1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include "gem/i915_gem_lmem.h"
7
8 #include "gen8_engine_cs.h"
9 #include "i915_drv.h"
10 #include "i915_perf.h"
11 #include "i915_reg.h"
12 #include "intel_context.h"
13 #include "intel_engine.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gpu_commands.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_lrc.h"
19 #include "intel_lrc_reg.h"
20 #include "intel_ring.h"
21 #include "shmem_utils.h"
22
23 /*
24 * The per-platform tables are u8-encoded in @data. Decode @data and set the
25 * addresses' offset and commands in @regs. The following encoding is used
26 * for each byte. There are 2 steps: decoding commands and decoding addresses.
27 *
28 * Commands:
29 * [7]: create NOPs - number of NOPs are set in lower bits
30 * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set
31 * MI_LRI_FORCE_POSTED
32 * [5:0]: Number of NOPs or registers to set values to in case of
33 * MI_LOAD_REGISTER_IMM
34 *
35 * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count"
36 * number of registers. They are set by using the REG/REG16 macros: the former
37 * is used for offsets smaller than 0x200 while the latter is for values bigger
38 * than that. Those macros already set all the bits documented below correctly:
39 *
40 * [7]: When a register offset needs more than 6 bits, use additional bytes, to
41 * follow, for the lower bits
42 * [6:0]: Register offset, without considering the engine base.
43 *
44 * This function only tweaks the commands and register offsets. Values are not
45 * filled out.
46 */
set_offsets(u32 * regs,const u8 * data,const struct intel_engine_cs * engine,bool close)47 static void set_offsets(u32 *regs,
48 const u8 *data,
49 const struct intel_engine_cs *engine,
50 bool close)
51 #define NOP(x) (BIT(7) | (x))
52 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
53 #define POSTED BIT(0)
54 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
55 #define REG16(x) \
56 (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
57 (((x) >> 2) & 0x7f)
58 #define END 0
59 {
60 const u32 base = engine->mmio_base;
61
62 while (*data) {
63 u8 count, flags;
64
65 if (*data & BIT(7)) { /* skip */
66 count = *data++ & ~BIT(7);
67 regs += count;
68 continue;
69 }
70
71 count = *data & 0x3f;
72 flags = *data >> 6;
73 data++;
74
75 *regs = MI_LOAD_REGISTER_IMM(count);
76 if (flags & POSTED)
77 *regs |= MI_LRI_FORCE_POSTED;
78 if (GRAPHICS_VER(engine->i915) >= 11)
79 *regs |= MI_LRI_LRM_CS_MMIO;
80 regs++;
81
82 GEM_BUG_ON(!count);
83 do {
84 u32 offset = 0;
85 u8 v;
86
87 do {
88 v = *data++;
89 offset <<= 7;
90 offset |= v & ~BIT(7);
91 } while (v & BIT(7));
92
93 regs[0] = base + (offset << 2);
94 regs += 2;
95 } while (--count);
96 }
97
98 if (close) {
99 /* Close the batch; used mainly by live_lrc_layout() */
100 *regs = MI_BATCH_BUFFER_END;
101 if (GRAPHICS_VER(engine->i915) >= 11)
102 *regs |= BIT(0);
103 }
104 }
105
106 static const u8 gen8_xcs_offsets[] = {
107 NOP(1),
108 LRI(11, 0),
109 REG16(0x244),
110 REG(0x034),
111 REG(0x030),
112 REG(0x038),
113 REG(0x03c),
114 REG(0x168),
115 REG(0x140),
116 REG(0x110),
117 REG(0x11c),
118 REG(0x114),
119 REG(0x118),
120
121 NOP(9),
122 LRI(9, 0),
123 REG16(0x3a8),
124 REG16(0x28c),
125 REG16(0x288),
126 REG16(0x284),
127 REG16(0x280),
128 REG16(0x27c),
129 REG16(0x278),
130 REG16(0x274),
131 REG16(0x270),
132
133 NOP(13),
134 LRI(2, 0),
135 REG16(0x200),
136 REG(0x028),
137
138 END
139 };
140
141 static const u8 gen9_xcs_offsets[] = {
142 NOP(1),
143 LRI(14, POSTED),
144 REG16(0x244),
145 REG(0x034),
146 REG(0x030),
147 REG(0x038),
148 REG(0x03c),
149 REG(0x168),
150 REG(0x140),
151 REG(0x110),
152 REG(0x11c),
153 REG(0x114),
154 REG(0x118),
155 REG(0x1c0),
156 REG(0x1c4),
157 REG(0x1c8),
158
159 NOP(3),
160 LRI(9, POSTED),
161 REG16(0x3a8),
162 REG16(0x28c),
163 REG16(0x288),
164 REG16(0x284),
165 REG16(0x280),
166 REG16(0x27c),
167 REG16(0x278),
168 REG16(0x274),
169 REG16(0x270),
170
171 NOP(13),
172 LRI(1, POSTED),
173 REG16(0x200),
174
175 NOP(13),
176 LRI(44, POSTED),
177 REG(0x028),
178 REG(0x09c),
179 REG(0x0c0),
180 REG(0x178),
181 REG(0x17c),
182 REG16(0x358),
183 REG(0x170),
184 REG(0x150),
185 REG(0x154),
186 REG(0x158),
187 REG16(0x41c),
188 REG16(0x600),
189 REG16(0x604),
190 REG16(0x608),
191 REG16(0x60c),
192 REG16(0x610),
193 REG16(0x614),
194 REG16(0x618),
195 REG16(0x61c),
196 REG16(0x620),
197 REG16(0x624),
198 REG16(0x628),
199 REG16(0x62c),
200 REG16(0x630),
201 REG16(0x634),
202 REG16(0x638),
203 REG16(0x63c),
204 REG16(0x640),
205 REG16(0x644),
206 REG16(0x648),
207 REG16(0x64c),
208 REG16(0x650),
209 REG16(0x654),
210 REG16(0x658),
211 REG16(0x65c),
212 REG16(0x660),
213 REG16(0x664),
214 REG16(0x668),
215 REG16(0x66c),
216 REG16(0x670),
217 REG16(0x674),
218 REG16(0x678),
219 REG16(0x67c),
220 REG(0x068),
221
222 END
223 };
224
225 static const u8 gen12_xcs_offsets[] = {
226 NOP(1),
227 LRI(13, POSTED),
228 REG16(0x244),
229 REG(0x034),
230 REG(0x030),
231 REG(0x038),
232 REG(0x03c),
233 REG(0x168),
234 REG(0x140),
235 REG(0x110),
236 REG(0x1c0),
237 REG(0x1c4),
238 REG(0x1c8),
239 REG(0x180),
240 REG16(0x2b4),
241
242 NOP(5),
243 LRI(9, POSTED),
244 REG16(0x3a8),
245 REG16(0x28c),
246 REG16(0x288),
247 REG16(0x284),
248 REG16(0x280),
249 REG16(0x27c),
250 REG16(0x278),
251 REG16(0x274),
252 REG16(0x270),
253
254 END
255 };
256
257 static const u8 dg2_xcs_offsets[] = {
258 NOP(1),
259 LRI(15, POSTED),
260 REG16(0x244),
261 REG(0x034),
262 REG(0x030),
263 REG(0x038),
264 REG(0x03c),
265 REG(0x168),
266 REG(0x140),
267 REG(0x110),
268 REG(0x1c0),
269 REG(0x1c4),
270 REG(0x1c8),
271 REG(0x180),
272 REG16(0x2b4),
273 REG(0x120),
274 REG(0x124),
275
276 NOP(1),
277 LRI(9, POSTED),
278 REG16(0x3a8),
279 REG16(0x28c),
280 REG16(0x288),
281 REG16(0x284),
282 REG16(0x280),
283 REG16(0x27c),
284 REG16(0x278),
285 REG16(0x274),
286 REG16(0x270),
287
288 END
289 };
290
291 static const u8 gen8_rcs_offsets[] = {
292 NOP(1),
293 LRI(14, POSTED),
294 REG16(0x244),
295 REG(0x034),
296 REG(0x030),
297 REG(0x038),
298 REG(0x03c),
299 REG(0x168),
300 REG(0x140),
301 REG(0x110),
302 REG(0x11c),
303 REG(0x114),
304 REG(0x118),
305 REG(0x1c0),
306 REG(0x1c4),
307 REG(0x1c8),
308
309 NOP(3),
310 LRI(9, POSTED),
311 REG16(0x3a8),
312 REG16(0x28c),
313 REG16(0x288),
314 REG16(0x284),
315 REG16(0x280),
316 REG16(0x27c),
317 REG16(0x278),
318 REG16(0x274),
319 REG16(0x270),
320
321 NOP(13),
322 LRI(1, 0),
323 REG(0x0c8),
324
325 END
326 };
327
328 static const u8 gen9_rcs_offsets[] = {
329 NOP(1),
330 LRI(14, POSTED),
331 REG16(0x244),
332 REG(0x34),
333 REG(0x30),
334 REG(0x38),
335 REG(0x3c),
336 REG(0x168),
337 REG(0x140),
338 REG(0x110),
339 REG(0x11c),
340 REG(0x114),
341 REG(0x118),
342 REG(0x1c0),
343 REG(0x1c4),
344 REG(0x1c8),
345
346 NOP(3),
347 LRI(9, POSTED),
348 REG16(0x3a8),
349 REG16(0x28c),
350 REG16(0x288),
351 REG16(0x284),
352 REG16(0x280),
353 REG16(0x27c),
354 REG16(0x278),
355 REG16(0x274),
356 REG16(0x270),
357
358 NOP(13),
359 LRI(1, 0),
360 REG(0xc8),
361
362 NOP(13),
363 LRI(44, POSTED),
364 REG(0x28),
365 REG(0x9c),
366 REG(0xc0),
367 REG(0x178),
368 REG(0x17c),
369 REG16(0x358),
370 REG(0x170),
371 REG(0x150),
372 REG(0x154),
373 REG(0x158),
374 REG16(0x41c),
375 REG16(0x600),
376 REG16(0x604),
377 REG16(0x608),
378 REG16(0x60c),
379 REG16(0x610),
380 REG16(0x614),
381 REG16(0x618),
382 REG16(0x61c),
383 REG16(0x620),
384 REG16(0x624),
385 REG16(0x628),
386 REG16(0x62c),
387 REG16(0x630),
388 REG16(0x634),
389 REG16(0x638),
390 REG16(0x63c),
391 REG16(0x640),
392 REG16(0x644),
393 REG16(0x648),
394 REG16(0x64c),
395 REG16(0x650),
396 REG16(0x654),
397 REG16(0x658),
398 REG16(0x65c),
399 REG16(0x660),
400 REG16(0x664),
401 REG16(0x668),
402 REG16(0x66c),
403 REG16(0x670),
404 REG16(0x674),
405 REG16(0x678),
406 REG16(0x67c),
407 REG(0x68),
408
409 END
410 };
411
412 static const u8 gen11_rcs_offsets[] = {
413 NOP(1),
414 LRI(15, POSTED),
415 REG16(0x244),
416 REG(0x034),
417 REG(0x030),
418 REG(0x038),
419 REG(0x03c),
420 REG(0x168),
421 REG(0x140),
422 REG(0x110),
423 REG(0x11c),
424 REG(0x114),
425 REG(0x118),
426 REG(0x1c0),
427 REG(0x1c4),
428 REG(0x1c8),
429 REG(0x180),
430
431 NOP(1),
432 LRI(9, POSTED),
433 REG16(0x3a8),
434 REG16(0x28c),
435 REG16(0x288),
436 REG16(0x284),
437 REG16(0x280),
438 REG16(0x27c),
439 REG16(0x278),
440 REG16(0x274),
441 REG16(0x270),
442
443 LRI(1, POSTED),
444 REG(0x1b0),
445
446 NOP(10),
447 LRI(1, 0),
448 REG(0x0c8),
449
450 END
451 };
452
453 static const u8 gen12_rcs_offsets[] = {
454 NOP(1),
455 LRI(13, POSTED),
456 REG16(0x244),
457 REG(0x034),
458 REG(0x030),
459 REG(0x038),
460 REG(0x03c),
461 REG(0x168),
462 REG(0x140),
463 REG(0x110),
464 REG(0x1c0),
465 REG(0x1c4),
466 REG(0x1c8),
467 REG(0x180),
468 REG16(0x2b4),
469
470 NOP(5),
471 LRI(9, POSTED),
472 REG16(0x3a8),
473 REG16(0x28c),
474 REG16(0x288),
475 REG16(0x284),
476 REG16(0x280),
477 REG16(0x27c),
478 REG16(0x278),
479 REG16(0x274),
480 REG16(0x270),
481
482 LRI(3, POSTED),
483 REG(0x1b0),
484 REG16(0x5a8),
485 REG16(0x5ac),
486
487 NOP(6),
488 LRI(1, 0),
489 REG(0x0c8),
490 NOP(3 + 9 + 1),
491
492 LRI(51, POSTED),
493 REG16(0x588),
494 REG16(0x588),
495 REG16(0x588),
496 REG16(0x588),
497 REG16(0x588),
498 REG16(0x588),
499 REG(0x028),
500 REG(0x09c),
501 REG(0x0c0),
502 REG(0x178),
503 REG(0x17c),
504 REG16(0x358),
505 REG(0x170),
506 REG(0x150),
507 REG(0x154),
508 REG(0x158),
509 REG16(0x41c),
510 REG16(0x600),
511 REG16(0x604),
512 REG16(0x608),
513 REG16(0x60c),
514 REG16(0x610),
515 REG16(0x614),
516 REG16(0x618),
517 REG16(0x61c),
518 REG16(0x620),
519 REG16(0x624),
520 REG16(0x628),
521 REG16(0x62c),
522 REG16(0x630),
523 REG16(0x634),
524 REG16(0x638),
525 REG16(0x63c),
526 REG16(0x640),
527 REG16(0x644),
528 REG16(0x648),
529 REG16(0x64c),
530 REG16(0x650),
531 REG16(0x654),
532 REG16(0x658),
533 REG16(0x65c),
534 REG16(0x660),
535 REG16(0x664),
536 REG16(0x668),
537 REG16(0x66c),
538 REG16(0x670),
539 REG16(0x674),
540 REG16(0x678),
541 REG16(0x67c),
542 REG(0x068),
543 REG(0x084),
544 NOP(1),
545
546 END
547 };
548
549 static const u8 dg2_rcs_offsets[] = {
550 NOP(1),
551 LRI(15, POSTED),
552 REG16(0x244),
553 REG(0x034),
554 REG(0x030),
555 REG(0x038),
556 REG(0x03c),
557 REG(0x168),
558 REG(0x140),
559 REG(0x110),
560 REG(0x1c0),
561 REG(0x1c4),
562 REG(0x1c8),
563 REG(0x180),
564 REG16(0x2b4),
565 REG(0x120),
566 REG(0x124),
567
568 NOP(1),
569 LRI(9, POSTED),
570 REG16(0x3a8),
571 REG16(0x28c),
572 REG16(0x288),
573 REG16(0x284),
574 REG16(0x280),
575 REG16(0x27c),
576 REG16(0x278),
577 REG16(0x274),
578 REG16(0x270),
579
580 LRI(3, POSTED),
581 REG(0x1b0),
582 REG16(0x5a8),
583 REG16(0x5ac),
584
585 NOP(6),
586 LRI(1, 0),
587 REG(0x0c8),
588
589 END
590 };
591
592 static const u8 mtl_rcs_offsets[] = {
593 NOP(1),
594 LRI(15, POSTED),
595 REG16(0x244),
596 REG(0x034),
597 REG(0x030),
598 REG(0x038),
599 REG(0x03c),
600 REG(0x168),
601 REG(0x140),
602 REG(0x110),
603 REG(0x1c0),
604 REG(0x1c4),
605 REG(0x1c8),
606 REG(0x180),
607 REG16(0x2b4),
608 REG(0x120),
609 REG(0x124),
610
611 NOP(1),
612 LRI(9, POSTED),
613 REG16(0x3a8),
614 REG16(0x28c),
615 REG16(0x288),
616 REG16(0x284),
617 REG16(0x280),
618 REG16(0x27c),
619 REG16(0x278),
620 REG16(0x274),
621 REG16(0x270),
622
623 NOP(2),
624 LRI(2, POSTED),
625 REG16(0x5a8),
626 REG16(0x5ac),
627
628 NOP(6),
629 LRI(1, 0),
630 REG(0x0c8),
631
632 END
633 };
634
635 #undef END
636 #undef REG16
637 #undef REG
638 #undef LRI
639 #undef NOP
640
reg_offsets(const struct intel_engine_cs * engine)641 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
642 {
643 /*
644 * The gen12+ lists only have the registers we program in the basic
645 * default state. We rely on the context image using relative
646 * addressing to automatic fixup the register state between the
647 * physical engines for virtual engine.
648 */
649 GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 &&
650 !intel_engine_has_relative_mmio(engine));
651
652 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) {
653 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70))
654 return mtl_rcs_offsets;
655 else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
656 return dg2_rcs_offsets;
657 else if (GRAPHICS_VER(engine->i915) >= 12)
658 return gen12_rcs_offsets;
659 else if (GRAPHICS_VER(engine->i915) >= 11)
660 return gen11_rcs_offsets;
661 else if (GRAPHICS_VER(engine->i915) >= 9)
662 return gen9_rcs_offsets;
663 else
664 return gen8_rcs_offsets;
665 } else {
666 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
667 return dg2_xcs_offsets;
668 else if (GRAPHICS_VER(engine->i915) >= 12)
669 return gen12_xcs_offsets;
670 else if (GRAPHICS_VER(engine->i915) >= 9)
671 return gen9_xcs_offsets;
672 else
673 return gen8_xcs_offsets;
674 }
675 }
676
lrc_ring_mi_mode(const struct intel_engine_cs * engine)677 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
678 {
679 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
680 return 0x70;
681 else if (GRAPHICS_VER(engine->i915) >= 12)
682 return 0x60;
683 else if (GRAPHICS_VER(engine->i915) >= 9)
684 return 0x54;
685 else if (engine->class == RENDER_CLASS)
686 return 0x58;
687 else
688 return -1;
689 }
690
lrc_ring_bb_offset(const struct intel_engine_cs * engine)691 static int lrc_ring_bb_offset(const struct intel_engine_cs *engine)
692 {
693 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
694 return 0x80;
695 else if (GRAPHICS_VER(engine->i915) >= 12)
696 return 0x70;
697 else if (GRAPHICS_VER(engine->i915) >= 9)
698 return 0x64;
699 else if (GRAPHICS_VER(engine->i915) >= 8 &&
700 engine->class == RENDER_CLASS)
701 return 0xc4;
702 else
703 return -1;
704 }
705
lrc_ring_gpr0(const struct intel_engine_cs * engine)706 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
707 {
708 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
709 return 0x84;
710 else if (GRAPHICS_VER(engine->i915) >= 12)
711 return 0x74;
712 else if (GRAPHICS_VER(engine->i915) >= 9)
713 return 0x68;
714 else if (engine->class == RENDER_CLASS)
715 return 0xd8;
716 else
717 return -1;
718 }
719
lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs * engine)720 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
721 {
722 if (GRAPHICS_VER(engine->i915) >= 12)
723 return 0x12;
724 else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS)
725 return 0x18;
726 else
727 return -1;
728 }
729
lrc_ring_indirect_ptr(const struct intel_engine_cs * engine)730 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
731 {
732 int x;
733
734 x = lrc_ring_wa_bb_per_ctx(engine);
735 if (x < 0)
736 return x;
737
738 return x + 2;
739 }
740
lrc_ring_indirect_offset(const struct intel_engine_cs * engine)741 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
742 {
743 int x;
744
745 x = lrc_ring_indirect_ptr(engine);
746 if (x < 0)
747 return x;
748
749 return x + 2;
750 }
751
lrc_ring_cmd_buf_cctl(const struct intel_engine_cs * engine)752 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
753 {
754
755 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
756 /*
757 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL
758 * simply to match the RCS context image layout.
759 */
760 return 0xc6;
761 else if (engine->class != RENDER_CLASS)
762 return -1;
763 else if (GRAPHICS_VER(engine->i915) >= 12)
764 return 0xb6;
765 else if (GRAPHICS_VER(engine->i915) >= 11)
766 return 0xaa;
767 else
768 return -1;
769 }
770
771 static u32
lrc_ring_indirect_offset_default(const struct intel_engine_cs * engine)772 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
773 {
774 if (GRAPHICS_VER(engine->i915) >= 12)
775 return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
776 else if (GRAPHICS_VER(engine->i915) >= 11)
777 return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
778 else if (GRAPHICS_VER(engine->i915) >= 9)
779 return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
780 else if (GRAPHICS_VER(engine->i915) >= 8)
781 return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
782
783 GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8);
784
785 return 0;
786 }
787
788 static void
lrc_setup_bb_per_ctx(u32 * regs,const struct intel_engine_cs * engine,u32 ctx_bb_ggtt_addr)789 lrc_setup_bb_per_ctx(u32 *regs,
790 const struct intel_engine_cs *engine,
791 u32 ctx_bb_ggtt_addr)
792 {
793 GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
794 regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
795 ctx_bb_ggtt_addr |
796 PER_CTX_BB_FORCE |
797 PER_CTX_BB_VALID;
798 }
799
800 static void
lrc_setup_indirect_ctx(u32 * regs,const struct intel_engine_cs * engine,u32 ctx_bb_ggtt_addr,u32 size)801 lrc_setup_indirect_ctx(u32 *regs,
802 const struct intel_engine_cs *engine,
803 u32 ctx_bb_ggtt_addr,
804 u32 size)
805 {
806 GEM_BUG_ON(!size);
807 GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
808 GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
809 regs[lrc_ring_indirect_ptr(engine) + 1] =
810 ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
811
812 GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
813 regs[lrc_ring_indirect_offset(engine) + 1] =
814 lrc_ring_indirect_offset_default(engine) << 6;
815 }
816
ctx_needs_runalone(const struct intel_context * ce)817 static bool ctx_needs_runalone(const struct intel_context *ce)
818 {
819 struct i915_gem_context *gem_ctx;
820 bool ctx_is_protected = false;
821
822 /*
823 * On MTL and newer platforms, protected contexts require setting
824 * the LRC run-alone bit or else the encryption will not happen.
825 */
826 if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 70) &&
827 (ce->engine->class == COMPUTE_CLASS || ce->engine->class == RENDER_CLASS)) {
828 rcu_read_lock();
829 gem_ctx = rcu_dereference(ce->gem_context);
830 if (gem_ctx)
831 ctx_is_protected = gem_ctx->uses_protected_content;
832 rcu_read_unlock();
833 }
834
835 return ctx_is_protected;
836 }
837
init_common_regs(u32 * const regs,const struct intel_context * ce,const struct intel_engine_cs * engine,bool inhibit)838 static void init_common_regs(u32 * const regs,
839 const struct intel_context *ce,
840 const struct intel_engine_cs *engine,
841 bool inhibit)
842 {
843 u32 ctl;
844 int loc;
845
846 ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
847 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
848 if (inhibit)
849 ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
850 if (GRAPHICS_VER(engine->i915) < 11)
851 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
852 CTX_CTRL_RS_CTX_ENABLE);
853 if (ctx_needs_runalone(ce))
854 ctl |= _MASKED_BIT_ENABLE(GEN12_CTX_CTRL_RUNALONE_MODE);
855 regs[CTX_CONTEXT_CONTROL] = ctl;
856
857 regs[CTX_TIMESTAMP] = ce->stats.runtime.last;
858
859 loc = lrc_ring_bb_offset(engine);
860 if (loc != -1)
861 regs[loc + 1] = 0;
862 }
863
init_wa_bb_regs(u32 * const regs,const struct intel_engine_cs * engine)864 static void init_wa_bb_regs(u32 * const regs,
865 const struct intel_engine_cs *engine)
866 {
867 const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
868
869 if (wa_ctx->per_ctx.size) {
870 const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
871
872 GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
873 regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
874 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
875 }
876
877 if (wa_ctx->indirect_ctx.size) {
878 lrc_setup_indirect_ctx(regs, engine,
879 i915_ggtt_offset(wa_ctx->vma) +
880 wa_ctx->indirect_ctx.offset,
881 wa_ctx->indirect_ctx.size);
882 }
883 }
884
init_ppgtt_regs(u32 * regs,const struct i915_ppgtt * ppgtt)885 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt)
886 {
887 if (i915_vm_is_4lvl(&ppgtt->vm)) {
888 /* 64b PPGTT (48bit canonical)
889 * PDP0_DESCRIPTOR contains the base address to PML4 and
890 * other PDP Descriptors are ignored.
891 */
892 ASSIGN_CTX_PML4(ppgtt, regs);
893 } else {
894 ASSIGN_CTX_PDP(ppgtt, regs, 3);
895 ASSIGN_CTX_PDP(ppgtt, regs, 2);
896 ASSIGN_CTX_PDP(ppgtt, regs, 1);
897 ASSIGN_CTX_PDP(ppgtt, regs, 0);
898 }
899 }
900
vm_alias(struct i915_address_space * vm)901 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
902 {
903 if (i915_is_ggtt(vm))
904 return i915_vm_to_ggtt(vm)->alias;
905 else
906 return i915_vm_to_ppgtt(vm);
907 }
908
__reset_stop_ring(u32 * regs,const struct intel_engine_cs * engine)909 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
910 {
911 int x;
912
913 x = lrc_ring_mi_mode(engine);
914 if (x != -1) {
915 regs[x + 1] &= ~STOP_RING;
916 regs[x + 1] |= STOP_RING << 16;
917 }
918 }
919
__lrc_init_regs(u32 * regs,const struct intel_context * ce,const struct intel_engine_cs * engine,bool inhibit)920 static void __lrc_init_regs(u32 *regs,
921 const struct intel_context *ce,
922 const struct intel_engine_cs *engine,
923 bool inhibit)
924 {
925 /*
926 * A context is actually a big batch buffer with several
927 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
928 * values we are setting here are only for the first context restore:
929 * on a subsequent save, the GPU will recreate this batchbuffer with new
930 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
931 * we are not initializing here).
932 *
933 * Must keep consistent with virtual_update_register_offsets().
934 */
935
936 if (inhibit)
937 memset(regs, 0, PAGE_SIZE);
938
939 set_offsets(regs, reg_offsets(engine), engine, inhibit);
940
941 init_common_regs(regs, ce, engine, inhibit);
942 init_ppgtt_regs(regs, vm_alias(ce->vm));
943
944 init_wa_bb_regs(regs, engine);
945
946 __reset_stop_ring(regs, engine);
947 }
948
lrc_init_regs(const struct intel_context * ce,const struct intel_engine_cs * engine,bool inhibit)949 void lrc_init_regs(const struct intel_context *ce,
950 const struct intel_engine_cs *engine,
951 bool inhibit)
952 {
953 __lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit);
954 }
955
lrc_reset_regs(const struct intel_context * ce,const struct intel_engine_cs * engine)956 void lrc_reset_regs(const struct intel_context *ce,
957 const struct intel_engine_cs *engine)
958 {
959 __reset_stop_ring(ce->lrc_reg_state, engine);
960 }
961
962 static void
set_redzone(void * vaddr,const struct intel_engine_cs * engine)963 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
964 {
965 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
966 return;
967
968 vaddr += engine->context_size;
969
970 memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
971 }
972
973 static void
check_redzone(const void * vaddr,const struct intel_engine_cs * engine)974 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
975 {
976 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
977 return;
978
979 vaddr += engine->context_size;
980
981 if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
982 drm_err_once(&engine->i915->drm,
983 "%s context redzone overwritten!\n",
984 engine->name);
985 }
986
context_wa_bb_offset(const struct intel_context * ce)987 static u32 context_wa_bb_offset(const struct intel_context *ce)
988 {
989 return PAGE_SIZE * ce->wa_bb_page;
990 }
991
992 /*
993 * per_ctx below determines which WABB section is used.
994 * When true, the function returns the location of the
995 * PER_CTX_BB. When false, the function returns the
996 * location of the INDIRECT_CTX.
997 */
context_wabb(const struct intel_context * ce,bool per_ctx)998 static u32 *context_wabb(const struct intel_context *ce, bool per_ctx)
999 {
1000 void *ptr;
1001
1002 GEM_BUG_ON(!ce->wa_bb_page);
1003
1004 ptr = ce->lrc_reg_state;
1005 ptr -= LRC_STATE_OFFSET; /* back to start of context image */
1006 ptr += context_wa_bb_offset(ce);
1007 ptr += per_ctx ? PAGE_SIZE : 0;
1008
1009 return ptr;
1010 }
1011
lrc_init_state(struct intel_context * ce,struct intel_engine_cs * engine,void * state)1012 void lrc_init_state(struct intel_context *ce,
1013 struct intel_engine_cs *engine,
1014 void *state)
1015 {
1016 bool inhibit = true;
1017
1018 set_redzone(state, engine);
1019
1020 if (ce->default_state) {
1021 shmem_read(ce->default_state, 0, state, engine->context_size);
1022 __set_bit(CONTEXT_VALID_BIT, &ce->flags);
1023 inhibit = false;
1024 }
1025
1026 /* Clear the ppHWSP (inc. per-context counters) */
1027 memset(state, 0, PAGE_SIZE);
1028
1029 /* Clear the indirect wa and storage */
1030 if (ce->wa_bb_page)
1031 memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE);
1032
1033 /*
1034 * The second page of the context object contains some registers which
1035 * must be set up prior to the first execution.
1036 */
1037 __lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit);
1038 }
1039
lrc_indirect_bb(const struct intel_context * ce)1040 u32 lrc_indirect_bb(const struct intel_context *ce)
1041 {
1042 return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce);
1043 }
1044
setup_predicate_disable_wa(const struct intel_context * ce,u32 * cs)1045 static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs)
1046 {
1047 /* If predication is active, this will be noop'ed */
1048 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1049 *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1050 *cs++ = 0;
1051 *cs++ = 0; /* No predication */
1052
1053 /* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */
1054 *cs++ = MI_BATCH_BUFFER_END | BIT(15);
1055 *cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE;
1056
1057 /* Instructions are no longer predicated (disabled), we can proceed */
1058 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1059 *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1060 *cs++ = 0;
1061 *cs++ = 1; /* enable predication before the next BB */
1062
1063 *cs++ = MI_BATCH_BUFFER_END;
1064 GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA);
1065
1066 return cs;
1067 }
1068
1069 static struct i915_vma *
__lrc_alloc_state(struct intel_context * ce,struct intel_engine_cs * engine)1070 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine)
1071 {
1072 struct drm_i915_gem_object *obj;
1073 struct i915_vma *vma;
1074 u32 context_size;
1075
1076 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
1077
1078 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1079 context_size += I915_GTT_PAGE_SIZE; /* for redzone */
1080
1081 if (GRAPHICS_VER(engine->i915) >= 12) {
1082 ce->wa_bb_page = context_size / PAGE_SIZE;
1083 /* INDIRECT_CTX and PER_CTX_BB need separate pages. */
1084 context_size += PAGE_SIZE * 2;
1085 }
1086
1087 if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) {
1088 ce->parallel.guc.parent_page = context_size / PAGE_SIZE;
1089 context_size += PARENT_SCRATCH_SIZE;
1090 }
1091
1092 obj = i915_gem_object_create_lmem(engine->i915, context_size,
1093 I915_BO_ALLOC_PM_VOLATILE);
1094 if (IS_ERR(obj)) {
1095 obj = i915_gem_object_create_shmem(engine->i915, context_size);
1096 if (IS_ERR(obj))
1097 return ERR_CAST(obj);
1098
1099 /*
1100 * Wa_22016122933: For Media version 13.0, all Media GT shared
1101 * memory needs to be mapped as WC on CPU side and UC (PAT
1102 * index 2) on GPU side.
1103 */
1104 if (intel_gt_needs_wa_22016122933(engine->gt))
1105 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
1106 }
1107
1108 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1109 if (IS_ERR(vma)) {
1110 i915_gem_object_put(obj);
1111 return vma;
1112 }
1113
1114 return vma;
1115 }
1116
1117 static struct intel_timeline *
pinned_timeline(struct intel_context * ce,struct intel_engine_cs * engine)1118 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine)
1119 {
1120 struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
1121
1122 return intel_timeline_create_from_engine(engine, page_unmask_bits(tl));
1123 }
1124
lrc_alloc(struct intel_context * ce,struct intel_engine_cs * engine)1125 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine)
1126 {
1127 struct intel_ring *ring;
1128 struct i915_vma *vma;
1129 int err;
1130
1131 GEM_BUG_ON(ce->state);
1132
1133 if (!intel_context_has_own_state(ce))
1134 ce->default_state = engine->default_state;
1135
1136 vma = __lrc_alloc_state(ce, engine);
1137 if (IS_ERR(vma))
1138 return PTR_ERR(vma);
1139
1140 ring = intel_engine_create_ring(engine, ce->ring_size);
1141 if (IS_ERR(ring)) {
1142 err = PTR_ERR(ring);
1143 goto err_vma;
1144 }
1145
1146 if (!page_mask_bits(ce->timeline)) {
1147 struct intel_timeline *tl;
1148
1149 /*
1150 * Use the static global HWSP for the kernel context, and
1151 * a dynamically allocated cacheline for everyone else.
1152 */
1153 if (unlikely(ce->timeline))
1154 tl = pinned_timeline(ce, engine);
1155 else
1156 tl = intel_timeline_create(engine->gt);
1157 if (IS_ERR(tl)) {
1158 err = PTR_ERR(tl);
1159 goto err_ring;
1160 }
1161
1162 ce->timeline = tl;
1163 }
1164
1165 ce->ring = ring;
1166 ce->state = vma;
1167
1168 return 0;
1169
1170 err_ring:
1171 intel_ring_put(ring);
1172 err_vma:
1173 i915_vma_put(vma);
1174 return err;
1175 }
1176
lrc_reset(struct intel_context * ce)1177 void lrc_reset(struct intel_context *ce)
1178 {
1179 GEM_BUG_ON(!intel_context_is_pinned(ce));
1180
1181 intel_ring_reset(ce->ring, ce->ring->emit);
1182
1183 /* Scrub away the garbage */
1184 lrc_init_regs(ce, ce->engine, true);
1185 ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail);
1186 }
1187
1188 int
lrc_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)1189 lrc_pre_pin(struct intel_context *ce,
1190 struct intel_engine_cs *engine,
1191 struct i915_gem_ww_ctx *ww,
1192 void **vaddr)
1193 {
1194 GEM_BUG_ON(!ce->state);
1195 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1196
1197 *vaddr = i915_gem_object_pin_map(ce->state->obj,
1198 intel_gt_coherent_map_type(ce->engine->gt,
1199 ce->state->obj,
1200 false) |
1201 I915_MAP_OVERRIDE);
1202
1203 return PTR_ERR_OR_ZERO(*vaddr);
1204 }
1205
1206 int
lrc_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)1207 lrc_pin(struct intel_context *ce,
1208 struct intel_engine_cs *engine,
1209 void *vaddr)
1210 {
1211 ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
1212
1213 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags))
1214 lrc_init_state(ce, engine, vaddr);
1215
1216 ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail);
1217 return 0;
1218 }
1219
lrc_unpin(struct intel_context * ce)1220 void lrc_unpin(struct intel_context *ce)
1221 {
1222 if (unlikely(ce->parallel.last_rq)) {
1223 i915_request_put(ce->parallel.last_rq);
1224 ce->parallel.last_rq = NULL;
1225 }
1226 check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
1227 ce->engine);
1228 }
1229
lrc_post_unpin(struct intel_context * ce)1230 void lrc_post_unpin(struct intel_context *ce)
1231 {
1232 i915_gem_object_unpin_map(ce->state->obj);
1233 }
1234
lrc_fini(struct intel_context * ce)1235 void lrc_fini(struct intel_context *ce)
1236 {
1237 if (!ce->state)
1238 return;
1239
1240 intel_ring_put(fetch_and_zero(&ce->ring));
1241 i915_vma_put(fetch_and_zero(&ce->state));
1242 }
1243
lrc_destroy(struct kref * kref)1244 void lrc_destroy(struct kref *kref)
1245 {
1246 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1247
1248 GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1249 GEM_BUG_ON(intel_context_is_pinned(ce));
1250
1251 lrc_fini(ce);
1252
1253 intel_context_fini(ce);
1254 intel_context_free(ce);
1255 }
1256
1257 static u32 *
gen12_emit_timestamp_wa(const struct intel_context * ce,u32 * cs)1258 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
1259 {
1260 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1261 MI_SRM_LRM_GLOBAL_GTT |
1262 MI_LRI_LRM_CS_MMIO;
1263 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1264 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1265 CTX_TIMESTAMP * sizeof(u32);
1266 *cs++ = 0;
1267
1268 *cs++ = MI_LOAD_REGISTER_REG |
1269 MI_LRR_SOURCE_CS_MMIO |
1270 MI_LRI_LRM_CS_MMIO;
1271 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1272 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1273
1274 *cs++ = MI_LOAD_REGISTER_REG |
1275 MI_LRR_SOURCE_CS_MMIO |
1276 MI_LRI_LRM_CS_MMIO;
1277 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1278 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1279
1280 return cs;
1281 }
1282
1283 static u32 *
gen12_emit_restore_scratch(const struct intel_context * ce,u32 * cs)1284 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
1285 {
1286 GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
1287
1288 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1289 MI_SRM_LRM_GLOBAL_GTT |
1290 MI_LRI_LRM_CS_MMIO;
1291 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1292 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1293 (lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
1294 *cs++ = 0;
1295
1296 return cs;
1297 }
1298
1299 static u32 *
gen12_emit_cmd_buf_wa(const struct intel_context * ce,u32 * cs)1300 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
1301 {
1302 GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
1303
1304 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1305 MI_SRM_LRM_GLOBAL_GTT |
1306 MI_LRI_LRM_CS_MMIO;
1307 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1308 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1309 (lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
1310 *cs++ = 0;
1311
1312 *cs++ = MI_LOAD_REGISTER_REG |
1313 MI_LRR_SOURCE_CS_MMIO |
1314 MI_LRI_LRM_CS_MMIO;
1315 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1316 *cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
1317
1318 return cs;
1319 }
1320
1321 /*
1322 * The bspec's tuning guide asks us to program a vertical watermark value of
1323 * 0x3FF. However this register is not saved/restored properly by the
1324 * hardware, so we're required to apply the desired value via INDIRECT_CTX
1325 * batch buffer to ensure the value takes effect properly. All other bits
1326 * in this register should remain at 0 (the hardware default).
1327 */
1328 static u32 *
dg2_emit_draw_watermark_setting(u32 * cs)1329 dg2_emit_draw_watermark_setting(u32 *cs)
1330 {
1331 *cs++ = MI_LOAD_REGISTER_IMM(1);
1332 *cs++ = i915_mmio_reg_offset(DRAW_WATERMARK);
1333 *cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF);
1334
1335 return cs;
1336 }
1337
1338 static u32 *
gen12_invalidate_state_cache(u32 * cs)1339 gen12_invalidate_state_cache(u32 *cs)
1340 {
1341 *cs++ = MI_LOAD_REGISTER_IMM(1);
1342 *cs++ = i915_mmio_reg_offset(GEN12_CS_DEBUG_MODE2);
1343 *cs++ = _MASKED_BIT_ENABLE(INSTRUCTION_STATE_CACHE_INVALIDATE);
1344 return cs;
1345 }
1346
1347 static u32 *
gen12_emit_indirect_ctx_rcs(const struct intel_context * ce,u32 * cs)1348 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
1349 {
1350 cs = gen12_emit_timestamp_wa(ce, cs);
1351 cs = gen12_emit_cmd_buf_wa(ce, cs);
1352 cs = gen12_emit_restore_scratch(ce, cs);
1353
1354 /* Wa_16013000631:dg2 */
1355 if (IS_DG2_G11(ce->engine->i915))
1356 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0);
1357
1358 cs = gen12_emit_aux_table_inv(ce->engine, cs);
1359
1360 /* Wa_18022495364 */
1361 if (IS_GFX_GT_IP_RANGE(ce->engine->gt, IP_VER(12, 0), IP_VER(12, 10)))
1362 cs = gen12_invalidate_state_cache(cs);
1363
1364 /* Wa_16014892111 */
1365 if (IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1366 IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
1367 IS_DG2(ce->engine->i915))
1368 cs = dg2_emit_draw_watermark_setting(cs);
1369
1370 return cs;
1371 }
1372
1373 static u32 *
gen12_emit_indirect_ctx_xcs(const struct intel_context * ce,u32 * cs)1374 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
1375 {
1376 cs = gen12_emit_timestamp_wa(ce, cs);
1377 cs = gen12_emit_restore_scratch(ce, cs);
1378
1379 /* Wa_16013000631:dg2 */
1380 if (IS_DG2_G11(ce->engine->i915))
1381 if (ce->engine->class == COMPUTE_CLASS)
1382 cs = gen8_emit_pipe_control(cs,
1383 PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE,
1384 0);
1385
1386 return gen12_emit_aux_table_inv(ce->engine, cs);
1387 }
1388
xehp_emit_fastcolor_blt_wabb(const struct intel_context * ce,u32 * cs)1389 static u32 *xehp_emit_fastcolor_blt_wabb(const struct intel_context *ce, u32 *cs)
1390 {
1391 struct intel_gt *gt = ce->engine->gt;
1392 int mocs = gt->mocs.uc_index << 1;
1393
1394 /**
1395 * Wa_16018031267 / Wa_16018063123 requires that SW forces the
1396 * main copy engine arbitration into round robin mode. We
1397 * additionally need to submit the following WABB blt command
1398 * to produce 4 subblits with each subblit generating 0 byte
1399 * write requests as WABB:
1400 *
1401 * XY_FASTCOLOR_BLT
1402 * BG0 -> 5100000E
1403 * BG1 -> 0000003F (Dest pitch)
1404 * BG2 -> 00000000 (X1, Y1) = (0, 0)
1405 * BG3 -> 00040001 (X2, Y2) = (1, 4)
1406 * BG4 -> scratch
1407 * BG5 -> scratch
1408 * BG6-12 -> 00000000
1409 * BG13 -> 20004004 (Surf. Width= 2,Surf. Height = 5 )
1410 * BG14 -> 00000010 (Qpitch = 4)
1411 * BG15 -> 00000000
1412 */
1413 *cs++ = XY_FAST_COLOR_BLT_CMD | (16 - 2);
1414 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) | 0x3f;
1415 *cs++ = 0;
1416 *cs++ = 4 << 16 | 1;
1417 *cs++ = lower_32_bits(i915_vma_offset(ce->vm->rsvd.vma));
1418 *cs++ = upper_32_bits(i915_vma_offset(ce->vm->rsvd.vma));
1419 *cs++ = 0;
1420 *cs++ = 0;
1421 *cs++ = 0;
1422 *cs++ = 0;
1423 *cs++ = 0;
1424 *cs++ = 0;
1425 *cs++ = 0;
1426 *cs++ = 0x20004004;
1427 *cs++ = 0x10;
1428 *cs++ = 0;
1429
1430 return cs;
1431 }
1432
1433 static u32 *
xehp_emit_per_ctx_bb(const struct intel_context * ce,u32 * cs)1434 xehp_emit_per_ctx_bb(const struct intel_context *ce, u32 *cs)
1435 {
1436 /* Wa_16018031267, Wa_16018063123 */
1437 if (NEEDS_FASTCOLOR_BLT_WABB(ce->engine))
1438 cs = xehp_emit_fastcolor_blt_wabb(ce, cs);
1439
1440 return cs;
1441 }
1442
1443 static void
setup_per_ctx_bb(const struct intel_context * ce,const struct intel_engine_cs * engine,u32 * (* emit)(const struct intel_context *,u32 *))1444 setup_per_ctx_bb(const struct intel_context *ce,
1445 const struct intel_engine_cs *engine,
1446 u32 *(*emit)(const struct intel_context *, u32 *))
1447 {
1448 /* Place PER_CTX_BB on next page after INDIRECT_CTX */
1449 u32 * const start = context_wabb(ce, true);
1450 u32 *cs;
1451
1452 cs = emit(ce, start);
1453
1454 /* PER_CTX_BB must manually terminate */
1455 *cs++ = MI_BATCH_BUFFER_END;
1456
1457 GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1458 lrc_setup_bb_per_ctx(ce->lrc_reg_state, engine,
1459 lrc_indirect_bb(ce) + PAGE_SIZE);
1460 }
1461
1462 static void
setup_indirect_ctx_bb(const struct intel_context * ce,const struct intel_engine_cs * engine,u32 * (* emit)(const struct intel_context *,u32 *))1463 setup_indirect_ctx_bb(const struct intel_context *ce,
1464 const struct intel_engine_cs *engine,
1465 u32 *(*emit)(const struct intel_context *, u32 *))
1466 {
1467 u32 * const start = context_wabb(ce, false);
1468 u32 *cs;
1469
1470 cs = emit(ce, start);
1471 GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1472 while ((unsigned long)cs % CACHELINE_BYTES)
1473 *cs++ = MI_NOOP;
1474
1475 GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start));
1476 setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start));
1477
1478 lrc_setup_indirect_ctx(ce->lrc_reg_state, engine,
1479 lrc_indirect_bb(ce),
1480 (cs - start) * sizeof(*cs));
1481 }
1482
1483 /*
1484 * The context descriptor encodes various attributes of a context,
1485 * including its GTT address and some flags. Because it's fairly
1486 * expensive to calculate, we'll just do it once and cache the result,
1487 * which remains valid until the context is unpinned.
1488 *
1489 * This is what a descriptor looks like, from LSB to MSB::
1490 *
1491 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
1492 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
1493 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
1494 * bits 53-54: mbz, reserved for use by hardware
1495 * bits 55-63: group ID, currently unused and set to 0
1496 *
1497 * Starting from Gen11, the upper dword of the descriptor has a new format:
1498 *
1499 * bits 32-36: reserved
1500 * bits 37-47: SW context ID
1501 * bits 48:53: engine instance
1502 * bit 54: mbz, reserved for use by hardware
1503 * bits 55-60: SW counter
1504 * bits 61-63: engine class
1505 *
1506 * On Xe_HP, the upper dword of the descriptor has a new format:
1507 *
1508 * bits 32-37: virtual function number
1509 * bit 38: mbz, reserved for use by hardware
1510 * bits 39-54: SW context ID
1511 * bits 55-57: reserved
1512 * bits 58-63: SW counter
1513 *
1514 * engine info, SW context ID and SW counter need to form a unique number
1515 * (Context ID) per lrc.
1516 */
lrc_descriptor(const struct intel_context * ce)1517 static u32 lrc_descriptor(const struct intel_context *ce)
1518 {
1519 u32 desc;
1520
1521 desc = INTEL_LEGACY_32B_CONTEXT;
1522 if (i915_vm_is_4lvl(ce->vm))
1523 desc = INTEL_LEGACY_64B_CONTEXT;
1524 desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
1525
1526 desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
1527 if (GRAPHICS_VER(ce->vm->i915) == 8)
1528 desc |= GEN8_CTX_L3LLC_COHERENT;
1529
1530 return i915_ggtt_offset(ce->state) | desc;
1531 }
1532
lrc_update_regs(const struct intel_context * ce,const struct intel_engine_cs * engine,u32 head)1533 u32 lrc_update_regs(const struct intel_context *ce,
1534 const struct intel_engine_cs *engine,
1535 u32 head)
1536 {
1537 struct intel_ring *ring = ce->ring;
1538 u32 *regs = ce->lrc_reg_state;
1539
1540 GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
1541 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1542
1543 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1544 regs[CTX_RING_HEAD] = head;
1545 regs[CTX_RING_TAIL] = ring->tail;
1546 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1547
1548 /* RPCS */
1549 if (engine->class == RENDER_CLASS) {
1550 regs[CTX_R_PWR_CLK_STATE] =
1551 intel_sseu_make_rpcs(engine->gt, &ce->sseu);
1552
1553 i915_oa_init_reg_state(ce, engine);
1554 }
1555
1556 if (ce->wa_bb_page) {
1557 u32 *(*fn)(const struct intel_context *ce, u32 *cs);
1558
1559 fn = gen12_emit_indirect_ctx_xcs;
1560 if (ce->engine->class == RENDER_CLASS)
1561 fn = gen12_emit_indirect_ctx_rcs;
1562
1563 /* Mutually exclusive wrt to global indirect bb */
1564 GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
1565 setup_indirect_ctx_bb(ce, engine, fn);
1566 setup_per_ctx_bb(ce, engine, xehp_emit_per_ctx_bb);
1567 }
1568
1569 return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE;
1570 }
1571
lrc_update_offsets(struct intel_context * ce,struct intel_engine_cs * engine)1572 void lrc_update_offsets(struct intel_context *ce,
1573 struct intel_engine_cs *engine)
1574 {
1575 set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false);
1576 }
1577
lrc_check_regs(const struct intel_context * ce,const struct intel_engine_cs * engine,const char * when)1578 void lrc_check_regs(const struct intel_context *ce,
1579 const struct intel_engine_cs *engine,
1580 const char *when)
1581 {
1582 const struct intel_ring *ring = ce->ring;
1583 u32 *regs = ce->lrc_reg_state;
1584 bool valid = true;
1585 int x;
1586
1587 if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1588 pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1589 engine->name,
1590 regs[CTX_RING_START],
1591 i915_ggtt_offset(ring->vma));
1592 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1593 valid = false;
1594 }
1595
1596 if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1597 (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1598 pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1599 engine->name,
1600 regs[CTX_RING_CTL],
1601 (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1602 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1603 valid = false;
1604 }
1605
1606 x = lrc_ring_mi_mode(engine);
1607 if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1608 pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1609 engine->name, regs[x + 1]);
1610 regs[x + 1] &= ~STOP_RING;
1611 regs[x + 1] |= STOP_RING << 16;
1612 valid = false;
1613 }
1614
1615 WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1616 }
1617
1618 /*
1619 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1620 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1621 * but there is a slight complication as this is applied in WA batch where the
1622 * values are only initialized once so we cannot take register value at the
1623 * beginning and reuse it further; hence we save its value to memory, upload a
1624 * constant value with bit21 set and then we restore it back with the saved value.
1625 * To simplify the WA, a constant value is formed by using the default value
1626 * of this register. This shouldn't be a problem because we are only modifying
1627 * it for a short period and this batch in non-premptible. We can ofcourse
1628 * use additional instructions that read the actual value of the register
1629 * at that time and set our bit of interest but it makes the WA complicated.
1630 *
1631 * This WA is also required for Gen9 so extracting as a function avoids
1632 * code duplication.
1633 */
1634 static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs * engine,u32 * batch)1635 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1636 {
1637 /* NB no one else is allowed to scribble over scratch + 256! */
1638 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1639 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1640 *batch++ = intel_gt_scratch_offset(engine->gt,
1641 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1642 *batch++ = 0;
1643
1644 *batch++ = MI_LOAD_REGISTER_IMM(1);
1645 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1646 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1647
1648 batch = gen8_emit_pipe_control(batch,
1649 PIPE_CONTROL_CS_STALL |
1650 PIPE_CONTROL_DC_FLUSH_ENABLE,
1651 0);
1652
1653 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1654 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1655 *batch++ = intel_gt_scratch_offset(engine->gt,
1656 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1657 *batch++ = 0;
1658
1659 return batch;
1660 }
1661
1662 /*
1663 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1664 * initialized at the beginning and shared across all contexts but this field
1665 * helps us to have multiple batches at different offsets and select them based
1666 * on a criteria. At the moment this batch always start at the beginning of the page
1667 * and at this point we don't have multiple wa_ctx batch buffers.
1668 *
1669 * The number of WA applied are not known at the beginning; we use this field
1670 * to return the no of DWORDS written.
1671 *
1672 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1673 * so it adds NOOPs as padding to make it cacheline aligned.
1674 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1675 * makes a complete batch buffer.
1676 */
gen8_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1677 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1678 {
1679 /* WaDisableCtxRestoreArbitration:bdw,chv */
1680 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1681
1682 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1683 if (IS_BROADWELL(engine->i915))
1684 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1685
1686 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1687 /* Actual scratch location is at 128 bytes offset */
1688 batch = gen8_emit_pipe_control(batch,
1689 PIPE_CONTROL_FLUSH_L3 |
1690 PIPE_CONTROL_STORE_DATA_INDEX |
1691 PIPE_CONTROL_CS_STALL |
1692 PIPE_CONTROL_QW_WRITE,
1693 LRC_PPHWSP_SCRATCH_ADDR);
1694
1695 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1696
1697 /* Pad to end of cacheline */
1698 while ((unsigned long)batch % CACHELINE_BYTES)
1699 *batch++ = MI_NOOP;
1700
1701 /*
1702 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1703 * execution depends on the length specified in terms of cache lines
1704 * in the register CTX_RCS_INDIRECT_CTX
1705 */
1706
1707 return batch;
1708 }
1709
1710 struct lri {
1711 i915_reg_t reg;
1712 u32 value;
1713 };
1714
emit_lri(u32 * batch,const struct lri * lri,unsigned int count)1715 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1716 {
1717 GEM_BUG_ON(!count || count > 63);
1718
1719 *batch++ = MI_LOAD_REGISTER_IMM(count);
1720 do {
1721 *batch++ = i915_mmio_reg_offset(lri->reg);
1722 *batch++ = lri->value;
1723 } while (lri++, --count);
1724 *batch++ = MI_NOOP;
1725
1726 return batch;
1727 }
1728
gen9_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1729 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1730 {
1731 static const struct lri lri[] = {
1732 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1733 {
1734 COMMON_SLICE_CHICKEN2,
1735 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1736 0),
1737 },
1738
1739 /* BSpec: 11391 */
1740 {
1741 FF_SLICE_CHICKEN,
1742 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1743 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1744 },
1745
1746 /* BSpec: 11299 */
1747 {
1748 _3D_CHICKEN3,
1749 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1750 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1751 }
1752 };
1753
1754 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1755
1756 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1757 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1758
1759 /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1760 batch = gen8_emit_pipe_control(batch,
1761 PIPE_CONTROL_FLUSH_L3 |
1762 PIPE_CONTROL_STORE_DATA_INDEX |
1763 PIPE_CONTROL_CS_STALL |
1764 PIPE_CONTROL_QW_WRITE,
1765 LRC_PPHWSP_SCRATCH_ADDR);
1766
1767 batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1768
1769 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1770 if (HAS_POOLED_EU(engine->i915)) {
1771 /*
1772 * EU pool configuration is setup along with golden context
1773 * during context initialization. This value depends on
1774 * device type (2x6 or 3x6) and needs to be updated based
1775 * on which subslice is disabled especially for 2x6
1776 * devices, however it is safe to load default
1777 * configuration of 3x6 device instead of masking off
1778 * corresponding bits because HW ignores bits of a disabled
1779 * subslice and drops down to appropriate config. Please
1780 * see render_state_setup() in i915_gem_render_state.c for
1781 * possible configurations, to avoid duplication they are
1782 * not shown here again.
1783 */
1784 *batch++ = GEN9_MEDIA_POOL_STATE;
1785 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1786 *batch++ = 0x00777000;
1787 *batch++ = 0;
1788 *batch++ = 0;
1789 *batch++ = 0;
1790 }
1791
1792 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1793
1794 /* Pad to end of cacheline */
1795 while ((unsigned long)batch % CACHELINE_BYTES)
1796 *batch++ = MI_NOOP;
1797
1798 return batch;
1799 }
1800
1801 #define CTX_WA_BB_SIZE (PAGE_SIZE)
1802
lrc_create_wa_ctx(struct intel_engine_cs * engine)1803 static int lrc_create_wa_ctx(struct intel_engine_cs *engine)
1804 {
1805 struct drm_i915_gem_object *obj;
1806 struct i915_vma *vma;
1807 int err;
1808
1809 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE);
1810 if (IS_ERR(obj))
1811 return PTR_ERR(obj);
1812
1813 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1814 if (IS_ERR(vma)) {
1815 err = PTR_ERR(vma);
1816 goto err;
1817 }
1818
1819 engine->wa_ctx.vma = vma;
1820 return 0;
1821
1822 err:
1823 i915_gem_object_put(obj);
1824 return err;
1825 }
1826
lrc_fini_wa_ctx(struct intel_engine_cs * engine)1827 void lrc_fini_wa_ctx(struct intel_engine_cs *engine)
1828 {
1829 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1830 }
1831
1832 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1833
lrc_init_wa_ctx(struct intel_engine_cs * engine)1834 void lrc_init_wa_ctx(struct intel_engine_cs *engine)
1835 {
1836 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1837 struct i915_wa_ctx_bb *wa_bb[] = {
1838 &wa_ctx->indirect_ctx, &wa_ctx->per_ctx
1839 };
1840 wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)];
1841 struct i915_gem_ww_ctx ww;
1842 void *batch, *batch_ptr;
1843 unsigned int i;
1844 int err;
1845
1846 if (GRAPHICS_VER(engine->i915) >= 11 ||
1847 !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
1848 return;
1849
1850 if (GRAPHICS_VER(engine->i915) == 9) {
1851 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1852 wa_bb_fn[1] = NULL;
1853 } else if (GRAPHICS_VER(engine->i915) == 8) {
1854 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1855 wa_bb_fn[1] = NULL;
1856 }
1857
1858 err = lrc_create_wa_ctx(engine);
1859 if (err) {
1860 /*
1861 * We continue even if we fail to initialize WA batch
1862 * because we only expect rare glitches but nothing
1863 * critical to prevent us from using GPU
1864 */
1865 drm_err(&engine->i915->drm,
1866 "Ignoring context switch w/a allocation error:%d\n",
1867 err);
1868 return;
1869 }
1870
1871 if (!engine->wa_ctx.vma)
1872 return;
1873
1874 i915_gem_ww_ctx_init(&ww, true);
1875 retry:
1876 err = i915_gem_object_lock(wa_ctx->vma->obj, &ww);
1877 if (!err)
1878 err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH);
1879 if (err)
1880 goto err;
1881
1882 batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
1883 if (IS_ERR(batch)) {
1884 err = PTR_ERR(batch);
1885 goto err_unpin;
1886 }
1887
1888 /*
1889 * Emit the two workaround batch buffers, recording the offset from the
1890 * start of the workaround batch buffer object for each and their
1891 * respective sizes.
1892 */
1893 batch_ptr = batch;
1894 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1895 wa_bb[i]->offset = batch_ptr - batch;
1896 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1897 CACHELINE_BYTES))) {
1898 err = -EINVAL;
1899 break;
1900 }
1901 if (wa_bb_fn[i])
1902 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1903 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1904 }
1905 GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE);
1906
1907 __i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
1908 __i915_gem_object_release_map(wa_ctx->vma->obj);
1909
1910 /* Verify that we can handle failure to setup the wa_ctx */
1911 if (!err)
1912 err = i915_inject_probe_error(engine->i915, -ENODEV);
1913
1914 err_unpin:
1915 if (err)
1916 i915_vma_unpin(wa_ctx->vma);
1917 err:
1918 if (err == -EDEADLK) {
1919 err = i915_gem_ww_ctx_backoff(&ww);
1920 if (!err)
1921 goto retry;
1922 }
1923 i915_gem_ww_ctx_fini(&ww);
1924
1925 if (err) {
1926 i915_vma_put(engine->wa_ctx.vma);
1927
1928 /* Clear all flags to prevent further use */
1929 memset(wa_ctx, 0, sizeof(*wa_ctx));
1930 }
1931 }
1932
st_runtime_underflow(struct intel_context_stats * stats,s32 dt)1933 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt)
1934 {
1935 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1936 stats->runtime.num_underflow++;
1937 stats->runtime.max_underflow =
1938 max_t(u32, stats->runtime.max_underflow, -dt);
1939 #endif
1940 }
1941
lrc_get_runtime(const struct intel_context * ce)1942 static u32 lrc_get_runtime(const struct intel_context *ce)
1943 {
1944 /*
1945 * We can use either ppHWSP[16] which is recorded before the context
1946 * switch (and so excludes the cost of context switches) or use the
1947 * value from the context image itself, which is saved/restored earlier
1948 * and so includes the cost of the save.
1949 */
1950 return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
1951 }
1952
lrc_update_runtime(struct intel_context * ce)1953 void lrc_update_runtime(struct intel_context *ce)
1954 {
1955 struct intel_context_stats *stats = &ce->stats;
1956 u32 old;
1957 s32 dt;
1958
1959 old = stats->runtime.last;
1960 stats->runtime.last = lrc_get_runtime(ce);
1961 dt = stats->runtime.last - old;
1962 if (!dt)
1963 return;
1964
1965 if (unlikely(dt < 0)) {
1966 CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1967 old, stats->runtime.last, dt);
1968 st_runtime_underflow(stats, dt);
1969 return;
1970 }
1971
1972 ewma_runtime_add(&stats->runtime.avg, dt);
1973 stats->runtime.total += dt;
1974 }
1975
1976 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1977 #include "selftest_lrc.c"
1978 #endif
1979