);
788 
789 		/*
790 		 * For a double request, first check for potential privilege
791 		 * escalation by looking at domain handled accesses (which are
792 		 * a superset of the meaningful requested accesses).
793 		 */
794 		access_masked_parent1 = access_masked_parent2 =
795 			landlock_union_access_masks(domain).fs;
796 		is_dom_check = true;
797 	} else {
798 		if (WARN_ON_ONCE(dentry_child1 || dentry_child2))
799 			return false;
800 		/* For a simple request, only check for requested accesses. */
801 		access_masked_parent1 = access_request_parent1;
802 		access_masked_parent2 = access_request_parent2;
803 		is_dom_check = false;
804 	}
805 
806 	if (unlikely(dentry_child1)) {
807 		landlock_unmask_layers(
808 			find_rule(domain, dentry_child1),
809 			landlock_init_layer_masks(
810 				domain, LANDLOCK_MASK_ACCESS_FS,
811 				&_layer_masks_child1, LANDLOCK_KEY_INODE),
812 			&_layer_masks_child1, ARRAY_SIZE(_layer_masks_child1));
813 		layer_masks_child1 = &_layer_masks_child1;
814 		child1_is_directory = d_is_dir(dentry_child1);
815 	}
816 	if (unlikely(dentry_child2)) {
817 		landlock_unmask_layers(
818 			find_rule(domain, dentry_child2),
819 			landlock_init_layer_masks(
820 				domain, LANDLOCK_MASK_ACCESS_FS,
821 				&_layer_masks_child2, LANDLOCK_KEY_INODE),
822 			&_layer_masks_child2, ARRAY_SIZE(_layer_masks_child2));
823 		layer_masks_child2 = &_layer_masks_child2;
824 		child2_is_directory = d_is_dir(dentry_child2);
825 	}
826 
827 	walker_path = *path;
828 	path_get(&walker_path);
829 	/*
830 	 * We need to walk through all the hierarchy to not miss any relevant
831 	 * restriction.
832 	 */
833 	while (true) {
834 		struct dentry *parent_dentry;
835 		const struct landlock_rule *rule;
836 
837 		/*
838 		 * If at least all accesses allowed on the destination are
839 		 * already allowed on the source, respectively if there is at
840 		 * least as much as restrictions on the destination than on the
841 		 * source, then we can safely refer files from the source to
842 		 * the destination without risking a privilege escalation.
843 		 * This also applies in the case of RENAME_EXCHANGE, which
844 		 * implies checks on both direction.  This is crucial for
845 		 * standalone multilayered security policies.  Furthermore,
846 		 * this helps avoid policy writers to shoot themselves in the
847 		 * foot.
848 		 */
849 		if (unlikely(is_dom_check &&
850 			     no_more_access(
851 				     layer_masks_parent1, layer_masks_child1,
852 				     child1_is_directory, layer_masks_parent2,
853 				     layer_masks_child2,
854 				     child2_is_directory))) {
855 			/*
856 			 * Now, downgrades the remaining checks from domain
857 			 * handled accesses to requested accesses.
858 			 */
859 			is_dom_check = false;
860 			access_masked_parent1 = access_request_parent1;
861 			access_masked_parent2 = access_request_parent2;
862 
863 			allowed_parent1 =
864 				allowed_parent1 ||
865 				scope_to_request(access_masked_parent1,
866 						 layer_masks_parent1);
867 			allowed_parent2 =
868 				allowed_parent2 ||
869 				scope_to_request(access_masked_parent2,
870 						 layer_masks_parent2);
871 
872 			/* Stops when all accesses are granted. */
873 			if (allowed_parent1 && allowed_parent2)
874 				break;
875 		}
876 
877 		rule = find_rule(domain, walker_path.dentry);
878 		allowed_parent1 = allowed_parent1 ||
879 				  landlock_unmask_layers(
880 					  rule, access_masked_parent1,
881 					  layer_masks_parent1,
882 					  ARRAY_SIZE(*layer_masks_parent1));
883 		allowed_parent2 = allowed_parent2 ||
884 				  landlock_unmask_layers(
885 					  rule, access_masked_parent2,
886 					  layer_masks_parent2,
887 					  ARRAY_SIZE(*layer_masks_parent2));
888 
889 		/* Stops when a rule from each layer grants access. */
890 		if (allowed_parent1 && allowed_parent2)
891 			break;
892 jump_up:
893 		if (walker_path.dentry == walker_path.mnt->mnt_root) {
894 			if (follow_up(&walker_path)) {
895 				/* Ignores hidden mount points. */
896 				goto jump_up;
897 			} else {
898 				/*
899 				 * Stops at the real root.  Denies access
900 				 * because not all layers have granted access.
901 				 */
902 				break;
903 			}
904 		}
905 		if (unlikely(IS_ROOT(walker_path.dentry))) {
906 			/*
907 			 * Stops at disconnected root directories.  Only allows
908 			 * access to internal filesystems (e.g. nsfs, which is
909 			 * reachable through /proc/<pid>/ns/<namespace>).
910 			 */
911 			if (walker_path.mnt->mnt_flags & MNT_INTERNAL) {
912 				allowed_parent1 = true;
913 				allowed_parent2 = true;
914 			}
915 			break;
916 		}
917 		parent_dentry = dget_parent(walker_path.dentry);
918 		dput(walker_path.dentry);
919 		walker_path.dentry = parent_dentry;
920 	}
921 	path_put(&walker_path);
922 
923 	return allowed_parent1 && allowed_parent2;
924 }
925 
current_check_access_path(const struct path * const path,access_mask_t access_request)926 static int current_check_access_path(const struct path *const path,
927 				     access_mask_t access_request)
928 {
929 	const struct landlock_ruleset *const dom = get_current_fs_domain();
930 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
931 
932 	if (!dom)
933 		return 0;
934 
935 	access_request = landlock_init_layer_masks(
936 		dom, access_request, &layer_masks, LANDLOCK_KEY_INODE);
937 	if (is_access_to_paths_allowed(dom, path, access_request, &layer_masks,
938 				       NULL, 0, NULL, NULL))
939 		return 0;
940 
941 	return -EACCES;
942 }
943 
get_mode_access(const umode_t mode)944 static __attribute_const__ access_mask_t get_mode_access(const umode_t mode)
945 {
946 	switch (mode & S_IFMT) {
947 	case S_IFLNK:
948 		return LANDLOCK_ACCESS_FS_MAKE_SYM;
949 	case S_IFDIR:
950 		return LANDLOCK_ACCESS_FS_MAKE_DIR;
951 	case S_IFCHR:
952 		return LANDLOCK_ACCESS_FS_MAKE_CHAR;
953 	case S_IFBLK:
954 		return LANDLOCK_ACCESS_FS_MAKE_BLOCK;
955 	case S_IFIFO:
956 		return LANDLOCK_ACCESS_FS_MAKE_FIFO;
957 	case S_IFSOCK:
958 		return LANDLOCK_ACCESS_FS_MAKE_SOCK;
959 	case S_IFREG:
960 	case 0:
961 		/* A zero mode translates to S_IFREG. */
962 	default:
963 		/* Treats weird files as regular files. */
964 		return LANDLOCK_ACCESS_FS_MAKE_REG;
965 	}
966 }
967 
maybe_remove(const struct dentry * const dentry)968 static access_mask_t maybe_remove(const struct dentry *const dentry)
969 {
970 	if (d_is_negative(dentry))
971 		return 0;
972 	return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR :
973 				  LANDLOCK_ACCESS_FS_REMOVE_FILE;
974 }
975 
976 /**
977  * collect_domain_accesses - Walk through a file path and collect accesses
978  *
979  * @domain: Domain to check against.
980  * @mnt_root: Last directory to check.
981  * @dir: Directory to start the walk from.
982  * @layer_masks_dom: Where to store the collected accesses.
983  *
984  * This helper is useful to begin a path walk from the @dir directory to a
985  * @mnt_root directory used as a mount point.  This mount point is the common
986  * ancestor between the source and the destination of a renamed and linked
987  * file.  While walking from @dir to @mnt_root, we record all the domain's
988  * allowed accesses in @layer_masks_dom.
989  *
990  * This is similar to is_access_to_paths_allowed() but much simpler because it
991  * only handles walking on the same mount point and only checks one set of
992  * accesses.
993  *
994  * Returns:
995  * - true if all the domain access rights are allowed for @dir;
996  * - false if the walk reached @mnt_root.
997  */
collect_domain_accesses(const struct landlock_ruleset * const domain,const struct dentry * const mnt_root,struct dentry * dir,layer_mask_t (* const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])998 static bool collect_domain_accesses(
999 	const struct landlock_ruleset *const domain,
1000 	const struct dentry *const mnt_root, struct dentry *dir,
1001 	layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
1002 {
1003 	unsigned long access_dom;
1004 	bool ret = false;
1005 
1006 	if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom))
1007 		return true;
1008 	if (is_nouser_or_private(dir))
1009 		return true;
1010 
1011 	access_dom = landlock_init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
1012 					       layer_masks_dom,
1013 					       LANDLOCK_KEY_INODE);
1014 
1015 	dget(dir);
1016 	while (true) {
1017 		struct dentry *parent_dentry;
1018 
1019 		/* Gets all layers allowing all domain accesses. */
1020 		if (landlock_unmask_layers(find_rule(domain, dir), access_dom,
1021 					   layer_masks_dom,
1022 					   ARRAY_SIZE(*layer_masks_dom))) {
1023 			/*
1024 			 * Stops when all handled accesses are allowed by at
1025 			 * least one rule in each layer.
1026 			 */
1027 			ret = true;
1028 			break;
1029 		}
1030 
1031 		/* We should not reach a root other than @mnt_root. */
1032 		if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir)))
1033 			break;
1034 
1035 		parent_dentry = dget_parent(dir);
1036 		dput(dir);
1037 		dir = parent_dentry;
1038 	}
1039 	dput(dir);
1040 	return ret;
1041 }
1042 
1043 /**
1044  * current_check_refer_path - Check if a rename or link action is allowed
1045  *
1046  * @old_dentry: File or directory requested to be moved or linked.
1047  * @new_dir: Destination parent directory.
1048  * @new_dentry: Destination file or directory.
1049  * @removable: Sets to true if it is a rename operation.
1050  * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
1051  *
1052  * Because of its unprivileged constraints, Landlock relies on file hierarchies
1053  * (and not only inodes) to tie access rights to files.  Being able to link or
1054  * rename a file hierarchy brings some challenges.  Indeed, moving or linking a
1055  * file (i.e. creating a new reference to an inode) can have an impact on the
1056  * actions allowed for a set of files if it would change its parent directory
1057  * (i.e. reparenting).
1058  *
1059  * To avoid trivial access right bypasses, Landlock first checks if the file or
1060  * directory requested to be moved would gain new access rights inherited from
1061  * its new hierarchy.  Before returning any error, Landlock then checks that
1062  * the parent source hierarchy and the destination hierarchy would allow the
1063  * link or rename action.  If it is not the case, an error with EACCES is
1064  * returned to inform user space that there is no way to remove or create the
1065  * requested source file type.  If it should be allowed but the new inherited
1066  * access rights would be greater than the source access rights, then the
1067  * kernel returns an error with EXDEV.  Prioritizing EACCES over EXDEV enables
1068  * user space to abort the whole operation if there is no way to do it, or to
1069  * manually copy the source to the destination if this remains allowed, e.g.
1070  * because file creation is allowed on the destination directory but not direct
1071  * linking.
1072  *
1073  * To achieve this goal, the kernel needs to compare two file hierarchies: the
1074  * one identifying the source file or directory (including itself), and the
1075  * destination one.  This can be seen as a multilayer partial ordering problem.
1076  * The kernel walks through these paths and collects in a matrix the access
1077  * rights that are denied per layer.  These matrices are then compared to see
1078  * if the destination one has more (or the same) restrictions as the source
1079  * one.  If this is the case, the requested action will not return EXDEV, which
1080  * doesn't mean the action is allowed.  The parent hierarchy of the source
1081  * (i.e. parent directory), and the destination hierarchy must also be checked
1082  * to verify that they explicitly allow such action (i.e.  referencing,
1083  * creation and potentially removal rights).  The kernel implementation is then
1084  * required to rely on potentially four matrices of access rights: one for the
1085  * source file or directory (i.e. the child), a potentially other one for the
1086  * other source/destination (in case of RENAME_EXCHANGE), one for the source
1087  * parent hierarchy and a last one for the destination hierarchy.  These
1088  * ephemeral matrices take some space on the stack, which limits the number of
1089  * layers to a deemed reasonable number: 16.
1090  *
1091  * Returns:
1092  * - 0 if access is allowed;
1093  * - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
1094  * - -EACCES if file removal or creation is denied.
1095  */
current_check_refer_path(struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry,const bool removable,const bool exchange)1096 static int current_check_refer_path(struct dentry *const old_dentry,
1097 				    const struct path *const new_dir,
1098 				    struct dentry *const new_dentry,
1099 				    const bool removable, const bool exchange)
1100 {
1101 	const struct landlock_ruleset *const dom = get_current_fs_domain();
1102 	bool allow_parent1, allow_parent2;
1103 	access_mask_t access_request_parent1, access_request_parent2;
1104 	struct path mnt_dir;
1105 	struct dentry *old_parent;
1106 	layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS] = {},
1107 		     layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS] = {};
1108 
1109 	if (!dom)
1110 		return 0;
1111 	if (WARN_ON_ONCE(dom->num_layers < 1))
1112 		return -EACCES;
1113 	if (unlikely(d_is_negative(old_dentry)))
1114 		return -ENOENT;
1115 	if (exchange) {
1116 		if (unlikely(d_is_negative(new_dentry)))
1117 			return -ENOENT;
1118 		access_request_parent1 =
1119 			get_mode_access(d_backing_inode(new_dentry)->i_mode);
1120 	} else {
1121 		access_request_parent1 = 0;
1122 	}
1123 	access_request_parent2 =
1124 		get_mode_access(d_backing_inode(old_dentry)->i_mode);
1125 	if (removable) {
1126 		access_request_parent1 |= maybe_remove(old_dentry);
1127 		access_request_parent2 |= maybe_remove(new_dentry);
1128 	}
1129 
1130 	/* The mount points are the same for old and new paths, cf. EXDEV. */
1131 	if (old_dentry->d_parent == new_dir->dentry) {
1132 		/*
1133 		 * The LANDLOCK_ACCESS_FS_REFER access right is not required
1134 		 * for same-directory referer (i.e. no reparenting).
1135 		 */
1136 		access_request_parent1 = landlock_init_layer_masks(
1137 			dom, access_request_parent1 | access_request_parent2,
1138 			&layer_masks_parent1, LANDLOCK_KEY_INODE);
1139 		if (is_access_to_paths_allowed(
1140 			    dom, new_dir, access_request_parent1,
1141 			    &layer_masks_parent1, NULL, 0, NULL, NULL))
1142 			return 0;
1143 		return -EACCES;
1144 	}
1145 
1146 	access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER;
1147 	access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER;
1148 
1149 	/* Saves the common mount point. */
1150 	mnt_dir.mnt = new_dir->mnt;
1151 	mnt_dir.dentry = new_dir->mnt->mnt_root;
1152 
1153 	/*
1154 	 * old_dentry may be the root of the common mount point and
1155 	 * !IS_ROOT(old_dentry) at the same time (e.g. with open_tree() and
1156 	 * OPEN_TREE_CLONE).  We do not need to call dget(old_parent) because
1157 	 * we keep a reference to old_dentry.
1158 	 */
1159 	old_parent = (old_dentry == mnt_dir.dentry) ? old_dentry :
1160 						      old_dentry->d_parent;
1161 
1162 	/* new_dir->dentry is equal to new_dentry->d_parent */
1163 	allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry, old_parent,
1164 						&layer_masks_parent1);
1165 	allow_parent2 = collect_domain_accesses(
1166 		dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2);
1167 
1168 	if (allow_parent1 && allow_parent2)
1169 		return 0;
1170 
1171 	/*
1172 	 * To be able to compare source and destination domain access rights,
1173 	 * take into account the @old_dentry access rights aggregated with its
1174 	 * parent access rights.  This will be useful to compare with the
1175 	 * destination parent access rights.
1176 	 */
1177 	if (is_access_to_paths_allowed(
1178 		    dom, &mnt_dir, access_request_parent1, &layer_masks_parent1,
1179 		    old_dentry, access_request_parent2, &layer_masks_parent2,
1180 		    exchange ? new_dentry : NULL))
1181 		return 0;
1182 
1183 	/*
1184 	 * This prioritizes EACCES over EXDEV for all actions, including
1185 	 * renames with RENAME_EXCHANGE.
1186 	 */
1187 	if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) ||
1188 		   is_eacces(&layer_masks_parent2, access_request_parent2)))
1189 		return -EACCES;
1190 
1191 	/*
1192 	 * Gracefully forbids reparenting if the destination directory
1193 	 * hierarchy is not a superset of restrictions of the source directory
1194 	 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the
1195 	 * source or the destination.
1196 	 */
1197 	return -EXDEV;
1198 }
1199 
1200 /* Inode hooks */
1201 
hook_inode_free_security_rcu(void * inode_security)1202 static void hook_inode_free_security_rcu(void *inode_security)
1203 {
1204 	struct landlock_inode_security *inode_sec;
1205 
1206 	/*
1207 	 * All inodes must already have been untied from their object by
1208 	 * release_inode() or hook_sb_delete().
1209 	 */
1210 	inode_sec = inode_security + landlock_blob_sizes.lbs_inode;
1211 	WARN_ON_ONCE(inode_sec->object);
1212 }
1213 
1214 /* Super-block hooks */
1215 
1216 /*
1217  * Release the inodes used in a security policy.
1218  *
1219  * Cf. fsnotify_unmount_inodes() and invalidate_inodes()
1220  */
hook_sb_delete(struct super_block * const sb)1221 static void hook_sb_delete(struct super_block *const sb)
1222 {
1223 	struct inode *inode, *prev_inode = NULL;
1224 
1225 	if (!landlock_initialized)
1226 		return;
1227 
1228 	spin_lock(&sb->s_inode_list_lock);
1229 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1230 		struct landlock_object *object;
1231 
1232 		/* Only handles referenced inodes. */
1233 		if (!atomic_read(&inode->i_count))
1234 			continue;
1235 
1236 		/*
1237 		 * Protects against concurrent modification of inode (e.g.
1238 		 * from get_inode_object()).
1239 		 */
1240 		spin_lock(&inode->i_lock);
1241 		/*
1242 		 * Checks I_FREEING and I_WILL_FREE  to protect against a race
1243 		 * condition when release_inode() just called iput(), which
1244 		 * could lead to a NULL dereference of inode->security or a
1245 		 * second call to iput() for the same Landlock object.  Also
1246 		 * checks I_NEW because such inode cannot be tied to an object.
1247 		 */
1248 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
1249 			spin_unlock(&inode->i_lock);
1250 			continue;
1251 		}
1252 
1253 		rcu_read_lock();
1254 		object = rcu_dereference(landlock_inode(inode)->object);
1255 		if (!object) {
1256 			rcu_read_unlock();
1257 			spin_unlock(&inode->i_lock);
1258 			continue;
1259 		}
1260 		/* Keeps a reference to this inode until the next loop walk. */
1261 		__iget(inode);
1262 		spin_unlock(&inode->i_lock);
1263 
1264 		/*
1265 		 * If there is no concurrent release_inode() ongoing, then we
1266 		 * are in charge of calling iput() on this inode, otherwise we
1267 		 * will just wait for it to finish.
1268 		 */
1269 		spin_lock(&object->lock);
1270 		if (object->underobj == inode) {
1271 			object->underobj = NULL;
1272 			spin_unlock(&object->lock);
1273 			rcu_read_unlock();
1274 
1275 			/*
1276 			 * Because object->underobj was not NULL,
1277 			 * release_inode() and get_inode_object() guarantee
1278 			 * that it is safe to reset
1279 			 * landlock_inode(inode)->object while it is not NULL.
1280 			 * It is therefore not necessary to lock inode->i_lock.
1281 			 */
1282 			rcu_assign_pointer(landlock_inode(inode)->object, NULL);
1283 			/*
1284 			 * At this point, we own the ihold() reference that was
1285 			 * originally set up by get_inode_object() and the
1286 			 * __iget() reference that we just set in this loop
1287 			 * walk.  Therefore the following call to iput() will
1288 			 * not sleep nor drop the inode because there is now at
1289 			 * least two references to it.
1290 			 */
1291 			iput(inode);
1292 		} else {
1293 			spin_unlock(&object->lock);
1294 			rcu_read_unlock();
1295 		}
1296 
1297 		if (prev_inode) {
1298 			/*
1299 			 * At this point, we still own the __iget() reference
1300 			 * that we just set in this loop walk.  Therefore we
1301 			 * can drop the list lock and know that the inode won't
1302 			 * disappear from under us until the next loop walk.
1303 			 */
1304 			spin_unlock(&sb->s_inode_list_lock);
1305 			/*
1306 			 * We can now actually put the inode reference from the
1307 			 * previous loop walk, which is not needed anymore.
1308 			 */
1309 			iput(prev_inode);
1310 			cond_resched();
1311 			spin_lock(&sb->s_inode_list_lock);
1312 		}
1313 		prev_inode = inode;
1314 	}
1315 	spin_unlock(&sb->s_inode_list_lock);
1316 
1317 	/* Puts the inode reference from the last loop walk, if any. */
1318 	if (prev_inode)
1319 		iput(prev_inode);
1320 	/* Waits for pending iput() in release_inode(). */
1321 	wait_var_event(&landlock_superblock(sb)->inode_refs,
1322 		       !atomic_long_read(&landlock_superblock(sb)->inode_refs));
1323 }
1324 
1325 /*
1326  * Because a Landlock security policy is defined according to the filesystem
1327  * topology (i.e. the mount namespace), changing it may grant access to files
1328  * not previously allowed.
1329  *
1330  * To make it simple, deny any filesystem topology modification by landlocked
1331  * processes.  Non-landlocked processes may still change the namespace of a
1332  * landlocked process, but this kind of threat must be handled by a system-wide
1333  * access-control security policy.
1334  *
1335  * This could be lifted in the future if Landlock can safely handle mount
1336  * namespace updates requested by a landlocked process.  Indeed, we could
1337  * update the current domain (which is currently read-only) by taking into
1338  * account the accesses of the source and the destination of a new mount point.
1339  * However, it would also require to make all the child domains dynamically
1340  * inherit these new constraints.  Anyway, for backward compatibility reasons,
1341  * a dedicated user space option would be required (e.g. as a ruleset flag).
1342  */
hook_sb_mount(const char * const dev_name,const struct path * const path,const char * const type,const unsigned long flags,void * const data)1343 static int hook_sb_mount(const char *const dev_name,
1344 			 const struct path *const path, const char *const type,
1345 			 const unsigned long flags, void *const data)
1346 {
1347 	if (!get_current_fs_domain())
1348 		return 0;
1349 	return -EPERM;
1350 }
1351 
hook_move_mount(const struct path * const from_path,const struct path * const to_path)1352 static int hook_move_mount(const struct path *const from_path,
1353 			   const struct path *const to_path)
1354 {
1355 	if (!get_current_fs_domain())
1356 		return 0;
1357 	return -EPERM;
1358 }
1359 
1360 /*
1361  * Removing a mount point may reveal a previously hidden file hierarchy, which
1362  * may then grant access to files, which may have previously been forbidden.
1363  */
hook_sb_umount(struct vfsmount * const mnt,const int flags)1364 static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
1365 {
1366 	if (!get_current_fs_domain())
1367 		return 0;
1368 	return -EPERM;
1369 }
1370 
hook_sb_remount(struct super_block * const sb,void * const mnt_opts)1371 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
1372 {
1373 	if (!get_current_fs_domain())
1374 		return 0;
1375 	return -EPERM;
1376 }
1377 
1378 /*
1379  * pivot_root(2), like mount(2), changes the current mount namespace.  It must
1380  * then be forbidden for a landlocked process.
1381  *
1382  * However, chroot(2) may be allowed because it only changes the relative root
1383  * directory of the current process.  Moreover, it can be used to restrict the
1384  * view of the filesystem.
1385  */
hook_sb_pivotroot(const struct path * const old_path,const struct path * const new_path)1386 static int hook_sb_pivotroot(const struct path *const old_path,
1387 			     const struct path *const new_path)
1388 {
1389 	if (!get_current_fs_domain())
1390 		return 0;
1391 	return -EPERM;
1392 }
1393 
1394 /* Path hooks */
1395 
hook_path_link(struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry)1396 static int hook_path_link(struct dentry *const old_dentry,
1397 			  const struct path *const new_dir,
1398 			  struct dentry *const new_dentry)
1399 {
1400 	return current_check_refer_path(old_dentry, new_dir, new_dentry, false,
1401 					false);
1402 }
1403 
hook_path_rename(const struct path * const old_dir,struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry,const unsigned int flags)1404 static int hook_path_rename(const struct path *const old_dir,
1405 			    struct dentry *const old_dentry,
1406 			    const struct path *const new_dir,
1407 			    struct dentry *const new_dentry,
1408 			    const unsigned int flags)
1409 {
1410 	/* old_dir refers to old_dentry->d_parent and new_dir->mnt */
1411 	return current_check_refer_path(old_dentry, new_dir, new_dentry, true,
1412 					!!(flags & RENAME_EXCHANGE));
1413 }
1414 
hook_path_mkdir(const struct path * const dir,struct dentry * const dentry,const umode_t mode)1415 static int hook_path_mkdir(const struct path *const dir,
1416 			   struct dentry *const dentry, const umode_t mode)
1417 {
1418 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR);
1419 }
1420 
hook_path_mknod(const struct path * const dir,struct dentry * const dentry,const umode_t mode,const unsigned int dev)1421 static int hook_path_mknod(const struct path *const dir,
1422 			   struct dentry *const dentry, const umode_t mode,
1423 			   const unsigned int dev)
1424 {
1425 	return current_check_access_path(dir, get_mode_access(mode));
1426 }
1427 
hook_path_symlink(const struct path * const dir,struct dentry * const dentry,const char * const old_name)1428 static int hook_path_symlink(const struct path *const dir,
1429 			     struct dentry *const dentry,
1430 			     const char *const old_name)
1431 {
1432 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM);
1433 }
1434 
hook_path_unlink(const struct path * const dir,struct dentry * const dentry)1435 static int hook_path_unlink(const struct path *const dir,
1436 			    struct dentry *const dentry)
1437 {
1438 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE);
1439 }
1440 
hook_path_rmdir(const struct path * const dir,struct dentry * const dentry)1441 static int hook_path_rmdir(const struct path *const dir,
1442 			   struct dentry *const dentry)
1443 {
1444 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR);
1445 }
1446 
hook_path_truncate(const struct path * const path)1447 static int hook_path_truncate(const struct path *const path)
1448 {
1449 	return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE);
1450 }
1451 
1452 /* File hooks */
1453 
1454 /**
1455  * get_required_file_open_access - Get access needed to open a file
1456  *
1457  * @file: File being opened.
1458  *
1459  * Returns the access rights that are required for opening the given file,
1460  * depending on the file type and open mode.
1461  */
1462 static access_mask_t
get_required_file_open_access(const struct file * const file)1463 get_required_file_open_access(const struct file *const file)
1464 {
1465 	access_mask_t access = 0;
1466 
1467 	if (file->f_mode & FMODE_READ) {
1468 		/* A directory can only be opened in read mode. */
1469 		if (S_ISDIR(file_inode(file)->i_mode))
1470 			return LANDLOCK_ACCESS_FS_READ_DIR;
1471 		access = LANDLOCK_ACCESS_FS_READ_FILE;
1472 	}
1473 	if (file->f_mode & FMODE_WRITE)
1474 		access |= LANDLOCK_ACCESS_FS_WRITE_FILE;
1475 	/* __FMODE_EXEC is indeed part of f_flags, not f_mode. */
1476 	if (file->f_flags & __FMODE_EXEC)
1477 		access |= LANDLOCK_ACCESS_FS_EXECUTE;
1478 	return access;
1479 }
1480 
hook_file_alloc_security(struct file * const file)1481 static int hook_file_alloc_security(struct file *const file)
1482 {
1483 	/*
1484 	 * Grants all access rights, even if most of them are not checked later
1485 	 * on. It is more consistent.
1486 	 *
1487 	 * Notably, file descriptors for regular files can also be acquired
1488 	 * without going through the file_open hook, for example when using
1489 	 * memfd_create(2).
1490 	 */
1491 	landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS;
1492 	return 0;
1493 }
1494 
is_device(const struct file * const file)1495 static bool is_device(const struct file *const file)
1496 {
1497 	const struct inode *inode = file_inode(file);
1498 
1499 	return S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode);
1500 }
1501 
hook_file_open(struct file * const file)1502 static int hook_file_open(struct file *const file)
1503 {
1504 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
1505 	access_mask_t open_access_request, full_access_request, allowed_access,
1506 		optional_access;
1507 	const struct landlock_ruleset *const dom =
1508 		landlock_get_applicable_domain(
1509 			landlock_cred(file->f_cred)->domain, any_fs);
1510 
1511 	if (!dom)
1512 		return 0;
1513 
1514 	/*
1515 	 * Because a file may be opened with O_PATH, get_required_file_open_access()
1516 	 * may return 0.  This case will be handled with a future Landlock
1517 	 * evolution.
1518 	 */
1519 	open_access_request = get_required_file_open_access(file);
1520 
1521 	/*
1522 	 * We look up more access than what we immediately need for open(), so
1523 	 * that we can later authorize operations on opened files.
1524 	 */
1525 	optional_access = LANDLOCK_ACCESS_FS_TRUNCATE;
1526 	if (is_device(file))
1527 		optional_access |= LANDLOCK_ACCESS_FS_IOCTL_DEV;
1528 
1529 	full_access_request = open_access_request | optional_access;
1530 
1531 	if (is_access_to_paths_allowed(
1532 		    dom, &file->f_path,
1533 		    landlock_init_layer_masks(dom, full_access_request,
1534 					      &layer_masks, LANDLOCK_KEY_INODE),
1535 		    &layer_masks, NULL, 0, NULL, NULL)) {
1536 		allowed_access = full_access_request;
1537 	} else {
1538 		unsigned long access_bit;
1539 		const unsigned long access_req = full_access_request;
1540 
1541 		/*
1542 		 * Calculate the actual allowed access rights from layer_masks.
1543 		 * Add each access right to allowed_access which has not been
1544 		 * vetoed by any layer.
1545 		 */
1546 		allowed_access = 0;
1547 		for_each_set_bit(access_bit, &access_req,
1548 				 ARRAY_SIZE(layer_masks)) {
1549 			if (!layer_masks[access_bit])
1550 				allowed_access |= BIT_ULL(access_bit);
1551 		}
1552 	}
1553 
1554 	/*
1555 	 * For operations on already opened files (i.e. ftruncate()), it is the
1556 	 * access rights at the time of open() which decide whether the
1557 	 * operation is permitted. Therefore, we record the relevant subset of
1558 	 * file access rights in the opened struct file.
1559 	 */
1560 	landlock_file(file)->allowed_access = allowed_access;
1561 
1562 	if ((open_access_request & allowed_access) == open_access_request)
1563 		return 0;
1564 
1565 	return -EACCES;
1566 }
1567 
hook_file_truncate(struct file * const file)1568 static int hook_file_truncate(struct file *const file)
1569 {
1570 	/*
1571 	 * Allows truncation if the truncate right was available at the time of
1572 	 * opening the file, to get a consistent access check as for read, write
1573 	 * and execute operations.
1574 	 *
1575 	 * Note: For checks done based on the file's Landlock allowed access, we
1576 	 * enforce them independently of whether the current thread is in a
1577 	 * Landlock domain, so that open files passed between independent
1578 	 * processes retain their behaviour.
1579 	 */
1580 	if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE)
1581 		return 0;
1582 	return -EACCES;
1583 }
1584 
hook_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1585 static int hook_file_ioctl(struct file *file, unsigned int cmd,
1586 			   unsigned long arg)
1587 {
1588 	access_mask_t allowed_access = landlock_file(file)->allowed_access;
1589 
1590 	/*
1591 	 * It is the access rights at the time of opening the file which
1592 	 * determine whether IOCTL can be used on the opened file later.
1593 	 *
1594 	 * The access right is attached to the opened file in hook_file_open().
1595 	 */
1596 	if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV)
1597 		return 0;
1598 
1599 	if (!is_device(file))
1600 		return 0;
1601 
1602 	if (is_masked_device_ioctl(cmd))
1603 		return 0;
1604 
1605 	return -EACCES;
1606 }
1607 
hook_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)1608 static int hook_file_ioctl_compat(struct file *file, unsigned int cmd,
1609 				  unsigned long arg)
1610 {
1611 	access_mask_t allowed_access = landlock_file(file)->allowed_access;
1612 
1613 	/*
1614 	 * It is the access rights at the time of opening the file which
1615 	 * determine whether IOCTL can be used on the opened file later.
1616 	 *
1617 	 * The access right is attached to the opened file in hook_file_open().
1618 	 */
1619 	if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV)
1620 		return 0;
1621 
1622 	if (!is_device(file))
1623 		return 0;
1624 
1625 	if (is_masked_device_ioctl_compat(cmd))
1626 		return 0;
1627 
1628 	return -EACCES;
1629 }
1630 
hook_file_set_fowner(struct file * file)1631 static void hook_file_set_fowner(struct file *file)
1632 {
1633 	struct landlock_ruleset *new_dom, *prev_dom;
1634 
1635 	/*
1636 	 * Lock already held by __f_setown(), see commit 26f204380a3c ("fs: Fix
1637 	 * file_set_fowner LSM hook inconsistencies").
1638 	 */
1639 	lockdep_assert_held(&file_f_owner(file)->lock);
1640 	new_dom = landlock_get_current_domain();
1641 	landlock_get_ruleset(new_dom);
1642 	prev_dom = landlock_file(file)->fown_domain;
1643 	landlock_file(file)->fown_domain = new_dom;
1644 
1645 	/* Called in an RCU read-side critical section. */
1646 	landlock_put_ruleset_deferred(prev_dom);
1647 }
1648 
hook_file_free_security(struct file * file)1649 static void hook_file_free_security(struct file *file)
1650 {
1651 	landlock_put_ruleset_deferred(landlock_file(file)->fown_domain);
1652 }
1653 
1654 static struct security_hook_list landlock_hooks[] __ro_after_init = {
1655 	LSM_HOOK_INIT(inode_free_security_rcu, hook_inode_free_security_rcu),
1656 
1657 	LSM_HOOK_INIT(sb_delete, hook_sb_delete),
1658 	LSM_HOOK_INIT(sb_mount, hook_sb_mount),
1659 	LSM_HOOK_INIT(move_mount, hook_move_mount),
1660 	LSM_HOOK_INIT(sb_umount, hook_sb_umount),
1661 	LSM_HOOK_INIT(sb_remount, hook_sb_remount),
1662 	LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot),
1663 
1664 	LSM_HOOK_INIT(path_link, hook_path_link),
1665 	LSM_HOOK_INIT(path_rename, hook_path_rename),
1666 	LSM_HOOK_INIT(path_mkdir, hook_path_mkdir),
1667 	LSM_HOOK_INIT(path_mknod, hook_path_mknod),
1668 	LSM_HOOK_INIT(path_symlink, hook_path_symlink),
1669 	LSM_HOOK_INIT(path_unlink, hook_path_unlink),
1670 	LSM_HOOK_INIT(path_rmdir, hook_path_rmdir),
1671 	LSM_HOOK_INIT(path_truncate, hook_path_truncate),
1672 
1673 	LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security),
1674 	LSM_HOOK_INIT(file_open, hook_file_open),
1675 	LSM_HOOK_INIT(file_truncate, hook_file_truncate),
1676 	LSM_HOOK_INIT(file_ioctl, hook_file_ioctl),
1677 	LSM_HOOK_INIT(file_ioctl_compat, hook_file_ioctl_compat),
1678 	LSM_HOOK_INIT(file_set_fowner, hook_file_set_fowner),
1679 	LSM_HOOK_INIT(file_free_security, hook_file_free_security),
1680 };
1681 
landlock_add_fs_hooks(void)1682 __init void landlock_add_fs_hooks(void)
1683 {
1684 	security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks),
1685 			   &landlock_lsmid);
1686 }
1687 
1688 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
1689 
1690 /* clang-format off */
1691 static struct kunit_case test_cases[] = {
1692 	KUNIT_CASE(test_no_more_access),
1693 	KUNIT_CASE(test_scope_to_request_with_exec_none),
1694 	KUNIT_CASE(test_scope_to_request_with_exec_some),
1695 	KUNIT_CASE(test_scope_to_request_without_access),
1696 	KUNIT_CASE(test_is_eacces_with_none),
1697 	KUNIT_CASE(test_is_eacces_with_refer),
1698 	KUNIT_CASE(test_is_eacces_with_write),
1699 	{}
1700 };
1701 /* clang-format on */
1702 
1703 static struct kunit_suite test_suite = {
1704 	.name = "landlock_fs",
1705 	.test_cases = test_cases,
1706 };
1707 
1708 kunit_test_suite(test_suite);
1709 
1710 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
1711