1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include <net/devlink.h>
5 #include "ice_sched.h"
6
7 /**
8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9 * @pi: port information structure
10 * @info: Scheduler element information from firmware
11 *
12 * This function inserts the root node of the scheduling tree topology
13 * to the SW DB.
14 */
15 static int
ice_sched_add_root_node(struct ice_port_info * pi,struct ice_aqc_txsched_elem_data * info)16 ice_sched_add_root_node(struct ice_port_info *pi,
17 struct ice_aqc_txsched_elem_data *info)
18 {
19 struct ice_sched_node *root;
20 struct ice_hw *hw;
21
22 if (!pi)
23 return -EINVAL;
24
25 hw = pi->hw;
26
27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28 if (!root)
29 return -ENOMEM;
30
31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 sizeof(*root->children), GFP_KERNEL);
33 if (!root->children) {
34 devm_kfree(ice_hw_to_dev(hw), root);
35 return -ENOMEM;
36 }
37
38 memcpy(&root->info, info, sizeof(*info));
39 pi->root = root;
40 return 0;
41 }
42
43 /**
44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46 * @teid: node TEID to search
47 *
48 * This function searches for a node matching the TEID in the scheduling tree
49 * from the SW DB. The search is recursive and is restricted by the number of
50 * layers it has searched through; stopping at the max supported layer.
51 *
52 * This function needs to be called when holding the port_info->sched_lock
53 */
54 struct ice_sched_node *
ice_sched_find_node_by_teid(struct ice_sched_node * start_node,u32 teid)55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56 {
57 u16 i;
58
59 /* The TEID is same as that of the start_node */
60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 return start_node;
62
63 /* The node has no children or is at the max layer */
64 if (!start_node->num_children ||
65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 return NULL;
68
69 /* Check if TEID matches to any of the children nodes */
70 for (i = 0; i < start_node->num_children; i++)
71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 return start_node->children[i];
73
74 /* Search within each child's sub-tree */
75 for (i = 0; i < start_node->num_children; i++) {
76 struct ice_sched_node *tmp;
77
78 tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 teid);
80 if (tmp)
81 return tmp;
82 }
83
84 return NULL;
85 }
86
87 /**
88 * ice_sched_find_next_vsi_node - find the next node for a given VSI
89 * @vsi_node: VSI support node to start search with
90 *
91 * Return: Next VSI support node, or NULL.
92 *
93 * The function returns a pointer to the next node from the VSI layer
94 * assigned to the given VSI, or NULL if there is no such a node.
95 */
96 static struct ice_sched_node *
ice_sched_find_next_vsi_node(struct ice_sched_node * vsi_node)97 ice_sched_find_next_vsi_node(struct ice_sched_node *vsi_node)
98 {
99 unsigned int vsi_handle = vsi_node->vsi_handle;
100
101 while ((vsi_node = vsi_node->sibling) != NULL)
102 if (vsi_node->vsi_handle == vsi_handle)
103 break;
104
105 return vsi_node;
106 }
107
108 /**
109 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
110 * @hw: pointer to the HW struct
111 * @cmd_opc: cmd opcode
112 * @elems_req: number of elements to request
113 * @buf: pointer to buffer
114 * @buf_size: buffer size in bytes
115 * @elems_resp: returns total number of elements response
116 * @cd: pointer to command details structure or NULL
117 *
118 * This function sends a scheduling elements cmd (cmd_opc)
119 */
120 static int
ice_aqc_send_sched_elem_cmd(struct ice_hw * hw,enum ice_adminq_opc cmd_opc,u16 elems_req,void * buf,u16 buf_size,u16 * elems_resp,struct ice_sq_cd * cd)121 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
122 u16 elems_req, void *buf, u16 buf_size,
123 u16 *elems_resp, struct ice_sq_cd *cd)
124 {
125 struct ice_aqc_sched_elem_cmd *cmd;
126 struct ice_aq_desc desc;
127 int status;
128
129 cmd = &desc.params.sched_elem_cmd;
130 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
131 cmd->num_elem_req = cpu_to_le16(elems_req);
132 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
133 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
134 if (!status && elems_resp)
135 *elems_resp = le16_to_cpu(cmd->num_elem_resp);
136
137 return status;
138 }
139
140 /**
141 * ice_aq_query_sched_elems - query scheduler elements
142 * @hw: pointer to the HW struct
143 * @elems_req: number of elements to query
144 * @buf: pointer to buffer
145 * @buf_size: buffer size in bytes
146 * @elems_ret: returns total number of elements returned
147 * @cd: pointer to command details structure or NULL
148 *
149 * Query scheduling elements (0x0404)
150 */
151 int
ice_aq_query_sched_elems(struct ice_hw * hw,u16 elems_req,struct ice_aqc_txsched_elem_data * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)152 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
153 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
154 u16 *elems_ret, struct ice_sq_cd *cd)
155 {
156 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
157 elems_req, (void *)buf, buf_size,
158 elems_ret, cd);
159 }
160
161 /**
162 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
163 * @pi: port information structure
164 * @layer: Scheduler layer of the node
165 * @info: Scheduler element information from firmware
166 * @prealloc_node: preallocated ice_sched_node struct for SW DB
167 *
168 * This function inserts a scheduler node to the SW DB.
169 */
170 int
ice_sched_add_node(struct ice_port_info * pi,u8 layer,struct ice_aqc_txsched_elem_data * info,struct ice_sched_node * prealloc_node)171 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
172 struct ice_aqc_txsched_elem_data *info,
173 struct ice_sched_node *prealloc_node)
174 {
175 struct ice_aqc_txsched_elem_data elem;
176 struct ice_sched_node *parent;
177 struct ice_sched_node *node;
178 struct ice_hw *hw;
179 int status;
180
181 if (!pi)
182 return -EINVAL;
183
184 hw = pi->hw;
185
186 /* A valid parent node should be there */
187 parent = ice_sched_find_node_by_teid(pi->root,
188 le32_to_cpu(info->parent_teid));
189 if (!parent) {
190 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
191 le32_to_cpu(info->parent_teid));
192 return -EINVAL;
193 }
194
195 /* query the current node information from FW before adding it
196 * to the SW DB
197 */
198 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
199 if (status)
200 return status;
201
202 if (prealloc_node)
203 node = prealloc_node;
204 else
205 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
206 if (!node)
207 return -ENOMEM;
208 if (hw->max_children[layer]) {
209 node->children = devm_kcalloc(ice_hw_to_dev(hw),
210 hw->max_children[layer],
211 sizeof(*node->children), GFP_KERNEL);
212 if (!node->children) {
213 devm_kfree(ice_hw_to_dev(hw), node);
214 return -ENOMEM;
215 }
216 }
217
218 node->in_use = true;
219 node->parent = parent;
220 node->tx_sched_layer = layer;
221 parent->children[parent->num_children++] = node;
222 node->info = elem;
223 return 0;
224 }
225
226 /**
227 * ice_aq_delete_sched_elems - delete scheduler elements
228 * @hw: pointer to the HW struct
229 * @grps_req: number of groups to delete
230 * @buf: pointer to buffer
231 * @buf_size: buffer size in bytes
232 * @grps_del: returns total number of elements deleted
233 * @cd: pointer to command details structure or NULL
234 *
235 * Delete scheduling elements (0x040F)
236 */
237 static int
ice_aq_delete_sched_elems(struct ice_hw * hw,u16 grps_req,struct ice_aqc_delete_elem * buf,u16 buf_size,u16 * grps_del,struct ice_sq_cd * cd)238 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
239 struct ice_aqc_delete_elem *buf, u16 buf_size,
240 u16 *grps_del, struct ice_sq_cd *cd)
241 {
242 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
243 grps_req, (void *)buf, buf_size,
244 grps_del, cd);
245 }
246
247 /**
248 * ice_sched_remove_elems - remove nodes from HW
249 * @hw: pointer to the HW struct
250 * @parent: pointer to the parent node
251 * @node_teid: node teid to be deleted
252 *
253 * This function remove nodes from HW
254 */
255 static int
ice_sched_remove_elems(struct ice_hw * hw,struct ice_sched_node * parent,u32 node_teid)256 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
257 u32 node_teid)
258 {
259 DEFINE_RAW_FLEX(struct ice_aqc_delete_elem, buf, teid, 1);
260 u16 buf_size = __struct_size(buf);
261 u16 num_groups_removed = 0;
262 int status;
263
264 buf->hdr.parent_teid = parent->info.node_teid;
265 buf->hdr.num_elems = cpu_to_le16(1);
266 buf->teid[0] = cpu_to_le32(node_teid);
267
268 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
269 &num_groups_removed, NULL);
270 if (status || num_groups_removed != 1)
271 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
272 hw->adminq.sq_last_status);
273
274 return status;
275 }
276
277 /**
278 * ice_sched_get_first_node - get the first node of the given layer
279 * @pi: port information structure
280 * @parent: pointer the base node of the subtree
281 * @layer: layer number
282 *
283 * This function retrieves the first node of the given layer from the subtree
284 */
285 static struct ice_sched_node *
ice_sched_get_first_node(struct ice_port_info * pi,struct ice_sched_node * parent,u8 layer)286 ice_sched_get_first_node(struct ice_port_info *pi,
287 struct ice_sched_node *parent, u8 layer)
288 {
289 return pi->sib_head[parent->tc_num][layer];
290 }
291
292 /**
293 * ice_sched_get_tc_node - get pointer to TC node
294 * @pi: port information structure
295 * @tc: TC number
296 *
297 * This function returns the TC node pointer
298 */
ice_sched_get_tc_node(struct ice_port_info * pi,u8 tc)299 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
300 {
301 u8 i;
302
303 if (!pi || !pi->root)
304 return NULL;
305 for (i = 0; i < pi->root->num_children; i++)
306 if (pi->root->children[i]->tc_num == tc)
307 return pi->root->children[i];
308 return NULL;
309 }
310
311 /**
312 * ice_free_sched_node - Free a Tx scheduler node from SW DB
313 * @pi: port information structure
314 * @node: pointer to the ice_sched_node struct
315 *
316 * This function frees up a node from SW DB as well as from HW
317 *
318 * This function needs to be called with the port_info->sched_lock held
319 */
ice_free_sched_node(struct ice_port_info * pi,struct ice_sched_node * node)320 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
321 {
322 struct ice_sched_node *parent;
323 struct ice_hw *hw = pi->hw;
324 u8 i, j;
325
326 /* Free the children before freeing up the parent node
327 * The parent array is updated below and that shifts the nodes
328 * in the array. So always pick the first child if num children > 0
329 */
330 while (node->num_children)
331 ice_free_sched_node(pi, node->children[0]);
332
333 /* Leaf, TC and root nodes can't be deleted by SW */
334 if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
335 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
336 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
337 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
338 u32 teid = le32_to_cpu(node->info.node_teid);
339
340 ice_sched_remove_elems(hw, node->parent, teid);
341 }
342 parent = node->parent;
343 /* root has no parent */
344 if (parent) {
345 struct ice_sched_node *p;
346
347 /* update the parent */
348 for (i = 0; i < parent->num_children; i++)
349 if (parent->children[i] == node) {
350 for (j = i + 1; j < parent->num_children; j++)
351 parent->children[j - 1] =
352 parent->children[j];
353 parent->num_children--;
354 break;
355 }
356
357 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
358 while (p) {
359 if (p->sibling == node) {
360 p->sibling = node->sibling;
361 break;
362 }
363 p = p->sibling;
364 }
365
366 /* update the sibling head if head is getting removed */
367 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
368 pi->sib_head[node->tc_num][node->tx_sched_layer] =
369 node->sibling;
370 }
371
372 devm_kfree(ice_hw_to_dev(hw), node->children);
373 kfree(node->name);
374 xa_erase(&pi->sched_node_ids, node->id);
375 devm_kfree(ice_hw_to_dev(hw), node);
376 }
377
378 /**
379 * ice_aq_get_dflt_topo - gets default scheduler topology
380 * @hw: pointer to the HW struct
381 * @lport: logical port number
382 * @buf: pointer to buffer
383 * @buf_size: buffer size in bytes
384 * @num_branches: returns total number of queue to port branches
385 * @cd: pointer to command details structure or NULL
386 *
387 * Get default scheduler topology (0x400)
388 */
389 static int
ice_aq_get_dflt_topo(struct ice_hw * hw,u8 lport,struct ice_aqc_get_topo_elem * buf,u16 buf_size,u8 * num_branches,struct ice_sq_cd * cd)390 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
391 struct ice_aqc_get_topo_elem *buf, u16 buf_size,
392 u8 *num_branches, struct ice_sq_cd *cd)
393 {
394 struct ice_aqc_get_topo *cmd;
395 struct ice_aq_desc desc;
396 int status;
397
398 cmd = &desc.params.get_topo;
399 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
400 cmd->port_num = lport;
401 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
402 if (!status && num_branches)
403 *num_branches = cmd->num_branches;
404
405 return status;
406 }
407
408 /**
409 * ice_aq_add_sched_elems - adds scheduling element
410 * @hw: pointer to the HW struct
411 * @grps_req: the number of groups that are requested to be added
412 * @buf: pointer to buffer
413 * @buf_size: buffer size in bytes
414 * @grps_added: returns total number of groups added
415 * @cd: pointer to command details structure or NULL
416 *
417 * Add scheduling elements (0x0401)
418 */
419 static int
ice_aq_add_sched_elems(struct ice_hw * hw,u16 grps_req,struct ice_aqc_add_elem * buf,u16 buf_size,u16 * grps_added,struct ice_sq_cd * cd)420 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
421 struct ice_aqc_add_elem *buf, u16 buf_size,
422 u16 *grps_added, struct ice_sq_cd *cd)
423 {
424 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
425 grps_req, (void *)buf, buf_size,
426 grps_added, cd);
427 }
428
429 /**
430 * ice_aq_cfg_sched_elems - configures scheduler elements
431 * @hw: pointer to the HW struct
432 * @elems_req: number of elements to configure
433 * @buf: pointer to buffer
434 * @buf_size: buffer size in bytes
435 * @elems_cfgd: returns total number of elements configured
436 * @cd: pointer to command details structure or NULL
437 *
438 * Configure scheduling elements (0x0403)
439 */
440 static int
ice_aq_cfg_sched_elems(struct ice_hw * hw,u16 elems_req,struct ice_aqc_txsched_elem_data * buf,u16 buf_size,u16 * elems_cfgd,struct ice_sq_cd * cd)441 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
442 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
443 u16 *elems_cfgd, struct ice_sq_cd *cd)
444 {
445 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
446 elems_req, (void *)buf, buf_size,
447 elems_cfgd, cd);
448 }
449
450 /**
451 * ice_aq_move_sched_elems - move scheduler element (just 1 group)
452 * @hw: pointer to the HW struct
453 * @buf: pointer to buffer
454 * @buf_size: buffer size in bytes
455 * @grps_movd: returns total number of groups moved
456 *
457 * Move scheduling elements (0x0408)
458 */
459 int
ice_aq_move_sched_elems(struct ice_hw * hw,struct ice_aqc_move_elem * buf,u16 buf_size,u16 * grps_movd)460 ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf,
461 u16 buf_size, u16 *grps_movd)
462 {
463 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
464 1, buf, buf_size, grps_movd, NULL);
465 }
466
467 /**
468 * ice_aq_suspend_sched_elems - suspend scheduler elements
469 * @hw: pointer to the HW struct
470 * @elems_req: number of elements to suspend
471 * @buf: pointer to buffer
472 * @buf_size: buffer size in bytes
473 * @elems_ret: returns total number of elements suspended
474 * @cd: pointer to command details structure or NULL
475 *
476 * Suspend scheduling elements (0x0409)
477 */
478 static int
ice_aq_suspend_sched_elems(struct ice_hw * hw,u16 elems_req,__le32 * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)479 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
480 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
481 {
482 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
483 elems_req, (void *)buf, buf_size,
484 elems_ret, cd);
485 }
486
487 /**
488 * ice_aq_resume_sched_elems - resume scheduler elements
489 * @hw: pointer to the HW struct
490 * @elems_req: number of elements to resume
491 * @buf: pointer to buffer
492 * @buf_size: buffer size in bytes
493 * @elems_ret: returns total number of elements resumed
494 * @cd: pointer to command details structure or NULL
495 *
496 * resume scheduling elements (0x040A)
497 */
498 static int
ice_aq_resume_sched_elems(struct ice_hw * hw,u16 elems_req,__le32 * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)499 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
500 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
501 {
502 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
503 elems_req, (void *)buf, buf_size,
504 elems_ret, cd);
505 }
506
507 /**
508 * ice_aq_query_sched_res - query scheduler resource
509 * @hw: pointer to the HW struct
510 * @buf_size: buffer size in bytes
511 * @buf: pointer to buffer
512 * @cd: pointer to command details structure or NULL
513 *
514 * Query scheduler resource allocation (0x0412)
515 */
516 static int
ice_aq_query_sched_res(struct ice_hw * hw,u16 buf_size,struct ice_aqc_query_txsched_res_resp * buf,struct ice_sq_cd * cd)517 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
518 struct ice_aqc_query_txsched_res_resp *buf,
519 struct ice_sq_cd *cd)
520 {
521 struct ice_aq_desc desc;
522
523 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
524 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
525 }
526
527 /**
528 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
529 * @hw: pointer to the HW struct
530 * @num_nodes: number of nodes
531 * @node_teids: array of node teids to be suspended or resumed
532 * @suspend: true means suspend / false means resume
533 *
534 * This function suspends or resumes HW nodes
535 */
536 int
ice_sched_suspend_resume_elems(struct ice_hw * hw,u8 num_nodes,u32 * node_teids,bool suspend)537 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
538 bool suspend)
539 {
540 u16 i, buf_size, num_elem_ret = 0;
541 __le32 *buf;
542 int status;
543
544 buf_size = sizeof(*buf) * num_nodes;
545 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
546 if (!buf)
547 return -ENOMEM;
548
549 for (i = 0; i < num_nodes; i++)
550 buf[i] = cpu_to_le32(node_teids[i]);
551
552 if (suspend)
553 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
554 buf_size, &num_elem_ret,
555 NULL);
556 else
557 status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
558 buf_size, &num_elem_ret,
559 NULL);
560 if (status || num_elem_ret != num_nodes)
561 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
562
563 devm_kfree(ice_hw_to_dev(hw), buf);
564 return status;
565 }
566
567 /**
568 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
569 * @hw: pointer to the HW struct
570 * @vsi_handle: VSI handle
571 * @tc: TC number
572 * @new_numqs: number of queues
573 */
574 static int
ice_alloc_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 new_numqs)575 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
576 {
577 struct ice_vsi_ctx *vsi_ctx;
578 struct ice_q_ctx *q_ctx;
579 u16 idx;
580
581 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
582 if (!vsi_ctx)
583 return -EINVAL;
584 /* allocate LAN queue contexts */
585 if (!vsi_ctx->lan_q_ctx[tc]) {
586 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
587 sizeof(*q_ctx), GFP_KERNEL);
588 if (!q_ctx)
589 return -ENOMEM;
590
591 for (idx = 0; idx < new_numqs; idx++) {
592 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
593 q_ctx[idx].q_teid = ICE_INVAL_TEID;
594 }
595
596 vsi_ctx->lan_q_ctx[tc] = q_ctx;
597 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
598 return 0;
599 }
600 /* num queues are increased, update the queue contexts */
601 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
602 u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
603
604 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
605 sizeof(*q_ctx), GFP_KERNEL);
606 if (!q_ctx)
607 return -ENOMEM;
608
609 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
610 prev_num * sizeof(*q_ctx));
611 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
612
613 for (idx = prev_num; idx < new_numqs; idx++) {
614 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
615 q_ctx[idx].q_teid = ICE_INVAL_TEID;
616 }
617
618 vsi_ctx->lan_q_ctx[tc] = q_ctx;
619 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
620 }
621 return 0;
622 }
623
624 /**
625 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
626 * @hw: pointer to the HW struct
627 * @vsi_handle: VSI handle
628 * @tc: TC number
629 * @new_numqs: number of queues
630 */
631 static int
ice_alloc_rdma_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 new_numqs)632 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
633 {
634 struct ice_vsi_ctx *vsi_ctx;
635 struct ice_q_ctx *q_ctx;
636
637 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
638 if (!vsi_ctx)
639 return -EINVAL;
640 /* allocate RDMA queue contexts */
641 if (!vsi_ctx->rdma_q_ctx[tc]) {
642 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
643 new_numqs,
644 sizeof(*q_ctx),
645 GFP_KERNEL);
646 if (!vsi_ctx->rdma_q_ctx[tc])
647 return -ENOMEM;
648 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
649 return 0;
650 }
651 /* num queues are increased, update the queue contexts */
652 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
653 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
654
655 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
656 sizeof(*q_ctx), GFP_KERNEL);
657 if (!q_ctx)
658 return -ENOMEM;
659 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
660 prev_num * sizeof(*q_ctx));
661 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
662 vsi_ctx->rdma_q_ctx[tc] = q_ctx;
663 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
664 }
665 return 0;
666 }
667
668 /**
669 * ice_aq_rl_profile - performs a rate limiting task
670 * @hw: pointer to the HW struct
671 * @opcode: opcode for add, query, or remove profile(s)
672 * @num_profiles: the number of profiles
673 * @buf: pointer to buffer
674 * @buf_size: buffer size in bytes
675 * @num_processed: number of processed add or remove profile(s) to return
676 * @cd: pointer to command details structure
677 *
678 * RL profile function to add, query, or remove profile(s)
679 */
680 static int
ice_aq_rl_profile(struct ice_hw * hw,enum ice_adminq_opc opcode,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_processed,struct ice_sq_cd * cd)681 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
682 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
683 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
684 {
685 struct ice_aqc_rl_profile *cmd;
686 struct ice_aq_desc desc;
687 int status;
688
689 cmd = &desc.params.rl_profile;
690
691 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
692 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
693 cmd->num_profiles = cpu_to_le16(num_profiles);
694 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
695 if (!status && num_processed)
696 *num_processed = le16_to_cpu(cmd->num_processed);
697 return status;
698 }
699
700 /**
701 * ice_aq_add_rl_profile - adds rate limiting profile(s)
702 * @hw: pointer to the HW struct
703 * @num_profiles: the number of profile(s) to be add
704 * @buf: pointer to buffer
705 * @buf_size: buffer size in bytes
706 * @num_profiles_added: total number of profiles added to return
707 * @cd: pointer to command details structure
708 *
709 * Add RL profile (0x0410)
710 */
711 static int
ice_aq_add_rl_profile(struct ice_hw * hw,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_profiles_added,struct ice_sq_cd * cd)712 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
713 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
714 u16 *num_profiles_added, struct ice_sq_cd *cd)
715 {
716 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
717 buf, buf_size, num_profiles_added, cd);
718 }
719
720 /**
721 * ice_aq_remove_rl_profile - removes RL profile(s)
722 * @hw: pointer to the HW struct
723 * @num_profiles: the number of profile(s) to remove
724 * @buf: pointer to buffer
725 * @buf_size: buffer size in bytes
726 * @num_profiles_removed: total number of profiles removed to return
727 * @cd: pointer to command details structure or NULL
728 *
729 * Remove RL profile (0x0415)
730 */
731 static int
ice_aq_remove_rl_profile(struct ice_hw * hw,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_profiles_removed,struct ice_sq_cd * cd)732 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
733 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
734 u16 *num_profiles_removed, struct ice_sq_cd *cd)
735 {
736 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
737 num_profiles, buf, buf_size,
738 num_profiles_removed, cd);
739 }
740
741 /**
742 * ice_sched_del_rl_profile - remove RL profile
743 * @hw: pointer to the HW struct
744 * @rl_info: rate limit profile information
745 *
746 * If the profile ID is not referenced anymore, it removes profile ID with
747 * its associated parameters from HW DB,and locally. The caller needs to
748 * hold scheduler lock.
749 */
750 static int
ice_sched_del_rl_profile(struct ice_hw * hw,struct ice_aqc_rl_profile_info * rl_info)751 ice_sched_del_rl_profile(struct ice_hw *hw,
752 struct ice_aqc_rl_profile_info *rl_info)
753 {
754 struct ice_aqc_rl_profile_elem *buf;
755 u16 num_profiles_removed;
756 u16 num_profiles = 1;
757 int status;
758
759 if (rl_info->prof_id_ref != 0)
760 return -EBUSY;
761
762 /* Safe to remove profile ID */
763 buf = &rl_info->profile;
764 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
765 &num_profiles_removed, NULL);
766 if (status || num_profiles_removed != num_profiles)
767 return -EIO;
768
769 /* Delete stale entry now */
770 list_del(&rl_info->list_entry);
771 devm_kfree(ice_hw_to_dev(hw), rl_info);
772 return status;
773 }
774
775 /**
776 * ice_sched_clear_rl_prof - clears RL prof entries
777 * @pi: port information structure
778 *
779 * This function removes all RL profile from HW as well as from SW DB.
780 */
ice_sched_clear_rl_prof(struct ice_port_info * pi)781 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
782 {
783 u16 ln;
784
785 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
786 struct ice_aqc_rl_profile_info *rl_prof_elem;
787 struct ice_aqc_rl_profile_info *rl_prof_tmp;
788
789 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
790 &pi->rl_prof_list[ln], list_entry) {
791 struct ice_hw *hw = pi->hw;
792 int status;
793
794 rl_prof_elem->prof_id_ref = 0;
795 status = ice_sched_del_rl_profile(hw, rl_prof_elem);
796 if (status) {
797 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
798 /* On error, free mem required */
799 list_del(&rl_prof_elem->list_entry);
800 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
801 }
802 }
803 }
804 }
805
806 /**
807 * ice_sched_clear_agg - clears the aggregator related information
808 * @hw: pointer to the hardware structure
809 *
810 * This function removes aggregator list and free up aggregator related memory
811 * previously allocated.
812 */
ice_sched_clear_agg(struct ice_hw * hw)813 void ice_sched_clear_agg(struct ice_hw *hw)
814 {
815 struct ice_sched_agg_info *agg_info;
816 struct ice_sched_agg_info *atmp;
817
818 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
819 struct ice_sched_agg_vsi_info *agg_vsi_info;
820 struct ice_sched_agg_vsi_info *vtmp;
821
822 list_for_each_entry_safe(agg_vsi_info, vtmp,
823 &agg_info->agg_vsi_list, list_entry) {
824 list_del(&agg_vsi_info->list_entry);
825 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
826 }
827 list_del(&agg_info->list_entry);
828 devm_kfree(ice_hw_to_dev(hw), agg_info);
829 }
830 }
831
832 /**
833 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
834 * @pi: port information structure
835 *
836 * This function removes all the nodes from HW as well as from SW DB.
837 */
ice_sched_clear_tx_topo(struct ice_port_info * pi)838 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
839 {
840 if (!pi)
841 return;
842 /* remove RL profiles related lists */
843 ice_sched_clear_rl_prof(pi);
844 if (pi->root) {
845 ice_free_sched_node(pi, pi->root);
846 pi->root = NULL;
847 }
848 }
849
850 /**
851 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
852 * @pi: port information structure
853 *
854 * Cleanup scheduling elements from SW DB
855 */
ice_sched_clear_port(struct ice_port_info * pi)856 void ice_sched_clear_port(struct ice_port_info *pi)
857 {
858 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
859 return;
860
861 pi->port_state = ICE_SCHED_PORT_STATE_INIT;
862 mutex_lock(&pi->sched_lock);
863 ice_sched_clear_tx_topo(pi);
864 mutex_unlock(&pi->sched_lock);
865 mutex_destroy(&pi->sched_lock);
866 }
867
868 /**
869 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
870 * @hw: pointer to the HW struct
871 *
872 * Cleanup scheduling elements from SW DB for all the ports
873 */
ice_sched_cleanup_all(struct ice_hw * hw)874 void ice_sched_cleanup_all(struct ice_hw *hw)
875 {
876 if (!hw)
877 return;
878
879 devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
880 hw->layer_info = NULL;
881
882 ice_sched_clear_port(hw->port_info);
883
884 hw->num_tx_sched_layers = 0;
885 hw->num_tx_sched_phys_layers = 0;
886 hw->flattened_layers = 0;
887 hw->max_cgds = 0;
888 }
889
890 /**
891 * ice_sched_add_elems - add nodes to HW and SW DB
892 * @pi: port information structure
893 * @tc_node: pointer to the branch node
894 * @parent: pointer to the parent node
895 * @layer: layer number to add nodes
896 * @num_nodes: number of nodes
897 * @num_nodes_added: pointer to num nodes added
898 * @first_node_teid: if new nodes are added then return the TEID of first node
899 * @prealloc_nodes: preallocated nodes struct for software DB
900 *
901 * This function add nodes to HW as well as to SW DB for a given layer
902 */
903 int
ice_sched_add_elems(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u16 * num_nodes_added,u32 * first_node_teid,struct ice_sched_node ** prealloc_nodes)904 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
905 struct ice_sched_node *parent, u8 layer, u16 num_nodes,
906 u16 *num_nodes_added, u32 *first_node_teid,
907 struct ice_sched_node **prealloc_nodes)
908 {
909 struct ice_sched_node *prev, *new_node;
910 struct ice_aqc_add_elem *buf;
911 u16 i, num_groups_added = 0;
912 struct ice_hw *hw = pi->hw;
913 size_t buf_size;
914 int status = 0;
915 u32 teid;
916
917 buf_size = struct_size(buf, generic, num_nodes);
918 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
919 if (!buf)
920 return -ENOMEM;
921
922 buf->hdr.parent_teid = parent->info.node_teid;
923 buf->hdr.num_elems = cpu_to_le16(num_nodes);
924 for (i = 0; i < num_nodes; i++) {
925 buf->generic[i].parent_teid = parent->info.node_teid;
926 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
927 buf->generic[i].data.valid_sections =
928 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
929 ICE_AQC_ELEM_VALID_EIR;
930 buf->generic[i].data.generic = 0;
931 buf->generic[i].data.cir_bw.bw_profile_idx =
932 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
933 buf->generic[i].data.cir_bw.bw_alloc =
934 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
935 buf->generic[i].data.eir_bw.bw_profile_idx =
936 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
937 buf->generic[i].data.eir_bw.bw_alloc =
938 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
939 }
940
941 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
942 &num_groups_added, NULL);
943 if (status || num_groups_added != 1) {
944 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
945 hw->adminq.sq_last_status);
946 devm_kfree(ice_hw_to_dev(hw), buf);
947 return -EIO;
948 }
949
950 *num_nodes_added = num_nodes;
951 /* add nodes to the SW DB */
952 for (i = 0; i < num_nodes; i++) {
953 if (prealloc_nodes)
954 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
955 else
956 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
957
958 if (status) {
959 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
960 status);
961 break;
962 }
963
964 teid = le32_to_cpu(buf->generic[i].node_teid);
965 new_node = ice_sched_find_node_by_teid(parent, teid);
966 if (!new_node) {
967 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
968 break;
969 }
970
971 new_node->sibling = NULL;
972 new_node->tc_num = tc_node->tc_num;
973 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
974 new_node->tx_share = ICE_SCHED_DFLT_BW;
975 new_node->tx_max = ICE_SCHED_DFLT_BW;
976 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
977 if (!new_node->name)
978 return -ENOMEM;
979
980 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
981 GFP_KERNEL);
982 if (status) {
983 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
984 status);
985 break;
986 }
987
988 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
989
990 /* add it to previous node sibling pointer */
991 /* Note: siblings are not linked across branches */
992 prev = ice_sched_get_first_node(pi, tc_node, layer);
993 if (prev && prev != new_node) {
994 while (prev->sibling)
995 prev = prev->sibling;
996 prev->sibling = new_node;
997 }
998
999 /* initialize the sibling head */
1000 if (!pi->sib_head[tc_node->tc_num][layer])
1001 pi->sib_head[tc_node->tc_num][layer] = new_node;
1002
1003 if (i == 0)
1004 *first_node_teid = teid;
1005 }
1006
1007 devm_kfree(ice_hw_to_dev(hw), buf);
1008 return status;
1009 }
1010
1011 /**
1012 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
1013 * @pi: port information structure
1014 * @tc_node: pointer to TC node
1015 * @parent: pointer to parent node
1016 * @layer: layer number to add nodes
1017 * @num_nodes: number of nodes to be added
1018 * @first_node_teid: pointer to the first node TEID
1019 * @num_nodes_added: pointer to number of nodes added
1020 *
1021 * Add nodes into specific HW layer.
1022 */
1023 static int
ice_sched_add_nodes_to_hw_layer(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u32 * first_node_teid,u16 * num_nodes_added)1024 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1025 struct ice_sched_node *tc_node,
1026 struct ice_sched_node *parent, u8 layer,
1027 u16 num_nodes, u32 *first_node_teid,
1028 u16 *num_nodes_added)
1029 {
1030 u16 max_child_nodes;
1031
1032 *num_nodes_added = 0;
1033
1034 if (!num_nodes)
1035 return 0;
1036
1037 if (!parent || layer < pi->hw->sw_entry_point_layer)
1038 return -EINVAL;
1039
1040 /* max children per node per layer */
1041 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1042
1043 /* current number of children + required nodes exceed max children */
1044 if ((parent->num_children + num_nodes) > max_child_nodes) {
1045 /* Fail if the parent is a TC node */
1046 if (parent == tc_node)
1047 return -EIO;
1048 return -ENOSPC;
1049 }
1050
1051 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1052 num_nodes_added, first_node_teid, NULL);
1053 }
1054
1055 /**
1056 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1057 * @pi: port information structure
1058 * @tc_node: pointer to TC node
1059 * @parent: pointer to parent node
1060 * @layer: layer number to add nodes
1061 * @num_nodes: number of nodes to be added
1062 * @first_node_teid: pointer to the first node TEID
1063 * @num_nodes_added: pointer to number of nodes added
1064 *
1065 * This function add nodes to a given layer.
1066 */
1067 int
ice_sched_add_nodes_to_layer(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u32 * first_node_teid,u16 * num_nodes_added)1068 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1069 struct ice_sched_node *tc_node,
1070 struct ice_sched_node *parent, u8 layer,
1071 u16 num_nodes, u32 *first_node_teid,
1072 u16 *num_nodes_added)
1073 {
1074 u32 *first_teid_ptr = first_node_teid;
1075 u16 new_num_nodes = num_nodes;
1076 int status = 0;
1077
1078 *num_nodes_added = 0;
1079 while (*num_nodes_added < num_nodes) {
1080 u16 max_child_nodes, num_added = 0;
1081 u32 temp;
1082
1083 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1084 layer, new_num_nodes,
1085 first_teid_ptr,
1086 &num_added);
1087 if (!status)
1088 *num_nodes_added += num_added;
1089 /* added more nodes than requested ? */
1090 if (*num_nodes_added > num_nodes) {
1091 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1092 *num_nodes_added);
1093 status = -EIO;
1094 break;
1095 }
1096 /* break if all the nodes are added successfully */
1097 if (!status && (*num_nodes_added == num_nodes))
1098 break;
1099 /* break if the error is not max limit */
1100 if (status && status != -ENOSPC)
1101 break;
1102 /* Exceeded the max children */
1103 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1104 /* utilize all the spaces if the parent is not full */
1105 if (parent->num_children < max_child_nodes) {
1106 new_num_nodes = max_child_nodes - parent->num_children;
1107 } else {
1108 /* This parent is full,
1109 * try the next available sibling.
1110 */
1111 parent = ice_sched_find_next_vsi_node(parent);
1112 /* Don't modify the first node TEID memory if the
1113 * first node was added already in the above call.
1114 * Instead send some temp memory for all other
1115 * recursive calls.
1116 */
1117 if (num_added)
1118 first_teid_ptr = &temp;
1119
1120 new_num_nodes = num_nodes - *num_nodes_added;
1121 }
1122 }
1123 return status;
1124 }
1125
1126 /**
1127 * ice_sched_get_qgrp_layer - get the current queue group layer number
1128 * @hw: pointer to the HW struct
1129 *
1130 * This function returns the current queue group layer number
1131 */
ice_sched_get_qgrp_layer(struct ice_hw * hw)1132 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1133 {
1134 /* It's always total layers - 1, the array is 0 relative so -2 */
1135 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1136 }
1137
1138 /**
1139 * ice_sched_get_vsi_layer - get the current VSI layer number
1140 * @hw: pointer to the HW struct
1141 *
1142 * This function returns the current VSI layer number
1143 */
ice_sched_get_vsi_layer(struct ice_hw * hw)1144 u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1145 {
1146 /* Num Layers VSI layer
1147 * 9 6
1148 * 7 4
1149 * 5 or less sw_entry_point_layer
1150 */
1151 /* calculate the VSI layer based on number of layers. */
1152 if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1153 return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1154 else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS)
1155 /* qgroup and VSI layers are same */
1156 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1157 return hw->sw_entry_point_layer;
1158 }
1159
1160 /**
1161 * ice_sched_get_agg_layer - get the current aggregator layer number
1162 * @hw: pointer to the HW struct
1163 *
1164 * This function returns the current aggregator layer number
1165 */
ice_sched_get_agg_layer(struct ice_hw * hw)1166 u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1167 {
1168 /* Num Layers aggregator layer
1169 * 9 4
1170 * 7 or less sw_entry_point_layer
1171 */
1172 /* calculate the aggregator layer based on number of layers. */
1173 if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1174 return hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1175 else
1176 return hw->sw_entry_point_layer;
1177 }
1178
1179 /**
1180 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1181 * @pi: port information structure
1182 *
1183 * This function removes the leaf node that was created by the FW
1184 * during initialization
1185 */
ice_rm_dflt_leaf_node(struct ice_port_info * pi)1186 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1187 {
1188 struct ice_sched_node *node;
1189
1190 node = pi->root;
1191 while (node) {
1192 if (!node->num_children)
1193 break;
1194 node = node->children[0];
1195 }
1196 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1197 u32 teid = le32_to_cpu(node->info.node_teid);
1198 int status;
1199
1200 /* remove the default leaf node */
1201 status = ice_sched_remove_elems(pi->hw, node->parent, teid);
1202 if (!status)
1203 ice_free_sched_node(pi, node);
1204 }
1205 }
1206
1207 /**
1208 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1209 * @pi: port information structure
1210 *
1211 * This function frees all the nodes except root and TC that were created by
1212 * the FW during initialization
1213 */
ice_sched_rm_dflt_nodes(struct ice_port_info * pi)1214 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1215 {
1216 struct ice_sched_node *node;
1217
1218 ice_rm_dflt_leaf_node(pi);
1219
1220 /* remove the default nodes except TC and root nodes */
1221 node = pi->root;
1222 while (node) {
1223 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1224 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1225 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1226 ice_free_sched_node(pi, node);
1227 break;
1228 }
1229
1230 if (!node->num_children)
1231 break;
1232 node = node->children[0];
1233 }
1234 }
1235
1236 /**
1237 * ice_sched_init_port - Initialize scheduler by querying information from FW
1238 * @pi: port info structure for the tree to cleanup
1239 *
1240 * This function is the initial call to find the total number of Tx scheduler
1241 * resources, default topology created by firmware and storing the information
1242 * in SW DB.
1243 */
ice_sched_init_port(struct ice_port_info * pi)1244 int ice_sched_init_port(struct ice_port_info *pi)
1245 {
1246 struct ice_aqc_get_topo_elem *buf;
1247 struct ice_hw *hw;
1248 u8 num_branches;
1249 u16 num_elems;
1250 int status;
1251 u8 i, j;
1252
1253 if (!pi)
1254 return -EINVAL;
1255 hw = pi->hw;
1256
1257 /* Query the Default Topology from FW */
1258 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1259 if (!buf)
1260 return -ENOMEM;
1261
1262 /* Query default scheduling tree topology */
1263 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1264 &num_branches, NULL);
1265 if (status)
1266 goto err_init_port;
1267
1268 /* num_branches should be between 1-8 */
1269 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1270 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1271 num_branches);
1272 status = -EINVAL;
1273 goto err_init_port;
1274 }
1275
1276 /* get the number of elements on the default/first branch */
1277 num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1278
1279 /* num_elems should always be between 1-9 */
1280 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1281 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1282 num_elems);
1283 status = -EINVAL;
1284 goto err_init_port;
1285 }
1286
1287 /* If the last node is a leaf node then the index of the queue group
1288 * layer is two less than the number of elements.
1289 */
1290 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1291 ICE_AQC_ELEM_TYPE_LEAF)
1292 pi->last_node_teid =
1293 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1294 else
1295 pi->last_node_teid =
1296 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1297
1298 /* Insert the Tx Sched root node */
1299 status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1300 if (status)
1301 goto err_init_port;
1302
1303 /* Parse the default tree and cache the information */
1304 for (i = 0; i < num_branches; i++) {
1305 num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1306
1307 /* Skip root element as already inserted */
1308 for (j = 1; j < num_elems; j++) {
1309 /* update the sw entry point */
1310 if (buf[0].generic[j].data.elem_type ==
1311 ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1312 hw->sw_entry_point_layer = j;
1313
1314 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1315 if (status)
1316 goto err_init_port;
1317 }
1318 }
1319
1320 /* Remove the default nodes. */
1321 if (pi->root)
1322 ice_sched_rm_dflt_nodes(pi);
1323
1324 /* initialize the port for handling the scheduler tree */
1325 pi->port_state = ICE_SCHED_PORT_STATE_READY;
1326 mutex_init(&pi->sched_lock);
1327 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1328 INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1329
1330 err_init_port:
1331 if (status && pi->root) {
1332 ice_free_sched_node(pi, pi->root);
1333 pi->root = NULL;
1334 }
1335
1336 kfree(buf);
1337 return status;
1338 }
1339
1340 /**
1341 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1342 * @hw: pointer to the HW struct
1343 *
1344 * query FW for allocated scheduler resources and store in HW struct
1345 */
ice_sched_query_res_alloc(struct ice_hw * hw)1346 int ice_sched_query_res_alloc(struct ice_hw *hw)
1347 {
1348 struct ice_aqc_query_txsched_res_resp *buf;
1349 __le16 max_sibl;
1350 int status = 0;
1351 u16 i;
1352
1353 if (hw->layer_info)
1354 return status;
1355
1356 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1357 if (!buf)
1358 return -ENOMEM;
1359
1360 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1361 if (status)
1362 goto sched_query_out;
1363
1364 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1365 hw->num_tx_sched_phys_layers =
1366 le16_to_cpu(buf->sched_props.phys_levels);
1367 hw->flattened_layers = buf->sched_props.flattening_bitmap;
1368 hw->max_cgds = buf->sched_props.max_pf_cgds;
1369
1370 /* max sibling group size of current layer refers to the max children
1371 * of the below layer node.
1372 * layer 1 node max children will be layer 2 max sibling group size
1373 * layer 2 node max children will be layer 3 max sibling group size
1374 * and so on. This array will be populated from root (index 0) to
1375 * qgroup layer 7. Leaf node has no children.
1376 */
1377 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1378 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1379 hw->max_children[i] = le16_to_cpu(max_sibl);
1380 }
1381
1382 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1383 (hw->num_tx_sched_layers *
1384 sizeof(*hw->layer_info)),
1385 GFP_KERNEL);
1386 if (!hw->layer_info) {
1387 status = -ENOMEM;
1388 goto sched_query_out;
1389 }
1390
1391 sched_query_out:
1392 devm_kfree(ice_hw_to_dev(hw), buf);
1393 return status;
1394 }
1395
1396 /**
1397 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1398 * @hw: pointer to the HW struct
1399 *
1400 * Determine the PSM clock frequency and store in HW struct
1401 */
ice_sched_get_psm_clk_freq(struct ice_hw * hw)1402 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1403 {
1404 u32 val, clk_src;
1405
1406 val = rd32(hw, GLGEN_CLKSTAT_SRC);
1407 clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val);
1408
1409 #define PSM_CLK_SRC_367_MHZ 0x0
1410 #define PSM_CLK_SRC_416_MHZ 0x1
1411 #define PSM_CLK_SRC_446_MHZ 0x2
1412 #define PSM_CLK_SRC_390_MHZ 0x3
1413
1414 switch (clk_src) {
1415 case PSM_CLK_SRC_367_MHZ:
1416 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1417 break;
1418 case PSM_CLK_SRC_416_MHZ:
1419 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1420 break;
1421 case PSM_CLK_SRC_446_MHZ:
1422 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1423 break;
1424 case PSM_CLK_SRC_390_MHZ:
1425 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1426 break;
1427 default:
1428 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1429 clk_src);
1430 /* fall back to a safe default */
1431 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1432 }
1433 }
1434
1435 /**
1436 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1437 * @hw: pointer to the HW struct
1438 * @base: pointer to the base node
1439 * @node: pointer to the node to search
1440 *
1441 * This function checks whether a given node is part of the base node
1442 * subtree or not
1443 */
1444 static bool
ice_sched_find_node_in_subtree(struct ice_hw * hw,struct ice_sched_node * base,struct ice_sched_node * node)1445 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1446 struct ice_sched_node *node)
1447 {
1448 u8 i;
1449
1450 for (i = 0; i < base->num_children; i++) {
1451 struct ice_sched_node *child = base->children[i];
1452
1453 if (node == child)
1454 return true;
1455
1456 if (child->tx_sched_layer > node->tx_sched_layer)
1457 return false;
1458
1459 /* this recursion is intentional, and wouldn't
1460 * go more than 8 calls
1461 */
1462 if (ice_sched_find_node_in_subtree(hw, child, node))
1463 return true;
1464 }
1465 return false;
1466 }
1467
1468 /**
1469 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1470 * @pi: port information structure
1471 * @vsi_node: software VSI handle
1472 * @qgrp_node: first queue group node identified for scanning
1473 * @owner: LAN or RDMA
1474 *
1475 * This function retrieves a free LAN or RDMA queue group node by scanning
1476 * qgrp_node and its siblings for the queue group with the fewest number
1477 * of queues currently assigned.
1478 */
1479 static struct ice_sched_node *
ice_sched_get_free_qgrp(struct ice_port_info * pi,struct ice_sched_node * vsi_node,struct ice_sched_node * qgrp_node,u8 owner)1480 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1481 struct ice_sched_node *vsi_node,
1482 struct ice_sched_node *qgrp_node, u8 owner)
1483 {
1484 struct ice_sched_node *min_qgrp;
1485 u8 min_children;
1486
1487 if (!qgrp_node)
1488 return qgrp_node;
1489 min_children = qgrp_node->num_children;
1490 if (!min_children)
1491 return qgrp_node;
1492 min_qgrp = qgrp_node;
1493 /* scan all queue groups until find a node which has less than the
1494 * minimum number of children. This way all queue group nodes get
1495 * equal number of shares and active. The bandwidth will be equally
1496 * distributed across all queues.
1497 */
1498 while (qgrp_node) {
1499 /* make sure the qgroup node is part of the VSI subtree */
1500 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1501 if (qgrp_node->num_children < min_children &&
1502 qgrp_node->owner == owner) {
1503 /* replace the new min queue group node */
1504 min_qgrp = qgrp_node;
1505 min_children = min_qgrp->num_children;
1506 /* break if it has no children, */
1507 if (!min_children)
1508 break;
1509 }
1510 qgrp_node = qgrp_node->sibling;
1511 }
1512 return min_qgrp;
1513 }
1514
1515 /**
1516 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1517 * @pi: port information structure
1518 * @vsi_handle: software VSI handle
1519 * @tc: branch number
1520 * @owner: LAN or RDMA
1521 *
1522 * This function retrieves a free LAN or RDMA queue group node
1523 */
1524 struct ice_sched_node *
ice_sched_get_free_qparent(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 owner)1525 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1526 u8 owner)
1527 {
1528 struct ice_sched_node *vsi_node, *qgrp_node;
1529 struct ice_vsi_ctx *vsi_ctx;
1530 u8 qgrp_layer, vsi_layer;
1531 u16 max_children;
1532
1533 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1534 vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1535 max_children = pi->hw->max_children[qgrp_layer];
1536
1537 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1538 if (!vsi_ctx)
1539 return NULL;
1540 vsi_node = vsi_ctx->sched.vsi_node[tc];
1541 /* validate invalid VSI ID */
1542 if (!vsi_node)
1543 return NULL;
1544
1545 /* If the queue group and VSI layer are same then queues
1546 * are all attached directly to VSI
1547 */
1548 if (qgrp_layer == vsi_layer)
1549 return vsi_node;
1550
1551 /* get the first queue group node from VSI sub-tree */
1552 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1553 while (qgrp_node) {
1554 struct ice_sched_node *next_vsi_node;
1555
1556 /* make sure the qgroup node is part of the VSI subtree */
1557 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1558 if (qgrp_node->num_children < max_children &&
1559 qgrp_node->owner == owner)
1560 break;
1561 qgrp_node = qgrp_node->sibling;
1562 if (qgrp_node)
1563 continue;
1564
1565 next_vsi_node = ice_sched_find_next_vsi_node(vsi_node);
1566 if (!next_vsi_node)
1567 break;
1568
1569 vsi_node = next_vsi_node;
1570 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1571 }
1572
1573 /* Select the best queue group */
1574 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1575 }
1576
1577 /**
1578 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1579 * @pi: pointer to the port information structure
1580 * @tc_node: pointer to the TC node
1581 * @vsi_handle: software VSI handle
1582 *
1583 * This function retrieves a VSI node for a given VSI ID from a given
1584 * TC branch
1585 */
1586 static struct ice_sched_node *
ice_sched_get_vsi_node(struct ice_port_info * pi,struct ice_sched_node * tc_node,u16 vsi_handle)1587 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1588 u16 vsi_handle)
1589 {
1590 struct ice_sched_node *node;
1591 u8 vsi_layer;
1592
1593 vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1594 node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1595
1596 /* Check whether it already exists */
1597 while (node) {
1598 if (node->vsi_handle == vsi_handle)
1599 return node;
1600 node = node->sibling;
1601 }
1602
1603 return node;
1604 }
1605
1606 /**
1607 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1608 * @pi: pointer to the port information structure
1609 * @tc_node: pointer to the TC node
1610 * @agg_id: aggregator ID
1611 *
1612 * This function retrieves an aggregator node for a given aggregator ID from
1613 * a given TC branch
1614 */
1615 struct ice_sched_node *
ice_sched_get_agg_node(struct ice_port_info * pi,struct ice_sched_node * tc_node,u32 agg_id)1616 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1617 u32 agg_id)
1618 {
1619 struct ice_sched_node *node;
1620 struct ice_hw *hw = pi->hw;
1621 u8 agg_layer;
1622
1623 if (!hw)
1624 return NULL;
1625 agg_layer = ice_sched_get_agg_layer(hw);
1626 node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1627
1628 /* Check whether it already exists */
1629 while (node) {
1630 if (node->agg_id == agg_id)
1631 return node;
1632 node = node->sibling;
1633 }
1634
1635 return node;
1636 }
1637
1638 /**
1639 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1640 * @hw: pointer to the HW struct
1641 * @num_new_qs: number of new queues that will be added to the tree
1642 * @num_nodes: num nodes array
1643 *
1644 * This function calculates the number of VSI child nodes based on the
1645 * number of queues.
1646 */
1647 static void
ice_sched_calc_vsi_child_nodes(struct ice_hw * hw,u16 num_new_qs,u16 * num_nodes)1648 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_new_qs, u16 *num_nodes)
1649 {
1650 u16 num = num_new_qs;
1651 u8 i, qgl, vsil;
1652
1653 qgl = ice_sched_get_qgrp_layer(hw);
1654 vsil = ice_sched_get_vsi_layer(hw);
1655
1656 /* calculate num nodes from queue group to VSI layer */
1657 for (i = qgl; i > vsil; i--) {
1658 /* round to the next integer if there is a remainder */
1659 num = DIV_ROUND_UP(num, hw->max_children[i]);
1660
1661 /* need at least one node */
1662 num_nodes[i] = num ? num : 1;
1663 }
1664 }
1665
1666 /**
1667 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1668 * @pi: port information structure
1669 * @vsi_handle: software VSI handle
1670 * @tc_node: pointer to the TC node
1671 * @num_nodes: pointer to the num nodes that needs to be added per layer
1672 * @owner: node owner (LAN or RDMA)
1673 *
1674 * This function adds the VSI child nodes to tree. It gets called for
1675 * LAN and RDMA separately.
1676 */
1677 static int
ice_sched_add_vsi_child_nodes(struct ice_port_info * pi,u16 vsi_handle,struct ice_sched_node * tc_node,u16 * num_nodes,u8 owner)1678 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1679 struct ice_sched_node *tc_node, u16 *num_nodes,
1680 u8 owner)
1681 {
1682 struct ice_sched_node *parent, *node;
1683 struct ice_hw *hw = pi->hw;
1684 u32 first_node_teid;
1685 u16 num_added = 0;
1686 u8 i, qgl, vsil;
1687
1688 qgl = ice_sched_get_qgrp_layer(hw);
1689 vsil = ice_sched_get_vsi_layer(hw);
1690 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1691 for (i = vsil + 1; i <= qgl; i++) {
1692 int status;
1693
1694 if (!parent)
1695 return -EIO;
1696
1697 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1698 num_nodes[i],
1699 &first_node_teid,
1700 &num_added);
1701 if (status || num_nodes[i] != num_added)
1702 return -EIO;
1703
1704 /* The newly added node can be a new parent for the next
1705 * layer nodes
1706 */
1707 if (num_added) {
1708 parent = ice_sched_find_node_by_teid(tc_node,
1709 first_node_teid);
1710 node = parent;
1711 while (node) {
1712 node->owner = owner;
1713 node = node->sibling;
1714 }
1715 } else {
1716 parent = parent->children[0];
1717 }
1718 }
1719
1720 return 0;
1721 }
1722
1723 /**
1724 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1725 * @pi: pointer to the port info structure
1726 * @tc_node: pointer to TC node
1727 * @num_nodes: pointer to num nodes array
1728 *
1729 * This function calculates the number of supported nodes needed to add this
1730 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1731 * layers
1732 */
1733 static void
ice_sched_calc_vsi_support_nodes(struct ice_port_info * pi,struct ice_sched_node * tc_node,u16 * num_nodes)1734 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1735 struct ice_sched_node *tc_node, u16 *num_nodes)
1736 {
1737 struct ice_sched_node *node;
1738 u8 vsil;
1739 int i;
1740
1741 vsil = ice_sched_get_vsi_layer(pi->hw);
1742 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1743 /* Add intermediate nodes if TC has no children and
1744 * need at least one node for VSI
1745 */
1746 if (!tc_node->num_children || i == vsil) {
1747 num_nodes[i]++;
1748 } else {
1749 /* If intermediate nodes are reached max children
1750 * then add a new one.
1751 */
1752 node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1753 /* scan all the siblings */
1754 while (node) {
1755 if (node->num_children < pi->hw->max_children[i])
1756 break;
1757 node = node->sibling;
1758 }
1759
1760 /* tree has one intermediate node to add this new VSI.
1761 * So no need to calculate supported nodes for below
1762 * layers.
1763 */
1764 if (node)
1765 break;
1766 /* all the nodes are full, allocate a new one */
1767 num_nodes[i]++;
1768 }
1769 }
1770
1771 /**
1772 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1773 * @pi: port information structure
1774 * @vsi_handle: software VSI handle
1775 * @tc_node: pointer to TC node
1776 * @num_nodes: pointer to num nodes array
1777 *
1778 * This function adds the VSI supported nodes into Tx tree including the
1779 * VSI, its parent and intermediate nodes in below layers
1780 */
1781 static int
ice_sched_add_vsi_support_nodes(struct ice_port_info * pi,u16 vsi_handle,struct ice_sched_node * tc_node,u16 * num_nodes)1782 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1783 struct ice_sched_node *tc_node, u16 *num_nodes)
1784 {
1785 struct ice_sched_node *parent = tc_node;
1786 u32 first_node_teid;
1787 u16 num_added = 0;
1788 u8 i, vsil;
1789
1790 if (!pi)
1791 return -EINVAL;
1792
1793 vsil = ice_sched_get_vsi_layer(pi->hw);
1794 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1795 int status;
1796
1797 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1798 i, num_nodes[i],
1799 &first_node_teid,
1800 &num_added);
1801 if (status || num_nodes[i] != num_added)
1802 return -EIO;
1803
1804 /* The newly added node can be a new parent for the next
1805 * layer nodes
1806 */
1807 if (num_added)
1808 parent = ice_sched_find_node_by_teid(tc_node,
1809 first_node_teid);
1810 else
1811 parent = parent->children[0];
1812
1813 if (!parent)
1814 return -EIO;
1815
1816 /* Do not modify the VSI handle for already existing VSI nodes,
1817 * (if no new VSI node was added to the tree).
1818 * Assign the VSI handle only to newly added VSI nodes.
1819 */
1820 if (i == vsil && num_added)
1821 parent->vsi_handle = vsi_handle;
1822 }
1823
1824 return 0;
1825 }
1826
1827 /**
1828 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1829 * @pi: port information structure
1830 * @vsi_handle: software VSI handle
1831 * @tc: TC number
1832 *
1833 * This function adds a new VSI into scheduler tree
1834 */
1835 static int
ice_sched_add_vsi_to_topo(struct ice_port_info * pi,u16 vsi_handle,u8 tc)1836 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1837 {
1838 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1839 struct ice_sched_node *tc_node;
1840
1841 tc_node = ice_sched_get_tc_node(pi, tc);
1842 if (!tc_node)
1843 return -EINVAL;
1844
1845 /* calculate number of supported nodes needed for this VSI */
1846 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1847
1848 /* add VSI supported nodes to TC subtree */
1849 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1850 num_nodes);
1851 }
1852
1853 /**
1854 * ice_sched_recalc_vsi_support_nodes - recalculate VSI support nodes count
1855 * @hw: pointer to the HW struct
1856 * @vsi_node: pointer to the leftmost VSI node that needs to be extended
1857 * @new_numqs: new number of queues that has to be handled by the VSI
1858 * @new_num_nodes: pointer to nodes count table to modify the VSI layer entry
1859 *
1860 * This function recalculates the number of supported nodes that need to
1861 * be added after adding more Tx queues for a given VSI.
1862 * The number of new VSI support nodes that shall be added will be saved
1863 * to the @new_num_nodes table for the VSI layer.
1864 */
1865 static void
ice_sched_recalc_vsi_support_nodes(struct ice_hw * hw,struct ice_sched_node * vsi_node,unsigned int new_numqs,u16 * new_num_nodes)1866 ice_sched_recalc_vsi_support_nodes(struct ice_hw *hw,
1867 struct ice_sched_node *vsi_node,
1868 unsigned int new_numqs, u16 *new_num_nodes)
1869 {
1870 u32 vsi_nodes_cnt = 1;
1871 u32 max_queue_cnt = 1;
1872 u32 qgl, vsil;
1873
1874 qgl = ice_sched_get_qgrp_layer(hw);
1875 vsil = ice_sched_get_vsi_layer(hw);
1876
1877 for (u32 i = vsil; i <= qgl; i++)
1878 max_queue_cnt *= hw->max_children[i];
1879
1880 while ((vsi_node = ice_sched_find_next_vsi_node(vsi_node)) != NULL)
1881 vsi_nodes_cnt++;
1882
1883 if (new_numqs > (max_queue_cnt * vsi_nodes_cnt))
1884 new_num_nodes[vsil] = DIV_ROUND_UP(new_numqs, max_queue_cnt) -
1885 vsi_nodes_cnt;
1886 }
1887
1888 /**
1889 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1890 * @pi: port information structure
1891 * @vsi_handle: software VSI handle
1892 * @tc: TC number
1893 * @new_numqs: new number of max queues
1894 * @owner: owner of this subtree
1895 *
1896 * This function updates the VSI child nodes based on the number of queues
1897 */
1898 static int
ice_sched_update_vsi_child_nodes(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 new_numqs,u8 owner)1899 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1900 u8 tc, u16 new_numqs, u8 owner)
1901 {
1902 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1903 struct ice_sched_node *vsi_node;
1904 struct ice_sched_node *tc_node;
1905 struct ice_vsi_ctx *vsi_ctx;
1906 struct ice_hw *hw = pi->hw;
1907 u16 prev_numqs;
1908 int status = 0;
1909
1910 tc_node = ice_sched_get_tc_node(pi, tc);
1911 if (!tc_node)
1912 return -EIO;
1913
1914 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1915 if (!vsi_node)
1916 return -EIO;
1917
1918 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1919 if (!vsi_ctx)
1920 return -EINVAL;
1921
1922 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1923 prev_numqs = vsi_ctx->sched.max_lanq[tc];
1924 else
1925 prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1926 /* num queues are not changed or less than the previous number */
1927 if (new_numqs <= prev_numqs)
1928 return status;
1929 if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1930 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1931 if (status)
1932 return status;
1933 } else {
1934 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1935 if (status)
1936 return status;
1937 }
1938
1939 ice_sched_recalc_vsi_support_nodes(hw, vsi_node,
1940 new_numqs, new_num_nodes);
1941 ice_sched_calc_vsi_child_nodes(hw, new_numqs - prev_numqs,
1942 new_num_nodes);
1943
1944 /* Never decrease the number of queues in the tree. Update the tree
1945 * only if number of queues > previous number of queues. This may
1946 * leave some extra nodes in the tree if number of queues < previous
1947 * number but that wouldn't harm anything. Removing those extra nodes
1948 * may complicate the code if those nodes are part of SRL or
1949 * individually rate limited.
1950 * Also, add the required VSI support nodes if the existing ones cannot
1951 * handle the requested new number of queues.
1952 */
1953 status = ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1954 new_num_nodes);
1955 if (status)
1956 return status;
1957
1958 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1959 new_num_nodes, owner);
1960 if (status)
1961 return status;
1962 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1963 vsi_ctx->sched.max_lanq[tc] = new_numqs;
1964 else
1965 vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1966
1967 return 0;
1968 }
1969
1970 /**
1971 * ice_sched_cfg_vsi - configure the new/existing VSI
1972 * @pi: port information structure
1973 * @vsi_handle: software VSI handle
1974 * @tc: TC number
1975 * @maxqs: max number of queues
1976 * @owner: LAN or RDMA
1977 * @enable: TC enabled or disabled
1978 *
1979 * This function adds/updates VSI nodes based on the number of queues. If TC is
1980 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1981 * disabled then suspend the VSI if it is not already.
1982 */
1983 int
ice_sched_cfg_vsi(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 maxqs,u8 owner,bool enable)1984 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1985 u8 owner, bool enable)
1986 {
1987 struct ice_sched_node *vsi_node, *tc_node;
1988 struct ice_vsi_ctx *vsi_ctx;
1989 struct ice_hw *hw = pi->hw;
1990 int status = 0;
1991
1992 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1993 tc_node = ice_sched_get_tc_node(pi, tc);
1994 if (!tc_node)
1995 return -EINVAL;
1996 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1997 if (!vsi_ctx)
1998 return -EINVAL;
1999 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2000
2001 /* suspend the VSI if TC is not enabled */
2002 if (!enable) {
2003 if (vsi_node && vsi_node->in_use) {
2004 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
2005
2006 status = ice_sched_suspend_resume_elems(hw, 1, &teid,
2007 true);
2008 if (!status)
2009 vsi_node->in_use = false;
2010 }
2011 return status;
2012 }
2013
2014 /* TC is enabled, if it is a new VSI then add it to the tree */
2015 if (!vsi_node) {
2016 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
2017 if (status)
2018 return status;
2019
2020 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2021 if (!vsi_node)
2022 return -EIO;
2023
2024 vsi_ctx->sched.vsi_node[tc] = vsi_node;
2025 vsi_node->in_use = true;
2026 /* invalidate the max queues whenever VSI gets added first time
2027 * into the scheduler tree (boot or after reset). We need to
2028 * recreate the child nodes all the time in these cases.
2029 */
2030 vsi_ctx->sched.max_lanq[tc] = 0;
2031 vsi_ctx->sched.max_rdmaq[tc] = 0;
2032 }
2033
2034 /* update the VSI child nodes */
2035 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
2036 owner);
2037 if (status)
2038 return status;
2039
2040 /* TC is enabled, resume the VSI if it is in the suspend state */
2041 if (!vsi_node->in_use) {
2042 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
2043
2044 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
2045 if (!status)
2046 vsi_node->in_use = true;
2047 }
2048
2049 return status;
2050 }
2051
2052 /**
2053 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
2054 * @pi: port information structure
2055 * @vsi_handle: software VSI handle
2056 *
2057 * This function removes single aggregator VSI info entry from
2058 * aggregator list.
2059 */
ice_sched_rm_agg_vsi_info(struct ice_port_info * pi,u16 vsi_handle)2060 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
2061 {
2062 struct ice_sched_agg_info *agg_info;
2063 struct ice_sched_agg_info *atmp;
2064
2065 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
2066 list_entry) {
2067 struct ice_sched_agg_vsi_info *agg_vsi_info;
2068 struct ice_sched_agg_vsi_info *vtmp;
2069
2070 list_for_each_entry_safe(agg_vsi_info, vtmp,
2071 &agg_info->agg_vsi_list, list_entry)
2072 if (agg_vsi_info->vsi_handle == vsi_handle) {
2073 list_del(&agg_vsi_info->list_entry);
2074 devm_kfree(ice_hw_to_dev(pi->hw),
2075 agg_vsi_info);
2076 return;
2077 }
2078 }
2079 }
2080
2081 /**
2082 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2083 * @node: pointer to the sub-tree node
2084 *
2085 * This function checks for a leaf node presence in a given sub-tree node.
2086 */
ice_sched_is_leaf_node_present(struct ice_sched_node * node)2087 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2088 {
2089 u8 i;
2090
2091 for (i = 0; i < node->num_children; i++)
2092 if (ice_sched_is_leaf_node_present(node->children[i]))
2093 return true;
2094 /* check for a leaf node */
2095 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2096 }
2097
2098 /**
2099 * ice_sched_rm_vsi_subtree - remove all nodes assigned to a given VSI
2100 * @pi: port information structure
2101 * @vsi_node: pointer to the leftmost node of the VSI to be removed
2102 * @owner: LAN or RDMA
2103 * @tc: TC number
2104 *
2105 * Return: Zero in case of success, or -EBUSY if the VSI has leaf nodes in TC.
2106 *
2107 * This function removes all the VSI support nodes associated with a given VSI
2108 * and its LAN or RDMA children nodes from the scheduler tree.
2109 */
2110 static int
ice_sched_rm_vsi_subtree(struct ice_port_info * pi,struct ice_sched_node * vsi_node,u8 owner,u8 tc)2111 ice_sched_rm_vsi_subtree(struct ice_port_info *pi,
2112 struct ice_sched_node *vsi_node, u8 owner, u8 tc)
2113 {
2114 u16 vsi_handle = vsi_node->vsi_handle;
2115 bool all_vsi_nodes_removed = true;
2116 int j = 0;
2117
2118 while (vsi_node) {
2119 struct ice_sched_node *next_vsi_node;
2120
2121 if (ice_sched_is_leaf_node_present(vsi_node)) {
2122 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", tc);
2123 return -EBUSY;
2124 }
2125 while (j < vsi_node->num_children) {
2126 if (vsi_node->children[j]->owner == owner)
2127 ice_free_sched_node(pi, vsi_node->children[j]);
2128 else
2129 j++;
2130 }
2131
2132 next_vsi_node = ice_sched_find_next_vsi_node(vsi_node);
2133
2134 /* remove the VSI if it has no children */
2135 if (!vsi_node->num_children)
2136 ice_free_sched_node(pi, vsi_node);
2137 else
2138 all_vsi_nodes_removed = false;
2139
2140 vsi_node = next_vsi_node;
2141 }
2142
2143 /* clean up aggregator related VSI info if any */
2144 if (all_vsi_nodes_removed)
2145 ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2146
2147 return 0;
2148 }
2149
2150 /**
2151 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2152 * @pi: port information structure
2153 * @vsi_handle: software VSI handle
2154 * @owner: LAN or RDMA
2155 *
2156 * This function removes the VSI and its LAN or RDMA children nodes from the
2157 * scheduler tree.
2158 */
2159 static int
ice_sched_rm_vsi_cfg(struct ice_port_info * pi,u16 vsi_handle,u8 owner)2160 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2161 {
2162 struct ice_vsi_ctx *vsi_ctx;
2163 int status = -EINVAL;
2164 u8 i;
2165
2166 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2167 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2168 return status;
2169 mutex_lock(&pi->sched_lock);
2170 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2171 if (!vsi_ctx)
2172 goto exit_sched_rm_vsi_cfg;
2173
2174 ice_for_each_traffic_class(i) {
2175 struct ice_sched_node *vsi_node, *tc_node;
2176
2177 tc_node = ice_sched_get_tc_node(pi, i);
2178 if (!tc_node)
2179 continue;
2180
2181 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2182 if (!vsi_node)
2183 continue;
2184
2185 status = ice_sched_rm_vsi_subtree(pi, vsi_node, owner, i);
2186 if (status)
2187 goto exit_sched_rm_vsi_cfg;
2188
2189 vsi_ctx->sched.vsi_node[i] = NULL;
2190
2191 if (owner == ICE_SCHED_NODE_OWNER_LAN)
2192 vsi_ctx->sched.max_lanq[i] = 0;
2193 else
2194 vsi_ctx->sched.max_rdmaq[i] = 0;
2195 }
2196 status = 0;
2197
2198 exit_sched_rm_vsi_cfg:
2199 mutex_unlock(&pi->sched_lock);
2200 return status;
2201 }
2202
2203 /**
2204 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2205 * @pi: port information structure
2206 * @vsi_handle: software VSI handle
2207 *
2208 * This function clears the VSI and its LAN children nodes from scheduler tree
2209 * for all TCs.
2210 */
ice_rm_vsi_lan_cfg(struct ice_port_info * pi,u16 vsi_handle)2211 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2212 {
2213 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2214 }
2215
2216 /**
2217 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2218 * @pi: port information structure
2219 * @vsi_handle: software VSI handle
2220 *
2221 * This function clears the VSI and its RDMA children nodes from scheduler tree
2222 * for all TCs.
2223 */
ice_rm_vsi_rdma_cfg(struct ice_port_info * pi,u16 vsi_handle)2224 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2225 {
2226 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2227 }
2228
2229 /**
2230 * ice_get_agg_info - get the aggregator ID
2231 * @hw: pointer to the hardware structure
2232 * @agg_id: aggregator ID
2233 *
2234 * This function validates aggregator ID. The function returns info if
2235 * aggregator ID is present in list otherwise it returns null.
2236 */
2237 static struct ice_sched_agg_info *
ice_get_agg_info(struct ice_hw * hw,u32 agg_id)2238 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2239 {
2240 struct ice_sched_agg_info *agg_info;
2241
2242 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2243 if (agg_info->agg_id == agg_id)
2244 return agg_info;
2245
2246 return NULL;
2247 }
2248
2249 /**
2250 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2251 * @hw: pointer to the HW struct
2252 * @node: pointer to a child node
2253 * @num_nodes: num nodes count array
2254 *
2255 * This function walks through the aggregator subtree to find a free parent
2256 * node
2257 */
2258 struct ice_sched_node *
ice_sched_get_free_vsi_parent(struct ice_hw * hw,struct ice_sched_node * node,u16 * num_nodes)2259 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2260 u16 *num_nodes)
2261 {
2262 u8 l = node->tx_sched_layer;
2263 u8 vsil, i;
2264
2265 vsil = ice_sched_get_vsi_layer(hw);
2266
2267 /* Is it VSI parent layer ? */
2268 if (l == vsil - 1)
2269 return (node->num_children < hw->max_children[l]) ? node : NULL;
2270
2271 /* We have intermediate nodes. Let's walk through the subtree. If the
2272 * intermediate node has space to add a new node then clear the count
2273 */
2274 if (node->num_children < hw->max_children[l])
2275 num_nodes[l] = 0;
2276 /* The below recursive call is intentional and wouldn't go more than
2277 * 2 or 3 iterations.
2278 */
2279
2280 for (i = 0; i < node->num_children; i++) {
2281 struct ice_sched_node *parent;
2282
2283 parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2284 num_nodes);
2285 if (parent)
2286 return parent;
2287 }
2288
2289 return NULL;
2290 }
2291
2292 /**
2293 * ice_sched_update_parent - update the new parent in SW DB
2294 * @new_parent: pointer to a new parent node
2295 * @node: pointer to a child node
2296 *
2297 * This function removes the child from the old parent and adds it to a new
2298 * parent
2299 */
2300 void
ice_sched_update_parent(struct ice_sched_node * new_parent,struct ice_sched_node * node)2301 ice_sched_update_parent(struct ice_sched_node *new_parent,
2302 struct ice_sched_node *node)
2303 {
2304 struct ice_sched_node *old_parent;
2305 u8 i, j;
2306
2307 old_parent = node->parent;
2308
2309 /* update the old parent children */
2310 for (i = 0; i < old_parent->num_children; i++)
2311 if (old_parent->children[i] == node) {
2312 for (j = i + 1; j < old_parent->num_children; j++)
2313 old_parent->children[j - 1] =
2314 old_parent->children[j];
2315 old_parent->num_children--;
2316 break;
2317 }
2318
2319 /* now move the node to a new parent */
2320 new_parent->children[new_parent->num_children++] = node;
2321 node->parent = new_parent;
2322 node->info.parent_teid = new_parent->info.node_teid;
2323 }
2324
2325 /**
2326 * ice_sched_move_nodes - move child nodes to a given parent
2327 * @pi: port information structure
2328 * @parent: pointer to parent node
2329 * @num_items: number of child nodes to be moved
2330 * @list: pointer to child node teids
2331 *
2332 * This function move the child nodes to a given parent.
2333 */
2334 int
ice_sched_move_nodes(struct ice_port_info * pi,struct ice_sched_node * parent,u16 num_items,u32 * list)2335 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2336 u16 num_items, u32 *list)
2337 {
2338 DEFINE_RAW_FLEX(struct ice_aqc_move_elem, buf, teid, 1);
2339 u16 buf_len = __struct_size(buf);
2340 struct ice_sched_node *node;
2341 u16 i, grps_movd = 0;
2342 struct ice_hw *hw;
2343 int status = 0;
2344
2345 hw = pi->hw;
2346
2347 if (!parent || !num_items)
2348 return -EINVAL;
2349
2350 /* Does parent have enough space */
2351 if (parent->num_children + num_items >
2352 hw->max_children[parent->tx_sched_layer])
2353 return -ENOSPC;
2354
2355 for (i = 0; i < num_items; i++) {
2356 node = ice_sched_find_node_by_teid(pi->root, list[i]);
2357 if (!node) {
2358 status = -EINVAL;
2359 break;
2360 }
2361
2362 buf->hdr.src_parent_teid = node->info.parent_teid;
2363 buf->hdr.dest_parent_teid = parent->info.node_teid;
2364 buf->teid[0] = node->info.node_teid;
2365 buf->hdr.num_elems = cpu_to_le16(1);
2366 status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd);
2367 if (status && grps_movd != 1) {
2368 status = -EIO;
2369 break;
2370 }
2371
2372 /* update the SW DB */
2373 ice_sched_update_parent(parent, node);
2374 }
2375
2376 return status;
2377 }
2378
2379 /**
2380 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2381 * @pi: port information structure
2382 * @vsi_handle: software VSI handle
2383 * @agg_id: aggregator ID
2384 * @tc: TC number
2385 *
2386 * This function moves a VSI to an aggregator node or its subtree.
2387 * Intermediate nodes may be created if required.
2388 */
2389 static int
ice_sched_move_vsi_to_agg(struct ice_port_info * pi,u16 vsi_handle,u32 agg_id,u8 tc)2390 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2391 u8 tc)
2392 {
2393 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2394 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2395 u32 first_node_teid, vsi_teid;
2396 u16 num_nodes_added;
2397 u8 aggl, vsil, i;
2398 int status;
2399
2400 tc_node = ice_sched_get_tc_node(pi, tc);
2401 if (!tc_node)
2402 return -EIO;
2403
2404 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2405 if (!agg_node)
2406 return -ENOENT;
2407
2408 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2409 if (!vsi_node)
2410 return -ENOENT;
2411
2412 /* Is this VSI already part of given aggregator? */
2413 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2414 return 0;
2415
2416 aggl = ice_sched_get_agg_layer(pi->hw);
2417 vsil = ice_sched_get_vsi_layer(pi->hw);
2418
2419 /* set intermediate node count to 1 between aggregator and VSI layers */
2420 for (i = aggl + 1; i < vsil; i++)
2421 num_nodes[i] = 1;
2422
2423 /* Check if the aggregator subtree has any free node to add the VSI */
2424 for (i = 0; i < agg_node->num_children; i++) {
2425 parent = ice_sched_get_free_vsi_parent(pi->hw,
2426 agg_node->children[i],
2427 num_nodes);
2428 if (parent)
2429 goto move_nodes;
2430 }
2431
2432 /* add new nodes */
2433 parent = agg_node;
2434 for (i = aggl + 1; i < vsil; i++) {
2435 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2436 num_nodes[i],
2437 &first_node_teid,
2438 &num_nodes_added);
2439 if (status || num_nodes[i] != num_nodes_added)
2440 return -EIO;
2441
2442 /* The newly added node can be a new parent for the next
2443 * layer nodes
2444 */
2445 if (num_nodes_added)
2446 parent = ice_sched_find_node_by_teid(tc_node,
2447 first_node_teid);
2448 else
2449 parent = parent->children[0];
2450
2451 if (!parent)
2452 return -EIO;
2453 }
2454
2455 move_nodes:
2456 vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2457 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2458 }
2459
2460 /**
2461 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2462 * @pi: port information structure
2463 * @agg_info: aggregator info
2464 * @tc: traffic class number
2465 * @rm_vsi_info: true or false
2466 *
2467 * This function move all the VSI(s) to the default aggregator and delete
2468 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2469 * caller holds the scheduler lock.
2470 */
2471 static int
ice_move_all_vsi_to_dflt_agg(struct ice_port_info * pi,struct ice_sched_agg_info * agg_info,u8 tc,bool rm_vsi_info)2472 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2473 struct ice_sched_agg_info *agg_info, u8 tc,
2474 bool rm_vsi_info)
2475 {
2476 struct ice_sched_agg_vsi_info *agg_vsi_info;
2477 struct ice_sched_agg_vsi_info *tmp;
2478 int status = 0;
2479
2480 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2481 list_entry) {
2482 u16 vsi_handle = agg_vsi_info->vsi_handle;
2483
2484 /* Move VSI to default aggregator */
2485 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2486 continue;
2487
2488 status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2489 ICE_DFLT_AGG_ID, tc);
2490 if (status)
2491 break;
2492
2493 clear_bit(tc, agg_vsi_info->tc_bitmap);
2494 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2495 list_del(&agg_vsi_info->list_entry);
2496 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2497 }
2498 }
2499
2500 return status;
2501 }
2502
2503 /**
2504 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2505 * @pi: port information structure
2506 * @node: node pointer
2507 *
2508 * This function checks whether the aggregator is attached with any VSI or not.
2509 */
2510 static bool
ice_sched_is_agg_inuse(struct ice_port_info * pi,struct ice_sched_node * node)2511 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2512 {
2513 u8 vsil, i;
2514
2515 vsil = ice_sched_get_vsi_layer(pi->hw);
2516 if (node->tx_sched_layer < vsil - 1) {
2517 for (i = 0; i < node->num_children; i++)
2518 if (ice_sched_is_agg_inuse(pi, node->children[i]))
2519 return true;
2520 return false;
2521 } else {
2522 return node->num_children ? true : false;
2523 }
2524 }
2525
2526 /**
2527 * ice_sched_rm_agg_cfg - remove the aggregator node
2528 * @pi: port information structure
2529 * @agg_id: aggregator ID
2530 * @tc: TC number
2531 *
2532 * This function removes the aggregator node and intermediate nodes if any
2533 * from the given TC
2534 */
2535 static int
ice_sched_rm_agg_cfg(struct ice_port_info * pi,u32 agg_id,u8 tc)2536 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2537 {
2538 struct ice_sched_node *tc_node, *agg_node;
2539 struct ice_hw *hw = pi->hw;
2540
2541 tc_node = ice_sched_get_tc_node(pi, tc);
2542 if (!tc_node)
2543 return -EIO;
2544
2545 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2546 if (!agg_node)
2547 return -ENOENT;
2548
2549 /* Can't remove the aggregator node if it has children */
2550 if (ice_sched_is_agg_inuse(pi, agg_node))
2551 return -EBUSY;
2552
2553 /* need to remove the whole subtree if aggregator node is the
2554 * only child.
2555 */
2556 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2557 struct ice_sched_node *parent = agg_node->parent;
2558
2559 if (!parent)
2560 return -EIO;
2561
2562 if (parent->num_children > 1)
2563 break;
2564
2565 agg_node = parent;
2566 }
2567
2568 ice_free_sched_node(pi, agg_node);
2569 return 0;
2570 }
2571
2572 /**
2573 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2574 * @pi: port information structure
2575 * @agg_info: aggregator ID
2576 * @tc: TC number
2577 * @rm_vsi_info: bool value true or false
2578 *
2579 * This function removes aggregator reference to VSI of given TC. It removes
2580 * the aggregator configuration completely for requested TC. The caller needs
2581 * to hold the scheduler lock.
2582 */
2583 static int
ice_rm_agg_cfg_tc(struct ice_port_info * pi,struct ice_sched_agg_info * agg_info,u8 tc,bool rm_vsi_info)2584 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2585 u8 tc, bool rm_vsi_info)
2586 {
2587 int status = 0;
2588
2589 /* If nothing to remove - return success */
2590 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2591 goto exit_rm_agg_cfg_tc;
2592
2593 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2594 if (status)
2595 goto exit_rm_agg_cfg_tc;
2596
2597 /* Delete aggregator node(s) */
2598 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2599 if (status)
2600 goto exit_rm_agg_cfg_tc;
2601
2602 clear_bit(tc, agg_info->tc_bitmap);
2603 exit_rm_agg_cfg_tc:
2604 return status;
2605 }
2606
2607 /**
2608 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2609 * @pi: port information structure
2610 * @agg_id: aggregator ID
2611 * @tc_bitmap: 8 bits TC bitmap
2612 *
2613 * Save aggregator TC bitmap. This function needs to be called with scheduler
2614 * lock held.
2615 */
2616 static int
ice_save_agg_tc_bitmap(struct ice_port_info * pi,u32 agg_id,unsigned long * tc_bitmap)2617 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2618 unsigned long *tc_bitmap)
2619 {
2620 struct ice_sched_agg_info *agg_info;
2621
2622 agg_info = ice_get_agg_info(pi->hw, agg_id);
2623 if (!agg_info)
2624 return -EINVAL;
2625 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2626 ICE_MAX_TRAFFIC_CLASS);
2627 return 0;
2628 }
2629
2630 /**
2631 * ice_sched_add_agg_cfg - create an aggregator node
2632 * @pi: port information structure
2633 * @agg_id: aggregator ID
2634 * @tc: TC number
2635 *
2636 * This function creates an aggregator node and intermediate nodes if required
2637 * for the given TC
2638 */
2639 static int
ice_sched_add_agg_cfg(struct ice_port_info * pi,u32 agg_id,u8 tc)2640 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2641 {
2642 struct ice_sched_node *parent, *agg_node, *tc_node;
2643 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2644 struct ice_hw *hw = pi->hw;
2645 u32 first_node_teid;
2646 u16 num_nodes_added;
2647 int status = 0;
2648 u8 i, aggl;
2649
2650 tc_node = ice_sched_get_tc_node(pi, tc);
2651 if (!tc_node)
2652 return -EIO;
2653
2654 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2655 /* Does Agg node already exist ? */
2656 if (agg_node)
2657 return status;
2658
2659 aggl = ice_sched_get_agg_layer(hw);
2660
2661 /* need one node in Agg layer */
2662 num_nodes[aggl] = 1;
2663
2664 /* Check whether the intermediate nodes have space to add the
2665 * new aggregator. If they are full, then SW needs to allocate a new
2666 * intermediate node on those layers
2667 */
2668 for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2669 parent = ice_sched_get_first_node(pi, tc_node, i);
2670
2671 /* scan all the siblings */
2672 while (parent) {
2673 if (parent->num_children < hw->max_children[i])
2674 break;
2675 parent = parent->sibling;
2676 }
2677
2678 /* all the nodes are full, reserve one for this layer */
2679 if (!parent)
2680 num_nodes[i]++;
2681 }
2682
2683 /* add the aggregator node */
2684 parent = tc_node;
2685 for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2686 if (!parent)
2687 return -EIO;
2688
2689 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2690 num_nodes[i],
2691 &first_node_teid,
2692 &num_nodes_added);
2693 if (status || num_nodes[i] != num_nodes_added)
2694 return -EIO;
2695
2696 /* The newly added node can be a new parent for the next
2697 * layer nodes
2698 */
2699 if (num_nodes_added) {
2700 parent = ice_sched_find_node_by_teid(tc_node,
2701 first_node_teid);
2702 /* register aggregator ID with the aggregator node */
2703 if (parent && i == aggl)
2704 parent->agg_id = agg_id;
2705 } else {
2706 parent = parent->children[0];
2707 }
2708 }
2709
2710 return 0;
2711 }
2712
2713 /**
2714 * ice_sched_cfg_agg - configure aggregator node
2715 * @pi: port information structure
2716 * @agg_id: aggregator ID
2717 * @agg_type: aggregator type queue, VSI, or aggregator group
2718 * @tc_bitmap: bits TC bitmap
2719 *
2720 * It registers a unique aggregator node into scheduler services. It
2721 * allows a user to register with a unique ID to track it's resources.
2722 * The aggregator type determines if this is a queue group, VSI group
2723 * or aggregator group. It then creates the aggregator node(s) for requested
2724 * TC(s) or removes an existing aggregator node including its configuration
2725 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2726 * resources and remove aggregator ID.
2727 * This function needs to be called with scheduler lock held.
2728 */
2729 static int
ice_sched_cfg_agg(struct ice_port_info * pi,u32 agg_id,enum ice_agg_type agg_type,unsigned long * tc_bitmap)2730 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2731 enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2732 {
2733 struct ice_sched_agg_info *agg_info;
2734 struct ice_hw *hw = pi->hw;
2735 int status = 0;
2736 u8 tc;
2737
2738 agg_info = ice_get_agg_info(hw, agg_id);
2739 if (!agg_info) {
2740 /* Create new entry for new aggregator ID */
2741 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2742 GFP_KERNEL);
2743 if (!agg_info)
2744 return -ENOMEM;
2745
2746 agg_info->agg_id = agg_id;
2747 agg_info->agg_type = agg_type;
2748 agg_info->tc_bitmap[0] = 0;
2749
2750 /* Initialize the aggregator VSI list head */
2751 INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2752
2753 /* Add new entry in aggregator list */
2754 list_add(&agg_info->list_entry, &hw->agg_list);
2755 }
2756 /* Create aggregator node(s) for requested TC(s) */
2757 ice_for_each_traffic_class(tc) {
2758 if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2759 /* Delete aggregator cfg TC if it exists previously */
2760 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2761 if (status)
2762 break;
2763 continue;
2764 }
2765
2766 /* Check if aggregator node for TC already exists */
2767 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2768 continue;
2769
2770 /* Create new aggregator node for TC */
2771 status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2772 if (status)
2773 break;
2774
2775 /* Save aggregator node's TC information */
2776 set_bit(tc, agg_info->tc_bitmap);
2777 }
2778
2779 return status;
2780 }
2781
2782 /**
2783 * ice_cfg_agg - config aggregator node
2784 * @pi: port information structure
2785 * @agg_id: aggregator ID
2786 * @agg_type: aggregator type queue, VSI, or aggregator group
2787 * @tc_bitmap: bits TC bitmap
2788 *
2789 * This function configures aggregator node(s).
2790 */
2791 int
ice_cfg_agg(struct ice_port_info * pi,u32 agg_id,enum ice_agg_type agg_type,u8 tc_bitmap)2792 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2793 u8 tc_bitmap)
2794 {
2795 unsigned long bitmap = tc_bitmap;
2796 int status;
2797
2798 mutex_lock(&pi->sched_lock);
2799 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2800 if (!status)
2801 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2802 mutex_unlock(&pi->sched_lock);
2803 return status;
2804 }
2805
2806 /**
2807 * ice_get_agg_vsi_info - get the aggregator ID
2808 * @agg_info: aggregator info
2809 * @vsi_handle: software VSI handle
2810 *
2811 * The function returns aggregator VSI info based on VSI handle. This function
2812 * needs to be called with scheduler lock held.
2813 */
2814 static struct ice_sched_agg_vsi_info *
ice_get_agg_vsi_info(struct ice_sched_agg_info * agg_info,u16 vsi_handle)2815 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2816 {
2817 struct ice_sched_agg_vsi_info *agg_vsi_info;
2818
2819 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2820 if (agg_vsi_info->vsi_handle == vsi_handle)
2821 return agg_vsi_info;
2822
2823 return NULL;
2824 }
2825
2826 /**
2827 * ice_get_vsi_agg_info - get the aggregator info of VSI
2828 * @hw: pointer to the hardware structure
2829 * @vsi_handle: Sw VSI handle
2830 *
2831 * The function returns aggregator info of VSI represented via vsi_handle. The
2832 * VSI has in this case a different aggregator than the default one. This
2833 * function needs to be called with scheduler lock held.
2834 */
2835 static struct ice_sched_agg_info *
ice_get_vsi_agg_info(struct ice_hw * hw,u16 vsi_handle)2836 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2837 {
2838 struct ice_sched_agg_info *agg_info;
2839
2840 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2841 struct ice_sched_agg_vsi_info *agg_vsi_info;
2842
2843 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2844 if (agg_vsi_info)
2845 return agg_info;
2846 }
2847 return NULL;
2848 }
2849
2850 /**
2851 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2852 * @pi: port information structure
2853 * @agg_id: aggregator ID
2854 * @vsi_handle: software VSI handle
2855 * @tc_bitmap: TC bitmap of enabled TC(s)
2856 *
2857 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2858 * lock held.
2859 */
2860 static int
ice_save_agg_vsi_tc_bitmap(struct ice_port_info * pi,u32 agg_id,u16 vsi_handle,unsigned long * tc_bitmap)2861 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2862 unsigned long *tc_bitmap)
2863 {
2864 struct ice_sched_agg_vsi_info *agg_vsi_info;
2865 struct ice_sched_agg_info *agg_info;
2866
2867 agg_info = ice_get_agg_info(pi->hw, agg_id);
2868 if (!agg_info)
2869 return -EINVAL;
2870 /* check if entry already exist */
2871 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2872 if (!agg_vsi_info)
2873 return -EINVAL;
2874 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2875 ICE_MAX_TRAFFIC_CLASS);
2876 return 0;
2877 }
2878
2879 /**
2880 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2881 * @pi: port information structure
2882 * @agg_id: aggregator ID
2883 * @vsi_handle: software VSI handle
2884 * @tc_bitmap: TC bitmap of enabled TC(s)
2885 *
2886 * This function moves VSI to a new or default aggregator node. If VSI is
2887 * already associated to the aggregator node then no operation is performed on
2888 * the tree. This function needs to be called with scheduler lock held.
2889 */
2890 static int
ice_sched_assoc_vsi_to_agg(struct ice_port_info * pi,u32 agg_id,u16 vsi_handle,unsigned long * tc_bitmap)2891 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2892 u16 vsi_handle, unsigned long *tc_bitmap)
2893 {
2894 struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2895 struct ice_sched_agg_info *agg_info, *old_agg_info;
2896 struct ice_hw *hw = pi->hw;
2897 int status = 0;
2898 u8 tc;
2899
2900 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2901 return -EINVAL;
2902 agg_info = ice_get_agg_info(hw, agg_id);
2903 if (!agg_info)
2904 return -EINVAL;
2905 /* If the VSI is already part of another aggregator then update
2906 * its VSI info list
2907 */
2908 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2909 if (old_agg_info && old_agg_info != agg_info) {
2910 struct ice_sched_agg_vsi_info *vtmp;
2911
2912 list_for_each_entry_safe(iter, vtmp,
2913 &old_agg_info->agg_vsi_list,
2914 list_entry)
2915 if (iter->vsi_handle == vsi_handle) {
2916 old_agg_vsi_info = iter;
2917 break;
2918 }
2919 }
2920
2921 /* check if entry already exist */
2922 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2923 if (!agg_vsi_info) {
2924 /* Create new entry for VSI under aggregator list */
2925 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2926 sizeof(*agg_vsi_info), GFP_KERNEL);
2927 if (!agg_vsi_info)
2928 return -EINVAL;
2929
2930 /* add VSI ID into the aggregator list */
2931 agg_vsi_info->vsi_handle = vsi_handle;
2932 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2933 }
2934 /* Move VSI node to new aggregator node for requested TC(s) */
2935 ice_for_each_traffic_class(tc) {
2936 if (!ice_is_tc_ena(*tc_bitmap, tc))
2937 continue;
2938
2939 /* Move VSI to new aggregator */
2940 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2941 if (status)
2942 break;
2943
2944 set_bit(tc, agg_vsi_info->tc_bitmap);
2945 if (old_agg_vsi_info)
2946 clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2947 }
2948 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2949 list_del(&old_agg_vsi_info->list_entry);
2950 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2951 }
2952 return status;
2953 }
2954
2955 /**
2956 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2957 * @pi: port information structure
2958 *
2959 * This function removes unused rate limit profiles from the HW and
2960 * SW DB. The caller needs to hold scheduler lock.
2961 */
ice_sched_rm_unused_rl_prof(struct ice_port_info * pi)2962 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2963 {
2964 u16 ln;
2965
2966 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2967 struct ice_aqc_rl_profile_info *rl_prof_elem;
2968 struct ice_aqc_rl_profile_info *rl_prof_tmp;
2969
2970 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2971 &pi->rl_prof_list[ln], list_entry) {
2972 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2973 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2974 }
2975 }
2976 }
2977
2978 /**
2979 * ice_sched_update_elem - update element
2980 * @hw: pointer to the HW struct
2981 * @node: pointer to node
2982 * @info: node info to update
2983 *
2984 * Update the HW DB, and local SW DB of node. Update the scheduling
2985 * parameters of node from argument info data buffer (Info->data buf) and
2986 * returns success or error on config sched element failure. The caller
2987 * needs to hold scheduler lock.
2988 */
2989 static int
ice_sched_update_elem(struct ice_hw * hw,struct ice_sched_node * node,struct ice_aqc_txsched_elem_data * info)2990 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2991 struct ice_aqc_txsched_elem_data *info)
2992 {
2993 struct ice_aqc_txsched_elem_data buf;
2994 u16 elem_cfgd = 0;
2995 u16 num_elems = 1;
2996 int status;
2997
2998 buf = *info;
2999 /* Parent TEID is reserved field in this aq call */
3000 buf.parent_teid = 0;
3001 /* Element type is reserved field in this aq call */
3002 buf.data.elem_type = 0;
3003 /* Flags is reserved field in this aq call */
3004 buf.data.flags = 0;
3005
3006 /* Update HW DB */
3007 /* Configure element node */
3008 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
3009 &elem_cfgd, NULL);
3010 if (status || elem_cfgd != num_elems) {
3011 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
3012 return -EIO;
3013 }
3014
3015 /* Config success case */
3016 /* Now update local SW DB */
3017 /* Only copy the data portion of info buffer */
3018 node->info.data = info->data;
3019 return status;
3020 }
3021
3022 /**
3023 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
3024 * @hw: pointer to the HW struct
3025 * @node: sched node to configure
3026 * @rl_type: rate limit type CIR, EIR, or shared
3027 * @bw_alloc: BW weight/allocation
3028 *
3029 * This function configures node element's BW allocation.
3030 */
3031 static int
ice_sched_cfg_node_bw_alloc(struct ice_hw * hw,struct ice_sched_node * node,enum ice_rl_type rl_type,u16 bw_alloc)3032 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
3033 enum ice_rl_type rl_type, u16 bw_alloc)
3034 {
3035 struct ice_aqc_txsched_elem_data buf;
3036 struct ice_aqc_txsched_elem *data;
3037
3038 buf = node->info;
3039 data = &buf.data;
3040 if (rl_type == ICE_MIN_BW) {
3041 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3042 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
3043 } else if (rl_type == ICE_MAX_BW) {
3044 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3045 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
3046 } else {
3047 return -EINVAL;
3048 }
3049
3050 /* Configure element */
3051 return ice_sched_update_elem(hw, node, &buf);
3052 }
3053
3054 /**
3055 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
3056 * @pi: port information structure
3057 * @agg_id: aggregator ID
3058 * @vsi_handle: software VSI handle
3059 * @tc_bitmap: TC bitmap of enabled TC(s)
3060 *
3061 * Move or associate VSI to a new or default aggregator node.
3062 */
3063 int
ice_move_vsi_to_agg(struct ice_port_info * pi,u32 agg_id,u16 vsi_handle,u8 tc_bitmap)3064 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
3065 u8 tc_bitmap)
3066 {
3067 unsigned long bitmap = tc_bitmap;
3068 int status;
3069
3070 mutex_lock(&pi->sched_lock);
3071 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
3072 (unsigned long *)&bitmap);
3073 if (!status)
3074 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
3075 (unsigned long *)&bitmap);
3076 mutex_unlock(&pi->sched_lock);
3077 return status;
3078 }
3079
3080 /**
3081 * ice_set_clear_cir_bw - set or clear CIR BW
3082 * @bw_t_info: bandwidth type information structure
3083 * @bw: bandwidth in Kbps - Kilo bits per sec
3084 *
3085 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
3086 */
ice_set_clear_cir_bw(struct ice_bw_type_info * bw_t_info,u32 bw)3087 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3088 {
3089 if (bw == ICE_SCHED_DFLT_BW) {
3090 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3091 bw_t_info->cir_bw.bw = 0;
3092 } else {
3093 /* Save type of BW information */
3094 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3095 bw_t_info->cir_bw.bw = bw;
3096 }
3097 }
3098
3099 /**
3100 * ice_set_clear_eir_bw - set or clear EIR BW
3101 * @bw_t_info: bandwidth type information structure
3102 * @bw: bandwidth in Kbps - Kilo bits per sec
3103 *
3104 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3105 */
ice_set_clear_eir_bw(struct ice_bw_type_info * bw_t_info,u32 bw)3106 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3107 {
3108 if (bw == ICE_SCHED_DFLT_BW) {
3109 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3110 bw_t_info->eir_bw.bw = 0;
3111 } else {
3112 /* EIR BW and Shared BW profiles are mutually exclusive and
3113 * hence only one of them may be set for any given element.
3114 * First clear earlier saved shared BW information.
3115 */
3116 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3117 bw_t_info->shared_bw = 0;
3118 /* save EIR BW information */
3119 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3120 bw_t_info->eir_bw.bw = bw;
3121 }
3122 }
3123
3124 /**
3125 * ice_set_clear_shared_bw - set or clear shared BW
3126 * @bw_t_info: bandwidth type information structure
3127 * @bw: bandwidth in Kbps - Kilo bits per sec
3128 *
3129 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3130 */
ice_set_clear_shared_bw(struct ice_bw_type_info * bw_t_info,u32 bw)3131 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3132 {
3133 if (bw == ICE_SCHED_DFLT_BW) {
3134 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3135 bw_t_info->shared_bw = 0;
3136 } else {
3137 /* EIR BW and Shared BW profiles are mutually exclusive and
3138 * hence only one of them may be set for any given element.
3139 * First clear earlier saved EIR BW information.
3140 */
3141 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3142 bw_t_info->eir_bw.bw = 0;
3143 /* save shared BW information */
3144 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3145 bw_t_info->shared_bw = bw;
3146 }
3147 }
3148
3149 /**
3150 * ice_sched_save_vsi_bw - save VSI node's BW information
3151 * @pi: port information structure
3152 * @vsi_handle: sw VSI handle
3153 * @tc: traffic class
3154 * @rl_type: rate limit type min, max, or shared
3155 * @bw: bandwidth in Kbps - Kilo bits per sec
3156 *
3157 * Save BW information of VSI type node for post replay use.
3158 */
3159 static int
ice_sched_save_vsi_bw(struct ice_port_info * pi,u16 vsi_handle,u8 tc,enum ice_rl_type rl_type,u32 bw)3160 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3161 enum ice_rl_type rl_type, u32 bw)
3162 {
3163 struct ice_vsi_ctx *vsi_ctx;
3164
3165 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3166 return -EINVAL;
3167 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3168 if (!vsi_ctx)
3169 return -EINVAL;
3170 switch (rl_type) {
3171 case ICE_MIN_BW:
3172 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3173 break;
3174 case ICE_MAX_BW:
3175 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3176 break;
3177 case ICE_SHARED_BW:
3178 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3179 break;
3180 default:
3181 return -EINVAL;
3182 }
3183 return 0;
3184 }
3185
3186 /**
3187 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3188 * @hw: pointer to the HW struct
3189 * @bw: bandwidth in Kbps
3190 *
3191 * This function calculates the wakeup parameter of RL profile.
3192 */
ice_sched_calc_wakeup(struct ice_hw * hw,s32 bw)3193 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3194 {
3195 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3196 s32 wakeup_f_int;
3197 u16 wakeup = 0;
3198
3199 /* Get the wakeup integer value */
3200 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3201 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3202 if (wakeup_int > 63) {
3203 wakeup = (u16)((1 << 15) | wakeup_int);
3204 } else {
3205 /* Calculate fraction value up to 4 decimals
3206 * Convert Integer value to a constant multiplier
3207 */
3208 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3209 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3210 hw->psm_clk_freq, bytes_per_sec);
3211
3212 /* Get Fraction value */
3213 wakeup_f = wakeup_a - wakeup_b;
3214
3215 /* Round up the Fractional value via Ceil(Fractional value) */
3216 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3217 wakeup_f += 1;
3218
3219 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3220 ICE_RL_PROF_MULTIPLIER);
3221 wakeup |= (u16)(wakeup_int << 9);
3222 wakeup |= (u16)(0x1ff & wakeup_f_int);
3223 }
3224
3225 return wakeup;
3226 }
3227
3228 /**
3229 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3230 * @hw: pointer to the HW struct
3231 * @bw: bandwidth in Kbps
3232 * @profile: profile parameters to return
3233 *
3234 * This function converts the BW to profile structure format.
3235 */
3236 static int
ice_sched_bw_to_rl_profile(struct ice_hw * hw,u32 bw,struct ice_aqc_rl_profile_elem * profile)3237 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3238 struct ice_aqc_rl_profile_elem *profile)
3239 {
3240 s64 bytes_per_sec, ts_rate, mv_tmp;
3241 int status = -EINVAL;
3242 bool found = false;
3243 s32 encode = 0;
3244 s64 mv = 0;
3245 s32 i;
3246
3247 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3248 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3249 return status;
3250
3251 /* Bytes per second from Kbps */
3252 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3253
3254 /* encode is 6 bits but really useful are 5 bits */
3255 for (i = 0; i < 64; i++) {
3256 u64 pow_result = BIT_ULL(i);
3257
3258 ts_rate = div64_long((s64)hw->psm_clk_freq,
3259 pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3260 if (ts_rate <= 0)
3261 continue;
3262
3263 /* Multiplier value */
3264 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3265 ts_rate);
3266
3267 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3268 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3269
3270 /* First multiplier value greater than the given
3271 * accuracy bytes
3272 */
3273 if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3274 encode = i;
3275 found = true;
3276 break;
3277 }
3278 }
3279 if (found) {
3280 u16 wm;
3281
3282 wm = ice_sched_calc_wakeup(hw, bw);
3283 profile->rl_multiply = cpu_to_le16(mv);
3284 profile->wake_up_calc = cpu_to_le16(wm);
3285 profile->rl_encode = cpu_to_le16(encode);
3286 status = 0;
3287 } else {
3288 status = -ENOENT;
3289 }
3290
3291 return status;
3292 }
3293
3294 /**
3295 * ice_sched_add_rl_profile - add RL profile
3296 * @pi: port information structure
3297 * @rl_type: type of rate limit BW - min, max, or shared
3298 * @bw: bandwidth in Kbps - Kilo bits per sec
3299 * @layer_num: specifies in which layer to create profile
3300 *
3301 * This function first checks the existing list for corresponding BW
3302 * parameter. If it exists, it returns the associated profile otherwise
3303 * it creates a new rate limit profile for requested BW, and adds it to
3304 * the HW DB and local list. It returns the new profile or null on error.
3305 * The caller needs to hold the scheduler lock.
3306 */
3307 static struct ice_aqc_rl_profile_info *
ice_sched_add_rl_profile(struct ice_port_info * pi,enum ice_rl_type rl_type,u32 bw,u8 layer_num)3308 ice_sched_add_rl_profile(struct ice_port_info *pi,
3309 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3310 {
3311 struct ice_aqc_rl_profile_info *rl_prof_elem;
3312 u16 profiles_added = 0, num_profiles = 1;
3313 struct ice_aqc_rl_profile_elem *buf;
3314 struct ice_hw *hw;
3315 u8 profile_type;
3316 int status;
3317
3318 if (!pi || layer_num >= pi->hw->num_tx_sched_layers)
3319 return NULL;
3320 switch (rl_type) {
3321 case ICE_MIN_BW:
3322 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3323 break;
3324 case ICE_MAX_BW:
3325 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3326 break;
3327 case ICE_SHARED_BW:
3328 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3329 break;
3330 default:
3331 return NULL;
3332 }
3333
3334 hw = pi->hw;
3335 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3336 list_entry)
3337 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3338 profile_type && rl_prof_elem->bw == bw)
3339 /* Return existing profile ID info */
3340 return rl_prof_elem;
3341
3342 /* Create new profile ID */
3343 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3344 GFP_KERNEL);
3345
3346 if (!rl_prof_elem)
3347 return NULL;
3348
3349 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3350 if (status)
3351 goto exit_add_rl_prof;
3352
3353 rl_prof_elem->bw = bw;
3354 /* layer_num is zero relative, and fw expects level from 1 to 9 */
3355 rl_prof_elem->profile.level = layer_num + 1;
3356 rl_prof_elem->profile.flags = profile_type;
3357 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3358
3359 /* Create new entry in HW DB */
3360 buf = &rl_prof_elem->profile;
3361 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3362 &profiles_added, NULL);
3363 if (status || profiles_added != num_profiles)
3364 goto exit_add_rl_prof;
3365
3366 /* Good entry - add in the list */
3367 rl_prof_elem->prof_id_ref = 0;
3368 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3369 return rl_prof_elem;
3370
3371 exit_add_rl_prof:
3372 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3373 return NULL;
3374 }
3375
3376 /**
3377 * ice_sched_cfg_node_bw_lmt - configure node sched params
3378 * @hw: pointer to the HW struct
3379 * @node: sched node to configure
3380 * @rl_type: rate limit type CIR, EIR, or shared
3381 * @rl_prof_id: rate limit profile ID
3382 *
3383 * This function configures node element's BW limit.
3384 */
3385 static int
ice_sched_cfg_node_bw_lmt(struct ice_hw * hw,struct ice_sched_node * node,enum ice_rl_type rl_type,u16 rl_prof_id)3386 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3387 enum ice_rl_type rl_type, u16 rl_prof_id)
3388 {
3389 struct ice_aqc_txsched_elem_data buf;
3390 struct ice_aqc_txsched_elem *data;
3391
3392 buf = node->info;
3393 data = &buf.data;
3394 switch (rl_type) {
3395 case ICE_MIN_BW:
3396 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3397 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3398 break;
3399 case ICE_MAX_BW:
3400 /* EIR BW and Shared BW profiles are mutually exclusive and
3401 * hence only one of them may be set for any given element
3402 */
3403 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3404 return -EIO;
3405 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3406 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3407 break;
3408 case ICE_SHARED_BW:
3409 /* Check for removing shared BW */
3410 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3411 /* remove shared profile */
3412 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3413 data->srl_id = 0; /* clear SRL field */
3414
3415 /* enable back EIR to default profile */
3416 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3417 data->eir_bw.bw_profile_idx =
3418 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3419 break;
3420 }
3421 /* EIR BW and Shared BW profiles are mutually exclusive and
3422 * hence only one of them may be set for any given element
3423 */
3424 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3425 (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3426 ICE_SCHED_DFLT_RL_PROF_ID))
3427 return -EIO;
3428 /* EIR BW is set to default, disable it */
3429 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3430 /* Okay to enable shared BW now */
3431 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3432 data->srl_id = cpu_to_le16(rl_prof_id);
3433 break;
3434 default:
3435 /* Unknown rate limit type */
3436 return -EINVAL;
3437 }
3438
3439 /* Configure element */
3440 return ice_sched_update_elem(hw, node, &buf);
3441 }
3442
3443 /**
3444 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3445 * @node: sched node
3446 * @rl_type: rate limit type
3447 *
3448 * If existing profile matches, it returns the corresponding rate
3449 * limit profile ID, otherwise it returns an invalid ID as error.
3450 */
3451 static u16
ice_sched_get_node_rl_prof_id(struct ice_sched_node * node,enum ice_rl_type rl_type)3452 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3453 enum ice_rl_type rl_type)
3454 {
3455 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3456 struct ice_aqc_txsched_elem *data;
3457
3458 data = &node->info.data;
3459 switch (rl_type) {
3460 case ICE_MIN_BW:
3461 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3462 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3463 break;
3464 case ICE_MAX_BW:
3465 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3466 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3467 break;
3468 case ICE_SHARED_BW:
3469 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3470 rl_prof_id = le16_to_cpu(data->srl_id);
3471 break;
3472 default:
3473 break;
3474 }
3475
3476 return rl_prof_id;
3477 }
3478
3479 /**
3480 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3481 * @pi: port information structure
3482 * @rl_type: type of rate limit BW - min, max, or shared
3483 * @layer_index: layer index
3484 *
3485 * This function returns requested profile creation layer.
3486 */
3487 static u8
ice_sched_get_rl_prof_layer(struct ice_port_info * pi,enum ice_rl_type rl_type,u8 layer_index)3488 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3489 u8 layer_index)
3490 {
3491 struct ice_hw *hw = pi->hw;
3492
3493 if (layer_index >= hw->num_tx_sched_layers)
3494 return ICE_SCHED_INVAL_LAYER_NUM;
3495 switch (rl_type) {
3496 case ICE_MIN_BW:
3497 if (hw->layer_info[layer_index].max_cir_rl_profiles)
3498 return layer_index;
3499 break;
3500 case ICE_MAX_BW:
3501 if (hw->layer_info[layer_index].max_eir_rl_profiles)
3502 return layer_index;
3503 break;
3504 case ICE_SHARED_BW:
3505 /* if current layer doesn't support SRL profile creation
3506 * then try a layer up or down.
3507 */
3508 if (hw->layer_info[layer_index].max_srl_profiles)
3509 return layer_index;
3510 else if (layer_index < hw->num_tx_sched_layers - 1 &&
3511 hw->layer_info[layer_index + 1].max_srl_profiles)
3512 return layer_index + 1;
3513 else if (layer_index > 0 &&
3514 hw->layer_info[layer_index - 1].max_srl_profiles)
3515 return layer_index - 1;
3516 break;
3517 default:
3518 break;
3519 }
3520 return ICE_SCHED_INVAL_LAYER_NUM;
3521 }
3522
3523 /**
3524 * ice_sched_get_srl_node - get shared rate limit node
3525 * @node: tree node
3526 * @srl_layer: shared rate limit layer
3527 *
3528 * This function returns SRL node to be used for shared rate limit purpose.
3529 * The caller needs to hold scheduler lock.
3530 */
3531 static struct ice_sched_node *
ice_sched_get_srl_node(struct ice_sched_node * node,u8 srl_layer)3532 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3533 {
3534 if (srl_layer > node->tx_sched_layer)
3535 return node->children[0];
3536 else if (srl_layer < node->tx_sched_layer)
3537 /* Node can't be created without a parent. It will always
3538 * have a valid parent except root node.
3539 */
3540 return node->parent;
3541 else
3542 return node;
3543 }
3544
3545 /**
3546 * ice_sched_rm_rl_profile - remove RL profile ID
3547 * @pi: port information structure
3548 * @layer_num: layer number where profiles are saved
3549 * @profile_type: profile type like EIR, CIR, or SRL
3550 * @profile_id: profile ID to remove
3551 *
3552 * This function removes rate limit profile from layer 'layer_num' of type
3553 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3554 * scheduler lock.
3555 */
3556 static int
ice_sched_rm_rl_profile(struct ice_port_info * pi,u8 layer_num,u8 profile_type,u16 profile_id)3557 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3558 u16 profile_id)
3559 {
3560 struct ice_aqc_rl_profile_info *rl_prof_elem;
3561 int status = 0;
3562
3563 if (layer_num >= pi->hw->num_tx_sched_layers)
3564 return -EINVAL;
3565 /* Check the existing list for RL profile */
3566 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3567 list_entry)
3568 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3569 profile_type &&
3570 le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3571 profile_id) {
3572 if (rl_prof_elem->prof_id_ref)
3573 rl_prof_elem->prof_id_ref--;
3574
3575 /* Remove old profile ID from database */
3576 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3577 if (status && status != -EBUSY)
3578 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3579 break;
3580 }
3581 if (status == -EBUSY)
3582 status = 0;
3583 return status;
3584 }
3585
3586 /**
3587 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3588 * @pi: port information structure
3589 * @node: pointer to node structure
3590 * @rl_type: rate limit type min, max, or shared
3591 * @layer_num: layer number where RL profiles are saved
3592 *
3593 * This function configures node element's BW rate limit profile ID of
3594 * type CIR, EIR, or SRL to default. This function needs to be called
3595 * with the scheduler lock held.
3596 */
3597 static int
ice_sched_set_node_bw_dflt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u8 layer_num)3598 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3599 struct ice_sched_node *node,
3600 enum ice_rl_type rl_type, u8 layer_num)
3601 {
3602 struct ice_hw *hw;
3603 u8 profile_type;
3604 u16 rl_prof_id;
3605 u16 old_id;
3606 int status;
3607
3608 hw = pi->hw;
3609 switch (rl_type) {
3610 case ICE_MIN_BW:
3611 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3612 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3613 break;
3614 case ICE_MAX_BW:
3615 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3616 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3617 break;
3618 case ICE_SHARED_BW:
3619 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3620 /* No SRL is configured for default case */
3621 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3622 break;
3623 default:
3624 return -EINVAL;
3625 }
3626 /* Save existing RL prof ID for later clean up */
3627 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3628 /* Configure BW scheduling parameters */
3629 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3630 if (status)
3631 return status;
3632
3633 /* Remove stale RL profile ID */
3634 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3635 old_id == ICE_SCHED_INVAL_PROF_ID)
3636 return 0;
3637
3638 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3639 }
3640
3641 /**
3642 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3643 * @pi: port information structure
3644 * @node: pointer to node structure
3645 * @layer_num: layer number where rate limit profiles are saved
3646 * @rl_type: rate limit type min, max, or shared
3647 * @bw: bandwidth value
3648 *
3649 * This function prepares node element's bandwidth to SRL or EIR exclusively.
3650 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3651 * them may be set for any given element. This function needs to be called
3652 * with the scheduler lock held.
3653 */
3654 static int
ice_sched_set_eir_srl_excl(struct ice_port_info * pi,struct ice_sched_node * node,u8 layer_num,enum ice_rl_type rl_type,u32 bw)3655 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3656 struct ice_sched_node *node,
3657 u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3658 {
3659 if (rl_type == ICE_SHARED_BW) {
3660 /* SRL node passed in this case, it may be different node */
3661 if (bw == ICE_SCHED_DFLT_BW)
3662 /* SRL being removed, ice_sched_cfg_node_bw_lmt()
3663 * enables EIR to default. EIR is not set in this
3664 * case, so no additional action is required.
3665 */
3666 return 0;
3667
3668 /* SRL being configured, set EIR to default here.
3669 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3670 * configures SRL
3671 */
3672 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3673 layer_num);
3674 } else if (rl_type == ICE_MAX_BW &&
3675 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3676 /* Remove Shared profile. Set default shared BW call
3677 * removes shared profile for a node.
3678 */
3679 return ice_sched_set_node_bw_dflt(pi, node,
3680 ICE_SHARED_BW,
3681 layer_num);
3682 }
3683 return 0;
3684 }
3685
3686 /**
3687 * ice_sched_set_node_bw - set node's bandwidth
3688 * @pi: port information structure
3689 * @node: tree node
3690 * @rl_type: rate limit type min, max, or shared
3691 * @bw: bandwidth in Kbps - Kilo bits per sec
3692 * @layer_num: layer number
3693 *
3694 * This function adds new profile corresponding to requested BW, configures
3695 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3696 * ID from local database. The caller needs to hold scheduler lock.
3697 */
3698 int
ice_sched_set_node_bw(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u32 bw,u8 layer_num)3699 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3700 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3701 {
3702 struct ice_aqc_rl_profile_info *rl_prof_info;
3703 struct ice_hw *hw = pi->hw;
3704 u16 old_id, rl_prof_id;
3705 int status = -EINVAL;
3706
3707 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3708 if (!rl_prof_info)
3709 return status;
3710
3711 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3712
3713 /* Save existing RL prof ID for later clean up */
3714 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3715 /* Configure BW scheduling parameters */
3716 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3717 if (status)
3718 return status;
3719
3720 /* New changes has been applied */
3721 /* Increment the profile ID reference count */
3722 rl_prof_info->prof_id_ref++;
3723
3724 /* Check for old ID removal */
3725 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3726 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3727 return 0;
3728
3729 return ice_sched_rm_rl_profile(pi, layer_num,
3730 rl_prof_info->profile.flags &
3731 ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3732 }
3733
3734 /**
3735 * ice_sched_set_node_priority - set node's priority
3736 * @pi: port information structure
3737 * @node: tree node
3738 * @priority: number 0-7 representing priority among siblings
3739 *
3740 * This function sets priority of a node among it's siblings.
3741 */
3742 int
ice_sched_set_node_priority(struct ice_port_info * pi,struct ice_sched_node * node,u16 priority)3743 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3744 u16 priority)
3745 {
3746 struct ice_aqc_txsched_elem_data buf;
3747 struct ice_aqc_txsched_elem *data;
3748
3749 buf = node->info;
3750 data = &buf.data;
3751
3752 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3753 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3754
3755 return ice_sched_update_elem(pi->hw, node, &buf);
3756 }
3757
3758 /**
3759 * ice_sched_set_node_weight - set node's weight
3760 * @pi: port information structure
3761 * @node: tree node
3762 * @weight: number 1-200 representing weight for WFQ
3763 *
3764 * This function sets weight of the node for WFQ algorithm.
3765 */
3766 int
ice_sched_set_node_weight(struct ice_port_info * pi,struct ice_sched_node * node,u16 weight)3767 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3768 {
3769 struct ice_aqc_txsched_elem_data buf;
3770 struct ice_aqc_txsched_elem *data;
3771
3772 buf = node->info;
3773 data = &buf.data;
3774
3775 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3776 ICE_AQC_ELEM_VALID_GENERIC;
3777 data->cir_bw.bw_alloc = cpu_to_le16(weight);
3778 data->eir_bw.bw_alloc = cpu_to_le16(weight);
3779
3780 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3781
3782 return ice_sched_update_elem(pi->hw, node, &buf);
3783 }
3784
3785 /**
3786 * ice_sched_set_node_bw_lmt - set node's BW limit
3787 * @pi: port information structure
3788 * @node: tree node
3789 * @rl_type: rate limit type min, max, or shared
3790 * @bw: bandwidth in Kbps - Kilo bits per sec
3791 *
3792 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3793 * EIR, or SRL. The caller needs to hold scheduler lock.
3794 */
3795 int
ice_sched_set_node_bw_lmt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u32 bw)3796 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3797 enum ice_rl_type rl_type, u32 bw)
3798 {
3799 struct ice_sched_node *cfg_node = node;
3800 int status;
3801
3802 struct ice_hw *hw;
3803 u8 layer_num;
3804
3805 if (!pi)
3806 return -EINVAL;
3807 hw = pi->hw;
3808 /* Remove unused RL profile IDs from HW and SW DB */
3809 ice_sched_rm_unused_rl_prof(pi);
3810 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3811 node->tx_sched_layer);
3812 if (layer_num >= hw->num_tx_sched_layers)
3813 return -EINVAL;
3814
3815 if (rl_type == ICE_SHARED_BW) {
3816 /* SRL node may be different */
3817 cfg_node = ice_sched_get_srl_node(node, layer_num);
3818 if (!cfg_node)
3819 return -EIO;
3820 }
3821 /* EIR BW and Shared BW profiles are mutually exclusive and
3822 * hence only one of them may be set for any given element
3823 */
3824 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3825 bw);
3826 if (status)
3827 return status;
3828 if (bw == ICE_SCHED_DFLT_BW)
3829 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3830 layer_num);
3831 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3832 }
3833
3834 /**
3835 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3836 * @pi: port information structure
3837 * @node: pointer to node structure
3838 * @rl_type: rate limit type min, max, or shared
3839 *
3840 * This function configures node element's BW rate limit profile ID of
3841 * type CIR, EIR, or SRL to default. This function needs to be called
3842 * with the scheduler lock held.
3843 */
3844 static int
ice_sched_set_node_bw_dflt_lmt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type)3845 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3846 struct ice_sched_node *node,
3847 enum ice_rl_type rl_type)
3848 {
3849 return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3850 ICE_SCHED_DFLT_BW);
3851 }
3852
3853 /**
3854 * ice_sched_validate_srl_node - Check node for SRL applicability
3855 * @node: sched node to configure
3856 * @sel_layer: selected SRL layer
3857 *
3858 * This function checks if the SRL can be applied to a selected layer node on
3859 * behalf of the requested node (first argument). This function needs to be
3860 * called with scheduler lock held.
3861 */
3862 static int
ice_sched_validate_srl_node(struct ice_sched_node * node,u8 sel_layer)3863 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3864 {
3865 /* SRL profiles are not available on all layers. Check if the
3866 * SRL profile can be applied to a node above or below the
3867 * requested node. SRL configuration is possible only if the
3868 * selected layer's node has single child.
3869 */
3870 if (sel_layer == node->tx_sched_layer ||
3871 ((sel_layer == node->tx_sched_layer + 1) &&
3872 node->num_children == 1) ||
3873 ((sel_layer == node->tx_sched_layer - 1) &&
3874 (node->parent && node->parent->num_children == 1)))
3875 return 0;
3876
3877 return -EIO;
3878 }
3879
3880 /**
3881 * ice_sched_save_q_bw - save queue node's BW information
3882 * @q_ctx: queue context structure
3883 * @rl_type: rate limit type min, max, or shared
3884 * @bw: bandwidth in Kbps - Kilo bits per sec
3885 *
3886 * Save BW information of queue type node for post replay use.
3887 */
3888 static int
ice_sched_save_q_bw(struct ice_q_ctx * q_ctx,enum ice_rl_type rl_type,u32 bw)3889 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3890 {
3891 switch (rl_type) {
3892 case ICE_MIN_BW:
3893 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3894 break;
3895 case ICE_MAX_BW:
3896 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3897 break;
3898 case ICE_SHARED_BW:
3899 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3900 break;
3901 default:
3902 return -EINVAL;
3903 }
3904 return 0;
3905 }
3906
3907 /**
3908 * ice_sched_set_q_bw_lmt - sets queue BW limit
3909 * @pi: port information structure
3910 * @vsi_handle: sw VSI handle
3911 * @tc: traffic class
3912 * @q_handle: software queue handle
3913 * @rl_type: min, max, or shared
3914 * @bw: bandwidth in Kbps
3915 *
3916 * This function sets BW limit of queue scheduling node.
3917 */
3918 static int
ice_sched_set_q_bw_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type,u32 bw)3919 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3920 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3921 {
3922 struct ice_sched_node *node;
3923 struct ice_q_ctx *q_ctx;
3924 int status = -EINVAL;
3925
3926 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3927 return -EINVAL;
3928 mutex_lock(&pi->sched_lock);
3929 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3930 if (!q_ctx)
3931 goto exit_q_bw_lmt;
3932 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3933 if (!node) {
3934 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3935 goto exit_q_bw_lmt;
3936 }
3937
3938 /* Return error if it is not a leaf node */
3939 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3940 goto exit_q_bw_lmt;
3941
3942 /* SRL bandwidth layer selection */
3943 if (rl_type == ICE_SHARED_BW) {
3944 u8 sel_layer; /* selected layer */
3945
3946 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3947 node->tx_sched_layer);
3948 if (sel_layer >= pi->hw->num_tx_sched_layers) {
3949 status = -EINVAL;
3950 goto exit_q_bw_lmt;
3951 }
3952 status = ice_sched_validate_srl_node(node, sel_layer);
3953 if (status)
3954 goto exit_q_bw_lmt;
3955 }
3956
3957 if (bw == ICE_SCHED_DFLT_BW)
3958 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3959 else
3960 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3961
3962 if (!status)
3963 status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3964
3965 exit_q_bw_lmt:
3966 mutex_unlock(&pi->sched_lock);
3967 return status;
3968 }
3969
3970 /**
3971 * ice_cfg_q_bw_lmt - configure queue BW limit
3972 * @pi: port information structure
3973 * @vsi_handle: sw VSI handle
3974 * @tc: traffic class
3975 * @q_handle: software queue handle
3976 * @rl_type: min, max, or shared
3977 * @bw: bandwidth in Kbps
3978 *
3979 * This function configures BW limit of queue scheduling node.
3980 */
3981 int
ice_cfg_q_bw_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type,u32 bw)3982 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3983 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3984 {
3985 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3986 bw);
3987 }
3988
3989 /**
3990 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3991 * @pi: port information structure
3992 * @vsi_handle: sw VSI handle
3993 * @tc: traffic class
3994 * @q_handle: software queue handle
3995 * @rl_type: min, max, or shared
3996 *
3997 * This function configures BW default limit of queue scheduling node.
3998 */
3999 int
ice_cfg_q_bw_dflt_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type)4000 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4001 u16 q_handle, enum ice_rl_type rl_type)
4002 {
4003 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4004 ICE_SCHED_DFLT_BW);
4005 }
4006
4007 /**
4008 * ice_sched_get_node_by_id_type - get node from ID type
4009 * @pi: port information structure
4010 * @id: identifier
4011 * @agg_type: type of aggregator
4012 * @tc: traffic class
4013 *
4014 * This function returns node identified by ID of type aggregator, and
4015 * based on traffic class (TC). This function needs to be called with
4016 * the scheduler lock held.
4017 */
4018 static struct ice_sched_node *
ice_sched_get_node_by_id_type(struct ice_port_info * pi,u32 id,enum ice_agg_type agg_type,u8 tc)4019 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
4020 enum ice_agg_type agg_type, u8 tc)
4021 {
4022 struct ice_sched_node *node = NULL;
4023
4024 switch (agg_type) {
4025 case ICE_AGG_TYPE_VSI: {
4026 struct ice_vsi_ctx *vsi_ctx;
4027 u16 vsi_handle = (u16)id;
4028
4029 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4030 break;
4031 /* Get sched_vsi_info */
4032 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4033 if (!vsi_ctx)
4034 break;
4035 node = vsi_ctx->sched.vsi_node[tc];
4036 break;
4037 }
4038
4039 case ICE_AGG_TYPE_AGG: {
4040 struct ice_sched_node *tc_node;
4041
4042 tc_node = ice_sched_get_tc_node(pi, tc);
4043 if (tc_node)
4044 node = ice_sched_get_agg_node(pi, tc_node, id);
4045 break;
4046 }
4047
4048 default:
4049 break;
4050 }
4051
4052 return node;
4053 }
4054
4055 /**
4056 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
4057 * @pi: port information structure
4058 * @id: ID (software VSI handle or AGG ID)
4059 * @agg_type: aggregator type (VSI or AGG type node)
4060 * @tc: traffic class
4061 * @rl_type: min or max
4062 * @bw: bandwidth in Kbps
4063 *
4064 * This function sets BW limit of VSI or Aggregator scheduling node
4065 * based on TC information from passed in argument BW.
4066 */
4067 static int
ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info * pi,u32 id,enum ice_agg_type agg_type,u8 tc,enum ice_rl_type rl_type,u32 bw)4068 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
4069 enum ice_agg_type agg_type, u8 tc,
4070 enum ice_rl_type rl_type, u32 bw)
4071 {
4072 struct ice_sched_node *node;
4073 int status = -EINVAL;
4074
4075 if (!pi)
4076 return status;
4077
4078 if (rl_type == ICE_UNKNOWN_BW)
4079 return status;
4080
4081 mutex_lock(&pi->sched_lock);
4082 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
4083 if (!node) {
4084 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
4085 goto exit_set_node_bw_lmt_per_tc;
4086 }
4087 if (bw == ICE_SCHED_DFLT_BW)
4088 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4089 else
4090 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4091
4092 exit_set_node_bw_lmt_per_tc:
4093 mutex_unlock(&pi->sched_lock);
4094 return status;
4095 }
4096
4097 /**
4098 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
4099 * @pi: port information structure
4100 * @vsi_handle: software VSI handle
4101 * @tc: traffic class
4102 * @rl_type: min or max
4103 * @bw: bandwidth in Kbps
4104 *
4105 * This function configures BW limit of VSI scheduling node based on TC
4106 * information.
4107 */
4108 int
ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info * pi,u16 vsi_handle,u8 tc,enum ice_rl_type rl_type,u32 bw)4109 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4110 enum ice_rl_type rl_type, u32 bw)
4111 {
4112 int status;
4113
4114 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4115 ICE_AGG_TYPE_VSI,
4116 tc, rl_type, bw);
4117 if (!status) {
4118 mutex_lock(&pi->sched_lock);
4119 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4120 mutex_unlock(&pi->sched_lock);
4121 }
4122 return status;
4123 }
4124
4125 /**
4126 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4127 * @pi: port information structure
4128 * @vsi_handle: software VSI handle
4129 * @tc: traffic class
4130 * @rl_type: min or max
4131 *
4132 * This function configures default BW limit of VSI scheduling node based on TC
4133 * information.
4134 */
4135 int
ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info * pi,u16 vsi_handle,u8 tc,enum ice_rl_type rl_type)4136 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4137 enum ice_rl_type rl_type)
4138 {
4139 int status;
4140
4141 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4142 ICE_AGG_TYPE_VSI,
4143 tc, rl_type,
4144 ICE_SCHED_DFLT_BW);
4145 if (!status) {
4146 mutex_lock(&pi->sched_lock);
4147 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4148 ICE_SCHED_DFLT_BW);
4149 mutex_unlock(&pi->sched_lock);
4150 }
4151 return status;
4152 }
4153
4154 /**
4155 * ice_cfg_rl_burst_size - Set burst size value
4156 * @hw: pointer to the HW struct
4157 * @bytes: burst size in bytes
4158 *
4159 * This function configures/set the burst size to requested new value. The new
4160 * burst size value is used for future rate limit calls. It doesn't change the
4161 * existing or previously created RL profiles.
4162 */
ice_cfg_rl_burst_size(struct ice_hw * hw,u32 bytes)4163 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4164 {
4165 u16 burst_size_to_prog;
4166
4167 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4168 bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4169 return -EINVAL;
4170 if (ice_round_to_num(bytes, 64) <=
4171 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4172 /* 64 byte granularity case */
4173 /* Disable MSB granularity bit */
4174 burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4175 /* round number to nearest 64 byte granularity */
4176 bytes = ice_round_to_num(bytes, 64);
4177 /* The value is in 64 byte chunks */
4178 burst_size_to_prog |= (u16)(bytes / 64);
4179 } else {
4180 /* k bytes granularity case */
4181 /* Enable MSB granularity bit */
4182 burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4183 /* round number to nearest 1024 granularity */
4184 bytes = ice_round_to_num(bytes, 1024);
4185 /* check rounding doesn't go beyond allowed */
4186 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4187 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4188 /* The value is in k bytes */
4189 burst_size_to_prog |= (u16)(bytes / 1024);
4190 }
4191 hw->max_burst_size = burst_size_to_prog;
4192 return 0;
4193 }
4194
4195 /**
4196 * ice_sched_replay_node_prio - re-configure node priority
4197 * @hw: pointer to the HW struct
4198 * @node: sched node to configure
4199 * @priority: priority value
4200 *
4201 * This function configures node element's priority value. It
4202 * needs to be called with scheduler lock held.
4203 */
4204 static int
ice_sched_replay_node_prio(struct ice_hw * hw,struct ice_sched_node * node,u8 priority)4205 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4206 u8 priority)
4207 {
4208 struct ice_aqc_txsched_elem_data buf;
4209 struct ice_aqc_txsched_elem *data;
4210 int status;
4211
4212 buf = node->info;
4213 data = &buf.data;
4214 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4215 data->generic = priority;
4216
4217 /* Configure element */
4218 status = ice_sched_update_elem(hw, node, &buf);
4219 return status;
4220 }
4221
4222 /**
4223 * ice_sched_replay_node_bw - replay node(s) BW
4224 * @hw: pointer to the HW struct
4225 * @node: sched node to configure
4226 * @bw_t_info: BW type information
4227 *
4228 * This function restores node's BW from bw_t_info. The caller needs
4229 * to hold the scheduler lock.
4230 */
4231 static int
ice_sched_replay_node_bw(struct ice_hw * hw,struct ice_sched_node * node,struct ice_bw_type_info * bw_t_info)4232 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4233 struct ice_bw_type_info *bw_t_info)
4234 {
4235 struct ice_port_info *pi = hw->port_info;
4236 int status = -EINVAL;
4237 u16 bw_alloc;
4238
4239 if (!node)
4240 return status;
4241 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4242 return 0;
4243 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4244 status = ice_sched_replay_node_prio(hw, node,
4245 bw_t_info->generic);
4246 if (status)
4247 return status;
4248 }
4249 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4250 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4251 bw_t_info->cir_bw.bw);
4252 if (status)
4253 return status;
4254 }
4255 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4256 bw_alloc = bw_t_info->cir_bw.bw_alloc;
4257 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4258 bw_alloc);
4259 if (status)
4260 return status;
4261 }
4262 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4263 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4264 bw_t_info->eir_bw.bw);
4265 if (status)
4266 return status;
4267 }
4268 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4269 bw_alloc = bw_t_info->eir_bw.bw_alloc;
4270 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4271 bw_alloc);
4272 if (status)
4273 return status;
4274 }
4275 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4276 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4277 bw_t_info->shared_bw);
4278 return status;
4279 }
4280
4281 /**
4282 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4283 * @pi: port info struct
4284 * @tc_bitmap: 8 bits TC bitmap to check
4285 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4286 *
4287 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4288 * may be missing, it returns enabled TCs. This function needs to be called with
4289 * scheduler lock held.
4290 */
4291 static void
ice_sched_get_ena_tc_bitmap(struct ice_port_info * pi,unsigned long * tc_bitmap,unsigned long * ena_tc_bitmap)4292 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4293 unsigned long *tc_bitmap,
4294 unsigned long *ena_tc_bitmap)
4295 {
4296 u8 tc;
4297
4298 /* Some TC(s) may be missing after reset, adjust for replay */
4299 ice_for_each_traffic_class(tc)
4300 if (ice_is_tc_ena(*tc_bitmap, tc) &&
4301 (ice_sched_get_tc_node(pi, tc)))
4302 set_bit(tc, ena_tc_bitmap);
4303 }
4304
4305 /**
4306 * ice_sched_replay_agg - recreate aggregator node(s)
4307 * @hw: pointer to the HW struct
4308 *
4309 * This function recreate aggregator type nodes which are not replayed earlier.
4310 * It also replay aggregator BW information. These aggregator nodes are not
4311 * associated with VSI type node yet.
4312 */
ice_sched_replay_agg(struct ice_hw * hw)4313 void ice_sched_replay_agg(struct ice_hw *hw)
4314 {
4315 struct ice_port_info *pi = hw->port_info;
4316 struct ice_sched_agg_info *agg_info;
4317
4318 mutex_lock(&pi->sched_lock);
4319 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4320 /* replay aggregator (re-create aggregator node) */
4321 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4322 ICE_MAX_TRAFFIC_CLASS)) {
4323 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4324 int status;
4325
4326 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4327 ice_sched_get_ena_tc_bitmap(pi,
4328 agg_info->replay_tc_bitmap,
4329 replay_bitmap);
4330 status = ice_sched_cfg_agg(hw->port_info,
4331 agg_info->agg_id,
4332 ICE_AGG_TYPE_AGG,
4333 replay_bitmap);
4334 if (status) {
4335 dev_info(ice_hw_to_dev(hw),
4336 "Replay agg id[%d] failed\n",
4337 agg_info->agg_id);
4338 /* Move on to next one */
4339 continue;
4340 }
4341 }
4342 mutex_unlock(&pi->sched_lock);
4343 }
4344
4345 /**
4346 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4347 * @hw: pointer to the HW struct
4348 *
4349 * This function initialize aggregator(s) TC bitmap to zero. A required
4350 * preinit step for replaying aggregators.
4351 */
ice_sched_replay_agg_vsi_preinit(struct ice_hw * hw)4352 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4353 {
4354 struct ice_port_info *pi = hw->port_info;
4355 struct ice_sched_agg_info *agg_info;
4356
4357 mutex_lock(&pi->sched_lock);
4358 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4359 struct ice_sched_agg_vsi_info *agg_vsi_info;
4360
4361 agg_info->tc_bitmap[0] = 0;
4362 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4363 list_entry)
4364 agg_vsi_info->tc_bitmap[0] = 0;
4365 }
4366 mutex_unlock(&pi->sched_lock);
4367 }
4368
4369 /**
4370 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4371 * @hw: pointer to the HW struct
4372 * @vsi_handle: software VSI handle
4373 *
4374 * This function replays aggregator node, VSI to aggregator type nodes, and
4375 * their node bandwidth information. This function needs to be called with
4376 * scheduler lock held.
4377 */
ice_sched_replay_vsi_agg(struct ice_hw * hw,u16 vsi_handle)4378 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4379 {
4380 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4381 struct ice_sched_agg_vsi_info *agg_vsi_info;
4382 struct ice_port_info *pi = hw->port_info;
4383 struct ice_sched_agg_info *agg_info;
4384 int status;
4385
4386 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4387 if (!ice_is_vsi_valid(hw, vsi_handle))
4388 return -EINVAL;
4389 agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4390 if (!agg_info)
4391 return 0; /* Not present in list - default Agg case */
4392 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4393 if (!agg_vsi_info)
4394 return 0; /* Not present in list - default Agg case */
4395 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4396 replay_bitmap);
4397 /* Replay aggregator node associated to vsi_handle */
4398 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4399 ICE_AGG_TYPE_AGG, replay_bitmap);
4400 if (status)
4401 return status;
4402
4403 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4404 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4405 replay_bitmap);
4406 /* Move this VSI (vsi_handle) to above aggregator */
4407 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4408 replay_bitmap);
4409 }
4410
4411 /**
4412 * ice_replay_vsi_agg - replay VSI to aggregator node
4413 * @hw: pointer to the HW struct
4414 * @vsi_handle: software VSI handle
4415 *
4416 * This function replays association of VSI to aggregator type nodes, and
4417 * node bandwidth information.
4418 */
ice_replay_vsi_agg(struct ice_hw * hw,u16 vsi_handle)4419 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4420 {
4421 struct ice_port_info *pi = hw->port_info;
4422 int status;
4423
4424 mutex_lock(&pi->sched_lock);
4425 status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4426 mutex_unlock(&pi->sched_lock);
4427 return status;
4428 }
4429
4430 /**
4431 * ice_sched_replay_q_bw - replay queue type node BW
4432 * @pi: port information structure
4433 * @q_ctx: queue context structure
4434 *
4435 * This function replays queue type node bandwidth. This function needs to be
4436 * called with scheduler lock held.
4437 */
ice_sched_replay_q_bw(struct ice_port_info * pi,struct ice_q_ctx * q_ctx)4438 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4439 {
4440 struct ice_sched_node *q_node;
4441
4442 /* Following also checks the presence of node in tree */
4443 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4444 if (!q_node)
4445 return -EINVAL;
4446 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4447 }
4448