1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/errqueue.h> 93 #include <linux/init.h> 94 #include <linux/io.h> 95 #include <linux/kernel.h> 96 #include <linux/sched/signal.h> 97 #include <linux/kmod.h> 98 #include <linux/list.h> 99 #include <linux/miscdevice.h> 100 #include <linux/module.h> 101 #include <linux/mutex.h> 102 #include <linux/net.h> 103 #include <linux/poll.h> 104 #include <linux/random.h> 105 #include <linux/skbuff.h> 106 #include <linux/smp.h> 107 #include <linux/socket.h> 108 #include <linux/stddef.h> 109 #include <linux/unistd.h> 110 #include <linux/wait.h> 111 #include <linux/workqueue.h> 112 #include <net/sock.h> 113 #include <net/af_vsock.h> 114 #include <uapi/linux/vm_sockets.h> 115 #include <uapi/asm-generic/ioctls.h> 116 117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 118 static void vsock_sk_destruct(struct sock *sk); 119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 120 static void vsock_close(struct sock *sk, long timeout); 121 122 /* Protocol family. */ 123 struct proto vsock_proto = { 124 .name = "AF_VSOCK", 125 .owner = THIS_MODULE, 126 .obj_size = sizeof(struct vsock_sock), 127 .close = vsock_close, 128 #ifdef CONFIG_BPF_SYSCALL 129 .psock_update_sk_prot = vsock_bpf_update_proto, 130 #endif 131 }; 132 133 /* The default peer timeout indicates how long we will wait for a peer response 134 * to a control message. 135 */ 136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 137 138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 141 142 /* Transport used for host->guest communication */ 143 static const struct vsock_transport *transport_h2g; 144 /* Transport used for guest->host communication */ 145 static const struct vsock_transport *transport_g2h; 146 /* Transport used for DGRAM communication */ 147 static const struct vsock_transport *transport_dgram; 148 /* Transport used for local communication */ 149 static const struct vsock_transport *transport_local; 150 static DEFINE_MUTEX(vsock_register_mutex); 151 152 /**** UTILS ****/ 153 154 /* Each bound VSocket is stored in the bind hash table and each connected 155 * VSocket is stored in the connected hash table. 156 * 157 * Unbound sockets are all put on the same list attached to the end of the hash 158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 159 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 160 * represents the list that addr hashes to). 161 * 162 * Specifically, we initialize the vsock_bind_table array to a size of 163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 166 * mods with VSOCK_HASH_SIZE to ensure this. 167 */ 168 #define MAX_PORT_RETRIES 24 169 170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 173 174 /* XXX This can probably be implemented in a better way. */ 175 #define VSOCK_CONN_HASH(src, dst) \ 176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 177 #define vsock_connected_sockets(src, dst) \ 178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 179 #define vsock_connected_sockets_vsk(vsk) \ 180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 181 182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 183 EXPORT_SYMBOL_GPL(vsock_bind_table); 184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 185 EXPORT_SYMBOL_GPL(vsock_connected_table); 186 DEFINE_SPINLOCK(vsock_table_lock); 187 EXPORT_SYMBOL_GPL(vsock_table_lock); 188 189 /* Autobind this socket to the local address if necessary. */ 190 static int vsock_auto_bind(struct vsock_sock *vsk) 191 { 192 struct sock *sk = sk_vsock(vsk); 193 struct sockaddr_vm local_addr; 194 195 if (vsock_addr_bound(&vsk->local_addr)) 196 return 0; 197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 198 return __vsock_bind(sk, &local_addr); 199 } 200 201 static void vsock_init_tables(void) 202 { 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 206 INIT_LIST_HEAD(&vsock_bind_table[i]); 207 208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 209 INIT_LIST_HEAD(&vsock_connected_table[i]); 210 } 211 212 static void __vsock_insert_bound(struct list_head *list, 213 struct vsock_sock *vsk) 214 { 215 sock_hold(&vsk->sk); 216 list_add(&vsk->bound_table, list); 217 } 218 219 static void __vsock_insert_connected(struct list_head *list, 220 struct vsock_sock *vsk) 221 { 222 sock_hold(&vsk->sk); 223 list_add(&vsk->connected_table, list); 224 } 225 226 static void __vsock_remove_bound(struct vsock_sock *vsk) 227 { 228 list_del_init(&vsk->bound_table); 229 sock_put(&vsk->sk); 230 } 231 232 static void __vsock_remove_connected(struct vsock_sock *vsk) 233 { 234 list_del_init(&vsk->connected_table); 235 sock_put(&vsk->sk); 236 } 237 238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 239 { 240 struct vsock_sock *vsk; 241 242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 243 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 244 return sk_vsock(vsk); 245 246 if (addr->svm_port == vsk->local_addr.svm_port && 247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 248 addr->svm_cid == VMADDR_CID_ANY)) 249 return sk_vsock(vsk); 250 } 251 252 return NULL; 253 } 254 255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 256 struct sockaddr_vm *dst) 257 { 258 struct vsock_sock *vsk; 259 260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 261 connected_table) { 262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 263 dst->svm_port == vsk->local_addr.svm_port) { 264 return sk_vsock(vsk); 265 } 266 } 267 268 return NULL; 269 } 270 271 static void vsock_insert_unbound(struct vsock_sock *vsk) 272 { 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_insert_bound(vsock_unbound_sockets, vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 278 void vsock_insert_connected(struct vsock_sock *vsk) 279 { 280 struct list_head *list = vsock_connected_sockets( 281 &vsk->remote_addr, &vsk->local_addr); 282 283 spin_lock_bh(&vsock_table_lock); 284 __vsock_insert_connected(list, vsk); 285 spin_unlock_bh(&vsock_table_lock); 286 } 287 EXPORT_SYMBOL_GPL(vsock_insert_connected); 288 289 void vsock_remove_bound(struct vsock_sock *vsk) 290 { 291 spin_lock_bh(&vsock_table_lock); 292 if (__vsock_in_bound_table(vsk)) 293 __vsock_remove_bound(vsk); 294 spin_unlock_bh(&vsock_table_lock); 295 } 296 EXPORT_SYMBOL_GPL(vsock_remove_bound); 297 298 void vsock_remove_connected(struct vsock_sock *vsk) 299 { 300 spin_lock_bh(&vsock_table_lock); 301 if (__vsock_in_connected_table(vsk)) 302 __vsock_remove_connected(vsk); 303 spin_unlock_bh(&vsock_table_lock); 304 } 305 EXPORT_SYMBOL_GPL(vsock_remove_connected); 306 307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 308 { 309 struct sock *sk; 310 311 spin_lock_bh(&vsock_table_lock); 312 sk = __vsock_find_bound_socket(addr); 313 if (sk) 314 sock_hold(sk); 315 316 spin_unlock_bh(&vsock_table_lock); 317 318 return sk; 319 } 320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 321 322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 323 struct sockaddr_vm *dst) 324 { 325 struct sock *sk; 326 327 spin_lock_bh(&vsock_table_lock); 328 sk = __vsock_find_connected_socket(src, dst); 329 if (sk) 330 sock_hold(sk); 331 332 spin_unlock_bh(&vsock_table_lock); 333 334 return sk; 335 } 336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 337 338 void vsock_remove_sock(struct vsock_sock *vsk) 339 { 340 /* Transport reassignment must not remove the binding. */ 341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD)) 342 vsock_remove_bound(vsk); 343 344 vsock_remove_connected(vsk); 345 } 346 EXPORT_SYMBOL_GPL(vsock_remove_sock); 347 348 void vsock_for_each_connected_socket(struct vsock_transport *transport, 349 void (*fn)(struct sock *sk)) 350 { 351 int i; 352 353 spin_lock_bh(&vsock_table_lock); 354 355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 356 struct vsock_sock *vsk; 357 list_for_each_entry(vsk, &vsock_connected_table[i], 358 connected_table) { 359 if (vsk->transport != transport) 360 continue; 361 362 fn(sk_vsock(vsk)); 363 } 364 } 365 366 spin_unlock_bh(&vsock_table_lock); 367 } 368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 369 370 void vsock_add_pending(struct sock *listener, struct sock *pending) 371 { 372 struct vsock_sock *vlistener; 373 struct vsock_sock *vpending; 374 375 vlistener = vsock_sk(listener); 376 vpending = vsock_sk(pending); 377 378 sock_hold(pending); 379 sock_hold(listener); 380 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 381 } 382 EXPORT_SYMBOL_GPL(vsock_add_pending); 383 384 void vsock_remove_pending(struct sock *listener, struct sock *pending) 385 { 386 struct vsock_sock *vpending = vsock_sk(pending); 387 388 list_del_init(&vpending->pending_links); 389 sock_put(listener); 390 sock_put(pending); 391 } 392 EXPORT_SYMBOL_GPL(vsock_remove_pending); 393 394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 395 { 396 struct vsock_sock *vlistener; 397 struct vsock_sock *vconnected; 398 399 vlistener = vsock_sk(listener); 400 vconnected = vsock_sk(connected); 401 402 sock_hold(connected); 403 sock_hold(listener); 404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 405 } 406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 407 408 static bool vsock_use_local_transport(unsigned int remote_cid) 409 { 410 if (!transport_local) 411 return false; 412 413 if (remote_cid == VMADDR_CID_LOCAL) 414 return true; 415 416 if (transport_g2h) { 417 return remote_cid == transport_g2h->get_local_cid(); 418 } else { 419 return remote_cid == VMADDR_CID_HOST; 420 } 421 } 422 423 static void vsock_deassign_transport(struct vsock_sock *vsk) 424 { 425 if (!vsk->transport) 426 return; 427 428 vsk->transport->destruct(vsk); 429 module_put(vsk->transport->module); 430 vsk->transport = NULL; 431 } 432 433 /* Assign a transport to a socket and call the .init transport callback. 434 * 435 * Note: for connection oriented socket this must be called when vsk->remote_addr 436 * is set (e.g. during the connect() or when a connection request on a listener 437 * socket is received). 438 * The vsk->remote_addr is used to decide which transport to use: 439 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 440 * g2h is not loaded, will use local transport; 441 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 442 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 443 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 444 */ 445 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 446 { 447 const struct vsock_transport *new_transport; 448 struct sock *sk = sk_vsock(vsk); 449 unsigned int remote_cid = vsk->remote_addr.svm_cid; 450 __u8 remote_flags; 451 int ret; 452 453 /* If the packet is coming with the source and destination CIDs higher 454 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 455 * forwarded to the host should be established. Then the host will 456 * need to forward the packets to the guest. 457 * 458 * The flag is set on the (listen) receive path (psk is not NULL). On 459 * the connect path the flag can be set by the user space application. 460 */ 461 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 462 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 463 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 464 465 remote_flags = vsk->remote_addr.svm_flags; 466 467 switch (sk->sk_type) { 468 case SOCK_DGRAM: 469 new_transport = transport_dgram; 470 break; 471 case SOCK_STREAM: 472 case SOCK_SEQPACKET: 473 if (vsock_use_local_transport(remote_cid)) 474 new_transport = transport_local; 475 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 476 (remote_flags & VMADDR_FLAG_TO_HOST)) 477 new_transport = transport_g2h; 478 else 479 new_transport = transport_h2g; 480 break; 481 default: 482 return -ESOCKTNOSUPPORT; 483 } 484 485 if (vsk->transport) { 486 if (vsk->transport == new_transport) 487 return 0; 488 489 /* transport->release() must be called with sock lock acquired. 490 * This path can only be taken during vsock_connect(), where we 491 * have already held the sock lock. In the other cases, this 492 * function is called on a new socket which is not assigned to 493 * any transport. 494 */ 495 vsk->transport->release(vsk); 496 vsock_deassign_transport(vsk); 497 498 /* transport's release() and destruct() can touch some socket 499 * state, since we are reassigning the socket to a new transport 500 * during vsock_connect(), let's reset these fields to have a 501 * clean state. 502 */ 503 sock_reset_flag(sk, SOCK_DONE); 504 sk->sk_state = TCP_CLOSE; 505 vsk->peer_shutdown = 0; 506 } 507 508 /* We increase the module refcnt to prevent the transport unloading 509 * while there are open sockets assigned to it. 510 */ 511 if (!new_transport || !try_module_get(new_transport->module)) 512 return -ENODEV; 513 514 if (sk->sk_type == SOCK_SEQPACKET) { 515 if (!new_transport->seqpacket_allow || 516 !new_transport->seqpacket_allow(remote_cid)) { 517 module_put(new_transport->module); 518 return -ESOCKTNOSUPPORT; 519 } 520 } 521 522 ret = new_transport->init(vsk, psk); 523 if (ret) { 524 module_put(new_transport->module); 525 return ret; 526 } 527 528 vsk->transport = new_transport; 529 530 return 0; 531 } 532 EXPORT_SYMBOL_GPL(vsock_assign_transport); 533 534 bool vsock_find_cid(unsigned int cid) 535 { 536 if (transport_g2h && cid == transport_g2h->get_local_cid()) 537 return true; 538 539 if (transport_h2g && cid == VMADDR_CID_HOST) 540 return true; 541 542 if (transport_local && cid == VMADDR_CID_LOCAL) 543 return true; 544 545 return false; 546 } 547 EXPORT_SYMBOL_GPL(vsock_find_cid); 548 549 static struct sock *vsock_dequeue_accept(struct sock *listener) 550 { 551 struct vsock_sock *vlistener; 552 struct vsock_sock *vconnected; 553 554 vlistener = vsock_sk(listener); 555 556 if (list_empty(&vlistener->accept_queue)) 557 return NULL; 558 559 vconnected = list_entry(vlistener->accept_queue.next, 560 struct vsock_sock, accept_queue); 561 562 list_del_init(&vconnected->accept_queue); 563 sock_put(listener); 564 /* The caller will need a reference on the connected socket so we let 565 * it call sock_put(). 566 */ 567 568 return sk_vsock(vconnected); 569 } 570 571 static bool vsock_is_accept_queue_empty(struct sock *sk) 572 { 573 struct vsock_sock *vsk = vsock_sk(sk); 574 return list_empty(&vsk->accept_queue); 575 } 576 577 static bool vsock_is_pending(struct sock *sk) 578 { 579 struct vsock_sock *vsk = vsock_sk(sk); 580 return !list_empty(&vsk->pending_links); 581 } 582 583 static int vsock_send_shutdown(struct sock *sk, int mode) 584 { 585 struct vsock_sock *vsk = vsock_sk(sk); 586 587 if (!vsk->transport) 588 return -ENODEV; 589 590 return vsk->transport->shutdown(vsk, mode); 591 } 592 593 static void vsock_pending_work(struct work_struct *work) 594 { 595 struct sock *sk; 596 struct sock *listener; 597 struct vsock_sock *vsk; 598 bool cleanup; 599 600 vsk = container_of(work, struct vsock_sock, pending_work.work); 601 sk = sk_vsock(vsk); 602 listener = vsk->listener; 603 cleanup = true; 604 605 lock_sock(listener); 606 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 607 608 if (vsock_is_pending(sk)) { 609 vsock_remove_pending(listener, sk); 610 611 sk_acceptq_removed(listener); 612 } else if (!vsk->rejected) { 613 /* We are not on the pending list and accept() did not reject 614 * us, so we must have been accepted by our user process. We 615 * just need to drop our references to the sockets and be on 616 * our way. 617 */ 618 cleanup = false; 619 goto out; 620 } 621 622 /* We need to remove ourself from the global connected sockets list so 623 * incoming packets can't find this socket, and to reduce the reference 624 * count. 625 */ 626 vsock_remove_connected(vsk); 627 628 sk->sk_state = TCP_CLOSE; 629 630 out: 631 release_sock(sk); 632 release_sock(listener); 633 if (cleanup) 634 sock_put(sk); 635 636 sock_put(sk); 637 sock_put(listener); 638 } 639 640 /**** SOCKET OPERATIONS ****/ 641 642 static int __vsock_bind_connectible(struct vsock_sock *vsk, 643 struct sockaddr_vm *addr) 644 { 645 static u32 port; 646 struct sockaddr_vm new_addr; 647 648 if (!port) 649 port = get_random_u32_above(LAST_RESERVED_PORT); 650 651 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 652 653 if (addr->svm_port == VMADDR_PORT_ANY) { 654 bool found = false; 655 unsigned int i; 656 657 for (i = 0; i < MAX_PORT_RETRIES; i++) { 658 if (port <= LAST_RESERVED_PORT) 659 port = LAST_RESERVED_PORT + 1; 660 661 new_addr.svm_port = port++; 662 663 if (!__vsock_find_bound_socket(&new_addr)) { 664 found = true; 665 break; 666 } 667 } 668 669 if (!found) 670 return -EADDRNOTAVAIL; 671 } else { 672 /* If port is in reserved range, ensure caller 673 * has necessary privileges. 674 */ 675 if (addr->svm_port <= LAST_RESERVED_PORT && 676 !capable(CAP_NET_BIND_SERVICE)) { 677 return -EACCES; 678 } 679 680 if (__vsock_find_bound_socket(&new_addr)) 681 return -EADDRINUSE; 682 } 683 684 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 685 686 /* Remove connection oriented sockets from the unbound list and add them 687 * to the hash table for easy lookup by its address. The unbound list 688 * is simply an extra entry at the end of the hash table, a trick used 689 * by AF_UNIX. 690 */ 691 __vsock_remove_bound(vsk); 692 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 693 694 return 0; 695 } 696 697 static int __vsock_bind_dgram(struct vsock_sock *vsk, 698 struct sockaddr_vm *addr) 699 { 700 return vsk->transport->dgram_bind(vsk, addr); 701 } 702 703 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 704 { 705 struct vsock_sock *vsk = vsock_sk(sk); 706 int retval; 707 708 /* First ensure this socket isn't already bound. */ 709 if (vsock_addr_bound(&vsk->local_addr)) 710 return -EINVAL; 711 712 /* Now bind to the provided address or select appropriate values if 713 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 714 * like AF_INET prevents binding to a non-local IP address (in most 715 * cases), we only allow binding to a local CID. 716 */ 717 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 718 return -EADDRNOTAVAIL; 719 720 switch (sk->sk_socket->type) { 721 case SOCK_STREAM: 722 case SOCK_SEQPACKET: 723 spin_lock_bh(&vsock_table_lock); 724 retval = __vsock_bind_connectible(vsk, addr); 725 spin_unlock_bh(&vsock_table_lock); 726 break; 727 728 case SOCK_DGRAM: 729 retval = __vsock_bind_dgram(vsk, addr); 730 break; 731 732 default: 733 retval = -EINVAL; 734 break; 735 } 736 737 return retval; 738 } 739 740 static void vsock_connect_timeout(struct work_struct *work); 741 742 static struct sock *__vsock_create(struct net *net, 743 struct socket *sock, 744 struct sock *parent, 745 gfp_t priority, 746 unsigned short type, 747 int kern) 748 { 749 struct sock *sk; 750 struct vsock_sock *psk; 751 struct vsock_sock *vsk; 752 753 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 754 if (!sk) 755 return NULL; 756 757 sock_init_data(sock, sk); 758 759 /* sk->sk_type is normally set in sock_init_data, but only if sock is 760 * non-NULL. We make sure that our sockets always have a type by 761 * setting it here if needed. 762 */ 763 if (!sock) 764 sk->sk_type = type; 765 766 vsk = vsock_sk(sk); 767 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 768 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 769 770 sk->sk_destruct = vsock_sk_destruct; 771 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 772 sock_reset_flag(sk, SOCK_DONE); 773 774 INIT_LIST_HEAD(&vsk->bound_table); 775 INIT_LIST_HEAD(&vsk->connected_table); 776 vsk->listener = NULL; 777 INIT_LIST_HEAD(&vsk->pending_links); 778 INIT_LIST_HEAD(&vsk->accept_queue); 779 vsk->rejected = false; 780 vsk->sent_request = false; 781 vsk->ignore_connecting_rst = false; 782 vsk->peer_shutdown = 0; 783 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 784 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 785 786 psk = parent ? vsock_sk(parent) : NULL; 787 if (parent) { 788 vsk->trusted = psk->trusted; 789 vsk->owner = get_cred(psk->owner); 790 vsk->connect_timeout = psk->connect_timeout; 791 vsk->buffer_size = psk->buffer_size; 792 vsk->buffer_min_size = psk->buffer_min_size; 793 vsk->buffer_max_size = psk->buffer_max_size; 794 security_sk_clone(parent, sk); 795 } else { 796 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 797 vsk->owner = get_current_cred(); 798 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 799 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 800 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 801 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 802 } 803 804 return sk; 805 } 806 807 static bool sock_type_connectible(u16 type) 808 { 809 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 810 } 811 812 static void __vsock_release(struct sock *sk, int level) 813 { 814 struct vsock_sock *vsk; 815 struct sock *pending; 816 817 vsk = vsock_sk(sk); 818 pending = NULL; /* Compiler warning. */ 819 820 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 821 * version to avoid the warning "possible recursive locking 822 * detected". When "level" is 0, lock_sock_nested(sk, level) 823 * is the same as lock_sock(sk). 824 */ 825 lock_sock_nested(sk, level); 826 827 /* Indicate to vsock_remove_sock() that the socket is being released and 828 * can be removed from the bound_table. Unlike transport reassignment 829 * case, where the socket must remain bound despite vsock_remove_sock() 830 * being called from the transport release() callback. 831 */ 832 sock_set_flag(sk, SOCK_DEAD); 833 834 if (vsk->transport) 835 vsk->transport->release(vsk); 836 else if (sock_type_connectible(sk->sk_type)) 837 vsock_remove_sock(vsk); 838 839 sock_orphan(sk); 840 sk->sk_shutdown = SHUTDOWN_MASK; 841 842 skb_queue_purge(&sk->sk_receive_queue); 843 844 /* Clean up any sockets that never were accepted. */ 845 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 846 __vsock_release(pending, SINGLE_DEPTH_NESTING); 847 sock_put(pending); 848 } 849 850 release_sock(sk); 851 sock_put(sk); 852 } 853 854 static void vsock_sk_destruct(struct sock *sk) 855 { 856 struct vsock_sock *vsk = vsock_sk(sk); 857 858 /* Flush MSG_ZEROCOPY leftovers. */ 859 __skb_queue_purge(&sk->sk_error_queue); 860 861 vsock_deassign_transport(vsk); 862 863 /* When clearing these addresses, there's no need to set the family and 864 * possibly register the address family with the kernel. 865 */ 866 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 867 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 868 869 put_cred(vsk->owner); 870 } 871 872 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 873 { 874 int err; 875 876 err = sock_queue_rcv_skb(sk, skb); 877 if (err) 878 kfree_skb(skb); 879 880 return err; 881 } 882 883 struct sock *vsock_create_connected(struct sock *parent) 884 { 885 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 886 parent->sk_type, 0); 887 } 888 EXPORT_SYMBOL_GPL(vsock_create_connected); 889 890 s64 vsock_stream_has_data(struct vsock_sock *vsk) 891 { 892 if (WARN_ON(!vsk->transport)) 893 return 0; 894 895 return vsk->transport->stream_has_data(vsk); 896 } 897 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 898 899 s64 vsock_connectible_has_data(struct vsock_sock *vsk) 900 { 901 struct sock *sk = sk_vsock(vsk); 902 903 if (WARN_ON(!vsk->transport)) 904 return 0; 905 906 if (sk->sk_type == SOCK_SEQPACKET) 907 return vsk->transport->seqpacket_has_data(vsk); 908 else 909 return vsock_stream_has_data(vsk); 910 } 911 EXPORT_SYMBOL_GPL(vsock_connectible_has_data); 912 913 s64 vsock_stream_has_space(struct vsock_sock *vsk) 914 { 915 if (WARN_ON(!vsk->transport)) 916 return 0; 917 918 return vsk->transport->stream_has_space(vsk); 919 } 920 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 921 922 void vsock_data_ready(struct sock *sk) 923 { 924 struct vsock_sock *vsk = vsock_sk(sk); 925 926 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || 927 sock_flag(sk, SOCK_DONE)) 928 sk->sk_data_ready(sk); 929 } 930 EXPORT_SYMBOL_GPL(vsock_data_ready); 931 932 /* Dummy callback required by sockmap. 933 * See unconditional call of saved_close() in sock_map_close(). 934 */ 935 static void vsock_close(struct sock *sk, long timeout) 936 { 937 } 938 939 static int vsock_release(struct socket *sock) 940 { 941 struct sock *sk = sock->sk; 942 943 if (!sk) 944 return 0; 945 946 sk->sk_prot->close(sk, 0); 947 __vsock_release(sk, 0); 948 sock->sk = NULL; 949 sock->state = SS_FREE; 950 951 return 0; 952 } 953 954 static int 955 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 956 { 957 int err; 958 struct sock *sk; 959 struct sockaddr_vm *vm_addr; 960 961 sk = sock->sk; 962 963 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 964 return -EINVAL; 965 966 lock_sock(sk); 967 err = __vsock_bind(sk, vm_addr); 968 release_sock(sk); 969 970 return err; 971 } 972 973 static int vsock_getname(struct socket *sock, 974 struct sockaddr *addr, int peer) 975 { 976 int err; 977 struct sock *sk; 978 struct vsock_sock *vsk; 979 struct sockaddr_vm *vm_addr; 980 981 sk = sock->sk; 982 vsk = vsock_sk(sk); 983 err = 0; 984 985 lock_sock(sk); 986 987 if (peer) { 988 if (sock->state != SS_CONNECTED) { 989 err = -ENOTCONN; 990 goto out; 991 } 992 vm_addr = &vsk->remote_addr; 993 } else { 994 vm_addr = &vsk->local_addr; 995 } 996 997 if (!vm_addr) { 998 err = -EINVAL; 999 goto out; 1000 } 1001 1002 /* sys_getsockname() and sys_getpeername() pass us a 1003 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 1004 * that macro is defined in socket.c instead of .h, so we hardcode its 1005 * value here. 1006 */ 1007 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 1008 memcpy(addr, vm_addr, sizeof(*vm_addr)); 1009 err = sizeof(*vm_addr); 1010 1011 out: 1012 release_sock(sk); 1013 return err; 1014 } 1015 1016 static int vsock_shutdown(struct socket *sock, int mode) 1017 { 1018 int err; 1019 struct sock *sk; 1020 1021 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 1022 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 1023 * here like the other address families do. Note also that the 1024 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 1025 * which is what we want. 1026 */ 1027 mode++; 1028 1029 if ((mode & ~SHUTDOWN_MASK) || !mode) 1030 return -EINVAL; 1031 1032 /* If this is a connection oriented socket and it is not connected then 1033 * bail out immediately. If it is a DGRAM socket then we must first 1034 * kick the socket so that it wakes up from any sleeping calls, for 1035 * example recv(), and then afterwards return the error. 1036 */ 1037 1038 sk = sock->sk; 1039 1040 lock_sock(sk); 1041 if (sock->state == SS_UNCONNECTED) { 1042 err = -ENOTCONN; 1043 if (sock_type_connectible(sk->sk_type)) 1044 goto out; 1045 } else { 1046 sock->state = SS_DISCONNECTING; 1047 err = 0; 1048 } 1049 1050 /* Receive and send shutdowns are treated alike. */ 1051 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 1052 if (mode) { 1053 sk->sk_shutdown |= mode; 1054 sk->sk_state_change(sk); 1055 1056 if (sock_type_connectible(sk->sk_type)) { 1057 sock_reset_flag(sk, SOCK_DONE); 1058 vsock_send_shutdown(sk, mode); 1059 } 1060 } 1061 1062 out: 1063 release_sock(sk); 1064 return err; 1065 } 1066 1067 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1068 poll_table *wait) 1069 { 1070 struct sock *sk; 1071 __poll_t mask; 1072 struct vsock_sock *vsk; 1073 1074 sk = sock->sk; 1075 vsk = vsock_sk(sk); 1076 1077 poll_wait(file, sk_sleep(sk), wait); 1078 mask = 0; 1079 1080 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 1081 /* Signify that there has been an error on this socket. */ 1082 mask |= EPOLLERR; 1083 1084 /* INET sockets treat local write shutdown and peer write shutdown as a 1085 * case of EPOLLHUP set. 1086 */ 1087 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1088 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1089 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1090 mask |= EPOLLHUP; 1091 } 1092 1093 if (sk->sk_shutdown & RCV_SHUTDOWN || 1094 vsk->peer_shutdown & SEND_SHUTDOWN) { 1095 mask |= EPOLLRDHUP; 1096 } 1097 1098 if (sk_is_readable(sk)) 1099 mask |= EPOLLIN | EPOLLRDNORM; 1100 1101 if (sock->type == SOCK_DGRAM) { 1102 /* For datagram sockets we can read if there is something in 1103 * the queue and write as long as the socket isn't shutdown for 1104 * sending. 1105 */ 1106 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1107 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1108 mask |= EPOLLIN | EPOLLRDNORM; 1109 } 1110 1111 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1112 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1113 1114 } else if (sock_type_connectible(sk->sk_type)) { 1115 const struct vsock_transport *transport; 1116 1117 lock_sock(sk); 1118 1119 transport = vsk->transport; 1120 1121 /* Listening sockets that have connections in their accept 1122 * queue can be read. 1123 */ 1124 if (sk->sk_state == TCP_LISTEN 1125 && !vsock_is_accept_queue_empty(sk)) 1126 mask |= EPOLLIN | EPOLLRDNORM; 1127 1128 /* If there is something in the queue then we can read. */ 1129 if (transport && transport->stream_is_active(vsk) && 1130 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1131 bool data_ready_now = false; 1132 int target = sock_rcvlowat(sk, 0, INT_MAX); 1133 int ret = transport->notify_poll_in( 1134 vsk, target, &data_ready_now); 1135 if (ret < 0) { 1136 mask |= EPOLLERR; 1137 } else { 1138 if (data_ready_now) 1139 mask |= EPOLLIN | EPOLLRDNORM; 1140 1141 } 1142 } 1143 1144 /* Sockets whose connections have been closed, reset, or 1145 * terminated should also be considered read, and we check the 1146 * shutdown flag for that. 1147 */ 1148 if (sk->sk_shutdown & RCV_SHUTDOWN || 1149 vsk->peer_shutdown & SEND_SHUTDOWN) { 1150 mask |= EPOLLIN | EPOLLRDNORM; 1151 } 1152 1153 /* Connected sockets that can produce data can be written. */ 1154 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1155 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1156 bool space_avail_now = false; 1157 int ret = transport->notify_poll_out( 1158 vsk, 1, &space_avail_now); 1159 if (ret < 0) { 1160 mask |= EPOLLERR; 1161 } else { 1162 if (space_avail_now) 1163 /* Remove EPOLLWRBAND since INET 1164 * sockets are not setting it. 1165 */ 1166 mask |= EPOLLOUT | EPOLLWRNORM; 1167 1168 } 1169 } 1170 } 1171 1172 /* Simulate INET socket poll behaviors, which sets 1173 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1174 * but local send is not shutdown. 1175 */ 1176 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1177 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1178 mask |= EPOLLOUT | EPOLLWRNORM; 1179 1180 } 1181 1182 release_sock(sk); 1183 } 1184 1185 return mask; 1186 } 1187 1188 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) 1189 { 1190 struct vsock_sock *vsk = vsock_sk(sk); 1191 1192 if (WARN_ON_ONCE(!vsk->transport)) 1193 return -ENODEV; 1194 1195 return vsk->transport->read_skb(vsk, read_actor); 1196 } 1197 1198 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1199 size_t len) 1200 { 1201 int err; 1202 struct sock *sk; 1203 struct vsock_sock *vsk; 1204 struct sockaddr_vm *remote_addr; 1205 const struct vsock_transport *transport; 1206 1207 if (msg->msg_flags & MSG_OOB) 1208 return -EOPNOTSUPP; 1209 1210 /* For now, MSG_DONTWAIT is always assumed... */ 1211 err = 0; 1212 sk = sock->sk; 1213 vsk = vsock_sk(sk); 1214 1215 lock_sock(sk); 1216 1217 transport = vsk->transport; 1218 1219 err = vsock_auto_bind(vsk); 1220 if (err) 1221 goto out; 1222 1223 1224 /* If the provided message contains an address, use that. Otherwise 1225 * fall back on the socket's remote handle (if it has been connected). 1226 */ 1227 if (msg->msg_name && 1228 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1229 &remote_addr) == 0) { 1230 /* Ensure this address is of the right type and is a valid 1231 * destination. 1232 */ 1233 1234 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1235 remote_addr->svm_cid = transport->get_local_cid(); 1236 1237 if (!vsock_addr_bound(remote_addr)) { 1238 err = -EINVAL; 1239 goto out; 1240 } 1241 } else if (sock->state == SS_CONNECTED) { 1242 remote_addr = &vsk->remote_addr; 1243 1244 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1245 remote_addr->svm_cid = transport->get_local_cid(); 1246 1247 /* XXX Should connect() or this function ensure remote_addr is 1248 * bound? 1249 */ 1250 if (!vsock_addr_bound(&vsk->remote_addr)) { 1251 err = -EINVAL; 1252 goto out; 1253 } 1254 } else { 1255 err = -EINVAL; 1256 goto out; 1257 } 1258 1259 if (!transport->dgram_allow(remote_addr->svm_cid, 1260 remote_addr->svm_port)) { 1261 err = -EINVAL; 1262 goto out; 1263 } 1264 1265 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1266 1267 out: 1268 release_sock(sk); 1269 return err; 1270 } 1271 1272 static int vsock_dgram_connect(struct socket *sock, 1273 struct sockaddr *addr, int addr_len, int flags) 1274 { 1275 int err; 1276 struct sock *sk; 1277 struct vsock_sock *vsk; 1278 struct sockaddr_vm *remote_addr; 1279 1280 sk = sock->sk; 1281 vsk = vsock_sk(sk); 1282 1283 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1284 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1285 lock_sock(sk); 1286 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1287 VMADDR_PORT_ANY); 1288 sock->state = SS_UNCONNECTED; 1289 release_sock(sk); 1290 return 0; 1291 } else if (err != 0) 1292 return -EINVAL; 1293 1294 lock_sock(sk); 1295 1296 err = vsock_auto_bind(vsk); 1297 if (err) 1298 goto out; 1299 1300 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1301 remote_addr->svm_port)) { 1302 err = -EINVAL; 1303 goto out; 1304 } 1305 1306 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1307 sock->state = SS_CONNECTED; 1308 1309 /* sock map disallows redirection of non-TCP sockets with sk_state != 1310 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set 1311 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. 1312 * 1313 * This doesn't seem to be abnormal state for datagram sockets, as the 1314 * same approach can be see in other datagram socket types as well 1315 * (such as unix sockets). 1316 */ 1317 sk->sk_state = TCP_ESTABLISHED; 1318 1319 out: 1320 release_sock(sk); 1321 return err; 1322 } 1323 1324 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1325 size_t len, int flags) 1326 { 1327 struct sock *sk = sock->sk; 1328 struct vsock_sock *vsk = vsock_sk(sk); 1329 1330 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1331 } 1332 1333 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1334 size_t len, int flags) 1335 { 1336 #ifdef CONFIG_BPF_SYSCALL 1337 struct sock *sk = sock->sk; 1338 const struct proto *prot; 1339 1340 prot = READ_ONCE(sk->sk_prot); 1341 if (prot != &vsock_proto) 1342 return prot->recvmsg(sk, msg, len, flags, NULL); 1343 #endif 1344 1345 return __vsock_dgram_recvmsg(sock, msg, len, flags); 1346 } 1347 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); 1348 1349 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd, 1350 int __user *arg) 1351 { 1352 struct sock *sk = sock->sk; 1353 struct vsock_sock *vsk; 1354 int ret; 1355 1356 vsk = vsock_sk(sk); 1357 1358 switch (cmd) { 1359 case SIOCOUTQ: { 1360 ssize_t n_bytes; 1361 1362 if (!vsk->transport || !vsk->transport->unsent_bytes) { 1363 ret = -EOPNOTSUPP; 1364 break; 1365 } 1366 1367 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) { 1368 ret = -EINVAL; 1369 break; 1370 } 1371 1372 n_bytes = vsk->transport->unsent_bytes(vsk); 1373 if (n_bytes < 0) { 1374 ret = n_bytes; 1375 break; 1376 } 1377 1378 ret = put_user(n_bytes, arg); 1379 break; 1380 } 1381 default: 1382 ret = -ENOIOCTLCMD; 1383 } 1384 1385 return ret; 1386 } 1387 1388 static int vsock_ioctl(struct socket *sock, unsigned int cmd, 1389 unsigned long arg) 1390 { 1391 int ret; 1392 1393 lock_sock(sock->sk); 1394 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg); 1395 release_sock(sock->sk); 1396 1397 return ret; 1398 } 1399 1400 static const struct proto_ops vsock_dgram_ops = { 1401 .family = PF_VSOCK, 1402 .owner = THIS_MODULE, 1403 .release = vsock_release, 1404 .bind = vsock_bind, 1405 .connect = vsock_dgram_connect, 1406 .socketpair = sock_no_socketpair, 1407 .accept = sock_no_accept, 1408 .getname = vsock_getname, 1409 .poll = vsock_poll, 1410 .ioctl = vsock_ioctl, 1411 .listen = sock_no_listen, 1412 .shutdown = vsock_shutdown, 1413 .sendmsg = vsock_dgram_sendmsg, 1414 .recvmsg = vsock_dgram_recvmsg, 1415 .mmap = sock_no_mmap, 1416 .read_skb = vsock_read_skb, 1417 }; 1418 1419 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1420 { 1421 const struct vsock_transport *transport = vsk->transport; 1422 1423 if (!transport || !transport->cancel_pkt) 1424 return -EOPNOTSUPP; 1425 1426 return transport->cancel_pkt(vsk); 1427 } 1428 1429 static void vsock_connect_timeout(struct work_struct *work) 1430 { 1431 struct sock *sk; 1432 struct vsock_sock *vsk; 1433 1434 vsk = container_of(work, struct vsock_sock, connect_work.work); 1435 sk = sk_vsock(vsk); 1436 1437 lock_sock(sk); 1438 if (sk->sk_state == TCP_SYN_SENT && 1439 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1440 sk->sk_state = TCP_CLOSE; 1441 sk->sk_socket->state = SS_UNCONNECTED; 1442 sk->sk_err = ETIMEDOUT; 1443 sk_error_report(sk); 1444 vsock_transport_cancel_pkt(vsk); 1445 } 1446 release_sock(sk); 1447 1448 sock_put(sk); 1449 } 1450 1451 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1452 int addr_len, int flags) 1453 { 1454 int err; 1455 struct sock *sk; 1456 struct vsock_sock *vsk; 1457 const struct vsock_transport *transport; 1458 struct sockaddr_vm *remote_addr; 1459 long timeout; 1460 DEFINE_WAIT(wait); 1461 1462 err = 0; 1463 sk = sock->sk; 1464 vsk = vsock_sk(sk); 1465 1466 lock_sock(sk); 1467 1468 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1469 switch (sock->state) { 1470 case SS_CONNECTED: 1471 err = -EISCONN; 1472 goto out; 1473 case SS_DISCONNECTING: 1474 err = -EINVAL; 1475 goto out; 1476 case SS_CONNECTING: 1477 /* This continues on so we can move sock into the SS_CONNECTED 1478 * state once the connection has completed (at which point err 1479 * will be set to zero also). Otherwise, we will either wait 1480 * for the connection or return -EALREADY should this be a 1481 * non-blocking call. 1482 */ 1483 err = -EALREADY; 1484 if (flags & O_NONBLOCK) 1485 goto out; 1486 break; 1487 default: 1488 if ((sk->sk_state == TCP_LISTEN) || 1489 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1490 err = -EINVAL; 1491 goto out; 1492 } 1493 1494 /* Set the remote address that we are connecting to. */ 1495 memcpy(&vsk->remote_addr, remote_addr, 1496 sizeof(vsk->remote_addr)); 1497 1498 err = vsock_assign_transport(vsk, NULL); 1499 if (err) 1500 goto out; 1501 1502 transport = vsk->transport; 1503 1504 /* The hypervisor and well-known contexts do not have socket 1505 * endpoints. 1506 */ 1507 if (!transport || 1508 !transport->stream_allow(remote_addr->svm_cid, 1509 remote_addr->svm_port)) { 1510 err = -ENETUNREACH; 1511 goto out; 1512 } 1513 1514 if (vsock_msgzerocopy_allow(transport)) { 1515 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1516 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1517 /* If this option was set before 'connect()', 1518 * when transport was unknown, check that this 1519 * feature is supported here. 1520 */ 1521 err = -EOPNOTSUPP; 1522 goto out; 1523 } 1524 1525 err = vsock_auto_bind(vsk); 1526 if (err) 1527 goto out; 1528 1529 sk->sk_state = TCP_SYN_SENT; 1530 1531 err = transport->connect(vsk); 1532 if (err < 0) 1533 goto out; 1534 1535 /* sk_err might have been set as a result of an earlier 1536 * (failed) connect attempt. 1537 */ 1538 sk->sk_err = 0; 1539 1540 /* Mark sock as connecting and set the error code to in 1541 * progress in case this is a non-blocking connect. 1542 */ 1543 sock->state = SS_CONNECTING; 1544 err = -EINPROGRESS; 1545 } 1546 1547 /* The receive path will handle all communication until we are able to 1548 * enter the connected state. Here we wait for the connection to be 1549 * completed or a notification of an error. 1550 */ 1551 timeout = vsk->connect_timeout; 1552 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1553 1554 /* If the socket is already closing or it is in an error state, there 1555 * is no point in waiting. 1556 */ 1557 while (sk->sk_state != TCP_ESTABLISHED && 1558 sk->sk_state != TCP_CLOSING && sk->sk_err == 0) { 1559 if (flags & O_NONBLOCK) { 1560 /* If we're not going to block, we schedule a timeout 1561 * function to generate a timeout on the connection 1562 * attempt, in case the peer doesn't respond in a 1563 * timely manner. We hold on to the socket until the 1564 * timeout fires. 1565 */ 1566 sock_hold(sk); 1567 1568 /* If the timeout function is already scheduled, 1569 * reschedule it, then ungrab the socket refcount to 1570 * keep it balanced. 1571 */ 1572 if (mod_delayed_work(system_wq, &vsk->connect_work, 1573 timeout)) 1574 sock_put(sk); 1575 1576 /* Skip ahead to preserve error code set above. */ 1577 goto out_wait; 1578 } 1579 1580 release_sock(sk); 1581 timeout = schedule_timeout(timeout); 1582 lock_sock(sk); 1583 1584 if (signal_pending(current)) { 1585 err = sock_intr_errno(timeout); 1586 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1587 sock->state = SS_UNCONNECTED; 1588 vsock_transport_cancel_pkt(vsk); 1589 vsock_remove_connected(vsk); 1590 goto out_wait; 1591 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { 1592 err = -ETIMEDOUT; 1593 sk->sk_state = TCP_CLOSE; 1594 sock->state = SS_UNCONNECTED; 1595 vsock_transport_cancel_pkt(vsk); 1596 goto out_wait; 1597 } 1598 1599 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1600 } 1601 1602 if (sk->sk_err) { 1603 err = -sk->sk_err; 1604 sk->sk_state = TCP_CLOSE; 1605 sock->state = SS_UNCONNECTED; 1606 } else { 1607 err = 0; 1608 } 1609 1610 out_wait: 1611 finish_wait(sk_sleep(sk), &wait); 1612 out: 1613 release_sock(sk); 1614 return err; 1615 } 1616 1617 static int vsock_accept(struct socket *sock, struct socket *newsock, 1618 struct proto_accept_arg *arg) 1619 { 1620 struct sock *listener; 1621 int err; 1622 struct sock *connected; 1623 struct vsock_sock *vconnected; 1624 long timeout; 1625 DEFINE_WAIT(wait); 1626 1627 err = 0; 1628 listener = sock->sk; 1629 1630 lock_sock(listener); 1631 1632 if (!sock_type_connectible(sock->type)) { 1633 err = -EOPNOTSUPP; 1634 goto out; 1635 } 1636 1637 if (listener->sk_state != TCP_LISTEN) { 1638 err = -EINVAL; 1639 goto out; 1640 } 1641 1642 /* Wait for children sockets to appear; these are the new sockets 1643 * created upon connection establishment. 1644 */ 1645 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK); 1646 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1647 1648 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1649 listener->sk_err == 0) { 1650 release_sock(listener); 1651 timeout = schedule_timeout(timeout); 1652 finish_wait(sk_sleep(listener), &wait); 1653 lock_sock(listener); 1654 1655 if (signal_pending(current)) { 1656 err = sock_intr_errno(timeout); 1657 goto out; 1658 } else if (timeout == 0) { 1659 err = -EAGAIN; 1660 goto out; 1661 } 1662 1663 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1664 } 1665 finish_wait(sk_sleep(listener), &wait); 1666 1667 if (listener->sk_err) 1668 err = -listener->sk_err; 1669 1670 if (connected) { 1671 sk_acceptq_removed(listener); 1672 1673 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1674 vconnected = vsock_sk(connected); 1675 1676 /* If the listener socket has received an error, then we should 1677 * reject this socket and return. Note that we simply mark the 1678 * socket rejected, drop our reference, and let the cleanup 1679 * function handle the cleanup; the fact that we found it in 1680 * the listener's accept queue guarantees that the cleanup 1681 * function hasn't run yet. 1682 */ 1683 if (err) { 1684 vconnected->rejected = true; 1685 } else { 1686 newsock->state = SS_CONNECTED; 1687 sock_graft(connected, newsock); 1688 if (vsock_msgzerocopy_allow(vconnected->transport)) 1689 set_bit(SOCK_SUPPORT_ZC, 1690 &connected->sk_socket->flags); 1691 } 1692 1693 release_sock(connected); 1694 sock_put(connected); 1695 } 1696 1697 out: 1698 release_sock(listener); 1699 return err; 1700 } 1701 1702 static int vsock_listen(struct socket *sock, int backlog) 1703 { 1704 int err; 1705 struct sock *sk; 1706 struct vsock_sock *vsk; 1707 1708 sk = sock->sk; 1709 1710 lock_sock(sk); 1711 1712 if (!sock_type_connectible(sk->sk_type)) { 1713 err = -EOPNOTSUPP; 1714 goto out; 1715 } 1716 1717 if (sock->state != SS_UNCONNECTED) { 1718 err = -EINVAL; 1719 goto out; 1720 } 1721 1722 vsk = vsock_sk(sk); 1723 1724 if (!vsock_addr_bound(&vsk->local_addr)) { 1725 err = -EINVAL; 1726 goto out; 1727 } 1728 1729 sk->sk_max_ack_backlog = backlog; 1730 sk->sk_state = TCP_LISTEN; 1731 1732 err = 0; 1733 1734 out: 1735 release_sock(sk); 1736 return err; 1737 } 1738 1739 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1740 const struct vsock_transport *transport, 1741 u64 val) 1742 { 1743 if (val > vsk->buffer_max_size) 1744 val = vsk->buffer_max_size; 1745 1746 if (val < vsk->buffer_min_size) 1747 val = vsk->buffer_min_size; 1748 1749 if (val != vsk->buffer_size && 1750 transport && transport->notify_buffer_size) 1751 transport->notify_buffer_size(vsk, &val); 1752 1753 vsk->buffer_size = val; 1754 } 1755 1756 static int vsock_connectible_setsockopt(struct socket *sock, 1757 int level, 1758 int optname, 1759 sockptr_t optval, 1760 unsigned int optlen) 1761 { 1762 int err; 1763 struct sock *sk; 1764 struct vsock_sock *vsk; 1765 const struct vsock_transport *transport; 1766 u64 val; 1767 1768 if (level != AF_VSOCK && level != SOL_SOCKET) 1769 return -ENOPROTOOPT; 1770 1771 #define COPY_IN(_v) \ 1772 do { \ 1773 if (optlen < sizeof(_v)) { \ 1774 err = -EINVAL; \ 1775 goto exit; \ 1776 } \ 1777 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1778 err = -EFAULT; \ 1779 goto exit; \ 1780 } \ 1781 } while (0) 1782 1783 err = 0; 1784 sk = sock->sk; 1785 vsk = vsock_sk(sk); 1786 1787 lock_sock(sk); 1788 1789 transport = vsk->transport; 1790 1791 if (level == SOL_SOCKET) { 1792 int zerocopy; 1793 1794 if (optname != SO_ZEROCOPY) { 1795 release_sock(sk); 1796 return sock_setsockopt(sock, level, optname, optval, optlen); 1797 } 1798 1799 /* Use 'int' type here, because variable to 1800 * set this option usually has this type. 1801 */ 1802 COPY_IN(zerocopy); 1803 1804 if (zerocopy < 0 || zerocopy > 1) { 1805 err = -EINVAL; 1806 goto exit; 1807 } 1808 1809 if (transport && !vsock_msgzerocopy_allow(transport)) { 1810 err = -EOPNOTSUPP; 1811 goto exit; 1812 } 1813 1814 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); 1815 goto exit; 1816 } 1817 1818 switch (optname) { 1819 case SO_VM_SOCKETS_BUFFER_SIZE: 1820 COPY_IN(val); 1821 vsock_update_buffer_size(vsk, transport, val); 1822 break; 1823 1824 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1825 COPY_IN(val); 1826 vsk->buffer_max_size = val; 1827 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1828 break; 1829 1830 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1831 COPY_IN(val); 1832 vsk->buffer_min_size = val; 1833 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1834 break; 1835 1836 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1837 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1838 struct __kernel_sock_timeval tv; 1839 1840 err = sock_copy_user_timeval(&tv, optval, optlen, 1841 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1842 if (err) 1843 break; 1844 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1845 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1846 vsk->connect_timeout = tv.tv_sec * HZ + 1847 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1848 if (vsk->connect_timeout == 0) 1849 vsk->connect_timeout = 1850 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1851 1852 } else { 1853 err = -ERANGE; 1854 } 1855 break; 1856 } 1857 1858 default: 1859 err = -ENOPROTOOPT; 1860 break; 1861 } 1862 1863 #undef COPY_IN 1864 1865 exit: 1866 release_sock(sk); 1867 return err; 1868 } 1869 1870 static int vsock_connectible_getsockopt(struct socket *sock, 1871 int level, int optname, 1872 char __user *optval, 1873 int __user *optlen) 1874 { 1875 struct sock *sk = sock->sk; 1876 struct vsock_sock *vsk = vsock_sk(sk); 1877 1878 union { 1879 u64 val64; 1880 struct old_timeval32 tm32; 1881 struct __kernel_old_timeval tm; 1882 struct __kernel_sock_timeval stm; 1883 } v; 1884 1885 int lv = sizeof(v.val64); 1886 int len; 1887 1888 if (level != AF_VSOCK) 1889 return -ENOPROTOOPT; 1890 1891 if (get_user(len, optlen)) 1892 return -EFAULT; 1893 1894 memset(&v, 0, sizeof(v)); 1895 1896 switch (optname) { 1897 case SO_VM_SOCKETS_BUFFER_SIZE: 1898 v.val64 = vsk->buffer_size; 1899 break; 1900 1901 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1902 v.val64 = vsk->buffer_max_size; 1903 break; 1904 1905 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1906 v.val64 = vsk->buffer_min_size; 1907 break; 1908 1909 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1910 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1911 lv = sock_get_timeout(vsk->connect_timeout, &v, 1912 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1913 break; 1914 1915 default: 1916 return -ENOPROTOOPT; 1917 } 1918 1919 if (len < lv) 1920 return -EINVAL; 1921 if (len > lv) 1922 len = lv; 1923 if (copy_to_user(optval, &v, len)) 1924 return -EFAULT; 1925 1926 if (put_user(len, optlen)) 1927 return -EFAULT; 1928 1929 return 0; 1930 } 1931 1932 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 1933 size_t len) 1934 { 1935 struct sock *sk; 1936 struct vsock_sock *vsk; 1937 const struct vsock_transport *transport; 1938 ssize_t total_written; 1939 long timeout; 1940 int err; 1941 struct vsock_transport_send_notify_data send_data; 1942 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1943 1944 sk = sock->sk; 1945 vsk = vsock_sk(sk); 1946 total_written = 0; 1947 err = 0; 1948 1949 if (msg->msg_flags & MSG_OOB) 1950 return -EOPNOTSUPP; 1951 1952 lock_sock(sk); 1953 1954 transport = vsk->transport; 1955 1956 /* Callers should not provide a destination with connection oriented 1957 * sockets. 1958 */ 1959 if (msg->msg_namelen) { 1960 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 1961 goto out; 1962 } 1963 1964 /* Send data only if both sides are not shutdown in the direction. */ 1965 if (sk->sk_shutdown & SEND_SHUTDOWN || 1966 vsk->peer_shutdown & RCV_SHUTDOWN) { 1967 err = -EPIPE; 1968 goto out; 1969 } 1970 1971 if (!transport || sk->sk_state != TCP_ESTABLISHED || 1972 !vsock_addr_bound(&vsk->local_addr)) { 1973 err = -ENOTCONN; 1974 goto out; 1975 } 1976 1977 if (!vsock_addr_bound(&vsk->remote_addr)) { 1978 err = -EDESTADDRREQ; 1979 goto out; 1980 } 1981 1982 if (msg->msg_flags & MSG_ZEROCOPY && 1983 !vsock_msgzerocopy_allow(transport)) { 1984 err = -EOPNOTSUPP; 1985 goto out; 1986 } 1987 1988 /* Wait for room in the produce queue to enqueue our user's data. */ 1989 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1990 1991 err = transport->notify_send_init(vsk, &send_data); 1992 if (err < 0) 1993 goto out; 1994 1995 while (total_written < len) { 1996 ssize_t written; 1997 1998 add_wait_queue(sk_sleep(sk), &wait); 1999 while (vsock_stream_has_space(vsk) == 0 && 2000 sk->sk_err == 0 && 2001 !(sk->sk_shutdown & SEND_SHUTDOWN) && 2002 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 2003 2004 /* Don't wait for non-blocking sockets. */ 2005 if (timeout == 0) { 2006 err = -EAGAIN; 2007 remove_wait_queue(sk_sleep(sk), &wait); 2008 goto out_err; 2009 } 2010 2011 err = transport->notify_send_pre_block(vsk, &send_data); 2012 if (err < 0) { 2013 remove_wait_queue(sk_sleep(sk), &wait); 2014 goto out_err; 2015 } 2016 2017 release_sock(sk); 2018 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 2019 lock_sock(sk); 2020 if (signal_pending(current)) { 2021 err = sock_intr_errno(timeout); 2022 remove_wait_queue(sk_sleep(sk), &wait); 2023 goto out_err; 2024 } else if (timeout == 0) { 2025 err = -EAGAIN; 2026 remove_wait_queue(sk_sleep(sk), &wait); 2027 goto out_err; 2028 } 2029 } 2030 remove_wait_queue(sk_sleep(sk), &wait); 2031 2032 /* These checks occur both as part of and after the loop 2033 * conditional since we need to check before and after 2034 * sleeping. 2035 */ 2036 if (sk->sk_err) { 2037 err = -sk->sk_err; 2038 goto out_err; 2039 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 2040 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 2041 err = -EPIPE; 2042 goto out_err; 2043 } 2044 2045 err = transport->notify_send_pre_enqueue(vsk, &send_data); 2046 if (err < 0) 2047 goto out_err; 2048 2049 /* Note that enqueue will only write as many bytes as are free 2050 * in the produce queue, so we don't need to ensure len is 2051 * smaller than the queue size. It is the caller's 2052 * responsibility to check how many bytes we were able to send. 2053 */ 2054 2055 if (sk->sk_type == SOCK_SEQPACKET) { 2056 written = transport->seqpacket_enqueue(vsk, 2057 msg, len - total_written); 2058 } else { 2059 written = transport->stream_enqueue(vsk, 2060 msg, len - total_written); 2061 } 2062 2063 if (written < 0) { 2064 err = written; 2065 goto out_err; 2066 } 2067 2068 total_written += written; 2069 2070 err = transport->notify_send_post_enqueue( 2071 vsk, written, &send_data); 2072 if (err < 0) 2073 goto out_err; 2074 2075 } 2076 2077 out_err: 2078 if (total_written > 0) { 2079 /* Return number of written bytes only if: 2080 * 1) SOCK_STREAM socket. 2081 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 2082 */ 2083 if (sk->sk_type == SOCK_STREAM || total_written == len) 2084 err = total_written; 2085 } 2086 out: 2087 if (sk->sk_type == SOCK_STREAM) 2088 err = sk_stream_error(sk, msg->msg_flags, err); 2089 2090 release_sock(sk); 2091 return err; 2092 } 2093 2094 static int vsock_connectible_wait_data(struct sock *sk, 2095 struct wait_queue_entry *wait, 2096 long timeout, 2097 struct vsock_transport_recv_notify_data *recv_data, 2098 size_t target) 2099 { 2100 const struct vsock_transport *transport; 2101 struct vsock_sock *vsk; 2102 s64 data; 2103 int err; 2104 2105 vsk = vsock_sk(sk); 2106 err = 0; 2107 transport = vsk->transport; 2108 2109 while (1) { 2110 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 2111 data = vsock_connectible_has_data(vsk); 2112 if (data != 0) 2113 break; 2114 2115 if (sk->sk_err != 0 || 2116 (sk->sk_shutdown & RCV_SHUTDOWN) || 2117 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 2118 break; 2119 } 2120 2121 /* Don't wait for non-blocking sockets. */ 2122 if (timeout == 0) { 2123 err = -EAGAIN; 2124 break; 2125 } 2126 2127 if (recv_data) { 2128 err = transport->notify_recv_pre_block(vsk, target, recv_data); 2129 if (err < 0) 2130 break; 2131 } 2132 2133 release_sock(sk); 2134 timeout = schedule_timeout(timeout); 2135 lock_sock(sk); 2136 2137 if (signal_pending(current)) { 2138 err = sock_intr_errno(timeout); 2139 break; 2140 } else if (timeout == 0) { 2141 err = -EAGAIN; 2142 break; 2143 } 2144 } 2145 2146 finish_wait(sk_sleep(sk), wait); 2147 2148 if (err) 2149 return err; 2150 2151 /* Internal transport error when checking for available 2152 * data. XXX This should be changed to a connection 2153 * reset in a later change. 2154 */ 2155 if (data < 0) 2156 return -ENOMEM; 2157 2158 return data; 2159 } 2160 2161 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2162 size_t len, int flags) 2163 { 2164 struct vsock_transport_recv_notify_data recv_data; 2165 const struct vsock_transport *transport; 2166 struct vsock_sock *vsk; 2167 ssize_t copied; 2168 size_t target; 2169 long timeout; 2170 int err; 2171 2172 DEFINE_WAIT(wait); 2173 2174 vsk = vsock_sk(sk); 2175 transport = vsk->transport; 2176 2177 /* We must not copy less than target bytes into the user's buffer 2178 * before returning successfully, so we wait for the consume queue to 2179 * have that much data to consume before dequeueing. Note that this 2180 * makes it impossible to handle cases where target is greater than the 2181 * queue size. 2182 */ 2183 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2184 if (target >= transport->stream_rcvhiwat(vsk)) { 2185 err = -ENOMEM; 2186 goto out; 2187 } 2188 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2189 copied = 0; 2190 2191 err = transport->notify_recv_init(vsk, target, &recv_data); 2192 if (err < 0) 2193 goto out; 2194 2195 2196 while (1) { 2197 ssize_t read; 2198 2199 err = vsock_connectible_wait_data(sk, &wait, timeout, 2200 &recv_data, target); 2201 if (err <= 0) 2202 break; 2203 2204 err = transport->notify_recv_pre_dequeue(vsk, target, 2205 &recv_data); 2206 if (err < 0) 2207 break; 2208 2209 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 2210 if (read < 0) { 2211 err = read; 2212 break; 2213 } 2214 2215 copied += read; 2216 2217 err = transport->notify_recv_post_dequeue(vsk, target, read, 2218 !(flags & MSG_PEEK), &recv_data); 2219 if (err < 0) 2220 goto out; 2221 2222 if (read >= target || flags & MSG_PEEK) 2223 break; 2224 2225 target -= read; 2226 } 2227 2228 if (sk->sk_err) 2229 err = -sk->sk_err; 2230 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2231 err = 0; 2232 2233 if (copied > 0) 2234 err = copied; 2235 2236 out: 2237 return err; 2238 } 2239 2240 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2241 size_t len, int flags) 2242 { 2243 const struct vsock_transport *transport; 2244 struct vsock_sock *vsk; 2245 ssize_t msg_len; 2246 long timeout; 2247 int err = 0; 2248 DEFINE_WAIT(wait); 2249 2250 vsk = vsock_sk(sk); 2251 transport = vsk->transport; 2252 2253 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2254 2255 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2256 if (err <= 0) 2257 goto out; 2258 2259 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2260 2261 if (msg_len < 0) { 2262 err = msg_len; 2263 goto out; 2264 } 2265 2266 if (sk->sk_err) { 2267 err = -sk->sk_err; 2268 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2269 err = 0; 2270 } else { 2271 /* User sets MSG_TRUNC, so return real length of 2272 * packet. 2273 */ 2274 if (flags & MSG_TRUNC) 2275 err = msg_len; 2276 else 2277 err = len - msg_data_left(msg); 2278 2279 /* Always set MSG_TRUNC if real length of packet is 2280 * bigger than user's buffer. 2281 */ 2282 if (msg_len > len) 2283 msg->msg_flags |= MSG_TRUNC; 2284 } 2285 2286 out: 2287 return err; 2288 } 2289 2290 int 2291 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2292 int flags) 2293 { 2294 struct sock *sk; 2295 struct vsock_sock *vsk; 2296 const struct vsock_transport *transport; 2297 int err; 2298 2299 sk = sock->sk; 2300 2301 if (unlikely(flags & MSG_ERRQUEUE)) 2302 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); 2303 2304 vsk = vsock_sk(sk); 2305 err = 0; 2306 2307 lock_sock(sk); 2308 2309 transport = vsk->transport; 2310 2311 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2312 /* Recvmsg is supposed to return 0 if a peer performs an 2313 * orderly shutdown. Differentiate between that case and when a 2314 * peer has not connected or a local shutdown occurred with the 2315 * SOCK_DONE flag. 2316 */ 2317 if (sock_flag(sk, SOCK_DONE)) 2318 err = 0; 2319 else 2320 err = -ENOTCONN; 2321 2322 goto out; 2323 } 2324 2325 if (flags & MSG_OOB) { 2326 err = -EOPNOTSUPP; 2327 goto out; 2328 } 2329 2330 /* We don't check peer_shutdown flag here since peer may actually shut 2331 * down, but there can be data in the queue that a local socket can 2332 * receive. 2333 */ 2334 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2335 err = 0; 2336 goto out; 2337 } 2338 2339 /* It is valid on Linux to pass in a zero-length receive buffer. This 2340 * is not an error. We may as well bail out now. 2341 */ 2342 if (!len) { 2343 err = 0; 2344 goto out; 2345 } 2346 2347 if (sk->sk_type == SOCK_STREAM) 2348 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2349 else 2350 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2351 2352 out: 2353 release_sock(sk); 2354 return err; 2355 } 2356 2357 int 2358 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2359 int flags) 2360 { 2361 #ifdef CONFIG_BPF_SYSCALL 2362 struct sock *sk = sock->sk; 2363 const struct proto *prot; 2364 2365 prot = READ_ONCE(sk->sk_prot); 2366 if (prot != &vsock_proto) 2367 return prot->recvmsg(sk, msg, len, flags, NULL); 2368 #endif 2369 2370 return __vsock_connectible_recvmsg(sock, msg, len, flags); 2371 } 2372 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); 2373 2374 static int vsock_set_rcvlowat(struct sock *sk, int val) 2375 { 2376 const struct vsock_transport *transport; 2377 struct vsock_sock *vsk; 2378 2379 vsk = vsock_sk(sk); 2380 2381 if (val > vsk->buffer_size) 2382 return -EINVAL; 2383 2384 transport = vsk->transport; 2385 2386 if (transport && transport->notify_set_rcvlowat) { 2387 int err; 2388 2389 err = transport->notify_set_rcvlowat(vsk, val); 2390 if (err) 2391 return err; 2392 } 2393 2394 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 2395 return 0; 2396 } 2397 2398 static const struct proto_ops vsock_stream_ops = { 2399 .family = PF_VSOCK, 2400 .owner = THIS_MODULE, 2401 .release = vsock_release, 2402 .bind = vsock_bind, 2403 .connect = vsock_connect, 2404 .socketpair = sock_no_socketpair, 2405 .accept = vsock_accept, 2406 .getname = vsock_getname, 2407 .poll = vsock_poll, 2408 .ioctl = vsock_ioctl, 2409 .listen = vsock_listen, 2410 .shutdown = vsock_shutdown, 2411 .setsockopt = vsock_connectible_setsockopt, 2412 .getsockopt = vsock_connectible_getsockopt, 2413 .sendmsg = vsock_connectible_sendmsg, 2414 .recvmsg = vsock_connectible_recvmsg, 2415 .mmap = sock_no_mmap, 2416 .set_rcvlowat = vsock_set_rcvlowat, 2417 .read_skb = vsock_read_skb, 2418 }; 2419 2420 static const struct proto_ops vsock_seqpacket_ops = { 2421 .family = PF_VSOCK, 2422 .owner = THIS_MODULE, 2423 .release = vsock_release, 2424 .bind = vsock_bind, 2425 .connect = vsock_connect, 2426 .socketpair = sock_no_socketpair, 2427 .accept = vsock_accept, 2428 .getname = vsock_getname, 2429 .poll = vsock_poll, 2430 .ioctl = vsock_ioctl, 2431 .listen = vsock_listen, 2432 .shutdown = vsock_shutdown, 2433 .setsockopt = vsock_connectible_setsockopt, 2434 .getsockopt = vsock_connectible_getsockopt, 2435 .sendmsg = vsock_connectible_sendmsg, 2436 .recvmsg = vsock_connectible_recvmsg, 2437 .mmap = sock_no_mmap, 2438 .read_skb = vsock_read_skb, 2439 }; 2440 2441 static int vsock_create(struct net *net, struct socket *sock, 2442 int protocol, int kern) 2443 { 2444 struct vsock_sock *vsk; 2445 struct sock *sk; 2446 int ret; 2447 2448 if (!sock) 2449 return -EINVAL; 2450 2451 if (protocol && protocol != PF_VSOCK) 2452 return -EPROTONOSUPPORT; 2453 2454 switch (sock->type) { 2455 case SOCK_DGRAM: 2456 sock->ops = &vsock_dgram_ops; 2457 break; 2458 case SOCK_STREAM: 2459 sock->ops = &vsock_stream_ops; 2460 break; 2461 case SOCK_SEQPACKET: 2462 sock->ops = &vsock_seqpacket_ops; 2463 break; 2464 default: 2465 return -ESOCKTNOSUPPORT; 2466 } 2467 2468 sock->state = SS_UNCONNECTED; 2469 2470 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2471 if (!sk) 2472 return -ENOMEM; 2473 2474 vsk = vsock_sk(sk); 2475 2476 if (sock->type == SOCK_DGRAM) { 2477 ret = vsock_assign_transport(vsk, NULL); 2478 if (ret < 0) { 2479 sock->sk = NULL; 2480 sock_put(sk); 2481 return ret; 2482 } 2483 } 2484 2485 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its 2486 * proto_ops, so there is no handler for custom logic. 2487 */ 2488 if (sock_type_connectible(sock->type)) 2489 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2490 2491 vsock_insert_unbound(vsk); 2492 2493 return 0; 2494 } 2495 2496 static const struct net_proto_family vsock_family_ops = { 2497 .family = AF_VSOCK, 2498 .create = vsock_create, 2499 .owner = THIS_MODULE, 2500 }; 2501 2502 static long vsock_dev_do_ioctl(struct file *filp, 2503 unsigned int cmd, void __user *ptr) 2504 { 2505 u32 __user *p = ptr; 2506 u32 cid = VMADDR_CID_ANY; 2507 int retval = 0; 2508 2509 switch (cmd) { 2510 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2511 /* To be compatible with the VMCI behavior, we prioritize the 2512 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2513 */ 2514 if (transport_g2h) 2515 cid = transport_g2h->get_local_cid(); 2516 else if (transport_h2g) 2517 cid = transport_h2g->get_local_cid(); 2518 2519 if (put_user(cid, p) != 0) 2520 retval = -EFAULT; 2521 break; 2522 2523 default: 2524 retval = -ENOIOCTLCMD; 2525 } 2526 2527 return retval; 2528 } 2529 2530 static long vsock_dev_ioctl(struct file *filp, 2531 unsigned int cmd, unsigned long arg) 2532 { 2533 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2534 } 2535 2536 #ifdef CONFIG_COMPAT 2537 static long vsock_dev_compat_ioctl(struct file *filp, 2538 unsigned int cmd, unsigned long arg) 2539 { 2540 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2541 } 2542 #endif 2543 2544 static const struct file_operations vsock_device_ops = { 2545 .owner = THIS_MODULE, 2546 .unlocked_ioctl = vsock_dev_ioctl, 2547 #ifdef CONFIG_COMPAT 2548 .compat_ioctl = vsock_dev_compat_ioctl, 2549 #endif 2550 .open = nonseekable_open, 2551 }; 2552 2553 static struct miscdevice vsock_device = { 2554 .name = "vsock", 2555 .fops = &vsock_device_ops, 2556 }; 2557 2558 static int __init vsock_init(void) 2559 { 2560 int err = 0; 2561 2562 vsock_init_tables(); 2563 2564 vsock_proto.owner = THIS_MODULE; 2565 vsock_device.minor = MISC_DYNAMIC_MINOR; 2566 err = misc_register(&vsock_device); 2567 if (err) { 2568 pr_err("Failed to register misc device\n"); 2569 goto err_reset_transport; 2570 } 2571 2572 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2573 if (err) { 2574 pr_err("Cannot register vsock protocol\n"); 2575 goto err_deregister_misc; 2576 } 2577 2578 err = sock_register(&vsock_family_ops); 2579 if (err) { 2580 pr_err("could not register af_vsock (%d) address family: %d\n", 2581 AF_VSOCK, err); 2582 goto err_unregister_proto; 2583 } 2584 2585 vsock_bpf_build_proto(); 2586 2587 return 0; 2588 2589 err_unregister_proto: 2590 proto_unregister(&vsock_proto); 2591 err_deregister_misc: 2592 misc_deregister(&vsock_device); 2593 err_reset_transport: 2594 return err; 2595 } 2596 2597 static void __exit vsock_exit(void) 2598 { 2599 misc_deregister(&vsock_device); 2600 sock_unregister(AF_VSOCK); 2601 proto_unregister(&vsock_proto); 2602 } 2603 2604 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2605 { 2606 return vsk->transport; 2607 } 2608 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2609 2610 int vsock_core_register(const struct vsock_transport *t, int features) 2611 { 2612 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2613 int err = mutex_lock_interruptible(&vsock_register_mutex); 2614 2615 if (err) 2616 return err; 2617 2618 t_h2g = transport_h2g; 2619 t_g2h = transport_g2h; 2620 t_dgram = transport_dgram; 2621 t_local = transport_local; 2622 2623 if (features & VSOCK_TRANSPORT_F_H2G) { 2624 if (t_h2g) { 2625 err = -EBUSY; 2626 goto err_busy; 2627 } 2628 t_h2g = t; 2629 } 2630 2631 if (features & VSOCK_TRANSPORT_F_G2H) { 2632 if (t_g2h) { 2633 err = -EBUSY; 2634 goto err_busy; 2635 } 2636 t_g2h = t; 2637 } 2638 2639 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2640 if (t_dgram) { 2641 err = -EBUSY; 2642 goto err_busy; 2643 } 2644 t_dgram = t; 2645 } 2646 2647 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2648 if (t_local) { 2649 err = -EBUSY; 2650 goto err_busy; 2651 } 2652 t_local = t; 2653 } 2654 2655 transport_h2g = t_h2g; 2656 transport_g2h = t_g2h; 2657 transport_dgram = t_dgram; 2658 transport_local = t_local; 2659 2660 err_busy: 2661 mutex_unlock(&vsock_register_mutex); 2662 return err; 2663 } 2664 EXPORT_SYMBOL_GPL(vsock_core_register); 2665 2666 void vsock_core_unregister(const struct vsock_transport *t) 2667 { 2668 mutex_lock(&vsock_register_mutex); 2669 2670 if (transport_h2g == t) 2671 transport_h2g = NULL; 2672 2673 if (transport_g2h == t) 2674 transport_g2h = NULL; 2675 2676 if (transport_dgram == t) 2677 transport_dgram = NULL; 2678 2679 if (transport_local == t) 2680 transport_local = NULL; 2681 2682 mutex_unlock(&vsock_register_mutex); 2683 } 2684 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2685 2686 module_init(vsock_init); 2687 module_exit(vsock_exit); 2688 2689 MODULE_AUTHOR("VMware, Inc."); 2690 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2691 MODULE_VERSION("1.0.2.0-k"); 2692 MODULE_LICENSE("GPL v2"); 2693