xref: /linux/include/linux/pid.h (revision 1a89a6924b581884b1b54bcd3ea790b3668be2e0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
4 
5 #include <linux/pid_types.h>
6 #include <linux/rculist.h>
7 #include <linux/rcupdate.h>
8 #include <linux/refcount.h>
9 #include <linux/sched.h>
10 #include <linux/wait.h>
11 
12 /*
13  * What is struct pid?
14  *
15  * A struct pid is the kernel's internal notion of a process identifier.
16  * It refers to individual tasks, process groups, and sessions.  While
17  * there are processes attached to it the struct pid lives in a hash
18  * table, so it and then the processes that it refers to can be found
19  * quickly from the numeric pid value.  The attached processes may be
20  * quickly accessed by following pointers from struct pid.
21  *
22  * Storing pid_t values in the kernel and referring to them later has a
23  * problem.  The process originally with that pid may have exited and the
24  * pid allocator wrapped, and another process could have come along
25  * and been assigned that pid.
26  *
27  * Referring to user space processes by holding a reference to struct
28  * task_struct has a problem.  When the user space process exits
29  * the now useless task_struct is still kept.  A task_struct plus a
30  * stack consumes around 10K of low kernel memory.  More precisely
31  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
32  * a struct pid is about 64 bytes.
33  *
34  * Holding a reference to struct pid solves both of these problems.
35  * It is small so holding a reference does not consume a lot of
36  * resources, and since a new struct pid is allocated when the numeric pid
37  * value is reused (when pids wrap around) we don't mistakenly refer to new
38  * processes.
39  */
40 
41 
42 /*
43  * struct upid is used to get the id of the struct pid, as it is
44  * seen in particular namespace. Later the struct pid is found with
45  * find_pid_ns() using the int nr and struct pid_namespace *ns.
46  */
47 
48 #define RESERVED_PIDS 300
49 
50 struct upid {
51 	int nr;
52 	struct pid_namespace *ns;
53 };
54 
55 struct pid
56 {
57 	refcount_t count;
58 	unsigned int level;
59 	spinlock_t lock;
60 	struct dentry *stashed;
61 	u64 ino;
62 	struct rb_node pidfs_node;
63 	/* lists of tasks that use this pid */
64 	struct hlist_head tasks[PIDTYPE_MAX];
65 	struct hlist_head inodes;
66 	/* wait queue for pidfd notifications */
67 	wait_queue_head_t wait_pidfd;
68 	struct rcu_head rcu;
69 	struct upid numbers[];
70 };
71 
72 extern seqcount_spinlock_t pidmap_lock_seq;
73 extern struct pid init_struct_pid;
74 
75 struct file;
76 
77 struct pid *pidfd_pid(const struct file *file);
78 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
79 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
80 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret);
81 void do_notify_pidfd(struct task_struct *task);
82 
get_pid(struct pid * pid)83 static inline struct pid *get_pid(struct pid *pid)
84 {
85 	if (pid)
86 		refcount_inc(&pid->count);
87 	return pid;
88 }
89 
90 extern void put_pid(struct pid *pid);
91 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
pid_has_task(struct pid * pid,enum pid_type type)92 static inline bool pid_has_task(struct pid *pid, enum pid_type type)
93 {
94 	return !hlist_empty(&pid->tasks[type]);
95 }
96 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
97 
98 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
99 
100 /*
101  * these helpers must be called with the tasklist_lock write-held.
102  */
103 extern void attach_pid(struct task_struct *task, enum pid_type);
104 extern void detach_pid(struct task_struct *task, enum pid_type);
105 extern void change_pid(struct task_struct *task, enum pid_type,
106 			struct pid *pid);
107 extern void exchange_tids(struct task_struct *task, struct task_struct *old);
108 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
109 			 enum pid_type);
110 
111 /*
112  * look up a PID in the hash table. Must be called with the tasklist_lock
113  * or rcu_read_lock() held.
114  *
115  * find_pid_ns() finds the pid in the namespace specified
116  * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
117  *
118  * see also find_task_by_vpid() set in include/linux/sched.h
119  */
120 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
121 extern struct pid *find_vpid(int nr);
122 
123 /*
124  * Lookup a PID in the hash table, and return with it's count elevated.
125  */
126 extern struct pid *find_get_pid(int nr);
127 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
128 
129 extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
130 			     size_t set_tid_size);
131 extern void free_pid(struct pid *pid);
132 extern void disable_pid_allocation(struct pid_namespace *ns);
133 
134 /*
135  * ns_of_pid() returns the pid namespace in which the specified pid was
136  * allocated.
137  *
138  * NOTE:
139  * 	ns_of_pid() is expected to be called for a process (task) that has
140  * 	an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
141  * 	is expected to be non-NULL. If @pid is NULL, caller should handle
142  * 	the resulting NULL pid-ns.
143  */
ns_of_pid(struct pid * pid)144 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
145 {
146 	struct pid_namespace *ns = NULL;
147 	if (pid)
148 		ns = pid->numbers[pid->level].ns;
149 	return ns;
150 }
151 
152 /*
153  * is_child_reaper returns true if the pid is the init process
154  * of the current namespace. As this one could be checked before
155  * pid_ns->child_reaper is assigned in copy_process, we check
156  * with the pid number.
157  */
is_child_reaper(struct pid * pid)158 static inline bool is_child_reaper(struct pid *pid)
159 {
160 	return pid->numbers[pid->level].nr == 1;
161 }
162 
163 /*
164  * the helpers to get the pid's id seen from different namespaces
165  *
166  * pid_nr()    : global id, i.e. the id seen from the init namespace;
167  * pid_vnr()   : virtual id, i.e. the id seen from the pid namespace of
168  *               current.
169  * pid_nr_ns() : id seen from the ns specified.
170  *
171  * see also task_xid_nr() etc in include/linux/sched.h
172  */
173 
pid_nr(struct pid * pid)174 static inline pid_t pid_nr(struct pid *pid)
175 {
176 	pid_t nr = 0;
177 	if (pid)
178 		nr = pid->numbers[0].nr;
179 	return nr;
180 }
181 
182 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
183 pid_t pid_vnr(struct pid *pid);
184 
185 #define do_each_pid_task(pid, type, task)				\
186 	do {								\
187 		if ((pid) != NULL)					\
188 			hlist_for_each_entry_rcu((task),		\
189 				&(pid)->tasks[type], pid_links[type]) {
190 
191 			/*
192 			 * Both old and new leaders may be attached to
193 			 * the same pid in the middle of de_thread().
194 			 */
195 #define while_each_pid_task(pid, type, task)				\
196 				if (type == PIDTYPE_PID)		\
197 					break;				\
198 			}						\
199 	} while (0)
200 
201 #define do_each_pid_thread(pid, type, task)				\
202 	do_each_pid_task(pid, type, task) {				\
203 		struct task_struct *tg___ = task;			\
204 		for_each_thread(tg___, task) {
205 
206 #define while_each_pid_thread(pid, type, task)				\
207 		}							\
208 		task = tg___;						\
209 	} while_each_pid_task(pid, type, task)
210 
task_pid(struct task_struct * task)211 static inline struct pid *task_pid(struct task_struct *task)
212 {
213 	return task->thread_pid;
214 }
215 
216 /*
217  * the helpers to get the task's different pids as they are seen
218  * from various namespaces
219  *
220  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
221  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
222  *                     current.
223  * task_xid_nr_ns()  : id seen from the ns specified;
224  *
225  * see also pid_nr() etc in include/linux/pid.h
226  */
227 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
228 
task_pid_nr(struct task_struct * tsk)229 static inline pid_t task_pid_nr(struct task_struct *tsk)
230 {
231 	return tsk->pid;
232 }
233 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)234 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
235 {
236 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
237 }
238 
task_pid_vnr(struct task_struct * tsk)239 static inline pid_t task_pid_vnr(struct task_struct *tsk)
240 {
241 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
242 }
243 
244 
task_tgid_nr(struct task_struct * tsk)245 static inline pid_t task_tgid_nr(struct task_struct *tsk)
246 {
247 	return tsk->tgid;
248 }
249 
250 /**
251  * pid_alive - check that a task structure is not stale
252  * @p: Task structure to be checked.
253  *
254  * Test if a process is not yet dead (at most zombie state)
255  * If pid_alive fails, then pointers within the task structure
256  * can be stale and must not be dereferenced.
257  *
258  * Return: 1 if the process is alive. 0 otherwise.
259  */
pid_alive(const struct task_struct * p)260 static inline int pid_alive(const struct task_struct *p)
261 {
262 	return p->thread_pid != NULL;
263 }
264 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)265 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
266 {
267 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
268 }
269 
task_pgrp_vnr(struct task_struct * tsk)270 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
271 {
272 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
273 }
274 
275 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)276 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
277 {
278 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
279 }
280 
task_session_vnr(struct task_struct * tsk)281 static inline pid_t task_session_vnr(struct task_struct *tsk)
282 {
283 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
284 }
285 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)286 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
287 {
288 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
289 }
290 
task_tgid_vnr(struct task_struct * tsk)291 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
292 {
293 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
294 }
295 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)296 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
297 {
298 	pid_t pid = 0;
299 
300 	rcu_read_lock();
301 	if (pid_alive(tsk))
302 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
303 	rcu_read_unlock();
304 
305 	return pid;
306 }
307 
task_ppid_nr(const struct task_struct * tsk)308 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
309 {
310 	return task_ppid_nr_ns(tsk, &init_pid_ns);
311 }
312 
313 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)314 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
315 {
316 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
317 }
318 
319 /**
320  * is_global_init - check if a task structure is init. Since init
321  * is free to have sub-threads we need to check tgid.
322  * @tsk: Task structure to be checked.
323  *
324  * Check if a task structure is the first user space task the kernel created.
325  *
326  * Return: 1 if the task structure is init. 0 otherwise.
327  */
is_global_init(struct task_struct * tsk)328 static inline int is_global_init(struct task_struct *tsk)
329 {
330 	return task_tgid_nr(tsk) == 1;
331 }
332 
333 #endif /* _LINUX_PID_H */
334