1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * A memslot-related performance benchmark.
4 *
5 * Copyright (C) 2021 Oracle and/or its affiliates.
6 *
7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
8 */
9 #include <pthread.h>
10 #include <sched.h>
11 #include <semaphore.h>
12 #include <stdatomic.h>
13 #include <stdbool.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <sys/mman.h>
19 #include <time.h>
20 #include <unistd.h>
21
22 #include <linux/compiler.h>
23 #include <linux/sizes.h>
24
25 #include <test_util.h>
26 #include <kvm_util.h>
27 #include <processor.h>
28
29 #define MEM_EXTRA_SIZE SZ_64K
30
31 #define MEM_SIZE (SZ_512M + MEM_EXTRA_SIZE)
32 #define MEM_GPA SZ_256M
33 #define MEM_AUX_GPA MEM_GPA
34 #define MEM_SYNC_GPA MEM_AUX_GPA
35 #define MEM_TEST_GPA (MEM_AUX_GPA + MEM_EXTRA_SIZE)
36 #define MEM_TEST_SIZE (MEM_SIZE - MEM_EXTRA_SIZE)
37
38 /*
39 * 32 MiB is max size that gets well over 100 iterations on 509 slots.
40 * Considering that each slot needs to have at least one page up to
41 * 8194 slots in use can then be tested (although with slightly
42 * limited resolution).
43 */
44 #define MEM_SIZE_MAP (SZ_32M + MEM_EXTRA_SIZE)
45 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - MEM_EXTRA_SIZE)
46
47 /*
48 * 128 MiB is min size that fills 32k slots with at least one page in each
49 * while at the same time gets 100+ iterations in such test
50 *
51 * 2 MiB chunk size like a typical huge page
52 */
53 #define MEM_TEST_UNMAP_SIZE SZ_128M
54 #define MEM_TEST_UNMAP_CHUNK_SIZE SZ_2M
55
56 /*
57 * For the move active test the middle of the test area is placed on
58 * a memslot boundary: half lies in the memslot being moved, half in
59 * other memslot(s).
60 *
61 * We have different number of memory slots, excluding the reserved
62 * memory slot 0, on various architectures and configurations. The
63 * memory size in this test is calculated by picking the maximal
64 * last memory slot's memory size, with alignment to the largest
65 * supported page size (64KB). In this way, the selected memory
66 * size for this test is compatible with test_memslot_move_prepare().
67 *
68 * architecture slots memory-per-slot memory-on-last-slot
69 * --------------------------------------------------------------
70 * x86-4KB 32763 16KB 160KB
71 * arm64-4KB 32766 16KB 112KB
72 * arm64-16KB 32766 16KB 112KB
73 * arm64-64KB 8192 64KB 128KB
74 */
75 #define MEM_TEST_MOVE_SIZE (3 * SZ_64K)
76 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE)
77 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
78 "invalid move test region size");
79
80 #define MEM_TEST_VAL_1 0x1122334455667788
81 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00
82
83 struct vm_data {
84 struct kvm_vm *vm;
85 struct kvm_vcpu *vcpu;
86 pthread_t vcpu_thread;
87 uint32_t nslots;
88 uint64_t npages;
89 uint64_t pages_per_slot;
90 void **hva_slots;
91 bool mmio_ok;
92 uint64_t mmio_gpa_min;
93 uint64_t mmio_gpa_max;
94 };
95
96 struct sync_area {
97 uint32_t guest_page_size;
98 atomic_bool start_flag;
99 atomic_bool exit_flag;
100 atomic_bool sync_flag;
101 void *move_area_ptr;
102 };
103
104 /*
105 * Technically, we need also for the atomic bool to be address-free, which
106 * is recommended, but not strictly required, by C11 for lockless
107 * implementations.
108 * However, in practice both GCC and Clang fulfill this requirement on
109 * all KVM-supported platforms.
110 */
111 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");
112
113 static sem_t vcpu_ready;
114
115 static bool map_unmap_verify;
116 #ifdef __x86_64__
117 static bool disable_slot_zap_quirk;
118 #endif
119
120 static bool verbose;
121 #define pr_info_v(...) \
122 do { \
123 if (verbose) \
124 pr_info(__VA_ARGS__); \
125 } while (0)
126
check_mmio_access(struct vm_data * data,struct kvm_run * run)127 static void check_mmio_access(struct vm_data *data, struct kvm_run *run)
128 {
129 TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit");
130 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
131 TEST_ASSERT(run->mmio.len == 8,
132 "Unexpected exit mmio size = %u", run->mmio.len);
133 TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min &&
134 run->mmio.phys_addr <= data->mmio_gpa_max,
135 "Unexpected exit mmio address = 0x%llx",
136 run->mmio.phys_addr);
137 }
138
vcpu_worker(void * __data)139 static void *vcpu_worker(void *__data)
140 {
141 struct vm_data *data = __data;
142 struct kvm_vcpu *vcpu = data->vcpu;
143 struct kvm_run *run = vcpu->run;
144 struct ucall uc;
145
146 while (1) {
147 vcpu_run(vcpu);
148
149 switch (get_ucall(vcpu, &uc)) {
150 case UCALL_SYNC:
151 TEST_ASSERT(uc.args[1] == 0,
152 "Unexpected sync ucall, got %lx",
153 (ulong)uc.args[1]);
154 sem_post(&vcpu_ready);
155 continue;
156 case UCALL_NONE:
157 if (run->exit_reason == KVM_EXIT_MMIO)
158 check_mmio_access(data, run);
159 else
160 goto done;
161 break;
162 case UCALL_ABORT:
163 REPORT_GUEST_ASSERT(uc);
164 break;
165 case UCALL_DONE:
166 goto done;
167 default:
168 TEST_FAIL("Unknown ucall %lu", uc.cmd);
169 }
170 }
171
172 done:
173 return NULL;
174 }
175
wait_for_vcpu(void)176 static void wait_for_vcpu(void)
177 {
178 struct timespec ts;
179
180 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
181 "clock_gettime() failed: %d", errno);
182
183 ts.tv_sec += 2;
184 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
185 "sem_timedwait() failed: %d", errno);
186 }
187
vm_gpa2hva(struct vm_data * data,uint64_t gpa,uint64_t * rempages)188 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
189 {
190 uint64_t gpage, pgoffs;
191 uint32_t slot, slotoffs;
192 void *base;
193 uint32_t guest_page_size = data->vm->page_size;
194
195 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
196 TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size,
197 "Too high gpa to translate");
198 gpa -= MEM_GPA;
199
200 gpage = gpa / guest_page_size;
201 pgoffs = gpa % guest_page_size;
202 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
203 slotoffs = gpage - (slot * data->pages_per_slot);
204
205 if (rempages) {
206 uint64_t slotpages;
207
208 if (slot == data->nslots - 1)
209 slotpages = data->npages - slot * data->pages_per_slot;
210 else
211 slotpages = data->pages_per_slot;
212
213 TEST_ASSERT(!pgoffs,
214 "Asking for remaining pages in slot but gpa not page aligned");
215 *rempages = slotpages - slotoffs;
216 }
217
218 base = data->hva_slots[slot];
219 return (uint8_t *)base + slotoffs * guest_page_size + pgoffs;
220 }
221
vm_slot2gpa(struct vm_data * data,uint32_t slot)222 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
223 {
224 uint32_t guest_page_size = data->vm->page_size;
225
226 TEST_ASSERT(slot < data->nslots, "Too high slot number");
227
228 return MEM_GPA + slot * data->pages_per_slot * guest_page_size;
229 }
230
alloc_vm(void)231 static struct vm_data *alloc_vm(void)
232 {
233 struct vm_data *data;
234
235 data = malloc(sizeof(*data));
236 TEST_ASSERT(data, "malloc(vmdata) failed");
237
238 data->vm = NULL;
239 data->vcpu = NULL;
240 data->hva_slots = NULL;
241
242 return data;
243 }
244
check_slot_pages(uint32_t host_page_size,uint32_t guest_page_size,uint64_t pages_per_slot,uint64_t rempages)245 static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size,
246 uint64_t pages_per_slot, uint64_t rempages)
247 {
248 if (!pages_per_slot)
249 return false;
250
251 if ((pages_per_slot * guest_page_size) % host_page_size)
252 return false;
253
254 if ((rempages * guest_page_size) % host_page_size)
255 return false;
256
257 return true;
258 }
259
260
get_max_slots(struct vm_data * data,uint32_t host_page_size)261 static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size)
262 {
263 uint32_t guest_page_size = data->vm->page_size;
264 uint64_t mempages, pages_per_slot, rempages;
265 uint64_t slots;
266
267 mempages = data->npages;
268 slots = data->nslots;
269 while (--slots > 1) {
270 pages_per_slot = mempages / slots;
271 if (!pages_per_slot)
272 continue;
273
274 rempages = mempages % pages_per_slot;
275 if (check_slot_pages(host_page_size, guest_page_size,
276 pages_per_slot, rempages))
277 return slots + 1; /* slot 0 is reserved */
278 }
279
280 return 0;
281 }
282
prepare_vm(struct vm_data * data,int nslots,uint64_t * maxslots,void * guest_code,uint64_t mem_size,struct timespec * slot_runtime)283 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
284 void *guest_code, uint64_t mem_size,
285 struct timespec *slot_runtime)
286 {
287 uint64_t mempages, rempages;
288 uint64_t guest_addr;
289 uint32_t slot, host_page_size, guest_page_size;
290 struct timespec tstart;
291 struct sync_area *sync;
292
293 host_page_size = getpagesize();
294 guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
295 mempages = mem_size / guest_page_size;
296
297 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code);
298 TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size");
299
300 data->npages = mempages;
301 TEST_ASSERT(data->npages > 1, "Can't test without any memory");
302 data->nslots = nslots;
303 data->pages_per_slot = data->npages / data->nslots;
304 rempages = data->npages % data->nslots;
305 if (!check_slot_pages(host_page_size, guest_page_size,
306 data->pages_per_slot, rempages)) {
307 *maxslots = get_max_slots(data, host_page_size);
308 return false;
309 }
310
311 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
312 TEST_ASSERT(data->hva_slots, "malloc() fail");
313
314 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
315 data->nslots, data->pages_per_slot, rempages);
316
317 clock_gettime(CLOCK_MONOTONIC, &tstart);
318 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) {
319 uint64_t npages;
320
321 npages = data->pages_per_slot;
322 if (slot == data->nslots)
323 npages += rempages;
324
325 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
326 guest_addr, slot, npages,
327 0);
328 guest_addr += npages * guest_page_size;
329 }
330 *slot_runtime = timespec_elapsed(tstart);
331
332 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) {
333 uint64_t npages;
334 uint64_t gpa;
335
336 npages = data->pages_per_slot;
337 if (slot == data->nslots)
338 npages += rempages;
339
340 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot);
341 TEST_ASSERT(gpa == guest_addr,
342 "vm_phy_pages_alloc() failed");
343
344 data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr);
345 memset(data->hva_slots[slot - 1], 0, npages * guest_page_size);
346
347 guest_addr += npages * guest_page_size;
348 }
349
350 virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages);
351
352 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
353 sync->guest_page_size = data->vm->page_size;
354 atomic_init(&sync->start_flag, false);
355 atomic_init(&sync->exit_flag, false);
356 atomic_init(&sync->sync_flag, false);
357
358 data->mmio_ok = false;
359
360 return true;
361 }
362
launch_vm(struct vm_data * data)363 static void launch_vm(struct vm_data *data)
364 {
365 pr_info_v("Launching the test VM\n");
366
367 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);
368
369 /* Ensure the guest thread is spun up. */
370 wait_for_vcpu();
371 }
372
free_vm(struct vm_data * data)373 static void free_vm(struct vm_data *data)
374 {
375 kvm_vm_free(data->vm);
376 free(data->hva_slots);
377 free(data);
378 }
379
wait_guest_exit(struct vm_data * data)380 static void wait_guest_exit(struct vm_data *data)
381 {
382 pthread_join(data->vcpu_thread, NULL);
383 }
384
let_guest_run(struct sync_area * sync)385 static void let_guest_run(struct sync_area *sync)
386 {
387 atomic_store_explicit(&sync->start_flag, true, memory_order_release);
388 }
389
guest_spin_until_start(void)390 static void guest_spin_until_start(void)
391 {
392 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
393
394 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
395 ;
396 }
397
make_guest_exit(struct sync_area * sync)398 static void make_guest_exit(struct sync_area *sync)
399 {
400 atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
401 }
402
_guest_should_exit(void)403 static bool _guest_should_exit(void)
404 {
405 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
406
407 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
408 }
409
410 #define guest_should_exit() unlikely(_guest_should_exit())
411
412 /*
413 * noinline so we can easily see how much time the host spends waiting
414 * for the guest.
415 * For the same reason use alarm() instead of polling clock_gettime()
416 * to implement a wait timeout.
417 */
host_perform_sync(struct sync_area * sync)418 static noinline void host_perform_sync(struct sync_area *sync)
419 {
420 alarm(10);
421
422 atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
423 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
424 ;
425
426 alarm(0);
427 }
428
guest_perform_sync(void)429 static bool guest_perform_sync(void)
430 {
431 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
432 bool expected;
433
434 do {
435 if (guest_should_exit())
436 return false;
437
438 expected = true;
439 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
440 &expected, false,
441 memory_order_acq_rel,
442 memory_order_relaxed));
443
444 return true;
445 }
446
guest_code_test_memslot_move(void)447 static void guest_code_test_memslot_move(void)
448 {
449 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
450 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
451 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
452
453 GUEST_SYNC(0);
454
455 guest_spin_until_start();
456
457 while (!guest_should_exit()) {
458 uintptr_t ptr;
459
460 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
461 ptr += page_size)
462 *(uint64_t *)ptr = MEM_TEST_VAL_1;
463
464 /*
465 * No host sync here since the MMIO exits are so expensive
466 * that the host would spend most of its time waiting for
467 * the guest and so instead of measuring memslot move
468 * performance we would measure the performance and
469 * likelihood of MMIO exits
470 */
471 }
472
473 GUEST_DONE();
474 }
475
guest_code_test_memslot_map(void)476 static void guest_code_test_memslot_map(void)
477 {
478 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
479 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
480
481 GUEST_SYNC(0);
482
483 guest_spin_until_start();
484
485 while (1) {
486 uintptr_t ptr;
487
488 for (ptr = MEM_TEST_GPA;
489 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
490 ptr += page_size)
491 *(uint64_t *)ptr = MEM_TEST_VAL_1;
492
493 if (!guest_perform_sync())
494 break;
495
496 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
497 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE;
498 ptr += page_size)
499 *(uint64_t *)ptr = MEM_TEST_VAL_2;
500
501 if (!guest_perform_sync())
502 break;
503 }
504
505 GUEST_DONE();
506 }
507
guest_code_test_memslot_unmap(void)508 static void guest_code_test_memslot_unmap(void)
509 {
510 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
511
512 GUEST_SYNC(0);
513
514 guest_spin_until_start();
515
516 while (1) {
517 uintptr_t ptr = MEM_TEST_GPA;
518
519 /*
520 * We can afford to access (map) just a small number of pages
521 * per host sync as otherwise the host will spend
522 * a significant amount of its time waiting for the guest
523 * (instead of doing unmap operations), so this will
524 * effectively turn this test into a map performance test.
525 *
526 * Just access a single page to be on the safe side.
527 */
528 *(uint64_t *)ptr = MEM_TEST_VAL_1;
529
530 if (!guest_perform_sync())
531 break;
532
533 ptr += MEM_TEST_UNMAP_SIZE / 2;
534 *(uint64_t *)ptr = MEM_TEST_VAL_2;
535
536 if (!guest_perform_sync())
537 break;
538 }
539
540 GUEST_DONE();
541 }
542
guest_code_test_memslot_rw(void)543 static void guest_code_test_memslot_rw(void)
544 {
545 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
546 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
547
548 GUEST_SYNC(0);
549
550 guest_spin_until_start();
551
552 while (1) {
553 uintptr_t ptr;
554
555 for (ptr = MEM_TEST_GPA;
556 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size)
557 *(uint64_t *)ptr = MEM_TEST_VAL_1;
558
559 if (!guest_perform_sync())
560 break;
561
562 for (ptr = MEM_TEST_GPA + page_size / 2;
563 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) {
564 uint64_t val = *(uint64_t *)ptr;
565
566 GUEST_ASSERT_EQ(val, MEM_TEST_VAL_2);
567 *(uint64_t *)ptr = 0;
568 }
569
570 if (!guest_perform_sync())
571 break;
572 }
573
574 GUEST_DONE();
575 }
576
test_memslot_move_prepare(struct vm_data * data,struct sync_area * sync,uint64_t * maxslots,bool isactive)577 static bool test_memslot_move_prepare(struct vm_data *data,
578 struct sync_area *sync,
579 uint64_t *maxslots, bool isactive)
580 {
581 uint32_t guest_page_size = data->vm->page_size;
582 uint64_t movesrcgpa, movetestgpa;
583
584 #ifdef __x86_64__
585 if (disable_slot_zap_quirk)
586 vm_enable_cap(data->vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL);
587 #endif
588
589 movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
590
591 if (isactive) {
592 uint64_t lastpages;
593
594 vm_gpa2hva(data, movesrcgpa, &lastpages);
595 if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) {
596 *maxslots = 0;
597 return false;
598 }
599 }
600
601 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
602 sync->move_area_ptr = (void *)movetestgpa;
603
604 if (isactive) {
605 data->mmio_ok = true;
606 data->mmio_gpa_min = movesrcgpa;
607 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
608 }
609
610 return true;
611 }
612
test_memslot_move_prepare_active(struct vm_data * data,struct sync_area * sync,uint64_t * maxslots)613 static bool test_memslot_move_prepare_active(struct vm_data *data,
614 struct sync_area *sync,
615 uint64_t *maxslots)
616 {
617 return test_memslot_move_prepare(data, sync, maxslots, true);
618 }
619
test_memslot_move_prepare_inactive(struct vm_data * data,struct sync_area * sync,uint64_t * maxslots)620 static bool test_memslot_move_prepare_inactive(struct vm_data *data,
621 struct sync_area *sync,
622 uint64_t *maxslots)
623 {
624 return test_memslot_move_prepare(data, sync, maxslots, false);
625 }
626
test_memslot_move_loop(struct vm_data * data,struct sync_area * sync)627 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
628 {
629 uint64_t movesrcgpa;
630
631 movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
632 vm_mem_region_move(data->vm, data->nslots - 1 + 1,
633 MEM_TEST_MOVE_GPA_DEST);
634 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
635 }
636
test_memslot_do_unmap(struct vm_data * data,uint64_t offsp,uint64_t count)637 static void test_memslot_do_unmap(struct vm_data *data,
638 uint64_t offsp, uint64_t count)
639 {
640 uint64_t gpa, ctr;
641 uint32_t guest_page_size = data->vm->page_size;
642
643 for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) {
644 uint64_t npages;
645 void *hva;
646 int ret;
647
648 hva = vm_gpa2hva(data, gpa, &npages);
649 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
650 npages = min(npages, count - ctr);
651 ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED);
652 TEST_ASSERT(!ret,
653 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
654 hva, gpa);
655 ctr += npages;
656 gpa += npages * guest_page_size;
657 }
658 TEST_ASSERT(ctr == count,
659 "madvise(MADV_DONTNEED) should exactly cover all of the requested area");
660 }
661
test_memslot_map_unmap_check(struct vm_data * data,uint64_t offsp,uint64_t valexp)662 static void test_memslot_map_unmap_check(struct vm_data *data,
663 uint64_t offsp, uint64_t valexp)
664 {
665 uint64_t gpa;
666 uint64_t *val;
667 uint32_t guest_page_size = data->vm->page_size;
668
669 if (!map_unmap_verify)
670 return;
671
672 gpa = MEM_TEST_GPA + offsp * guest_page_size;
673 val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
674 TEST_ASSERT(*val == valexp,
675 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
676 *val, valexp, gpa);
677 *val = 0;
678 }
679
test_memslot_map_loop(struct vm_data * data,struct sync_area * sync)680 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
681 {
682 uint32_t guest_page_size = data->vm->page_size;
683 uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size;
684
685 /*
686 * Unmap the second half of the test area while guest writes to (maps)
687 * the first half.
688 */
689 test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2);
690
691 /*
692 * Wait for the guest to finish writing the first half of the test
693 * area, verify the written value on the first and the last page of
694 * this area and then unmap it.
695 * Meanwhile, the guest is writing to (mapping) the second half of
696 * the test area.
697 */
698 host_perform_sync(sync);
699 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
700 test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1);
701 test_memslot_do_unmap(data, 0, guest_pages / 2);
702
703
704 /*
705 * Wait for the guest to finish writing the second half of the test
706 * area and verify the written value on the first and the last page
707 * of this area.
708 * The area will be unmapped at the beginning of the next loop
709 * iteration.
710 * Meanwhile, the guest is writing to (mapping) the first half of
711 * the test area.
712 */
713 host_perform_sync(sync);
714 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2);
715 test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2);
716 }
717
test_memslot_unmap_loop_common(struct vm_data * data,struct sync_area * sync,uint64_t chunk)718 static void test_memslot_unmap_loop_common(struct vm_data *data,
719 struct sync_area *sync,
720 uint64_t chunk)
721 {
722 uint32_t guest_page_size = data->vm->page_size;
723 uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size;
724 uint64_t ctr;
725
726 /*
727 * Wait for the guest to finish mapping page(s) in the first half
728 * of the test area, verify the written value and then perform unmap
729 * of this area.
730 * Meanwhile, the guest is writing to (mapping) page(s) in the second
731 * half of the test area.
732 */
733 host_perform_sync(sync);
734 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
735 for (ctr = 0; ctr < guest_pages / 2; ctr += chunk)
736 test_memslot_do_unmap(data, ctr, chunk);
737
738 /* Likewise, but for the opposite host / guest areas */
739 host_perform_sync(sync);
740 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2);
741 for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk)
742 test_memslot_do_unmap(data, ctr, chunk);
743 }
744
test_memslot_unmap_loop(struct vm_data * data,struct sync_area * sync)745 static void test_memslot_unmap_loop(struct vm_data *data,
746 struct sync_area *sync)
747 {
748 uint32_t host_page_size = getpagesize();
749 uint32_t guest_page_size = data->vm->page_size;
750 uint64_t guest_chunk_pages = guest_page_size >= host_page_size ?
751 1 : host_page_size / guest_page_size;
752
753 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages);
754 }
755
test_memslot_unmap_loop_chunked(struct vm_data * data,struct sync_area * sync)756 static void test_memslot_unmap_loop_chunked(struct vm_data *data,
757 struct sync_area *sync)
758 {
759 uint32_t guest_page_size = data->vm->page_size;
760 uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size;
761
762 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages);
763 }
764
test_memslot_rw_loop(struct vm_data * data,struct sync_area * sync)765 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
766 {
767 uint64_t gptr;
768 uint32_t guest_page_size = data->vm->page_size;
769
770 for (gptr = MEM_TEST_GPA + guest_page_size / 2;
771 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size)
772 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
773
774 host_perform_sync(sync);
775
776 for (gptr = MEM_TEST_GPA;
777 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) {
778 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
779 uint64_t val = *vptr;
780
781 TEST_ASSERT(val == MEM_TEST_VAL_1,
782 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
783 val, gptr);
784 *vptr = 0;
785 }
786
787 host_perform_sync(sync);
788 }
789
790 struct test_data {
791 const char *name;
792 uint64_t mem_size;
793 void (*guest_code)(void);
794 bool (*prepare)(struct vm_data *data, struct sync_area *sync,
795 uint64_t *maxslots);
796 void (*loop)(struct vm_data *data, struct sync_area *sync);
797 };
798
test_execute(int nslots,uint64_t * maxslots,unsigned int maxtime,const struct test_data * tdata,uint64_t * nloops,struct timespec * slot_runtime,struct timespec * guest_runtime)799 static bool test_execute(int nslots, uint64_t *maxslots,
800 unsigned int maxtime,
801 const struct test_data *tdata,
802 uint64_t *nloops,
803 struct timespec *slot_runtime,
804 struct timespec *guest_runtime)
805 {
806 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE;
807 struct vm_data *data;
808 struct sync_area *sync;
809 struct timespec tstart;
810 bool ret = true;
811
812 data = alloc_vm();
813 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
814 mem_size, slot_runtime)) {
815 ret = false;
816 goto exit_free;
817 }
818
819 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
820 if (tdata->prepare &&
821 !tdata->prepare(data, sync, maxslots)) {
822 ret = false;
823 goto exit_free;
824 }
825
826 launch_vm(data);
827
828 clock_gettime(CLOCK_MONOTONIC, &tstart);
829 let_guest_run(sync);
830
831 while (1) {
832 *guest_runtime = timespec_elapsed(tstart);
833 if (guest_runtime->tv_sec >= maxtime)
834 break;
835
836 tdata->loop(data, sync);
837
838 (*nloops)++;
839 }
840
841 make_guest_exit(sync);
842 wait_guest_exit(data);
843
844 exit_free:
845 free_vm(data);
846
847 return ret;
848 }
849
850 static const struct test_data tests[] = {
851 {
852 .name = "map",
853 .mem_size = MEM_SIZE_MAP,
854 .guest_code = guest_code_test_memslot_map,
855 .loop = test_memslot_map_loop,
856 },
857 {
858 .name = "unmap",
859 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE,
860 .guest_code = guest_code_test_memslot_unmap,
861 .loop = test_memslot_unmap_loop,
862 },
863 {
864 .name = "unmap chunked",
865 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE,
866 .guest_code = guest_code_test_memslot_unmap,
867 .loop = test_memslot_unmap_loop_chunked,
868 },
869 {
870 .name = "move active area",
871 .guest_code = guest_code_test_memslot_move,
872 .prepare = test_memslot_move_prepare_active,
873 .loop = test_memslot_move_loop,
874 },
875 {
876 .name = "move inactive area",
877 .guest_code = guest_code_test_memslot_move,
878 .prepare = test_memslot_move_prepare_inactive,
879 .loop = test_memslot_move_loop,
880 },
881 {
882 .name = "RW",
883 .guest_code = guest_code_test_memslot_rw,
884 .loop = test_memslot_rw_loop
885 },
886 };
887
888 #define NTESTS ARRAY_SIZE(tests)
889
890 struct test_args {
891 int tfirst;
892 int tlast;
893 int nslots;
894 int seconds;
895 int runs;
896 };
897
help(char * name,struct test_args * targs)898 static void help(char *name, struct test_args *targs)
899 {
900 int ctr;
901
902 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
903 name);
904 pr_info(" -h: print this help screen.\n");
905 pr_info(" -v: enable verbose mode (not for benchmarking).\n");
906 pr_info(" -d: enable extra debug checks.\n");
907 pr_info(" -q: Disable memslot zap quirk during memslot move.\n");
908 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
909 targs->nslots);
910 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
911 targs->tfirst, NTESTS - 1);
912 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
913 targs->tlast, NTESTS - 1);
914 pr_info(" -l: specify the test length in seconds (currently: %i)\n",
915 targs->seconds);
916 pr_info(" -r: specify the number of runs per test (currently: %i)\n",
917 targs->runs);
918
919 pr_info("\nAvailable tests:\n");
920 for (ctr = 0; ctr < NTESTS; ctr++)
921 pr_info("%d: %s\n", ctr, tests[ctr].name);
922 }
923
check_memory_sizes(void)924 static bool check_memory_sizes(void)
925 {
926 uint32_t host_page_size = getpagesize();
927 uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
928
929 if (host_page_size > SZ_64K || guest_page_size > SZ_64K) {
930 pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n",
931 host_page_size, guest_page_size);
932 return false;
933 }
934
935 if (MEM_SIZE % guest_page_size ||
936 MEM_TEST_SIZE % guest_page_size) {
937 pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n");
938 return false;
939 }
940
941 if (MEM_SIZE_MAP % guest_page_size ||
942 MEM_TEST_MAP_SIZE % guest_page_size ||
943 (MEM_TEST_MAP_SIZE / guest_page_size) <= 2 ||
944 (MEM_TEST_MAP_SIZE / guest_page_size) % 2) {
945 pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n");
946 return false;
947 }
948
949 if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE ||
950 MEM_TEST_UNMAP_SIZE % guest_page_size ||
951 (MEM_TEST_UNMAP_SIZE / guest_page_size) %
952 (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) {
953 pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n");
954 return false;
955 }
956
957 return true;
958 }
959
parse_args(int argc,char * argv[],struct test_args * targs)960 static bool parse_args(int argc, char *argv[],
961 struct test_args *targs)
962 {
963 uint32_t max_mem_slots;
964 int opt;
965
966 while ((opt = getopt(argc, argv, "hvdqs:f:e:l:r:")) != -1) {
967 switch (opt) {
968 case 'h':
969 default:
970 help(argv[0], targs);
971 return false;
972 case 'v':
973 verbose = true;
974 break;
975 case 'd':
976 map_unmap_verify = true;
977 break;
978 #ifdef __x86_64__
979 case 'q':
980 disable_slot_zap_quirk = true;
981 TEST_REQUIRE(kvm_check_cap(KVM_CAP_DISABLE_QUIRKS2) &
982 KVM_X86_QUIRK_SLOT_ZAP_ALL);
983 break;
984 #endif
985 case 's':
986 targs->nslots = atoi_paranoid(optarg);
987 if (targs->nslots <= 1 && targs->nslots != -1) {
988 pr_info("Slot count cap must be larger than 1 or -1 for no cap\n");
989 return false;
990 }
991 break;
992 case 'f':
993 targs->tfirst = atoi_non_negative("First test", optarg);
994 break;
995 case 'e':
996 targs->tlast = atoi_non_negative("Last test", optarg);
997 if (targs->tlast >= NTESTS) {
998 pr_info("Last test to run has to be non-negative and less than %zu\n",
999 NTESTS);
1000 return false;
1001 }
1002 break;
1003 case 'l':
1004 targs->seconds = atoi_non_negative("Test length", optarg);
1005 break;
1006 case 'r':
1007 targs->runs = atoi_positive("Runs per test", optarg);
1008 break;
1009 }
1010 }
1011
1012 if (optind < argc) {
1013 help(argv[0], targs);
1014 return false;
1015 }
1016
1017 if (targs->tfirst > targs->tlast) {
1018 pr_info("First test to run cannot be greater than the last test to run\n");
1019 return false;
1020 }
1021
1022 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
1023 if (max_mem_slots <= 1) {
1024 pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n");
1025 return false;
1026 }
1027
1028 /* Memory slot 0 is reserved */
1029 if (targs->nslots == -1)
1030 targs->nslots = max_mem_slots - 1;
1031 else
1032 targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1;
1033
1034 pr_info_v("Allowed Number of memory slots: %"PRIu32"\n",
1035 targs->nslots + 1);
1036
1037 return true;
1038 }
1039
1040 struct test_result {
1041 struct timespec slot_runtime, guest_runtime, iter_runtime;
1042 int64_t slottimens, runtimens;
1043 uint64_t nloops;
1044 };
1045
test_loop(const struct test_data * data,const struct test_args * targs,struct test_result * rbestslottime,struct test_result * rbestruntime)1046 static bool test_loop(const struct test_data *data,
1047 const struct test_args *targs,
1048 struct test_result *rbestslottime,
1049 struct test_result *rbestruntime)
1050 {
1051 uint64_t maxslots;
1052 struct test_result result = {};
1053
1054 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
1055 &result.nloops,
1056 &result.slot_runtime, &result.guest_runtime)) {
1057 if (maxslots)
1058 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
1059 maxslots);
1060 else
1061 pr_info("Memslot count may be too high for this test, try adjusting the cap\n");
1062
1063 return false;
1064 }
1065
1066 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
1067 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
1068 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
1069 if (!result.nloops) {
1070 pr_info("No full loops done - too short test time or system too loaded?\n");
1071 return true;
1072 }
1073
1074 result.iter_runtime = timespec_div(result.guest_runtime,
1075 result.nloops);
1076 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
1077 result.nloops,
1078 result.iter_runtime.tv_sec,
1079 result.iter_runtime.tv_nsec);
1080 result.slottimens = timespec_to_ns(result.slot_runtime);
1081 result.runtimens = timespec_to_ns(result.iter_runtime);
1082
1083 /*
1084 * Only rank the slot setup time for tests using the whole test memory
1085 * area so they are comparable
1086 */
1087 if (!data->mem_size &&
1088 (!rbestslottime->slottimens ||
1089 result.slottimens < rbestslottime->slottimens))
1090 *rbestslottime = result;
1091 if (!rbestruntime->runtimens ||
1092 result.runtimens < rbestruntime->runtimens)
1093 *rbestruntime = result;
1094
1095 return true;
1096 }
1097
main(int argc,char * argv[])1098 int main(int argc, char *argv[])
1099 {
1100 struct test_args targs = {
1101 .tfirst = 0,
1102 .tlast = NTESTS - 1,
1103 .nslots = -1,
1104 .seconds = 5,
1105 .runs = 1,
1106 };
1107 struct test_result rbestslottime = {};
1108 int tctr;
1109
1110 if (!check_memory_sizes())
1111 return -1;
1112
1113 if (!parse_args(argc, argv, &targs))
1114 return -1;
1115
1116 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
1117 const struct test_data *data = &tests[tctr];
1118 unsigned int runctr;
1119 struct test_result rbestruntime = {};
1120
1121 if (tctr > targs.tfirst)
1122 pr_info("\n");
1123
1124 pr_info("Testing %s performance with %i runs, %d seconds each\n",
1125 data->name, targs.runs, targs.seconds);
1126
1127 for (runctr = 0; runctr < targs.runs; runctr++)
1128 if (!test_loop(data, &targs,
1129 &rbestslottime, &rbestruntime))
1130 break;
1131
1132 if (rbestruntime.runtimens)
1133 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
1134 rbestruntime.iter_runtime.tv_sec,
1135 rbestruntime.iter_runtime.tv_nsec,
1136 rbestruntime.nloops);
1137 }
1138
1139 if (rbestslottime.slottimens)
1140 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
1141 rbestslottime.slot_runtime.tv_sec,
1142 rbestslottime.slot_runtime.tv_nsec);
1143
1144 return 0;
1145 }
1146