xref: /linux/arch/arm64/kvm/hyp/vgic-v3-sr.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/adjust_pc.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/irqchip/arm-gic-v3.h>
11 #include <linux/kvm_host.h>
12 
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_hyp.h>
15 #include <asm/kvm_mmu.h>
16 
17 #define vtr_to_max_lr_idx(v)		((v) & 0xf)
18 #define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
19 #define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
20 
__gic_v3_get_lr(unsigned int lr)21 u64 __gic_v3_get_lr(unsigned int lr)
22 {
23 	switch (lr & 0xf) {
24 	case 0:
25 		return read_gicreg(ICH_LR0_EL2);
26 	case 1:
27 		return read_gicreg(ICH_LR1_EL2);
28 	case 2:
29 		return read_gicreg(ICH_LR2_EL2);
30 	case 3:
31 		return read_gicreg(ICH_LR3_EL2);
32 	case 4:
33 		return read_gicreg(ICH_LR4_EL2);
34 	case 5:
35 		return read_gicreg(ICH_LR5_EL2);
36 	case 6:
37 		return read_gicreg(ICH_LR6_EL2);
38 	case 7:
39 		return read_gicreg(ICH_LR7_EL2);
40 	case 8:
41 		return read_gicreg(ICH_LR8_EL2);
42 	case 9:
43 		return read_gicreg(ICH_LR9_EL2);
44 	case 10:
45 		return read_gicreg(ICH_LR10_EL2);
46 	case 11:
47 		return read_gicreg(ICH_LR11_EL2);
48 	case 12:
49 		return read_gicreg(ICH_LR12_EL2);
50 	case 13:
51 		return read_gicreg(ICH_LR13_EL2);
52 	case 14:
53 		return read_gicreg(ICH_LR14_EL2);
54 	case 15:
55 		return read_gicreg(ICH_LR15_EL2);
56 	}
57 
58 	unreachable();
59 }
60 
__gic_v3_set_lr(u64 val,int lr)61 static void __gic_v3_set_lr(u64 val, int lr)
62 {
63 	switch (lr & 0xf) {
64 	case 0:
65 		write_gicreg(val, ICH_LR0_EL2);
66 		break;
67 	case 1:
68 		write_gicreg(val, ICH_LR1_EL2);
69 		break;
70 	case 2:
71 		write_gicreg(val, ICH_LR2_EL2);
72 		break;
73 	case 3:
74 		write_gicreg(val, ICH_LR3_EL2);
75 		break;
76 	case 4:
77 		write_gicreg(val, ICH_LR4_EL2);
78 		break;
79 	case 5:
80 		write_gicreg(val, ICH_LR5_EL2);
81 		break;
82 	case 6:
83 		write_gicreg(val, ICH_LR6_EL2);
84 		break;
85 	case 7:
86 		write_gicreg(val, ICH_LR7_EL2);
87 		break;
88 	case 8:
89 		write_gicreg(val, ICH_LR8_EL2);
90 		break;
91 	case 9:
92 		write_gicreg(val, ICH_LR9_EL2);
93 		break;
94 	case 10:
95 		write_gicreg(val, ICH_LR10_EL2);
96 		break;
97 	case 11:
98 		write_gicreg(val, ICH_LR11_EL2);
99 		break;
100 	case 12:
101 		write_gicreg(val, ICH_LR12_EL2);
102 		break;
103 	case 13:
104 		write_gicreg(val, ICH_LR13_EL2);
105 		break;
106 	case 14:
107 		write_gicreg(val, ICH_LR14_EL2);
108 		break;
109 	case 15:
110 		write_gicreg(val, ICH_LR15_EL2);
111 		break;
112 	}
113 }
114 
__vgic_v3_write_ap0rn(u32 val,int n)115 static void __vgic_v3_write_ap0rn(u32 val, int n)
116 {
117 	switch (n) {
118 	case 0:
119 		write_gicreg(val, ICH_AP0R0_EL2);
120 		break;
121 	case 1:
122 		write_gicreg(val, ICH_AP0R1_EL2);
123 		break;
124 	case 2:
125 		write_gicreg(val, ICH_AP0R2_EL2);
126 		break;
127 	case 3:
128 		write_gicreg(val, ICH_AP0R3_EL2);
129 		break;
130 	}
131 }
132 
__vgic_v3_write_ap1rn(u32 val,int n)133 static void __vgic_v3_write_ap1rn(u32 val, int n)
134 {
135 	switch (n) {
136 	case 0:
137 		write_gicreg(val, ICH_AP1R0_EL2);
138 		break;
139 	case 1:
140 		write_gicreg(val, ICH_AP1R1_EL2);
141 		break;
142 	case 2:
143 		write_gicreg(val, ICH_AP1R2_EL2);
144 		break;
145 	case 3:
146 		write_gicreg(val, ICH_AP1R3_EL2);
147 		break;
148 	}
149 }
150 
__vgic_v3_read_ap0rn(int n)151 static u32 __vgic_v3_read_ap0rn(int n)
152 {
153 	u32 val;
154 
155 	switch (n) {
156 	case 0:
157 		val = read_gicreg(ICH_AP0R0_EL2);
158 		break;
159 	case 1:
160 		val = read_gicreg(ICH_AP0R1_EL2);
161 		break;
162 	case 2:
163 		val = read_gicreg(ICH_AP0R2_EL2);
164 		break;
165 	case 3:
166 		val = read_gicreg(ICH_AP0R3_EL2);
167 		break;
168 	default:
169 		unreachable();
170 	}
171 
172 	return val;
173 }
174 
__vgic_v3_read_ap1rn(int n)175 static u32 __vgic_v3_read_ap1rn(int n)
176 {
177 	u32 val;
178 
179 	switch (n) {
180 	case 0:
181 		val = read_gicreg(ICH_AP1R0_EL2);
182 		break;
183 	case 1:
184 		val = read_gicreg(ICH_AP1R1_EL2);
185 		break;
186 	case 2:
187 		val = read_gicreg(ICH_AP1R2_EL2);
188 		break;
189 	case 3:
190 		val = read_gicreg(ICH_AP1R3_EL2);
191 		break;
192 	default:
193 		unreachable();
194 	}
195 
196 	return val;
197 }
198 
__vgic_v3_save_state(struct vgic_v3_cpu_if * cpu_if)199 void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
200 {
201 	u64 used_lrs = cpu_if->used_lrs;
202 
203 	/*
204 	 * Make sure stores to the GIC via the memory mapped interface
205 	 * are now visible to the system register interface when reading the
206 	 * LRs, and when reading back the VMCR on non-VHE systems.
207 	 */
208 	if (used_lrs || !has_vhe()) {
209 		if (!cpu_if->vgic_sre) {
210 			dsb(sy);
211 			isb();
212 		}
213 	}
214 
215 	if (used_lrs || cpu_if->its_vpe.its_vm) {
216 		int i;
217 		u32 elrsr;
218 
219 		elrsr = read_gicreg(ICH_ELRSR_EL2);
220 
221 		write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EL2_En, ICH_HCR_EL2);
222 
223 		for (i = 0; i < used_lrs; i++) {
224 			if (elrsr & (1 << i))
225 				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
226 			else
227 				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
228 
229 			__gic_v3_set_lr(0, i);
230 		}
231 	}
232 }
233 
__vgic_v3_restore_state(struct vgic_v3_cpu_if * cpu_if)234 void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
235 {
236 	u64 used_lrs = cpu_if->used_lrs;
237 	int i;
238 
239 	if (used_lrs || cpu_if->its_vpe.its_vm) {
240 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
241 
242 		for (i = 0; i < used_lrs; i++)
243 			__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
244 	}
245 
246 	/*
247 	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
248 	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
249 	 * reached the (re)distributors. This ensure the guest will read the
250 	 * correct values from the memory-mapped interface.
251 	 */
252 	if (used_lrs || !has_vhe()) {
253 		if (!cpu_if->vgic_sre) {
254 			isb();
255 			dsb(sy);
256 		}
257 	}
258 }
259 
__vgic_v3_activate_traps(struct vgic_v3_cpu_if * cpu_if)260 void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
261 {
262 	/*
263 	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
264 	 * Group0 interrupt (as generated in GICv2 mode) to be
265 	 * delivered as a FIQ to the guest, with potentially fatal
266 	 * consequences. So we must make sure that ICC_SRE_EL1 has
267 	 * been actually programmed with the value we want before
268 	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
269 	 * particular.  This logic must be called before
270 	 * __vgic_v3_restore_state().
271 	 *
272 	 * However, if the vgic is disabled (ICH_HCR_EL2.EN==0), no GIC is
273 	 * provisioned at all. In order to prevent illegal accesses to the
274 	 * system registers to trap to EL1 (duh), force ICC_SRE_EL1.SRE to 1
275 	 * so that the trap bits can take effect. Yes, we *loves* the GIC.
276 	 */
277 	if (!(cpu_if->vgic_hcr & ICH_HCR_EL2_En)) {
278 		write_gicreg(ICC_SRE_EL1_SRE, ICC_SRE_EL1);
279 		isb();
280 	} else if (!cpu_if->vgic_sre) {
281 		write_gicreg(0, ICC_SRE_EL1);
282 		isb();
283 		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
284 
285 
286 		if (has_vhe()) {
287 			/*
288 			 * Ensure that the write to the VMCR will have reached
289 			 * the (re)distributors. This ensure the guest will
290 			 * read the correct values from the memory-mapped
291 			 * interface.
292 			 */
293 			isb();
294 			dsb(sy);
295 		}
296 	}
297 
298 	/*
299 	 * GICv5 BET0 FEAT_GCIE_LEGACY doesn't include ICC_SRE_EL2. This is due
300 	 * to be relaxed in a future spec release, at which point this in
301 	 * condition can be dropped.
302 	 */
303 	if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF)) {
304 		/*
305 		 * Prevent the guest from touching the ICC_SRE_EL1 system
306 		 * register. Note that this may not have any effect, as
307 		 * ICC_SRE_EL2.Enable being RAO/WI is a valid implementation.
308 		 */
309 		write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
310 			     ICC_SRE_EL2);
311 	}
312 
313 	/*
314 	 * If we need to trap system registers, we must write
315 	 * ICH_HCR_EL2 anyway, even if no interrupts are being
316 	 * injected. Note that this also applies if we don't expect
317 	 * any system register access (no vgic at all).
318 	 */
319 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
320 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
321 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
322 }
323 
__vgic_v3_deactivate_traps(struct vgic_v3_cpu_if * cpu_if)324 void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
325 {
326 	u64 val;
327 
328 	if (!cpu_if->vgic_sre) {
329 		cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
330 	}
331 
332 	/*
333 	 * Can be dropped in the future when GICv5 spec is relaxed. See comment
334 	 * above.
335 	 */
336 	if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF)) {
337 		val = read_gicreg(ICC_SRE_EL2);
338 		write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
339 	}
340 
341 	if (!cpu_if->vgic_sre) {
342 		/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
343 		isb();
344 		write_gicreg(1, ICC_SRE_EL1);
345 	}
346 
347 	/*
348 	 * If we were trapping system registers, we enabled the VGIC even if
349 	 * no interrupts were being injected, and we disable it again here.
350 	 */
351 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
352 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
353 		write_gicreg(0, ICH_HCR_EL2);
354 }
355 
__vgic_v3_save_aprs(struct vgic_v3_cpu_if * cpu_if)356 static void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
357 {
358 	u64 val;
359 	u32 nr_pre_bits;
360 
361 	val = read_gicreg(ICH_VTR_EL2);
362 	nr_pre_bits = vtr_to_nr_pre_bits(val);
363 
364 	switch (nr_pre_bits) {
365 	case 7:
366 		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
367 		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
368 		fallthrough;
369 	case 6:
370 		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
371 		fallthrough;
372 	default:
373 		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
374 	}
375 
376 	switch (nr_pre_bits) {
377 	case 7:
378 		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
379 		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
380 		fallthrough;
381 	case 6:
382 		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
383 		fallthrough;
384 	default:
385 		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
386 	}
387 }
388 
__vgic_v3_restore_aprs(struct vgic_v3_cpu_if * cpu_if)389 static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
390 {
391 	u64 val;
392 	u32 nr_pre_bits;
393 
394 	val = read_gicreg(ICH_VTR_EL2);
395 	nr_pre_bits = vtr_to_nr_pre_bits(val);
396 
397 	switch (nr_pre_bits) {
398 	case 7:
399 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
400 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
401 		fallthrough;
402 	case 6:
403 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
404 		fallthrough;
405 	default:
406 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
407 	}
408 
409 	switch (nr_pre_bits) {
410 	case 7:
411 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
412 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
413 		fallthrough;
414 	case 6:
415 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
416 		fallthrough;
417 	default:
418 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
419 	}
420 }
421 
__vgic_v3_init_lrs(void)422 void __vgic_v3_init_lrs(void)
423 {
424 	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
425 	int i;
426 
427 	for (i = 0; i <= max_lr_idx; i++)
428 		__gic_v3_set_lr(0, i);
429 }
430 
431 /*
432  * Return the GIC CPU configuration:
433  * - [31:0]  ICH_VTR_EL2
434  * - [62:32] RES0
435  * - [63]    MMIO (GICv2) capable
436  */
__vgic_v3_get_gic_config(void)437 u64 __vgic_v3_get_gic_config(void)
438 {
439 	u64 val, sre;
440 	unsigned long flags = 0;
441 
442 	/*
443 	 * In compat mode, we cannot access ICC_SRE_EL1 at any EL
444 	 * other than EL1 itself; just return the
445 	 * ICH_VTR_EL2. ICC_IDR0_EL1 is only implemented on a GICv5
446 	 * system, so we first check if we have GICv5 support.
447 	 */
448 	if (cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
449 		return read_gicreg(ICH_VTR_EL2);
450 
451 	sre = read_gicreg(ICC_SRE_EL1);
452 	/*
453 	 * To check whether we have a MMIO-based (GICv2 compatible)
454 	 * CPU interface, we need to disable the system register
455 	 * view.
456 	 *
457 	 * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
458 	 * that to be able to set ICC_SRE_EL1.SRE to 0, all the
459 	 * interrupt overrides must be set. You've got to love this.
460 	 *
461 	 * As we always run VHE with HCR_xMO set, no extra xMO
462 	 * manipulation is required in that case.
463 	 *
464 	 * To safely disable SRE, we have to prevent any interrupt
465 	 * from firing (which would be deadly). This only makes sense
466 	 * on VHE, as interrupts are already masked for nVHE as part
467 	 * of the exception entry to EL2.
468 	 */
469 	if (has_vhe()) {
470 		flags = local_daif_save();
471 	} else {
472 		sysreg_clear_set_hcr(0, HCR_AMO | HCR_FMO | HCR_IMO);
473 		isb();
474 	}
475 
476 	write_gicreg(0, ICC_SRE_EL1);
477 	isb();
478 
479 	val = read_gicreg(ICC_SRE_EL1);
480 
481 	write_gicreg(sre, ICC_SRE_EL1);
482 	isb();
483 
484 	if (has_vhe()) {
485 		local_daif_restore(flags);
486 	} else {
487 		sysreg_clear_set_hcr(HCR_AMO | HCR_FMO | HCR_IMO, 0);
488 		isb();
489 	}
490 
491 	val  = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
492 	val |= read_gicreg(ICH_VTR_EL2);
493 
494 	return val;
495 }
496 
__vgic_v3_compat_mode_enable(void)497 static void __vgic_v3_compat_mode_enable(void)
498 {
499 	if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
500 		return;
501 
502 	sysreg_clear_set_s(SYS_ICH_VCTLR_EL2, 0, ICH_VCTLR_EL2_V3);
503 	/* Wait for V3 to become enabled */
504 	isb();
505 }
506 
__vgic_v3_read_vmcr(void)507 static u64 __vgic_v3_read_vmcr(void)
508 {
509 	return read_gicreg(ICH_VMCR_EL2);
510 }
511 
__vgic_v3_write_vmcr(u32 vmcr)512 static void __vgic_v3_write_vmcr(u32 vmcr)
513 {
514 	write_gicreg(vmcr, ICH_VMCR_EL2);
515 }
516 
__vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if * cpu_if)517 void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
518 {
519 	__vgic_v3_save_aprs(cpu_if);
520 	if (cpu_if->vgic_sre)
521 		cpu_if->vgic_vmcr = __vgic_v3_read_vmcr();
522 }
523 
__vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if * cpu_if)524 void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
525 {
526 	__vgic_v3_compat_mode_enable();
527 
528 	/*
529 	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
530 	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
531 	 * VMCR_EL2 save/restore in the world switch.
532 	 */
533 	if (cpu_if->vgic_sre)
534 		__vgic_v3_write_vmcr(cpu_if->vgic_vmcr);
535 	__vgic_v3_restore_aprs(cpu_if);
536 }
537 
__vgic_v3_bpr_min(void)538 static int __vgic_v3_bpr_min(void)
539 {
540 	/* See Pseudocode for VPriorityGroup */
541 	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
542 }
543 
__vgic_v3_get_group(struct kvm_vcpu * vcpu)544 static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
545 {
546 	u64 esr = kvm_vcpu_get_esr(vcpu);
547 	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
548 
549 	return crm != 8;
550 }
551 
552 #define GICv3_IDLE_PRIORITY	0xff
553 
__vgic_v3_highest_priority_lr(struct kvm_vcpu * vcpu,u32 vmcr,u64 * lr_val)554 static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
555 					 u64 *lr_val)
556 {
557 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
558 	u8 priority = GICv3_IDLE_PRIORITY;
559 	int i, lr = -1;
560 
561 	for (i = 0; i < used_lrs; i++) {
562 		u64 val = __gic_v3_get_lr(i);
563 		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
564 
565 		/* Not pending in the state? */
566 		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
567 			continue;
568 
569 		/* Group-0 interrupt, but Group-0 disabled? */
570 		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
571 			continue;
572 
573 		/* Group-1 interrupt, but Group-1 disabled? */
574 		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
575 			continue;
576 
577 		/* Not the highest priority? */
578 		if (lr_prio >= priority)
579 			continue;
580 
581 		/* This is a candidate */
582 		priority = lr_prio;
583 		*lr_val = val;
584 		lr = i;
585 	}
586 
587 	if (lr == -1)
588 		*lr_val = ICC_IAR1_EL1_SPURIOUS;
589 
590 	return lr;
591 }
592 
__vgic_v3_find_active_lr(struct kvm_vcpu * vcpu,int intid,u64 * lr_val)593 static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
594 				    u64 *lr_val)
595 {
596 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
597 	int i;
598 
599 	for (i = 0; i < used_lrs; i++) {
600 		u64 val = __gic_v3_get_lr(i);
601 
602 		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
603 		    (val & ICH_LR_ACTIVE_BIT)) {
604 			*lr_val = val;
605 			return i;
606 		}
607 	}
608 
609 	*lr_val = ICC_IAR1_EL1_SPURIOUS;
610 	return -1;
611 }
612 
__vgic_v3_get_highest_active_priority(void)613 static int __vgic_v3_get_highest_active_priority(void)
614 {
615 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
616 	u32 hap = 0;
617 	int i;
618 
619 	for (i = 0; i < nr_apr_regs; i++) {
620 		u32 val;
621 
622 		/*
623 		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
624 		 * contain the active priority levels for this VCPU
625 		 * for the maximum number of supported priority
626 		 * levels, and we return the full priority level only
627 		 * if the BPR is programmed to its minimum, otherwise
628 		 * we return a combination of the priority level and
629 		 * subpriority, as determined by the setting of the
630 		 * BPR, but without the full subpriority.
631 		 */
632 		val  = __vgic_v3_read_ap0rn(i);
633 		val |= __vgic_v3_read_ap1rn(i);
634 		if (!val) {
635 			hap += 32;
636 			continue;
637 		}
638 
639 		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
640 	}
641 
642 	return GICv3_IDLE_PRIORITY;
643 }
644 
__vgic_v3_get_bpr0(u32 vmcr)645 static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
646 {
647 	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
648 }
649 
__vgic_v3_get_bpr1(u32 vmcr)650 static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
651 {
652 	unsigned int bpr;
653 
654 	if (vmcr & ICH_VMCR_CBPR_MASK) {
655 		bpr = __vgic_v3_get_bpr0(vmcr);
656 		if (bpr < 7)
657 			bpr++;
658 	} else {
659 		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
660 	}
661 
662 	return bpr;
663 }
664 
665 /*
666  * Convert a priority to a preemption level, taking the relevant BPR
667  * into account by zeroing the sub-priority bits.
668  */
__vgic_v3_pri_to_pre(u8 pri,u32 vmcr,int grp)669 static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
670 {
671 	unsigned int bpr;
672 
673 	if (!grp)
674 		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
675 	else
676 		bpr = __vgic_v3_get_bpr1(vmcr);
677 
678 	return pri & (GENMASK(7, 0) << bpr);
679 }
680 
681 /*
682  * The priority value is independent of any of the BPR values, so we
683  * normalize it using the minimal BPR value. This guarantees that no
684  * matter what the guest does with its BPR, we can always set/get the
685  * same value of a priority.
686  */
__vgic_v3_set_active_priority(u8 pri,u32 vmcr,int grp)687 static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
688 {
689 	u8 pre, ap;
690 	u32 val;
691 	int apr;
692 
693 	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
694 	ap = pre >> __vgic_v3_bpr_min();
695 	apr = ap / 32;
696 
697 	if (!grp) {
698 		val = __vgic_v3_read_ap0rn(apr);
699 		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
700 	} else {
701 		val = __vgic_v3_read_ap1rn(apr);
702 		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
703 	}
704 }
705 
__vgic_v3_clear_highest_active_priority(void)706 static int __vgic_v3_clear_highest_active_priority(void)
707 {
708 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
709 	u32 hap = 0;
710 	int i;
711 
712 	for (i = 0; i < nr_apr_regs; i++) {
713 		u32 ap0, ap1;
714 		int c0, c1;
715 
716 		ap0 = __vgic_v3_read_ap0rn(i);
717 		ap1 = __vgic_v3_read_ap1rn(i);
718 		if (!ap0 && !ap1) {
719 			hap += 32;
720 			continue;
721 		}
722 
723 		c0 = ap0 ? __ffs(ap0) : 32;
724 		c1 = ap1 ? __ffs(ap1) : 32;
725 
726 		/* Always clear the LSB, which is the highest priority */
727 		if (c0 < c1) {
728 			ap0 &= ~BIT(c0);
729 			__vgic_v3_write_ap0rn(ap0, i);
730 			hap += c0;
731 		} else {
732 			ap1 &= ~BIT(c1);
733 			__vgic_v3_write_ap1rn(ap1, i);
734 			hap += c1;
735 		}
736 
737 		/* Rescale to 8 bits of priority */
738 		return hap << __vgic_v3_bpr_min();
739 	}
740 
741 	return GICv3_IDLE_PRIORITY;
742 }
743 
__vgic_v3_read_iar(struct kvm_vcpu * vcpu,u32 vmcr,int rt)744 static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
745 {
746 	u64 lr_val;
747 	u8 lr_prio, pmr;
748 	int lr, grp;
749 
750 	grp = __vgic_v3_get_group(vcpu);
751 
752 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
753 	if (lr < 0)
754 		goto spurious;
755 
756 	if (grp != !!(lr_val & ICH_LR_GROUP))
757 		goto spurious;
758 
759 	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
760 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
761 	if (pmr <= lr_prio)
762 		goto spurious;
763 
764 	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
765 		goto spurious;
766 
767 	lr_val &= ~ICH_LR_STATE;
768 	lr_val |= ICH_LR_ACTIVE_BIT;
769 	__gic_v3_set_lr(lr_val, lr);
770 	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
771 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
772 	return;
773 
774 spurious:
775 	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
776 }
777 
__vgic_v3_clear_active_lr(int lr,u64 lr_val)778 static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
779 {
780 	lr_val &= ~ICH_LR_ACTIVE_BIT;
781 	if (lr_val & ICH_LR_HW) {
782 		u32 pid;
783 
784 		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
785 		gic_write_dir(pid);
786 	}
787 
788 	__gic_v3_set_lr(lr_val, lr);
789 }
790 
__vgic_v3_bump_eoicount(void)791 static void __vgic_v3_bump_eoicount(void)
792 {
793 	u32 hcr;
794 
795 	hcr = read_gicreg(ICH_HCR_EL2);
796 	hcr += 1 << ICH_HCR_EL2_EOIcount_SHIFT;
797 	write_gicreg(hcr, ICH_HCR_EL2);
798 }
799 
__vgic_v3_write_dir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)800 static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
801 {
802 	u32 vid = vcpu_get_reg(vcpu, rt);
803 	u64 lr_val;
804 	int lr;
805 
806 	/* EOImode == 0, nothing to be done here */
807 	if (!(vmcr & ICH_VMCR_EOIM_MASK))
808 		return;
809 
810 	/* No deactivate to be performed on an LPI */
811 	if (vid >= VGIC_MIN_LPI)
812 		return;
813 
814 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
815 	if (lr == -1) {
816 		__vgic_v3_bump_eoicount();
817 		return;
818 	}
819 
820 	__vgic_v3_clear_active_lr(lr, lr_val);
821 }
822 
__vgic_v3_write_eoir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)823 static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
824 {
825 	u32 vid = vcpu_get_reg(vcpu, rt);
826 	u64 lr_val;
827 	u8 lr_prio, act_prio;
828 	int lr, grp;
829 
830 	grp = __vgic_v3_get_group(vcpu);
831 
832 	/* Drop priority in any case */
833 	act_prio = __vgic_v3_clear_highest_active_priority();
834 
835 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
836 	if (lr == -1) {
837 		/* Do not bump EOIcount for LPIs that aren't in the LRs */
838 		if (!(vid >= VGIC_MIN_LPI))
839 			__vgic_v3_bump_eoicount();
840 		return;
841 	}
842 
843 	/* EOImode == 1 and not an LPI, nothing to be done here */
844 	if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
845 		return;
846 
847 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
848 
849 	/* If priorities or group do not match, the guest has fscked-up. */
850 	if (grp != !!(lr_val & ICH_LR_GROUP) ||
851 	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
852 		return;
853 
854 	/* Let's now perform the deactivation */
855 	__vgic_v3_clear_active_lr(lr, lr_val);
856 }
857 
__vgic_v3_read_igrpen0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)858 static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
859 {
860 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
861 }
862 
__vgic_v3_read_igrpen1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)863 static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
864 {
865 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
866 }
867 
__vgic_v3_write_igrpen0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)868 static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
869 {
870 	u64 val = vcpu_get_reg(vcpu, rt);
871 
872 	if (val & 1)
873 		vmcr |= ICH_VMCR_ENG0_MASK;
874 	else
875 		vmcr &= ~ICH_VMCR_ENG0_MASK;
876 
877 	__vgic_v3_write_vmcr(vmcr);
878 }
879 
__vgic_v3_write_igrpen1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)880 static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
881 {
882 	u64 val = vcpu_get_reg(vcpu, rt);
883 
884 	if (val & 1)
885 		vmcr |= ICH_VMCR_ENG1_MASK;
886 	else
887 		vmcr &= ~ICH_VMCR_ENG1_MASK;
888 
889 	__vgic_v3_write_vmcr(vmcr);
890 }
891 
__vgic_v3_read_bpr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)892 static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
893 {
894 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
895 }
896 
__vgic_v3_read_bpr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)897 static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
898 {
899 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
900 }
901 
__vgic_v3_write_bpr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)902 static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
903 {
904 	u64 val = vcpu_get_reg(vcpu, rt);
905 	u8 bpr_min = __vgic_v3_bpr_min() - 1;
906 
907 	/* Enforce BPR limiting */
908 	if (val < bpr_min)
909 		val = bpr_min;
910 
911 	val <<= ICH_VMCR_BPR0_SHIFT;
912 	val &= ICH_VMCR_BPR0_MASK;
913 	vmcr &= ~ICH_VMCR_BPR0_MASK;
914 	vmcr |= val;
915 
916 	__vgic_v3_write_vmcr(vmcr);
917 }
918 
__vgic_v3_write_bpr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)919 static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
920 {
921 	u64 val = vcpu_get_reg(vcpu, rt);
922 	u8 bpr_min = __vgic_v3_bpr_min();
923 
924 	if (vmcr & ICH_VMCR_CBPR_MASK)
925 		return;
926 
927 	/* Enforce BPR limiting */
928 	if (val < bpr_min)
929 		val = bpr_min;
930 
931 	val <<= ICH_VMCR_BPR1_SHIFT;
932 	val &= ICH_VMCR_BPR1_MASK;
933 	vmcr &= ~ICH_VMCR_BPR1_MASK;
934 	vmcr |= val;
935 
936 	__vgic_v3_write_vmcr(vmcr);
937 }
938 
__vgic_v3_read_apxrn(struct kvm_vcpu * vcpu,int rt,int n)939 static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
940 {
941 	u32 val;
942 
943 	if (!__vgic_v3_get_group(vcpu))
944 		val = __vgic_v3_read_ap0rn(n);
945 	else
946 		val = __vgic_v3_read_ap1rn(n);
947 
948 	vcpu_set_reg(vcpu, rt, val);
949 }
950 
__vgic_v3_write_apxrn(struct kvm_vcpu * vcpu,int rt,int n)951 static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
952 {
953 	u32 val = vcpu_get_reg(vcpu, rt);
954 
955 	if (!__vgic_v3_get_group(vcpu))
956 		__vgic_v3_write_ap0rn(val, n);
957 	else
958 		__vgic_v3_write_ap1rn(val, n);
959 }
960 
__vgic_v3_read_apxr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)961 static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
962 					    u32 vmcr, int rt)
963 {
964 	__vgic_v3_read_apxrn(vcpu, rt, 0);
965 }
966 
__vgic_v3_read_apxr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)967 static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
968 					    u32 vmcr, int rt)
969 {
970 	__vgic_v3_read_apxrn(vcpu, rt, 1);
971 }
972 
__vgic_v3_read_apxr2(struct kvm_vcpu * vcpu,u32 vmcr,int rt)973 static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
974 {
975 	__vgic_v3_read_apxrn(vcpu, rt, 2);
976 }
977 
__vgic_v3_read_apxr3(struct kvm_vcpu * vcpu,u32 vmcr,int rt)978 static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
979 {
980 	__vgic_v3_read_apxrn(vcpu, rt, 3);
981 }
982 
__vgic_v3_write_apxr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)983 static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
984 {
985 	__vgic_v3_write_apxrn(vcpu, rt, 0);
986 }
987 
__vgic_v3_write_apxr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)988 static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
989 {
990 	__vgic_v3_write_apxrn(vcpu, rt, 1);
991 }
992 
__vgic_v3_write_apxr2(struct kvm_vcpu * vcpu,u32 vmcr,int rt)993 static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
994 {
995 	__vgic_v3_write_apxrn(vcpu, rt, 2);
996 }
997 
__vgic_v3_write_apxr3(struct kvm_vcpu * vcpu,u32 vmcr,int rt)998 static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
999 {
1000 	__vgic_v3_write_apxrn(vcpu, rt, 3);
1001 }
1002 
__vgic_v3_read_hppir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1003 static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1004 {
1005 	u64 lr_val;
1006 	int lr, lr_grp, grp;
1007 
1008 	grp = __vgic_v3_get_group(vcpu);
1009 
1010 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
1011 	if (lr == -1)
1012 		goto spurious;
1013 
1014 	lr_grp = !!(lr_val & ICH_LR_GROUP);
1015 	if (lr_grp != grp)
1016 		lr_val = ICC_IAR1_EL1_SPURIOUS;
1017 
1018 spurious:
1019 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
1020 }
1021 
__vgic_v3_read_pmr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1022 static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1023 {
1024 	vmcr &= ICH_VMCR_PMR_MASK;
1025 	vmcr >>= ICH_VMCR_PMR_SHIFT;
1026 	vcpu_set_reg(vcpu, rt, vmcr);
1027 }
1028 
__vgic_v3_write_pmr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1029 static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1030 {
1031 	u32 val = vcpu_get_reg(vcpu, rt);
1032 
1033 	val <<= ICH_VMCR_PMR_SHIFT;
1034 	val &= ICH_VMCR_PMR_MASK;
1035 	vmcr &= ~ICH_VMCR_PMR_MASK;
1036 	vmcr |= val;
1037 
1038 	write_gicreg(vmcr, ICH_VMCR_EL2);
1039 }
1040 
__vgic_v3_read_rpr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1041 static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1042 {
1043 	u32 val = __vgic_v3_get_highest_active_priority();
1044 	vcpu_set_reg(vcpu, rt, val);
1045 }
1046 
__vgic_v3_read_ctlr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1047 static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1048 {
1049 	u32 vtr, val;
1050 
1051 	vtr = read_gicreg(ICH_VTR_EL2);
1052 	/* PRIbits */
1053 	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
1054 	/* IDbits */
1055 	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
1056 	/* A3V */
1057 	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
1058 	/* EOImode */
1059 	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
1060 	/* CBPR */
1061 	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
1062 
1063 	vcpu_set_reg(vcpu, rt, val);
1064 }
1065 
__vgic_v3_write_ctlr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1066 static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1067 {
1068 	u32 val = vcpu_get_reg(vcpu, rt);
1069 
1070 	if (val & ICC_CTLR_EL1_CBPR_MASK)
1071 		vmcr |= ICH_VMCR_CBPR_MASK;
1072 	else
1073 		vmcr &= ~ICH_VMCR_CBPR_MASK;
1074 
1075 	if (val & ICC_CTLR_EL1_EOImode_MASK)
1076 		vmcr |= ICH_VMCR_EOIM_MASK;
1077 	else
1078 		vmcr &= ~ICH_VMCR_EOIM_MASK;
1079 
1080 	write_gicreg(vmcr, ICH_VMCR_EL2);
1081 }
1082 
__vgic_v3_check_trap_forwarding(struct kvm_vcpu * vcpu,u32 sysreg,bool is_read)1083 static bool __vgic_v3_check_trap_forwarding(struct kvm_vcpu *vcpu,
1084 					    u32 sysreg, bool is_read)
1085 {
1086 	u64 ich_hcr;
1087 
1088 	if (!is_nested_ctxt(vcpu))
1089 		return false;
1090 
1091 	ich_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
1092 
1093 	switch (sysreg) {
1094 	case SYS_ICC_IGRPEN0_EL1:
1095 		if (is_read &&
1096 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1097 			return true;
1098 
1099 		if (!is_read &&
1100 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1101 			return true;
1102 
1103 		fallthrough;
1104 
1105 	case SYS_ICC_AP0Rn_EL1(0):
1106 	case SYS_ICC_AP0Rn_EL1(1):
1107 	case SYS_ICC_AP0Rn_EL1(2):
1108 	case SYS_ICC_AP0Rn_EL1(3):
1109 	case SYS_ICC_BPR0_EL1:
1110 	case SYS_ICC_EOIR0_EL1:
1111 	case SYS_ICC_HPPIR0_EL1:
1112 	case SYS_ICC_IAR0_EL1:
1113 		return ich_hcr & ICH_HCR_EL2_TALL0;
1114 
1115 	case SYS_ICC_IGRPEN1_EL1:
1116 		if (is_read &&
1117 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1118 			return true;
1119 
1120 		if (!is_read &&
1121 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1122 			return true;
1123 
1124 		fallthrough;
1125 
1126 	case SYS_ICC_AP1Rn_EL1(0):
1127 	case SYS_ICC_AP1Rn_EL1(1):
1128 	case SYS_ICC_AP1Rn_EL1(2):
1129 	case SYS_ICC_AP1Rn_EL1(3):
1130 	case SYS_ICC_BPR1_EL1:
1131 	case SYS_ICC_EOIR1_EL1:
1132 	case SYS_ICC_HPPIR1_EL1:
1133 	case SYS_ICC_IAR1_EL1:
1134 		return ich_hcr & ICH_HCR_EL2_TALL1;
1135 
1136 	case SYS_ICC_DIR_EL1:
1137 		if (ich_hcr & ICH_HCR_EL2_TDIR)
1138 			return true;
1139 
1140 		fallthrough;
1141 
1142 	case SYS_ICC_RPR_EL1:
1143 	case SYS_ICC_CTLR_EL1:
1144 	case SYS_ICC_PMR_EL1:
1145 		return ich_hcr & ICH_HCR_EL2_TC;
1146 
1147 	default:
1148 		return false;
1149 	}
1150 }
1151 
__vgic_v3_perform_cpuif_access(struct kvm_vcpu * vcpu)1152 int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
1153 {
1154 	int rt;
1155 	u64 esr;
1156 	u32 vmcr;
1157 	void (*fn)(struct kvm_vcpu *, u32, int);
1158 	bool is_read;
1159 	u32 sysreg;
1160 
1161 	if (kern_hyp_va(vcpu->kvm)->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
1162 		return 0;
1163 
1164 	esr = kvm_vcpu_get_esr(vcpu);
1165 	if (vcpu_mode_is_32bit(vcpu)) {
1166 		if (!kvm_condition_valid(vcpu)) {
1167 			__kvm_skip_instr(vcpu);
1168 			return 1;
1169 		}
1170 
1171 		sysreg = esr_cp15_to_sysreg(esr);
1172 	} else {
1173 		sysreg = esr_sys64_to_sysreg(esr);
1174 	}
1175 
1176 	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
1177 
1178 	if (__vgic_v3_check_trap_forwarding(vcpu, sysreg, is_read))
1179 		return 0;
1180 
1181 	switch (sysreg) {
1182 	case SYS_ICC_IAR0_EL1:
1183 	case SYS_ICC_IAR1_EL1:
1184 		if (unlikely(!is_read))
1185 			return 0;
1186 		fn = __vgic_v3_read_iar;
1187 		break;
1188 	case SYS_ICC_EOIR0_EL1:
1189 	case SYS_ICC_EOIR1_EL1:
1190 		if (unlikely(is_read))
1191 			return 0;
1192 		fn = __vgic_v3_write_eoir;
1193 		break;
1194 	case SYS_ICC_IGRPEN1_EL1:
1195 		if (is_read)
1196 			fn = __vgic_v3_read_igrpen1;
1197 		else
1198 			fn = __vgic_v3_write_igrpen1;
1199 		break;
1200 	case SYS_ICC_BPR1_EL1:
1201 		if (is_read)
1202 			fn = __vgic_v3_read_bpr1;
1203 		else
1204 			fn = __vgic_v3_write_bpr1;
1205 		break;
1206 	case SYS_ICC_AP0Rn_EL1(0):
1207 	case SYS_ICC_AP1Rn_EL1(0):
1208 		if (is_read)
1209 			fn = __vgic_v3_read_apxr0;
1210 		else
1211 			fn = __vgic_v3_write_apxr0;
1212 		break;
1213 	case SYS_ICC_AP0Rn_EL1(1):
1214 	case SYS_ICC_AP1Rn_EL1(1):
1215 		if (is_read)
1216 			fn = __vgic_v3_read_apxr1;
1217 		else
1218 			fn = __vgic_v3_write_apxr1;
1219 		break;
1220 	case SYS_ICC_AP0Rn_EL1(2):
1221 	case SYS_ICC_AP1Rn_EL1(2):
1222 		if (is_read)
1223 			fn = __vgic_v3_read_apxr2;
1224 		else
1225 			fn = __vgic_v3_write_apxr2;
1226 		break;
1227 	case SYS_ICC_AP0Rn_EL1(3):
1228 	case SYS_ICC_AP1Rn_EL1(3):
1229 		if (is_read)
1230 			fn = __vgic_v3_read_apxr3;
1231 		else
1232 			fn = __vgic_v3_write_apxr3;
1233 		break;
1234 	case SYS_ICC_HPPIR0_EL1:
1235 	case SYS_ICC_HPPIR1_EL1:
1236 		if (unlikely(!is_read))
1237 			return 0;
1238 		fn = __vgic_v3_read_hppir;
1239 		break;
1240 	case SYS_ICC_IGRPEN0_EL1:
1241 		if (is_read)
1242 			fn = __vgic_v3_read_igrpen0;
1243 		else
1244 			fn = __vgic_v3_write_igrpen0;
1245 		break;
1246 	case SYS_ICC_BPR0_EL1:
1247 		if (is_read)
1248 			fn = __vgic_v3_read_bpr0;
1249 		else
1250 			fn = __vgic_v3_write_bpr0;
1251 		break;
1252 	case SYS_ICC_DIR_EL1:
1253 		if (unlikely(is_read))
1254 			return 0;
1255 		fn = __vgic_v3_write_dir;
1256 		break;
1257 	case SYS_ICC_RPR_EL1:
1258 		if (unlikely(!is_read))
1259 			return 0;
1260 		fn = __vgic_v3_read_rpr;
1261 		break;
1262 	case SYS_ICC_CTLR_EL1:
1263 		if (is_read)
1264 			fn = __vgic_v3_read_ctlr;
1265 		else
1266 			fn = __vgic_v3_write_ctlr;
1267 		break;
1268 	case SYS_ICC_PMR_EL1:
1269 		if (is_read)
1270 			fn = __vgic_v3_read_pmr;
1271 		else
1272 			fn = __vgic_v3_write_pmr;
1273 		break;
1274 	default:
1275 		return 0;
1276 	}
1277 
1278 	vmcr = __vgic_v3_read_vmcr();
1279 	rt = kvm_vcpu_sys_get_rt(vcpu);
1280 	fn(vcpu, vmcr, rt);
1281 
1282 	__kvm_skip_instr(vcpu);
1283 
1284 	return 1;
1285 }
1286