xref: /linux/net/vmw_vsock/af_vsock.c (revision 27eddbf3449026a73d6ed52d55b192bfcf526a03)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * VMware vSockets Driver
4   *
5   * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6   */
7  
8  /* Implementation notes:
9   *
10   * - There are two kinds of sockets: those created by user action (such as
11   * calling socket(2)) and those created by incoming connection request packets.
12   *
13   * - There are two "global" tables, one for bound sockets (sockets that have
14   * specified an address that they are responsible for) and one for connected
15   * sockets (sockets that have established a connection with another socket).
16   * These tables are "global" in that all sockets on the system are placed
17   * within them. - Note, though, that the bound table contains an extra entry
18   * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19   * that list. The bound table is used solely for lookup of sockets when packets
20   * are received and that's not necessary for SOCK_DGRAM sockets since we create
21   * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22   * sockets out of the bound hash buckets will reduce the chance of collisions
23   * when looking for SOCK_STREAM sockets and prevents us from having to check the
24   * socket type in the hash table lookups.
25   *
26   * - Sockets created by user action will either be "client" sockets that
27   * initiate a connection or "server" sockets that listen for connections; we do
28   * not support simultaneous connects (two "client" sockets connecting).
29   *
30   * - "Server" sockets are referred to as listener sockets throughout this
31   * implementation because they are in the TCP_LISTEN state.  When a
32   * connection request is received (the second kind of socket mentioned above),
33   * we create a new socket and refer to it as a pending socket.  These pending
34   * sockets are placed on the pending connection list of the listener socket.
35   * When future packets are received for the address the listener socket is
36   * bound to, we check if the source of the packet is from one that has an
37   * existing pending connection.  If it does, we process the packet for the
38   * pending socket.  When that socket reaches the connected state, it is removed
39   * from the listener socket's pending list and enqueued in the listener
40   * socket's accept queue.  Callers of accept(2) will accept connected sockets
41   * from the listener socket's accept queue.  If the socket cannot be accepted
42   * for some reason then it is marked rejected.  Once the connection is
43   * accepted, it is owned by the user process and the responsibility for cleanup
44   * falls with that user process.
45   *
46   * - It is possible that these pending sockets will never reach the connected
47   * state; in fact, we may never receive another packet after the connection
48   * request.  Because of this, we must schedule a cleanup function to run in the
49   * future, after some amount of time passes where a connection should have been
50   * established.  This function ensures that the socket is off all lists so it
51   * cannot be retrieved, then drops all references to the socket so it is cleaned
52   * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53   * function will also cleanup rejected sockets, those that reach the connected
54   * state but leave it before they have been accepted.
55   *
56   * - Lock ordering for pending or accept queue sockets is:
57   *
58   *     lock_sock(listener);
59   *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60   *
61   * Using explicit nested locking keeps lockdep happy since normally only one
62   * lock of a given class may be taken at a time.
63   *
64   * - Sockets created by user action will be cleaned up when the user process
65   * calls close(2), causing our release implementation to be called. Our release
66   * implementation will perform some cleanup then drop the last reference so our
67   * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68   * perform additional cleanup that's common for both types of sockets.
69   *
70   * - A socket's reference count is what ensures that the structure won't be
71   * freed.  Each entry in a list (such as the "global" bound and connected tables
72   * and the listener socket's pending list and connected queue) ensures a
73   * reference.  When we defer work until process context and pass a socket as our
74   * argument, we must ensure the reference count is increased to ensure the
75   * socket isn't freed before the function is run; the deferred function will
76   * then drop the reference.
77   *
78   * - sk->sk_state uses the TCP state constants because they are widely used by
79   * other address families and exposed to userspace tools like ss(8):
80   *
81   *   TCP_CLOSE - unconnected
82   *   TCP_SYN_SENT - connecting
83   *   TCP_ESTABLISHED - connected
84   *   TCP_CLOSING - disconnecting
85   *   TCP_LISTEN - listening
86   */
87  
88  #include <linux/compat.h>
89  #include <linux/types.h>
90  #include <linux/bitops.h>
91  #include <linux/cred.h>
92  #include <linux/errqueue.h>
93  #include <linux/init.h>
94  #include <linux/io.h>
95  #include <linux/kernel.h>
96  #include <linux/sched/signal.h>
97  #include <linux/kmod.h>
98  #include <linux/list.h>
99  #include <linux/miscdevice.h>
100  #include <linux/module.h>
101  #include <linux/mutex.h>
102  #include <linux/net.h>
103  #include <linux/poll.h>
104  #include <linux/random.h>
105  #include <linux/skbuff.h>
106  #include <linux/smp.h>
107  #include <linux/socket.h>
108  #include <linux/stddef.h>
109  #include <linux/unistd.h>
110  #include <linux/wait.h>
111  #include <linux/workqueue.h>
112  #include <net/sock.h>
113  #include <net/af_vsock.h>
114  #include <uapi/linux/vm_sockets.h>
115  #include <uapi/asm-generic/ioctls.h>
116  
117  static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118  static void vsock_sk_destruct(struct sock *sk);
119  static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120  static void vsock_close(struct sock *sk, long timeout);
121  
122  /* Protocol family. */
123  struct proto vsock_proto = {
124  	.name = "AF_VSOCK",
125  	.owner = THIS_MODULE,
126  	.obj_size = sizeof(struct vsock_sock),
127  	.close = vsock_close,
128  #ifdef CONFIG_BPF_SYSCALL
129  	.psock_update_sk_prot = vsock_bpf_update_proto,
130  #endif
131  };
132  
133  /* The default peer timeout indicates how long we will wait for a peer response
134   * to a control message.
135   */
136  #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137  
138  #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
139  #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140  #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141  
142  /* Transport used for host->guest communication */
143  static const struct vsock_transport *transport_h2g;
144  /* Transport used for guest->host communication */
145  static const struct vsock_transport *transport_g2h;
146  /* Transport used for DGRAM communication */
147  static const struct vsock_transport *transport_dgram;
148  /* Transport used for local communication */
149  static const struct vsock_transport *transport_local;
150  static DEFINE_MUTEX(vsock_register_mutex);
151  
152  /**** UTILS ****/
153  
154  /* Each bound VSocket is stored in the bind hash table and each connected
155   * VSocket is stored in the connected hash table.
156   *
157   * Unbound sockets are all put on the same list attached to the end of the hash
158   * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
159   * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160   * represents the list that addr hashes to).
161   *
162   * Specifically, we initialize the vsock_bind_table array to a size of
163   * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164   * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165   * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
166   * mods with VSOCK_HASH_SIZE to ensure this.
167   */
168  #define MAX_PORT_RETRIES        24
169  
170  #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
171  #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172  #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
173  
174  /* XXX This can probably be implemented in a better way. */
175  #define VSOCK_CONN_HASH(src, dst)				\
176  	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177  #define vsock_connected_sockets(src, dst)		\
178  	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179  #define vsock_connected_sockets_vsk(vsk)				\
180  	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181  
182  struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183  EXPORT_SYMBOL_GPL(vsock_bind_table);
184  struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185  EXPORT_SYMBOL_GPL(vsock_connected_table);
186  DEFINE_SPINLOCK(vsock_table_lock);
187  EXPORT_SYMBOL_GPL(vsock_table_lock);
188  
189  /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)190  static int vsock_auto_bind(struct vsock_sock *vsk)
191  {
192  	struct sock *sk = sk_vsock(vsk);
193  	struct sockaddr_vm local_addr;
194  
195  	if (vsock_addr_bound(&vsk->local_addr))
196  		return 0;
197  	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198  	return __vsock_bind(sk, &local_addr);
199  }
200  
vsock_init_tables(void)201  static void vsock_init_tables(void)
202  {
203  	int i;
204  
205  	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206  		INIT_LIST_HEAD(&vsock_bind_table[i]);
207  
208  	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209  		INIT_LIST_HEAD(&vsock_connected_table[i]);
210  }
211  
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)212  static void __vsock_insert_bound(struct list_head *list,
213  				 struct vsock_sock *vsk)
214  {
215  	sock_hold(&vsk->sk);
216  	list_add(&vsk->bound_table, list);
217  }
218  
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)219  static void __vsock_insert_connected(struct list_head *list,
220  				     struct vsock_sock *vsk)
221  {
222  	sock_hold(&vsk->sk);
223  	list_add(&vsk->connected_table, list);
224  }
225  
__vsock_remove_bound(struct vsock_sock * vsk)226  static void __vsock_remove_bound(struct vsock_sock *vsk)
227  {
228  	list_del_init(&vsk->bound_table);
229  	sock_put(&vsk->sk);
230  }
231  
__vsock_remove_connected(struct vsock_sock * vsk)232  static void __vsock_remove_connected(struct vsock_sock *vsk)
233  {
234  	list_del_init(&vsk->connected_table);
235  	sock_put(&vsk->sk);
236  }
237  
__vsock_find_bound_socket(struct sockaddr_vm * addr)238  static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239  {
240  	struct vsock_sock *vsk;
241  
242  	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243  		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244  			return sk_vsock(vsk);
245  
246  		if (addr->svm_port == vsk->local_addr.svm_port &&
247  		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248  		     addr->svm_cid == VMADDR_CID_ANY))
249  			return sk_vsock(vsk);
250  	}
251  
252  	return NULL;
253  }
254  
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)255  static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256  						  struct sockaddr_vm *dst)
257  {
258  	struct vsock_sock *vsk;
259  
260  	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261  			    connected_table) {
262  		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263  		    dst->svm_port == vsk->local_addr.svm_port) {
264  			return sk_vsock(vsk);
265  		}
266  	}
267  
268  	return NULL;
269  }
270  
vsock_insert_unbound(struct vsock_sock * vsk)271  static void vsock_insert_unbound(struct vsock_sock *vsk)
272  {
273  	spin_lock_bh(&vsock_table_lock);
274  	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275  	spin_unlock_bh(&vsock_table_lock);
276  }
277  
vsock_insert_connected(struct vsock_sock * vsk)278  void vsock_insert_connected(struct vsock_sock *vsk)
279  {
280  	struct list_head *list = vsock_connected_sockets(
281  		&vsk->remote_addr, &vsk->local_addr);
282  
283  	spin_lock_bh(&vsock_table_lock);
284  	__vsock_insert_connected(list, vsk);
285  	spin_unlock_bh(&vsock_table_lock);
286  }
287  EXPORT_SYMBOL_GPL(vsock_insert_connected);
288  
vsock_remove_bound(struct vsock_sock * vsk)289  void vsock_remove_bound(struct vsock_sock *vsk)
290  {
291  	spin_lock_bh(&vsock_table_lock);
292  	if (__vsock_in_bound_table(vsk))
293  		__vsock_remove_bound(vsk);
294  	spin_unlock_bh(&vsock_table_lock);
295  }
296  EXPORT_SYMBOL_GPL(vsock_remove_bound);
297  
vsock_remove_connected(struct vsock_sock * vsk)298  void vsock_remove_connected(struct vsock_sock *vsk)
299  {
300  	spin_lock_bh(&vsock_table_lock);
301  	if (__vsock_in_connected_table(vsk))
302  		__vsock_remove_connected(vsk);
303  	spin_unlock_bh(&vsock_table_lock);
304  }
305  EXPORT_SYMBOL_GPL(vsock_remove_connected);
306  
vsock_find_bound_socket(struct sockaddr_vm * addr)307  struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308  {
309  	struct sock *sk;
310  
311  	spin_lock_bh(&vsock_table_lock);
312  	sk = __vsock_find_bound_socket(addr);
313  	if (sk)
314  		sock_hold(sk);
315  
316  	spin_unlock_bh(&vsock_table_lock);
317  
318  	return sk;
319  }
320  EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321  
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322  struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323  					 struct sockaddr_vm *dst)
324  {
325  	struct sock *sk;
326  
327  	spin_lock_bh(&vsock_table_lock);
328  	sk = __vsock_find_connected_socket(src, dst);
329  	if (sk)
330  		sock_hold(sk);
331  
332  	spin_unlock_bh(&vsock_table_lock);
333  
334  	return sk;
335  }
336  EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337  
vsock_remove_sock(struct vsock_sock * vsk)338  void vsock_remove_sock(struct vsock_sock *vsk)
339  {
340  	/* Transport reassignment must not remove the binding. */
341  	if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342  		vsock_remove_bound(vsk);
343  
344  	vsock_remove_connected(vsk);
345  }
346  EXPORT_SYMBOL_GPL(vsock_remove_sock);
347  
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))348  void vsock_for_each_connected_socket(struct vsock_transport *transport,
349  				     void (*fn)(struct sock *sk))
350  {
351  	int i;
352  
353  	spin_lock_bh(&vsock_table_lock);
354  
355  	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356  		struct vsock_sock *vsk;
357  		list_for_each_entry(vsk, &vsock_connected_table[i],
358  				    connected_table) {
359  			if (vsk->transport != transport)
360  				continue;
361  
362  			fn(sk_vsock(vsk));
363  		}
364  	}
365  
366  	spin_unlock_bh(&vsock_table_lock);
367  }
368  EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369  
vsock_add_pending(struct sock * listener,struct sock * pending)370  void vsock_add_pending(struct sock *listener, struct sock *pending)
371  {
372  	struct vsock_sock *vlistener;
373  	struct vsock_sock *vpending;
374  
375  	vlistener = vsock_sk(listener);
376  	vpending = vsock_sk(pending);
377  
378  	sock_hold(pending);
379  	sock_hold(listener);
380  	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381  }
382  EXPORT_SYMBOL_GPL(vsock_add_pending);
383  
vsock_remove_pending(struct sock * listener,struct sock * pending)384  void vsock_remove_pending(struct sock *listener, struct sock *pending)
385  {
386  	struct vsock_sock *vpending = vsock_sk(pending);
387  
388  	list_del_init(&vpending->pending_links);
389  	sock_put(listener);
390  	sock_put(pending);
391  }
392  EXPORT_SYMBOL_GPL(vsock_remove_pending);
393  
vsock_enqueue_accept(struct sock * listener,struct sock * connected)394  void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395  {
396  	struct vsock_sock *vlistener;
397  	struct vsock_sock *vconnected;
398  
399  	vlistener = vsock_sk(listener);
400  	vconnected = vsock_sk(connected);
401  
402  	sock_hold(connected);
403  	sock_hold(listener);
404  	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405  }
406  EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407  
vsock_use_local_transport(unsigned int remote_cid)408  static bool vsock_use_local_transport(unsigned int remote_cid)
409  {
410  	if (!transport_local)
411  		return false;
412  
413  	if (remote_cid == VMADDR_CID_LOCAL)
414  		return true;
415  
416  	if (transport_g2h) {
417  		return remote_cid == transport_g2h->get_local_cid();
418  	} else {
419  		return remote_cid == VMADDR_CID_HOST;
420  	}
421  }
422  
vsock_deassign_transport(struct vsock_sock * vsk)423  static void vsock_deassign_transport(struct vsock_sock *vsk)
424  {
425  	if (!vsk->transport)
426  		return;
427  
428  	vsk->transport->destruct(vsk);
429  	module_put(vsk->transport->module);
430  	vsk->transport = NULL;
431  }
432  
433  /* Assign a transport to a socket and call the .init transport callback.
434   *
435   * Note: for connection oriented socket this must be called when vsk->remote_addr
436   * is set (e.g. during the connect() or when a connection request on a listener
437   * socket is received).
438   * The vsk->remote_addr is used to decide which transport to use:
439   *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
440   *    g2h is not loaded, will use local transport;
441   *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
442   *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
443   *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
444   */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)445  int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
446  {
447  	const struct vsock_transport *new_transport;
448  	struct sock *sk = sk_vsock(vsk);
449  	unsigned int remote_cid = vsk->remote_addr.svm_cid;
450  	__u8 remote_flags;
451  	int ret;
452  
453  	/* If the packet is coming with the source and destination CIDs higher
454  	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
455  	 * forwarded to the host should be established. Then the host will
456  	 * need to forward the packets to the guest.
457  	 *
458  	 * The flag is set on the (listen) receive path (psk is not NULL). On
459  	 * the connect path the flag can be set by the user space application.
460  	 */
461  	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
462  	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
463  		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
464  
465  	remote_flags = vsk->remote_addr.svm_flags;
466  
467  	switch (sk->sk_type) {
468  	case SOCK_DGRAM:
469  		new_transport = transport_dgram;
470  		break;
471  	case SOCK_STREAM:
472  	case SOCK_SEQPACKET:
473  		if (vsock_use_local_transport(remote_cid))
474  			new_transport = transport_local;
475  		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
476  			 (remote_flags & VMADDR_FLAG_TO_HOST))
477  			new_transport = transport_g2h;
478  		else
479  			new_transport = transport_h2g;
480  		break;
481  	default:
482  		return -ESOCKTNOSUPPORT;
483  	}
484  
485  	if (vsk->transport) {
486  		if (vsk->transport == new_transport)
487  			return 0;
488  
489  		/* transport->release() must be called with sock lock acquired.
490  		 * This path can only be taken during vsock_connect(), where we
491  		 * have already held the sock lock. In the other cases, this
492  		 * function is called on a new socket which is not assigned to
493  		 * any transport.
494  		 */
495  		vsk->transport->release(vsk);
496  		vsock_deassign_transport(vsk);
497  
498  		/* transport's release() and destruct() can touch some socket
499  		 * state, since we are reassigning the socket to a new transport
500  		 * during vsock_connect(), let's reset these fields to have a
501  		 * clean state.
502  		 */
503  		sock_reset_flag(sk, SOCK_DONE);
504  		sk->sk_state = TCP_CLOSE;
505  		vsk->peer_shutdown = 0;
506  	}
507  
508  	/* We increase the module refcnt to prevent the transport unloading
509  	 * while there are open sockets assigned to it.
510  	 */
511  	if (!new_transport || !try_module_get(new_transport->module))
512  		return -ENODEV;
513  
514  	if (sk->sk_type == SOCK_SEQPACKET) {
515  		if (!new_transport->seqpacket_allow ||
516  		    !new_transport->seqpacket_allow(remote_cid)) {
517  			module_put(new_transport->module);
518  			return -ESOCKTNOSUPPORT;
519  		}
520  	}
521  
522  	ret = new_transport->init(vsk, psk);
523  	if (ret) {
524  		module_put(new_transport->module);
525  		return ret;
526  	}
527  
528  	vsk->transport = new_transport;
529  
530  	return 0;
531  }
532  EXPORT_SYMBOL_GPL(vsock_assign_transport);
533  
vsock_find_cid(unsigned int cid)534  bool vsock_find_cid(unsigned int cid)
535  {
536  	if (transport_g2h && cid == transport_g2h->get_local_cid())
537  		return true;
538  
539  	if (transport_h2g && cid == VMADDR_CID_HOST)
540  		return true;
541  
542  	if (transport_local && cid == VMADDR_CID_LOCAL)
543  		return true;
544  
545  	return false;
546  }
547  EXPORT_SYMBOL_GPL(vsock_find_cid);
548  
vsock_dequeue_accept(struct sock * listener)549  static struct sock *vsock_dequeue_accept(struct sock *listener)
550  {
551  	struct vsock_sock *vlistener;
552  	struct vsock_sock *vconnected;
553  
554  	vlistener = vsock_sk(listener);
555  
556  	if (list_empty(&vlistener->accept_queue))
557  		return NULL;
558  
559  	vconnected = list_entry(vlistener->accept_queue.next,
560  				struct vsock_sock, accept_queue);
561  
562  	list_del_init(&vconnected->accept_queue);
563  	sock_put(listener);
564  	/* The caller will need a reference on the connected socket so we let
565  	 * it call sock_put().
566  	 */
567  
568  	return sk_vsock(vconnected);
569  }
570  
vsock_is_accept_queue_empty(struct sock * sk)571  static bool vsock_is_accept_queue_empty(struct sock *sk)
572  {
573  	struct vsock_sock *vsk = vsock_sk(sk);
574  	return list_empty(&vsk->accept_queue);
575  }
576  
vsock_is_pending(struct sock * sk)577  static bool vsock_is_pending(struct sock *sk)
578  {
579  	struct vsock_sock *vsk = vsock_sk(sk);
580  	return !list_empty(&vsk->pending_links);
581  }
582  
vsock_send_shutdown(struct sock * sk,int mode)583  static int vsock_send_shutdown(struct sock *sk, int mode)
584  {
585  	struct vsock_sock *vsk = vsock_sk(sk);
586  
587  	if (!vsk->transport)
588  		return -ENODEV;
589  
590  	return vsk->transport->shutdown(vsk, mode);
591  }
592  
vsock_pending_work(struct work_struct * work)593  static void vsock_pending_work(struct work_struct *work)
594  {
595  	struct sock *sk;
596  	struct sock *listener;
597  	struct vsock_sock *vsk;
598  	bool cleanup;
599  
600  	vsk = container_of(work, struct vsock_sock, pending_work.work);
601  	sk = sk_vsock(vsk);
602  	listener = vsk->listener;
603  	cleanup = true;
604  
605  	lock_sock(listener);
606  	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
607  
608  	if (vsock_is_pending(sk)) {
609  		vsock_remove_pending(listener, sk);
610  
611  		sk_acceptq_removed(listener);
612  	} else if (!vsk->rejected) {
613  		/* We are not on the pending list and accept() did not reject
614  		 * us, so we must have been accepted by our user process.  We
615  		 * just need to drop our references to the sockets and be on
616  		 * our way.
617  		 */
618  		cleanup = false;
619  		goto out;
620  	}
621  
622  	/* We need to remove ourself from the global connected sockets list so
623  	 * incoming packets can't find this socket, and to reduce the reference
624  	 * count.
625  	 */
626  	vsock_remove_connected(vsk);
627  
628  	sk->sk_state = TCP_CLOSE;
629  
630  out:
631  	release_sock(sk);
632  	release_sock(listener);
633  	if (cleanup)
634  		sock_put(sk);
635  
636  	sock_put(sk);
637  	sock_put(listener);
638  }
639  
640  /**** SOCKET OPERATIONS ****/
641  
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)642  static int __vsock_bind_connectible(struct vsock_sock *vsk,
643  				    struct sockaddr_vm *addr)
644  {
645  	static u32 port;
646  	struct sockaddr_vm new_addr;
647  
648  	if (!port)
649  		port = get_random_u32_above(LAST_RESERVED_PORT);
650  
651  	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
652  
653  	if (addr->svm_port == VMADDR_PORT_ANY) {
654  		bool found = false;
655  		unsigned int i;
656  
657  		for (i = 0; i < MAX_PORT_RETRIES; i++) {
658  			if (port <= LAST_RESERVED_PORT)
659  				port = LAST_RESERVED_PORT + 1;
660  
661  			new_addr.svm_port = port++;
662  
663  			if (!__vsock_find_bound_socket(&new_addr)) {
664  				found = true;
665  				break;
666  			}
667  		}
668  
669  		if (!found)
670  			return -EADDRNOTAVAIL;
671  	} else {
672  		/* If port is in reserved range, ensure caller
673  		 * has necessary privileges.
674  		 */
675  		if (addr->svm_port <= LAST_RESERVED_PORT &&
676  		    !capable(CAP_NET_BIND_SERVICE)) {
677  			return -EACCES;
678  		}
679  
680  		if (__vsock_find_bound_socket(&new_addr))
681  			return -EADDRINUSE;
682  	}
683  
684  	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
685  
686  	/* Remove connection oriented sockets from the unbound list and add them
687  	 * to the hash table for easy lookup by its address.  The unbound list
688  	 * is simply an extra entry at the end of the hash table, a trick used
689  	 * by AF_UNIX.
690  	 */
691  	__vsock_remove_bound(vsk);
692  	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
693  
694  	return 0;
695  }
696  
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)697  static int __vsock_bind_dgram(struct vsock_sock *vsk,
698  			      struct sockaddr_vm *addr)
699  {
700  	return vsk->transport->dgram_bind(vsk, addr);
701  }
702  
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)703  static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
704  {
705  	struct vsock_sock *vsk = vsock_sk(sk);
706  	int retval;
707  
708  	/* First ensure this socket isn't already bound. */
709  	if (vsock_addr_bound(&vsk->local_addr))
710  		return -EINVAL;
711  
712  	/* Now bind to the provided address or select appropriate values if
713  	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
714  	 * like AF_INET prevents binding to a non-local IP address (in most
715  	 * cases), we only allow binding to a local CID.
716  	 */
717  	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
718  		return -EADDRNOTAVAIL;
719  
720  	switch (sk->sk_socket->type) {
721  	case SOCK_STREAM:
722  	case SOCK_SEQPACKET:
723  		spin_lock_bh(&vsock_table_lock);
724  		retval = __vsock_bind_connectible(vsk, addr);
725  		spin_unlock_bh(&vsock_table_lock);
726  		break;
727  
728  	case SOCK_DGRAM:
729  		retval = __vsock_bind_dgram(vsk, addr);
730  		break;
731  
732  	default:
733  		retval = -EINVAL;
734  		break;
735  	}
736  
737  	return retval;
738  }
739  
740  static void vsock_connect_timeout(struct work_struct *work);
741  
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)742  static struct sock *__vsock_create(struct net *net,
743  				   struct socket *sock,
744  				   struct sock *parent,
745  				   gfp_t priority,
746  				   unsigned short type,
747  				   int kern)
748  {
749  	struct sock *sk;
750  	struct vsock_sock *psk;
751  	struct vsock_sock *vsk;
752  
753  	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
754  	if (!sk)
755  		return NULL;
756  
757  	sock_init_data(sock, sk);
758  
759  	/* sk->sk_type is normally set in sock_init_data, but only if sock is
760  	 * non-NULL. We make sure that our sockets always have a type by
761  	 * setting it here if needed.
762  	 */
763  	if (!sock)
764  		sk->sk_type = type;
765  
766  	vsk = vsock_sk(sk);
767  	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
768  	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
769  
770  	sk->sk_destruct = vsock_sk_destruct;
771  	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
772  	sock_reset_flag(sk, SOCK_DONE);
773  
774  	INIT_LIST_HEAD(&vsk->bound_table);
775  	INIT_LIST_HEAD(&vsk->connected_table);
776  	vsk->listener = NULL;
777  	INIT_LIST_HEAD(&vsk->pending_links);
778  	INIT_LIST_HEAD(&vsk->accept_queue);
779  	vsk->rejected = false;
780  	vsk->sent_request = false;
781  	vsk->ignore_connecting_rst = false;
782  	vsk->peer_shutdown = 0;
783  	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
784  	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
785  
786  	psk = parent ? vsock_sk(parent) : NULL;
787  	if (parent) {
788  		vsk->trusted = psk->trusted;
789  		vsk->owner = get_cred(psk->owner);
790  		vsk->connect_timeout = psk->connect_timeout;
791  		vsk->buffer_size = psk->buffer_size;
792  		vsk->buffer_min_size = psk->buffer_min_size;
793  		vsk->buffer_max_size = psk->buffer_max_size;
794  		security_sk_clone(parent, sk);
795  	} else {
796  		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
797  		vsk->owner = get_current_cred();
798  		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
799  		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
800  		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
801  		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
802  	}
803  
804  	return sk;
805  }
806  
sock_type_connectible(u16 type)807  static bool sock_type_connectible(u16 type)
808  {
809  	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
810  }
811  
__vsock_release(struct sock * sk,int level)812  static void __vsock_release(struct sock *sk, int level)
813  {
814  	struct vsock_sock *vsk;
815  	struct sock *pending;
816  
817  	vsk = vsock_sk(sk);
818  	pending = NULL;	/* Compiler warning. */
819  
820  	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
821  	 * version to avoid the warning "possible recursive locking
822  	 * detected". When "level" is 0, lock_sock_nested(sk, level)
823  	 * is the same as lock_sock(sk).
824  	 */
825  	lock_sock_nested(sk, level);
826  
827  	/* Indicate to vsock_remove_sock() that the socket is being released and
828  	 * can be removed from the bound_table. Unlike transport reassignment
829  	 * case, where the socket must remain bound despite vsock_remove_sock()
830  	 * being called from the transport release() callback.
831  	 */
832  	sock_set_flag(sk, SOCK_DEAD);
833  
834  	if (vsk->transport)
835  		vsk->transport->release(vsk);
836  	else if (sock_type_connectible(sk->sk_type))
837  		vsock_remove_sock(vsk);
838  
839  	sock_orphan(sk);
840  	sk->sk_shutdown = SHUTDOWN_MASK;
841  
842  	skb_queue_purge(&sk->sk_receive_queue);
843  
844  	/* Clean up any sockets that never were accepted. */
845  	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
846  		__vsock_release(pending, SINGLE_DEPTH_NESTING);
847  		sock_put(pending);
848  	}
849  
850  	release_sock(sk);
851  	sock_put(sk);
852  }
853  
vsock_sk_destruct(struct sock * sk)854  static void vsock_sk_destruct(struct sock *sk)
855  {
856  	struct vsock_sock *vsk = vsock_sk(sk);
857  
858  	/* Flush MSG_ZEROCOPY leftovers. */
859  	__skb_queue_purge(&sk->sk_error_queue);
860  
861  	vsock_deassign_transport(vsk);
862  
863  	/* When clearing these addresses, there's no need to set the family and
864  	 * possibly register the address family with the kernel.
865  	 */
866  	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
867  	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
868  
869  	put_cred(vsk->owner);
870  }
871  
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)872  static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
873  {
874  	int err;
875  
876  	err = sock_queue_rcv_skb(sk, skb);
877  	if (err)
878  		kfree_skb(skb);
879  
880  	return err;
881  }
882  
vsock_create_connected(struct sock * parent)883  struct sock *vsock_create_connected(struct sock *parent)
884  {
885  	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
886  			      parent->sk_type, 0);
887  }
888  EXPORT_SYMBOL_GPL(vsock_create_connected);
889  
vsock_stream_has_data(struct vsock_sock * vsk)890  s64 vsock_stream_has_data(struct vsock_sock *vsk)
891  {
892  	if (WARN_ON(!vsk->transport))
893  		return 0;
894  
895  	return vsk->transport->stream_has_data(vsk);
896  }
897  EXPORT_SYMBOL_GPL(vsock_stream_has_data);
898  
vsock_connectible_has_data(struct vsock_sock * vsk)899  s64 vsock_connectible_has_data(struct vsock_sock *vsk)
900  {
901  	struct sock *sk = sk_vsock(vsk);
902  
903  	if (WARN_ON(!vsk->transport))
904  		return 0;
905  
906  	if (sk->sk_type == SOCK_SEQPACKET)
907  		return vsk->transport->seqpacket_has_data(vsk);
908  	else
909  		return vsock_stream_has_data(vsk);
910  }
911  EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
912  
vsock_stream_has_space(struct vsock_sock * vsk)913  s64 vsock_stream_has_space(struct vsock_sock *vsk)
914  {
915  	if (WARN_ON(!vsk->transport))
916  		return 0;
917  
918  	return vsk->transport->stream_has_space(vsk);
919  }
920  EXPORT_SYMBOL_GPL(vsock_stream_has_space);
921  
vsock_data_ready(struct sock * sk)922  void vsock_data_ready(struct sock *sk)
923  {
924  	struct vsock_sock *vsk = vsock_sk(sk);
925  
926  	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
927  	    sock_flag(sk, SOCK_DONE))
928  		sk->sk_data_ready(sk);
929  }
930  EXPORT_SYMBOL_GPL(vsock_data_ready);
931  
932  /* Dummy callback required by sockmap.
933   * See unconditional call of saved_close() in sock_map_close().
934   */
vsock_close(struct sock * sk,long timeout)935  static void vsock_close(struct sock *sk, long timeout)
936  {
937  }
938  
vsock_release(struct socket * sock)939  static int vsock_release(struct socket *sock)
940  {
941  	struct sock *sk = sock->sk;
942  
943  	if (!sk)
944  		return 0;
945  
946  	sk->sk_prot->close(sk, 0);
947  	__vsock_release(sk, 0);
948  	sock->sk = NULL;
949  	sock->state = SS_FREE;
950  
951  	return 0;
952  }
953  
954  static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)955  vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
956  {
957  	int err;
958  	struct sock *sk;
959  	struct sockaddr_vm *vm_addr;
960  
961  	sk = sock->sk;
962  
963  	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
964  		return -EINVAL;
965  
966  	lock_sock(sk);
967  	err = __vsock_bind(sk, vm_addr);
968  	release_sock(sk);
969  
970  	return err;
971  }
972  
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)973  static int vsock_getname(struct socket *sock,
974  			 struct sockaddr *addr, int peer)
975  {
976  	int err;
977  	struct sock *sk;
978  	struct vsock_sock *vsk;
979  	struct sockaddr_vm *vm_addr;
980  
981  	sk = sock->sk;
982  	vsk = vsock_sk(sk);
983  	err = 0;
984  
985  	lock_sock(sk);
986  
987  	if (peer) {
988  		if (sock->state != SS_CONNECTED) {
989  			err = -ENOTCONN;
990  			goto out;
991  		}
992  		vm_addr = &vsk->remote_addr;
993  	} else {
994  		vm_addr = &vsk->local_addr;
995  	}
996  
997  	if (!vm_addr) {
998  		err = -EINVAL;
999  		goto out;
1000  	}
1001  
1002  	/* sys_getsockname() and sys_getpeername() pass us a
1003  	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
1004  	 * that macro is defined in socket.c instead of .h, so we hardcode its
1005  	 * value here.
1006  	 */
1007  	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1008  	memcpy(addr, vm_addr, sizeof(*vm_addr));
1009  	err = sizeof(*vm_addr);
1010  
1011  out:
1012  	release_sock(sk);
1013  	return err;
1014  }
1015  
vsock_shutdown(struct socket * sock,int mode)1016  static int vsock_shutdown(struct socket *sock, int mode)
1017  {
1018  	int err;
1019  	struct sock *sk;
1020  
1021  	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1022  	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1023  	 * here like the other address families do.  Note also that the
1024  	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1025  	 * which is what we want.
1026  	 */
1027  	mode++;
1028  
1029  	if ((mode & ~SHUTDOWN_MASK) || !mode)
1030  		return -EINVAL;
1031  
1032  	/* If this is a connection oriented socket and it is not connected then
1033  	 * bail out immediately.  If it is a DGRAM socket then we must first
1034  	 * kick the socket so that it wakes up from any sleeping calls, for
1035  	 * example recv(), and then afterwards return the error.
1036  	 */
1037  
1038  	sk = sock->sk;
1039  
1040  	lock_sock(sk);
1041  	if (sock->state == SS_UNCONNECTED) {
1042  		err = -ENOTCONN;
1043  		if (sock_type_connectible(sk->sk_type))
1044  			goto out;
1045  	} else {
1046  		sock->state = SS_DISCONNECTING;
1047  		err = 0;
1048  	}
1049  
1050  	/* Receive and send shutdowns are treated alike. */
1051  	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1052  	if (mode) {
1053  		sk->sk_shutdown |= mode;
1054  		sk->sk_state_change(sk);
1055  
1056  		if (sock_type_connectible(sk->sk_type)) {
1057  			sock_reset_flag(sk, SOCK_DONE);
1058  			vsock_send_shutdown(sk, mode);
1059  		}
1060  	}
1061  
1062  out:
1063  	release_sock(sk);
1064  	return err;
1065  }
1066  
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1067  static __poll_t vsock_poll(struct file *file, struct socket *sock,
1068  			       poll_table *wait)
1069  {
1070  	struct sock *sk;
1071  	__poll_t mask;
1072  	struct vsock_sock *vsk;
1073  
1074  	sk = sock->sk;
1075  	vsk = vsock_sk(sk);
1076  
1077  	poll_wait(file, sk_sleep(sk), wait);
1078  	mask = 0;
1079  
1080  	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1081  		/* Signify that there has been an error on this socket. */
1082  		mask |= EPOLLERR;
1083  
1084  	/* INET sockets treat local write shutdown and peer write shutdown as a
1085  	 * case of EPOLLHUP set.
1086  	 */
1087  	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1088  	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1089  	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1090  		mask |= EPOLLHUP;
1091  	}
1092  
1093  	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1094  	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1095  		mask |= EPOLLRDHUP;
1096  	}
1097  
1098  	if (sk_is_readable(sk))
1099  		mask |= EPOLLIN | EPOLLRDNORM;
1100  
1101  	if (sock->type == SOCK_DGRAM) {
1102  		/* For datagram sockets we can read if there is something in
1103  		 * the queue and write as long as the socket isn't shutdown for
1104  		 * sending.
1105  		 */
1106  		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1107  		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1108  			mask |= EPOLLIN | EPOLLRDNORM;
1109  		}
1110  
1111  		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1112  			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1113  
1114  	} else if (sock_type_connectible(sk->sk_type)) {
1115  		const struct vsock_transport *transport;
1116  
1117  		lock_sock(sk);
1118  
1119  		transport = vsk->transport;
1120  
1121  		/* Listening sockets that have connections in their accept
1122  		 * queue can be read.
1123  		 */
1124  		if (sk->sk_state == TCP_LISTEN
1125  		    && !vsock_is_accept_queue_empty(sk))
1126  			mask |= EPOLLIN | EPOLLRDNORM;
1127  
1128  		/* If there is something in the queue then we can read. */
1129  		if (transport && transport->stream_is_active(vsk) &&
1130  		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1131  			bool data_ready_now = false;
1132  			int target = sock_rcvlowat(sk, 0, INT_MAX);
1133  			int ret = transport->notify_poll_in(
1134  					vsk, target, &data_ready_now);
1135  			if (ret < 0) {
1136  				mask |= EPOLLERR;
1137  			} else {
1138  				if (data_ready_now)
1139  					mask |= EPOLLIN | EPOLLRDNORM;
1140  
1141  			}
1142  		}
1143  
1144  		/* Sockets whose connections have been closed, reset, or
1145  		 * terminated should also be considered read, and we check the
1146  		 * shutdown flag for that.
1147  		 */
1148  		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1149  		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1150  			mask |= EPOLLIN | EPOLLRDNORM;
1151  		}
1152  
1153  		/* Connected sockets that can produce data can be written. */
1154  		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1155  			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1156  				bool space_avail_now = false;
1157  				int ret = transport->notify_poll_out(
1158  						vsk, 1, &space_avail_now);
1159  				if (ret < 0) {
1160  					mask |= EPOLLERR;
1161  				} else {
1162  					if (space_avail_now)
1163  						/* Remove EPOLLWRBAND since INET
1164  						 * sockets are not setting it.
1165  						 */
1166  						mask |= EPOLLOUT | EPOLLWRNORM;
1167  
1168  				}
1169  			}
1170  		}
1171  
1172  		/* Simulate INET socket poll behaviors, which sets
1173  		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1174  		 * but local send is not shutdown.
1175  		 */
1176  		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1177  			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1178  				mask |= EPOLLOUT | EPOLLWRNORM;
1179  
1180  		}
1181  
1182  		release_sock(sk);
1183  	}
1184  
1185  	return mask;
1186  }
1187  
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1188  static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1189  {
1190  	struct vsock_sock *vsk = vsock_sk(sk);
1191  
1192  	if (WARN_ON_ONCE(!vsk->transport))
1193  		return -ENODEV;
1194  
1195  	return vsk->transport->read_skb(vsk, read_actor);
1196  }
1197  
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1198  static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1199  			       size_t len)
1200  {
1201  	int err;
1202  	struct sock *sk;
1203  	struct vsock_sock *vsk;
1204  	struct sockaddr_vm *remote_addr;
1205  	const struct vsock_transport *transport;
1206  
1207  	if (msg->msg_flags & MSG_OOB)
1208  		return -EOPNOTSUPP;
1209  
1210  	/* For now, MSG_DONTWAIT is always assumed... */
1211  	err = 0;
1212  	sk = sock->sk;
1213  	vsk = vsock_sk(sk);
1214  
1215  	lock_sock(sk);
1216  
1217  	transport = vsk->transport;
1218  
1219  	err = vsock_auto_bind(vsk);
1220  	if (err)
1221  		goto out;
1222  
1223  
1224  	/* If the provided message contains an address, use that.  Otherwise
1225  	 * fall back on the socket's remote handle (if it has been connected).
1226  	 */
1227  	if (msg->msg_name &&
1228  	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1229  			    &remote_addr) == 0) {
1230  		/* Ensure this address is of the right type and is a valid
1231  		 * destination.
1232  		 */
1233  
1234  		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1235  			remote_addr->svm_cid = transport->get_local_cid();
1236  
1237  		if (!vsock_addr_bound(remote_addr)) {
1238  			err = -EINVAL;
1239  			goto out;
1240  		}
1241  	} else if (sock->state == SS_CONNECTED) {
1242  		remote_addr = &vsk->remote_addr;
1243  
1244  		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1245  			remote_addr->svm_cid = transport->get_local_cid();
1246  
1247  		/* XXX Should connect() or this function ensure remote_addr is
1248  		 * bound?
1249  		 */
1250  		if (!vsock_addr_bound(&vsk->remote_addr)) {
1251  			err = -EINVAL;
1252  			goto out;
1253  		}
1254  	} else {
1255  		err = -EINVAL;
1256  		goto out;
1257  	}
1258  
1259  	if (!transport->dgram_allow(remote_addr->svm_cid,
1260  				    remote_addr->svm_port)) {
1261  		err = -EINVAL;
1262  		goto out;
1263  	}
1264  
1265  	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1266  
1267  out:
1268  	release_sock(sk);
1269  	return err;
1270  }
1271  
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1272  static int vsock_dgram_connect(struct socket *sock,
1273  			       struct sockaddr *addr, int addr_len, int flags)
1274  {
1275  	int err;
1276  	struct sock *sk;
1277  	struct vsock_sock *vsk;
1278  	struct sockaddr_vm *remote_addr;
1279  
1280  	sk = sock->sk;
1281  	vsk = vsock_sk(sk);
1282  
1283  	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1284  	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1285  		lock_sock(sk);
1286  		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1287  				VMADDR_PORT_ANY);
1288  		sock->state = SS_UNCONNECTED;
1289  		release_sock(sk);
1290  		return 0;
1291  	} else if (err != 0)
1292  		return -EINVAL;
1293  
1294  	lock_sock(sk);
1295  
1296  	err = vsock_auto_bind(vsk);
1297  	if (err)
1298  		goto out;
1299  
1300  	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1301  					 remote_addr->svm_port)) {
1302  		err = -EINVAL;
1303  		goto out;
1304  	}
1305  
1306  	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1307  	sock->state = SS_CONNECTED;
1308  
1309  	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1310  	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1311  	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1312  	 *
1313  	 * This doesn't seem to be abnormal state for datagram sockets, as the
1314  	 * same approach can be see in other datagram socket types as well
1315  	 * (such as unix sockets).
1316  	 */
1317  	sk->sk_state = TCP_ESTABLISHED;
1318  
1319  out:
1320  	release_sock(sk);
1321  	return err;
1322  }
1323  
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1324  int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1325  			  size_t len, int flags)
1326  {
1327  	struct sock *sk = sock->sk;
1328  	struct vsock_sock *vsk = vsock_sk(sk);
1329  
1330  	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1331  }
1332  
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1333  int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1334  			size_t len, int flags)
1335  {
1336  #ifdef CONFIG_BPF_SYSCALL
1337  	struct sock *sk = sock->sk;
1338  	const struct proto *prot;
1339  
1340  	prot = READ_ONCE(sk->sk_prot);
1341  	if (prot != &vsock_proto)
1342  		return prot->recvmsg(sk, msg, len, flags, NULL);
1343  #endif
1344  
1345  	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1346  }
1347  EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1348  
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1349  static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1350  			  int __user *arg)
1351  {
1352  	struct sock *sk = sock->sk;
1353  	struct vsock_sock *vsk;
1354  	int ret;
1355  
1356  	vsk = vsock_sk(sk);
1357  
1358  	switch (cmd) {
1359  	case SIOCOUTQ: {
1360  		ssize_t n_bytes;
1361  
1362  		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1363  			ret = -EOPNOTSUPP;
1364  			break;
1365  		}
1366  
1367  		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1368  			ret = -EINVAL;
1369  			break;
1370  		}
1371  
1372  		n_bytes = vsk->transport->unsent_bytes(vsk);
1373  		if (n_bytes < 0) {
1374  			ret = n_bytes;
1375  			break;
1376  		}
1377  
1378  		ret = put_user(n_bytes, arg);
1379  		break;
1380  	}
1381  	default:
1382  		ret = -ENOIOCTLCMD;
1383  	}
1384  
1385  	return ret;
1386  }
1387  
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1388  static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1389  		       unsigned long arg)
1390  {
1391  	int ret;
1392  
1393  	lock_sock(sock->sk);
1394  	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1395  	release_sock(sock->sk);
1396  
1397  	return ret;
1398  }
1399  
1400  static const struct proto_ops vsock_dgram_ops = {
1401  	.family = PF_VSOCK,
1402  	.owner = THIS_MODULE,
1403  	.release = vsock_release,
1404  	.bind = vsock_bind,
1405  	.connect = vsock_dgram_connect,
1406  	.socketpair = sock_no_socketpair,
1407  	.accept = sock_no_accept,
1408  	.getname = vsock_getname,
1409  	.poll = vsock_poll,
1410  	.ioctl = vsock_ioctl,
1411  	.listen = sock_no_listen,
1412  	.shutdown = vsock_shutdown,
1413  	.sendmsg = vsock_dgram_sendmsg,
1414  	.recvmsg = vsock_dgram_recvmsg,
1415  	.mmap = sock_no_mmap,
1416  	.read_skb = vsock_read_skb,
1417  };
1418  
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1419  static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1420  {
1421  	const struct vsock_transport *transport = vsk->transport;
1422  
1423  	if (!transport || !transport->cancel_pkt)
1424  		return -EOPNOTSUPP;
1425  
1426  	return transport->cancel_pkt(vsk);
1427  }
1428  
vsock_connect_timeout(struct work_struct * work)1429  static void vsock_connect_timeout(struct work_struct *work)
1430  {
1431  	struct sock *sk;
1432  	struct vsock_sock *vsk;
1433  
1434  	vsk = container_of(work, struct vsock_sock, connect_work.work);
1435  	sk = sk_vsock(vsk);
1436  
1437  	lock_sock(sk);
1438  	if (sk->sk_state == TCP_SYN_SENT &&
1439  	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1440  		sk->sk_state = TCP_CLOSE;
1441  		sk->sk_socket->state = SS_UNCONNECTED;
1442  		sk->sk_err = ETIMEDOUT;
1443  		sk_error_report(sk);
1444  		vsock_transport_cancel_pkt(vsk);
1445  	}
1446  	release_sock(sk);
1447  
1448  	sock_put(sk);
1449  }
1450  
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1451  static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1452  			 int addr_len, int flags)
1453  {
1454  	int err;
1455  	struct sock *sk;
1456  	struct vsock_sock *vsk;
1457  	const struct vsock_transport *transport;
1458  	struct sockaddr_vm *remote_addr;
1459  	long timeout;
1460  	DEFINE_WAIT(wait);
1461  
1462  	err = 0;
1463  	sk = sock->sk;
1464  	vsk = vsock_sk(sk);
1465  
1466  	lock_sock(sk);
1467  
1468  	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1469  	switch (sock->state) {
1470  	case SS_CONNECTED:
1471  		err = -EISCONN;
1472  		goto out;
1473  	case SS_DISCONNECTING:
1474  		err = -EINVAL;
1475  		goto out;
1476  	case SS_CONNECTING:
1477  		/* This continues on so we can move sock into the SS_CONNECTED
1478  		 * state once the connection has completed (at which point err
1479  		 * will be set to zero also).  Otherwise, we will either wait
1480  		 * for the connection or return -EALREADY should this be a
1481  		 * non-blocking call.
1482  		 */
1483  		err = -EALREADY;
1484  		if (flags & O_NONBLOCK)
1485  			goto out;
1486  		break;
1487  	default:
1488  		if ((sk->sk_state == TCP_LISTEN) ||
1489  		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1490  			err = -EINVAL;
1491  			goto out;
1492  		}
1493  
1494  		/* Set the remote address that we are connecting to. */
1495  		memcpy(&vsk->remote_addr, remote_addr,
1496  		       sizeof(vsk->remote_addr));
1497  
1498  		err = vsock_assign_transport(vsk, NULL);
1499  		if (err)
1500  			goto out;
1501  
1502  		transport = vsk->transport;
1503  
1504  		/* The hypervisor and well-known contexts do not have socket
1505  		 * endpoints.
1506  		 */
1507  		if (!transport ||
1508  		    !transport->stream_allow(remote_addr->svm_cid,
1509  					     remote_addr->svm_port)) {
1510  			err = -ENETUNREACH;
1511  			goto out;
1512  		}
1513  
1514  		if (vsock_msgzerocopy_allow(transport)) {
1515  			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1516  		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1517  			/* If this option was set before 'connect()',
1518  			 * when transport was unknown, check that this
1519  			 * feature is supported here.
1520  			 */
1521  			err = -EOPNOTSUPP;
1522  			goto out;
1523  		}
1524  
1525  		err = vsock_auto_bind(vsk);
1526  		if (err)
1527  			goto out;
1528  
1529  		sk->sk_state = TCP_SYN_SENT;
1530  
1531  		err = transport->connect(vsk);
1532  		if (err < 0)
1533  			goto out;
1534  
1535  		/* sk_err might have been set as a result of an earlier
1536  		 * (failed) connect attempt.
1537  		 */
1538  		sk->sk_err = 0;
1539  
1540  		/* Mark sock as connecting and set the error code to in
1541  		 * progress in case this is a non-blocking connect.
1542  		 */
1543  		sock->state = SS_CONNECTING;
1544  		err = -EINPROGRESS;
1545  	}
1546  
1547  	/* The receive path will handle all communication until we are able to
1548  	 * enter the connected state.  Here we wait for the connection to be
1549  	 * completed or a notification of an error.
1550  	 */
1551  	timeout = vsk->connect_timeout;
1552  	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1553  
1554  	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1555  		if (flags & O_NONBLOCK) {
1556  			/* If we're not going to block, we schedule a timeout
1557  			 * function to generate a timeout on the connection
1558  			 * attempt, in case the peer doesn't respond in a
1559  			 * timely manner. We hold on to the socket until the
1560  			 * timeout fires.
1561  			 */
1562  			sock_hold(sk);
1563  
1564  			/* If the timeout function is already scheduled,
1565  			 * reschedule it, then ungrab the socket refcount to
1566  			 * keep it balanced.
1567  			 */
1568  			if (mod_delayed_work(system_wq, &vsk->connect_work,
1569  					     timeout))
1570  				sock_put(sk);
1571  
1572  			/* Skip ahead to preserve error code set above. */
1573  			goto out_wait;
1574  		}
1575  
1576  		release_sock(sk);
1577  		timeout = schedule_timeout(timeout);
1578  		lock_sock(sk);
1579  
1580  		if (signal_pending(current)) {
1581  			err = sock_intr_errno(timeout);
1582  			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1583  			sock->state = SS_UNCONNECTED;
1584  			vsock_transport_cancel_pkt(vsk);
1585  			vsock_remove_connected(vsk);
1586  			goto out_wait;
1587  		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1588  			err = -ETIMEDOUT;
1589  			sk->sk_state = TCP_CLOSE;
1590  			sock->state = SS_UNCONNECTED;
1591  			vsock_transport_cancel_pkt(vsk);
1592  			goto out_wait;
1593  		}
1594  
1595  		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1596  	}
1597  
1598  	if (sk->sk_err) {
1599  		err = -sk->sk_err;
1600  		sk->sk_state = TCP_CLOSE;
1601  		sock->state = SS_UNCONNECTED;
1602  	} else {
1603  		err = 0;
1604  	}
1605  
1606  out_wait:
1607  	finish_wait(sk_sleep(sk), &wait);
1608  out:
1609  	release_sock(sk);
1610  	return err;
1611  }
1612  
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1613  static int vsock_accept(struct socket *sock, struct socket *newsock,
1614  			struct proto_accept_arg *arg)
1615  {
1616  	struct sock *listener;
1617  	int err;
1618  	struct sock *connected;
1619  	struct vsock_sock *vconnected;
1620  	long timeout;
1621  	DEFINE_WAIT(wait);
1622  
1623  	err = 0;
1624  	listener = sock->sk;
1625  
1626  	lock_sock(listener);
1627  
1628  	if (!sock_type_connectible(sock->type)) {
1629  		err = -EOPNOTSUPP;
1630  		goto out;
1631  	}
1632  
1633  	if (listener->sk_state != TCP_LISTEN) {
1634  		err = -EINVAL;
1635  		goto out;
1636  	}
1637  
1638  	/* Wait for children sockets to appear; these are the new sockets
1639  	 * created upon connection establishment.
1640  	 */
1641  	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1642  	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1643  
1644  	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1645  	       listener->sk_err == 0) {
1646  		release_sock(listener);
1647  		timeout = schedule_timeout(timeout);
1648  		finish_wait(sk_sleep(listener), &wait);
1649  		lock_sock(listener);
1650  
1651  		if (signal_pending(current)) {
1652  			err = sock_intr_errno(timeout);
1653  			goto out;
1654  		} else if (timeout == 0) {
1655  			err = -EAGAIN;
1656  			goto out;
1657  		}
1658  
1659  		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1660  	}
1661  	finish_wait(sk_sleep(listener), &wait);
1662  
1663  	if (listener->sk_err)
1664  		err = -listener->sk_err;
1665  
1666  	if (connected) {
1667  		sk_acceptq_removed(listener);
1668  
1669  		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1670  		vconnected = vsock_sk(connected);
1671  
1672  		/* If the listener socket has received an error, then we should
1673  		 * reject this socket and return.  Note that we simply mark the
1674  		 * socket rejected, drop our reference, and let the cleanup
1675  		 * function handle the cleanup; the fact that we found it in
1676  		 * the listener's accept queue guarantees that the cleanup
1677  		 * function hasn't run yet.
1678  		 */
1679  		if (err) {
1680  			vconnected->rejected = true;
1681  		} else {
1682  			newsock->state = SS_CONNECTED;
1683  			sock_graft(connected, newsock);
1684  			if (vsock_msgzerocopy_allow(vconnected->transport))
1685  				set_bit(SOCK_SUPPORT_ZC,
1686  					&connected->sk_socket->flags);
1687  		}
1688  
1689  		release_sock(connected);
1690  		sock_put(connected);
1691  	}
1692  
1693  out:
1694  	release_sock(listener);
1695  	return err;
1696  }
1697  
vsock_listen(struct socket * sock,int backlog)1698  static int vsock_listen(struct socket *sock, int backlog)
1699  {
1700  	int err;
1701  	struct sock *sk;
1702  	struct vsock_sock *vsk;
1703  
1704  	sk = sock->sk;
1705  
1706  	lock_sock(sk);
1707  
1708  	if (!sock_type_connectible(sk->sk_type)) {
1709  		err = -EOPNOTSUPP;
1710  		goto out;
1711  	}
1712  
1713  	if (sock->state != SS_UNCONNECTED) {
1714  		err = -EINVAL;
1715  		goto out;
1716  	}
1717  
1718  	vsk = vsock_sk(sk);
1719  
1720  	if (!vsock_addr_bound(&vsk->local_addr)) {
1721  		err = -EINVAL;
1722  		goto out;
1723  	}
1724  
1725  	sk->sk_max_ack_backlog = backlog;
1726  	sk->sk_state = TCP_LISTEN;
1727  
1728  	err = 0;
1729  
1730  out:
1731  	release_sock(sk);
1732  	return err;
1733  }
1734  
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1735  static void vsock_update_buffer_size(struct vsock_sock *vsk,
1736  				     const struct vsock_transport *transport,
1737  				     u64 val)
1738  {
1739  	if (val > vsk->buffer_max_size)
1740  		val = vsk->buffer_max_size;
1741  
1742  	if (val < vsk->buffer_min_size)
1743  		val = vsk->buffer_min_size;
1744  
1745  	if (val != vsk->buffer_size &&
1746  	    transport && transport->notify_buffer_size)
1747  		transport->notify_buffer_size(vsk, &val);
1748  
1749  	vsk->buffer_size = val;
1750  }
1751  
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1752  static int vsock_connectible_setsockopt(struct socket *sock,
1753  					int level,
1754  					int optname,
1755  					sockptr_t optval,
1756  					unsigned int optlen)
1757  {
1758  	int err;
1759  	struct sock *sk;
1760  	struct vsock_sock *vsk;
1761  	const struct vsock_transport *transport;
1762  	u64 val;
1763  
1764  	if (level != AF_VSOCK && level != SOL_SOCKET)
1765  		return -ENOPROTOOPT;
1766  
1767  #define COPY_IN(_v)                                       \
1768  	do {						  \
1769  		if (optlen < sizeof(_v)) {		  \
1770  			err = -EINVAL;			  \
1771  			goto exit;			  \
1772  		}					  \
1773  		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1774  			err = -EFAULT;					\
1775  			goto exit;					\
1776  		}							\
1777  	} while (0)
1778  
1779  	err = 0;
1780  	sk = sock->sk;
1781  	vsk = vsock_sk(sk);
1782  
1783  	lock_sock(sk);
1784  
1785  	transport = vsk->transport;
1786  
1787  	if (level == SOL_SOCKET) {
1788  		int zerocopy;
1789  
1790  		if (optname != SO_ZEROCOPY) {
1791  			release_sock(sk);
1792  			return sock_setsockopt(sock, level, optname, optval, optlen);
1793  		}
1794  
1795  		/* Use 'int' type here, because variable to
1796  		 * set this option usually has this type.
1797  		 */
1798  		COPY_IN(zerocopy);
1799  
1800  		if (zerocopy < 0 || zerocopy > 1) {
1801  			err = -EINVAL;
1802  			goto exit;
1803  		}
1804  
1805  		if (transport && !vsock_msgzerocopy_allow(transport)) {
1806  			err = -EOPNOTSUPP;
1807  			goto exit;
1808  		}
1809  
1810  		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1811  		goto exit;
1812  	}
1813  
1814  	switch (optname) {
1815  	case SO_VM_SOCKETS_BUFFER_SIZE:
1816  		COPY_IN(val);
1817  		vsock_update_buffer_size(vsk, transport, val);
1818  		break;
1819  
1820  	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1821  		COPY_IN(val);
1822  		vsk->buffer_max_size = val;
1823  		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1824  		break;
1825  
1826  	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1827  		COPY_IN(val);
1828  		vsk->buffer_min_size = val;
1829  		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1830  		break;
1831  
1832  	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1833  	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1834  		struct __kernel_sock_timeval tv;
1835  
1836  		err = sock_copy_user_timeval(&tv, optval, optlen,
1837  					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1838  		if (err)
1839  			break;
1840  		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1841  		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1842  			vsk->connect_timeout = tv.tv_sec * HZ +
1843  				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1844  			if (vsk->connect_timeout == 0)
1845  				vsk->connect_timeout =
1846  				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1847  
1848  		} else {
1849  			err = -ERANGE;
1850  		}
1851  		break;
1852  	}
1853  
1854  	default:
1855  		err = -ENOPROTOOPT;
1856  		break;
1857  	}
1858  
1859  #undef COPY_IN
1860  
1861  exit:
1862  	release_sock(sk);
1863  	return err;
1864  }
1865  
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1866  static int vsock_connectible_getsockopt(struct socket *sock,
1867  					int level, int optname,
1868  					char __user *optval,
1869  					int __user *optlen)
1870  {
1871  	struct sock *sk = sock->sk;
1872  	struct vsock_sock *vsk = vsock_sk(sk);
1873  
1874  	union {
1875  		u64 val64;
1876  		struct old_timeval32 tm32;
1877  		struct __kernel_old_timeval tm;
1878  		struct  __kernel_sock_timeval stm;
1879  	} v;
1880  
1881  	int lv = sizeof(v.val64);
1882  	int len;
1883  
1884  	if (level != AF_VSOCK)
1885  		return -ENOPROTOOPT;
1886  
1887  	if (get_user(len, optlen))
1888  		return -EFAULT;
1889  
1890  	memset(&v, 0, sizeof(v));
1891  
1892  	switch (optname) {
1893  	case SO_VM_SOCKETS_BUFFER_SIZE:
1894  		v.val64 = vsk->buffer_size;
1895  		break;
1896  
1897  	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1898  		v.val64 = vsk->buffer_max_size;
1899  		break;
1900  
1901  	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1902  		v.val64 = vsk->buffer_min_size;
1903  		break;
1904  
1905  	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1906  	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1907  		lv = sock_get_timeout(vsk->connect_timeout, &v,
1908  				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1909  		break;
1910  
1911  	default:
1912  		return -ENOPROTOOPT;
1913  	}
1914  
1915  	if (len < lv)
1916  		return -EINVAL;
1917  	if (len > lv)
1918  		len = lv;
1919  	if (copy_to_user(optval, &v, len))
1920  		return -EFAULT;
1921  
1922  	if (put_user(len, optlen))
1923  		return -EFAULT;
1924  
1925  	return 0;
1926  }
1927  
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1928  static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1929  				     size_t len)
1930  {
1931  	struct sock *sk;
1932  	struct vsock_sock *vsk;
1933  	const struct vsock_transport *transport;
1934  	ssize_t total_written;
1935  	long timeout;
1936  	int err;
1937  	struct vsock_transport_send_notify_data send_data;
1938  	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1939  
1940  	sk = sock->sk;
1941  	vsk = vsock_sk(sk);
1942  	total_written = 0;
1943  	err = 0;
1944  
1945  	if (msg->msg_flags & MSG_OOB)
1946  		return -EOPNOTSUPP;
1947  
1948  	lock_sock(sk);
1949  
1950  	transport = vsk->transport;
1951  
1952  	/* Callers should not provide a destination with connection oriented
1953  	 * sockets.
1954  	 */
1955  	if (msg->msg_namelen) {
1956  		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1957  		goto out;
1958  	}
1959  
1960  	/* Send data only if both sides are not shutdown in the direction. */
1961  	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1962  	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1963  		err = -EPIPE;
1964  		goto out;
1965  	}
1966  
1967  	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1968  	    !vsock_addr_bound(&vsk->local_addr)) {
1969  		err = -ENOTCONN;
1970  		goto out;
1971  	}
1972  
1973  	if (!vsock_addr_bound(&vsk->remote_addr)) {
1974  		err = -EDESTADDRREQ;
1975  		goto out;
1976  	}
1977  
1978  	if (msg->msg_flags & MSG_ZEROCOPY &&
1979  	    !vsock_msgzerocopy_allow(transport)) {
1980  		err = -EOPNOTSUPP;
1981  		goto out;
1982  	}
1983  
1984  	/* Wait for room in the produce queue to enqueue our user's data. */
1985  	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1986  
1987  	err = transport->notify_send_init(vsk, &send_data);
1988  	if (err < 0)
1989  		goto out;
1990  
1991  	while (total_written < len) {
1992  		ssize_t written;
1993  
1994  		add_wait_queue(sk_sleep(sk), &wait);
1995  		while (vsock_stream_has_space(vsk) == 0 &&
1996  		       sk->sk_err == 0 &&
1997  		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1998  		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1999  
2000  			/* Don't wait for non-blocking sockets. */
2001  			if (timeout == 0) {
2002  				err = -EAGAIN;
2003  				remove_wait_queue(sk_sleep(sk), &wait);
2004  				goto out_err;
2005  			}
2006  
2007  			err = transport->notify_send_pre_block(vsk, &send_data);
2008  			if (err < 0) {
2009  				remove_wait_queue(sk_sleep(sk), &wait);
2010  				goto out_err;
2011  			}
2012  
2013  			release_sock(sk);
2014  			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2015  			lock_sock(sk);
2016  			if (signal_pending(current)) {
2017  				err = sock_intr_errno(timeout);
2018  				remove_wait_queue(sk_sleep(sk), &wait);
2019  				goto out_err;
2020  			} else if (timeout == 0) {
2021  				err = -EAGAIN;
2022  				remove_wait_queue(sk_sleep(sk), &wait);
2023  				goto out_err;
2024  			}
2025  		}
2026  		remove_wait_queue(sk_sleep(sk), &wait);
2027  
2028  		/* These checks occur both as part of and after the loop
2029  		 * conditional since we need to check before and after
2030  		 * sleeping.
2031  		 */
2032  		if (sk->sk_err) {
2033  			err = -sk->sk_err;
2034  			goto out_err;
2035  		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2036  			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2037  			err = -EPIPE;
2038  			goto out_err;
2039  		}
2040  
2041  		err = transport->notify_send_pre_enqueue(vsk, &send_data);
2042  		if (err < 0)
2043  			goto out_err;
2044  
2045  		/* Note that enqueue will only write as many bytes as are free
2046  		 * in the produce queue, so we don't need to ensure len is
2047  		 * smaller than the queue size.  It is the caller's
2048  		 * responsibility to check how many bytes we were able to send.
2049  		 */
2050  
2051  		if (sk->sk_type == SOCK_SEQPACKET) {
2052  			written = transport->seqpacket_enqueue(vsk,
2053  						msg, len - total_written);
2054  		} else {
2055  			written = transport->stream_enqueue(vsk,
2056  					msg, len - total_written);
2057  		}
2058  
2059  		if (written < 0) {
2060  			err = written;
2061  			goto out_err;
2062  		}
2063  
2064  		total_written += written;
2065  
2066  		err = transport->notify_send_post_enqueue(
2067  				vsk, written, &send_data);
2068  		if (err < 0)
2069  			goto out_err;
2070  
2071  	}
2072  
2073  out_err:
2074  	if (total_written > 0) {
2075  		/* Return number of written bytes only if:
2076  		 * 1) SOCK_STREAM socket.
2077  		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2078  		 */
2079  		if (sk->sk_type == SOCK_STREAM || total_written == len)
2080  			err = total_written;
2081  	}
2082  out:
2083  	if (sk->sk_type == SOCK_STREAM)
2084  		err = sk_stream_error(sk, msg->msg_flags, err);
2085  
2086  	release_sock(sk);
2087  	return err;
2088  }
2089  
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2090  static int vsock_connectible_wait_data(struct sock *sk,
2091  				       struct wait_queue_entry *wait,
2092  				       long timeout,
2093  				       struct vsock_transport_recv_notify_data *recv_data,
2094  				       size_t target)
2095  {
2096  	const struct vsock_transport *transport;
2097  	struct vsock_sock *vsk;
2098  	s64 data;
2099  	int err;
2100  
2101  	vsk = vsock_sk(sk);
2102  	err = 0;
2103  	transport = vsk->transport;
2104  
2105  	while (1) {
2106  		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2107  		data = vsock_connectible_has_data(vsk);
2108  		if (data != 0)
2109  			break;
2110  
2111  		if (sk->sk_err != 0 ||
2112  		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2113  		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2114  			break;
2115  		}
2116  
2117  		/* Don't wait for non-blocking sockets. */
2118  		if (timeout == 0) {
2119  			err = -EAGAIN;
2120  			break;
2121  		}
2122  
2123  		if (recv_data) {
2124  			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2125  			if (err < 0)
2126  				break;
2127  		}
2128  
2129  		release_sock(sk);
2130  		timeout = schedule_timeout(timeout);
2131  		lock_sock(sk);
2132  
2133  		if (signal_pending(current)) {
2134  			err = sock_intr_errno(timeout);
2135  			break;
2136  		} else if (timeout == 0) {
2137  			err = -EAGAIN;
2138  			break;
2139  		}
2140  	}
2141  
2142  	finish_wait(sk_sleep(sk), wait);
2143  
2144  	if (err)
2145  		return err;
2146  
2147  	/* Internal transport error when checking for available
2148  	 * data. XXX This should be changed to a connection
2149  	 * reset in a later change.
2150  	 */
2151  	if (data < 0)
2152  		return -ENOMEM;
2153  
2154  	return data;
2155  }
2156  
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2157  static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2158  				  size_t len, int flags)
2159  {
2160  	struct vsock_transport_recv_notify_data recv_data;
2161  	const struct vsock_transport *transport;
2162  	struct vsock_sock *vsk;
2163  	ssize_t copied;
2164  	size_t target;
2165  	long timeout;
2166  	int err;
2167  
2168  	DEFINE_WAIT(wait);
2169  
2170  	vsk = vsock_sk(sk);
2171  	transport = vsk->transport;
2172  
2173  	/* We must not copy less than target bytes into the user's buffer
2174  	 * before returning successfully, so we wait for the consume queue to
2175  	 * have that much data to consume before dequeueing.  Note that this
2176  	 * makes it impossible to handle cases where target is greater than the
2177  	 * queue size.
2178  	 */
2179  	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2180  	if (target >= transport->stream_rcvhiwat(vsk)) {
2181  		err = -ENOMEM;
2182  		goto out;
2183  	}
2184  	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2185  	copied = 0;
2186  
2187  	err = transport->notify_recv_init(vsk, target, &recv_data);
2188  	if (err < 0)
2189  		goto out;
2190  
2191  
2192  	while (1) {
2193  		ssize_t read;
2194  
2195  		err = vsock_connectible_wait_data(sk, &wait, timeout,
2196  						  &recv_data, target);
2197  		if (err <= 0)
2198  			break;
2199  
2200  		err = transport->notify_recv_pre_dequeue(vsk, target,
2201  							 &recv_data);
2202  		if (err < 0)
2203  			break;
2204  
2205  		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2206  		if (read < 0) {
2207  			err = read;
2208  			break;
2209  		}
2210  
2211  		copied += read;
2212  
2213  		err = transport->notify_recv_post_dequeue(vsk, target, read,
2214  						!(flags & MSG_PEEK), &recv_data);
2215  		if (err < 0)
2216  			goto out;
2217  
2218  		if (read >= target || flags & MSG_PEEK)
2219  			break;
2220  
2221  		target -= read;
2222  	}
2223  
2224  	if (sk->sk_err)
2225  		err = -sk->sk_err;
2226  	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2227  		err = 0;
2228  
2229  	if (copied > 0)
2230  		err = copied;
2231  
2232  out:
2233  	return err;
2234  }
2235  
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2236  static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2237  				     size_t len, int flags)
2238  {
2239  	const struct vsock_transport *transport;
2240  	struct vsock_sock *vsk;
2241  	ssize_t msg_len;
2242  	long timeout;
2243  	int err = 0;
2244  	DEFINE_WAIT(wait);
2245  
2246  	vsk = vsock_sk(sk);
2247  	transport = vsk->transport;
2248  
2249  	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2250  
2251  	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2252  	if (err <= 0)
2253  		goto out;
2254  
2255  	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2256  
2257  	if (msg_len < 0) {
2258  		err = msg_len;
2259  		goto out;
2260  	}
2261  
2262  	if (sk->sk_err) {
2263  		err = -sk->sk_err;
2264  	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2265  		err = 0;
2266  	} else {
2267  		/* User sets MSG_TRUNC, so return real length of
2268  		 * packet.
2269  		 */
2270  		if (flags & MSG_TRUNC)
2271  			err = msg_len;
2272  		else
2273  			err = len - msg_data_left(msg);
2274  
2275  		/* Always set MSG_TRUNC if real length of packet is
2276  		 * bigger than user's buffer.
2277  		 */
2278  		if (msg_len > len)
2279  			msg->msg_flags |= MSG_TRUNC;
2280  	}
2281  
2282  out:
2283  	return err;
2284  }
2285  
2286  int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2287  __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2288  			    int flags)
2289  {
2290  	struct sock *sk;
2291  	struct vsock_sock *vsk;
2292  	const struct vsock_transport *transport;
2293  	int err;
2294  
2295  	sk = sock->sk;
2296  
2297  	if (unlikely(flags & MSG_ERRQUEUE))
2298  		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2299  
2300  	vsk = vsock_sk(sk);
2301  	err = 0;
2302  
2303  	lock_sock(sk);
2304  
2305  	transport = vsk->transport;
2306  
2307  	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2308  		/* Recvmsg is supposed to return 0 if a peer performs an
2309  		 * orderly shutdown. Differentiate between that case and when a
2310  		 * peer has not connected or a local shutdown occurred with the
2311  		 * SOCK_DONE flag.
2312  		 */
2313  		if (sock_flag(sk, SOCK_DONE))
2314  			err = 0;
2315  		else
2316  			err = -ENOTCONN;
2317  
2318  		goto out;
2319  	}
2320  
2321  	if (flags & MSG_OOB) {
2322  		err = -EOPNOTSUPP;
2323  		goto out;
2324  	}
2325  
2326  	/* We don't check peer_shutdown flag here since peer may actually shut
2327  	 * down, but there can be data in the queue that a local socket can
2328  	 * receive.
2329  	 */
2330  	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2331  		err = 0;
2332  		goto out;
2333  	}
2334  
2335  	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2336  	 * is not an error.  We may as well bail out now.
2337  	 */
2338  	if (!len) {
2339  		err = 0;
2340  		goto out;
2341  	}
2342  
2343  	if (sk->sk_type == SOCK_STREAM)
2344  		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2345  	else
2346  		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2347  
2348  out:
2349  	release_sock(sk);
2350  	return err;
2351  }
2352  
2353  int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2354  vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2355  			  int flags)
2356  {
2357  #ifdef CONFIG_BPF_SYSCALL
2358  	struct sock *sk = sock->sk;
2359  	const struct proto *prot;
2360  
2361  	prot = READ_ONCE(sk->sk_prot);
2362  	if (prot != &vsock_proto)
2363  		return prot->recvmsg(sk, msg, len, flags, NULL);
2364  #endif
2365  
2366  	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2367  }
2368  EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2369  
vsock_set_rcvlowat(struct sock * sk,int val)2370  static int vsock_set_rcvlowat(struct sock *sk, int val)
2371  {
2372  	const struct vsock_transport *transport;
2373  	struct vsock_sock *vsk;
2374  
2375  	vsk = vsock_sk(sk);
2376  
2377  	if (val > vsk->buffer_size)
2378  		return -EINVAL;
2379  
2380  	transport = vsk->transport;
2381  
2382  	if (transport && transport->notify_set_rcvlowat) {
2383  		int err;
2384  
2385  		err = transport->notify_set_rcvlowat(vsk, val);
2386  		if (err)
2387  			return err;
2388  	}
2389  
2390  	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2391  	return 0;
2392  }
2393  
2394  static const struct proto_ops vsock_stream_ops = {
2395  	.family = PF_VSOCK,
2396  	.owner = THIS_MODULE,
2397  	.release = vsock_release,
2398  	.bind = vsock_bind,
2399  	.connect = vsock_connect,
2400  	.socketpair = sock_no_socketpair,
2401  	.accept = vsock_accept,
2402  	.getname = vsock_getname,
2403  	.poll = vsock_poll,
2404  	.ioctl = vsock_ioctl,
2405  	.listen = vsock_listen,
2406  	.shutdown = vsock_shutdown,
2407  	.setsockopt = vsock_connectible_setsockopt,
2408  	.getsockopt = vsock_connectible_getsockopt,
2409  	.sendmsg = vsock_connectible_sendmsg,
2410  	.recvmsg = vsock_connectible_recvmsg,
2411  	.mmap = sock_no_mmap,
2412  	.set_rcvlowat = vsock_set_rcvlowat,
2413  	.read_skb = vsock_read_skb,
2414  };
2415  
2416  static const struct proto_ops vsock_seqpacket_ops = {
2417  	.family = PF_VSOCK,
2418  	.owner = THIS_MODULE,
2419  	.release = vsock_release,
2420  	.bind = vsock_bind,
2421  	.connect = vsock_connect,
2422  	.socketpair = sock_no_socketpair,
2423  	.accept = vsock_accept,
2424  	.getname = vsock_getname,
2425  	.poll = vsock_poll,
2426  	.ioctl = vsock_ioctl,
2427  	.listen = vsock_listen,
2428  	.shutdown = vsock_shutdown,
2429  	.setsockopt = vsock_connectible_setsockopt,
2430  	.getsockopt = vsock_connectible_getsockopt,
2431  	.sendmsg = vsock_connectible_sendmsg,
2432  	.recvmsg = vsock_connectible_recvmsg,
2433  	.mmap = sock_no_mmap,
2434  	.read_skb = vsock_read_skb,
2435  };
2436  
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2437  static int vsock_create(struct net *net, struct socket *sock,
2438  			int protocol, int kern)
2439  {
2440  	struct vsock_sock *vsk;
2441  	struct sock *sk;
2442  	int ret;
2443  
2444  	if (!sock)
2445  		return -EINVAL;
2446  
2447  	if (protocol && protocol != PF_VSOCK)
2448  		return -EPROTONOSUPPORT;
2449  
2450  	switch (sock->type) {
2451  	case SOCK_DGRAM:
2452  		sock->ops = &vsock_dgram_ops;
2453  		break;
2454  	case SOCK_STREAM:
2455  		sock->ops = &vsock_stream_ops;
2456  		break;
2457  	case SOCK_SEQPACKET:
2458  		sock->ops = &vsock_seqpacket_ops;
2459  		break;
2460  	default:
2461  		return -ESOCKTNOSUPPORT;
2462  	}
2463  
2464  	sock->state = SS_UNCONNECTED;
2465  
2466  	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2467  	if (!sk)
2468  		return -ENOMEM;
2469  
2470  	vsk = vsock_sk(sk);
2471  
2472  	if (sock->type == SOCK_DGRAM) {
2473  		ret = vsock_assign_transport(vsk, NULL);
2474  		if (ret < 0) {
2475  			sock->sk = NULL;
2476  			sock_put(sk);
2477  			return ret;
2478  		}
2479  	}
2480  
2481  	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2482  	 * proto_ops, so there is no handler for custom logic.
2483  	 */
2484  	if (sock_type_connectible(sock->type))
2485  		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2486  
2487  	vsock_insert_unbound(vsk);
2488  
2489  	return 0;
2490  }
2491  
2492  static const struct net_proto_family vsock_family_ops = {
2493  	.family = AF_VSOCK,
2494  	.create = vsock_create,
2495  	.owner = THIS_MODULE,
2496  };
2497  
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2498  static long vsock_dev_do_ioctl(struct file *filp,
2499  			       unsigned int cmd, void __user *ptr)
2500  {
2501  	u32 __user *p = ptr;
2502  	u32 cid = VMADDR_CID_ANY;
2503  	int retval = 0;
2504  
2505  	switch (cmd) {
2506  	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2507  		/* To be compatible with the VMCI behavior, we prioritize the
2508  		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2509  		 */
2510  		if (transport_g2h)
2511  			cid = transport_g2h->get_local_cid();
2512  		else if (transport_h2g)
2513  			cid = transport_h2g->get_local_cid();
2514  
2515  		if (put_user(cid, p) != 0)
2516  			retval = -EFAULT;
2517  		break;
2518  
2519  	default:
2520  		retval = -ENOIOCTLCMD;
2521  	}
2522  
2523  	return retval;
2524  }
2525  
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2526  static long vsock_dev_ioctl(struct file *filp,
2527  			    unsigned int cmd, unsigned long arg)
2528  {
2529  	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2530  }
2531  
2532  #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2533  static long vsock_dev_compat_ioctl(struct file *filp,
2534  				   unsigned int cmd, unsigned long arg)
2535  {
2536  	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2537  }
2538  #endif
2539  
2540  static const struct file_operations vsock_device_ops = {
2541  	.owner		= THIS_MODULE,
2542  	.unlocked_ioctl	= vsock_dev_ioctl,
2543  #ifdef CONFIG_COMPAT
2544  	.compat_ioctl	= vsock_dev_compat_ioctl,
2545  #endif
2546  	.open		= nonseekable_open,
2547  };
2548  
2549  static struct miscdevice vsock_device = {
2550  	.name		= "vsock",
2551  	.fops		= &vsock_device_ops,
2552  };
2553  
vsock_init(void)2554  static int __init vsock_init(void)
2555  {
2556  	int err = 0;
2557  
2558  	vsock_init_tables();
2559  
2560  	vsock_proto.owner = THIS_MODULE;
2561  	vsock_device.minor = MISC_DYNAMIC_MINOR;
2562  	err = misc_register(&vsock_device);
2563  	if (err) {
2564  		pr_err("Failed to register misc device\n");
2565  		goto err_reset_transport;
2566  	}
2567  
2568  	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2569  	if (err) {
2570  		pr_err("Cannot register vsock protocol\n");
2571  		goto err_deregister_misc;
2572  	}
2573  
2574  	err = sock_register(&vsock_family_ops);
2575  	if (err) {
2576  		pr_err("could not register af_vsock (%d) address family: %d\n",
2577  		       AF_VSOCK, err);
2578  		goto err_unregister_proto;
2579  	}
2580  
2581  	vsock_bpf_build_proto();
2582  
2583  	return 0;
2584  
2585  err_unregister_proto:
2586  	proto_unregister(&vsock_proto);
2587  err_deregister_misc:
2588  	misc_deregister(&vsock_device);
2589  err_reset_transport:
2590  	return err;
2591  }
2592  
vsock_exit(void)2593  static void __exit vsock_exit(void)
2594  {
2595  	misc_deregister(&vsock_device);
2596  	sock_unregister(AF_VSOCK);
2597  	proto_unregister(&vsock_proto);
2598  }
2599  
vsock_core_get_transport(struct vsock_sock * vsk)2600  const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2601  {
2602  	return vsk->transport;
2603  }
2604  EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2605  
vsock_core_register(const struct vsock_transport * t,int features)2606  int vsock_core_register(const struct vsock_transport *t, int features)
2607  {
2608  	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2609  	int err = mutex_lock_interruptible(&vsock_register_mutex);
2610  
2611  	if (err)
2612  		return err;
2613  
2614  	t_h2g = transport_h2g;
2615  	t_g2h = transport_g2h;
2616  	t_dgram = transport_dgram;
2617  	t_local = transport_local;
2618  
2619  	if (features & VSOCK_TRANSPORT_F_H2G) {
2620  		if (t_h2g) {
2621  			err = -EBUSY;
2622  			goto err_busy;
2623  		}
2624  		t_h2g = t;
2625  	}
2626  
2627  	if (features & VSOCK_TRANSPORT_F_G2H) {
2628  		if (t_g2h) {
2629  			err = -EBUSY;
2630  			goto err_busy;
2631  		}
2632  		t_g2h = t;
2633  	}
2634  
2635  	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2636  		if (t_dgram) {
2637  			err = -EBUSY;
2638  			goto err_busy;
2639  		}
2640  		t_dgram = t;
2641  	}
2642  
2643  	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2644  		if (t_local) {
2645  			err = -EBUSY;
2646  			goto err_busy;
2647  		}
2648  		t_local = t;
2649  	}
2650  
2651  	transport_h2g = t_h2g;
2652  	transport_g2h = t_g2h;
2653  	transport_dgram = t_dgram;
2654  	transport_local = t_local;
2655  
2656  err_busy:
2657  	mutex_unlock(&vsock_register_mutex);
2658  	return err;
2659  }
2660  EXPORT_SYMBOL_GPL(vsock_core_register);
2661  
vsock_core_unregister(const struct vsock_transport * t)2662  void vsock_core_unregister(const struct vsock_transport *t)
2663  {
2664  	mutex_lock(&vsock_register_mutex);
2665  
2666  	if (transport_h2g == t)
2667  		transport_h2g = NULL;
2668  
2669  	if (transport_g2h == t)
2670  		transport_g2h = NULL;
2671  
2672  	if (transport_dgram == t)
2673  		transport_dgram = NULL;
2674  
2675  	if (transport_local == t)
2676  		transport_local = NULL;
2677  
2678  	mutex_unlock(&vsock_register_mutex);
2679  }
2680  EXPORT_SYMBOL_GPL(vsock_core_unregister);
2681  
2682  module_init(vsock_init);
2683  module_exit(vsock_exit);
2684  
2685  MODULE_AUTHOR("VMware, Inc.");
2686  MODULE_DESCRIPTION("VMware Virtual Socket Family");
2687  MODULE_VERSION("1.0.2.0-k");
2688  MODULE_LICENSE("GPL v2");
2689