1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 .name = "AF_VSOCK",
125 .owner = THIS_MODULE,
126 .obj_size = sizeof(struct vsock_sock),
127 .close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 .psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132
133 /* The default peer timeout indicates how long we will wait for a peer response
134 * to a control message.
135 */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137
138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151
152 /**** UTILS ****/
153
154 /* Each bound VSocket is stored in the bind hash table and each connected
155 * VSocket is stored in the connected hash table.
156 *
157 * Unbound sockets are all put on the same list attached to the end of the hash
158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
159 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160 * represents the list that addr hashes to).
161 *
162 * Specifically, we initialize the vsock_bind_table array to a size of
163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
166 * mods with VSOCK_HASH_SIZE to ensure this.
167 */
168 #define MAX_PORT_RETRIES 24
169
170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
173
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst) \
176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst) \
178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk) \
180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188
189 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 struct sock *sk = sk_vsock(vsk);
193 struct sockaddr_vm local_addr;
194
195 if (vsock_addr_bound(&vsk->local_addr))
196 return 0;
197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 return __vsock_bind(sk, &local_addr);
199 }
200
vsock_init_tables(void)201 static void vsock_init_tables(void)
202 {
203 int i;
204
205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 INIT_LIST_HEAD(&vsock_bind_table[i]);
207
208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)212 static void __vsock_insert_bound(struct list_head *list,
213 struct vsock_sock *vsk)
214 {
215 sock_hold(&vsk->sk);
216 list_add(&vsk->bound_table, list);
217 }
218
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)219 static void __vsock_insert_connected(struct list_head *list,
220 struct vsock_sock *vsk)
221 {
222 sock_hold(&vsk->sk);
223 list_add(&vsk->connected_table, list);
224 }
225
__vsock_remove_bound(struct vsock_sock * vsk)226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 list_del_init(&vsk->bound_table);
229 sock_put(&vsk->sk);
230 }
231
__vsock_remove_connected(struct vsock_sock * vsk)232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 list_del_init(&vsk->connected_table);
235 sock_put(&vsk->sk);
236 }
237
__vsock_find_bound_socket(struct sockaddr_vm * addr)238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 struct vsock_sock *vsk;
241
242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 return sk_vsock(vsk);
245
246 if (addr->svm_port == vsk->local_addr.svm_port &&
247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 addr->svm_cid == VMADDR_CID_ANY))
249 return sk_vsock(vsk);
250 }
251
252 return NULL;
253 }
254
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 struct sockaddr_vm *dst)
257 {
258 struct vsock_sock *vsk;
259
260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 connected_table) {
262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 dst->svm_port == vsk->local_addr.svm_port) {
264 return sk_vsock(vsk);
265 }
266 }
267
268 return NULL;
269 }
270
vsock_insert_unbound(struct vsock_sock * vsk)271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 spin_lock_bh(&vsock_table_lock);
274 __vsock_insert_bound(vsock_unbound_sockets, vsk);
275 spin_unlock_bh(&vsock_table_lock);
276 }
277
vsock_insert_connected(struct vsock_sock * vsk)278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 struct list_head *list = vsock_connected_sockets(
281 &vsk->remote_addr, &vsk->local_addr);
282
283 spin_lock_bh(&vsock_table_lock);
284 __vsock_insert_connected(list, vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288
vsock_remove_bound(struct vsock_sock * vsk)289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_bound_table(vsk))
293 __vsock_remove_bound(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297
vsock_remove_connected(struct vsock_sock * vsk)298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 spin_lock_bh(&vsock_table_lock);
301 if (__vsock_in_connected_table(vsk))
302 __vsock_remove_connected(vsk);
303 spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306
vsock_find_bound_socket(struct sockaddr_vm * addr)307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 struct sock *sk;
310
311 spin_lock_bh(&vsock_table_lock);
312 sk = __vsock_find_bound_socket(addr);
313 if (sk)
314 sock_hold(sk);
315
316 spin_unlock_bh(&vsock_table_lock);
317
318 return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 struct sockaddr_vm *dst)
324 {
325 struct sock *sk;
326
327 spin_lock_bh(&vsock_table_lock);
328 sk = __vsock_find_connected_socket(src, dst);
329 if (sk)
330 sock_hold(sk);
331
332 spin_unlock_bh(&vsock_table_lock);
333
334 return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337
vsock_remove_sock(struct vsock_sock * vsk)338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 /* Transport reassignment must not remove the binding. */
341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 vsock_remove_bound(vsk);
343
344 vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 void (*fn)(struct sock *sk))
350 {
351 int i;
352
353 spin_lock_bh(&vsock_table_lock);
354
355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 struct vsock_sock *vsk;
357 list_for_each_entry(vsk, &vsock_connected_table[i],
358 connected_table) {
359 if (vsk->transport != transport)
360 continue;
361
362 fn(sk_vsock(vsk));
363 }
364 }
365
366 spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369
vsock_add_pending(struct sock * listener,struct sock * pending)370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 struct vsock_sock *vlistener;
373 struct vsock_sock *vpending;
374
375 vlistener = vsock_sk(listener);
376 vpending = vsock_sk(pending);
377
378 sock_hold(pending);
379 sock_hold(listener);
380 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383
vsock_remove_pending(struct sock * listener,struct sock * pending)384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 struct vsock_sock *vpending = vsock_sk(pending);
387
388 list_del_init(&vpending->pending_links);
389 sock_put(listener);
390 sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393
vsock_enqueue_accept(struct sock * listener,struct sock * connected)394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 struct vsock_sock *vlistener;
397 struct vsock_sock *vconnected;
398
399 vlistener = vsock_sk(listener);
400 vconnected = vsock_sk(connected);
401
402 sock_hold(connected);
403 sock_hold(listener);
404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407
vsock_use_local_transport(unsigned int remote_cid)408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 if (!transport_local)
411 return false;
412
413 if (remote_cid == VMADDR_CID_LOCAL)
414 return true;
415
416 if (transport_g2h) {
417 return remote_cid == transport_g2h->get_local_cid();
418 } else {
419 return remote_cid == VMADDR_CID_HOST;
420 }
421 }
422
vsock_deassign_transport(struct vsock_sock * vsk)423 static void vsock_deassign_transport(struct vsock_sock *vsk)
424 {
425 if (!vsk->transport)
426 return;
427
428 vsk->transport->destruct(vsk);
429 module_put(vsk->transport->module);
430 vsk->transport = NULL;
431 }
432
433 /* Assign a transport to a socket and call the .init transport callback.
434 *
435 * Note: for connection oriented socket this must be called when vsk->remote_addr
436 * is set (e.g. during the connect() or when a connection request on a listener
437 * socket is received).
438 * The vsk->remote_addr is used to decide which transport to use:
439 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
440 * g2h is not loaded, will use local transport;
441 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
442 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
443 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
444 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)445 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
446 {
447 const struct vsock_transport *new_transport;
448 struct sock *sk = sk_vsock(vsk);
449 unsigned int remote_cid = vsk->remote_addr.svm_cid;
450 __u8 remote_flags;
451 int ret;
452
453 /* If the packet is coming with the source and destination CIDs higher
454 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
455 * forwarded to the host should be established. Then the host will
456 * need to forward the packets to the guest.
457 *
458 * The flag is set on the (listen) receive path (psk is not NULL). On
459 * the connect path the flag can be set by the user space application.
460 */
461 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
462 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
463 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
464
465 remote_flags = vsk->remote_addr.svm_flags;
466
467 switch (sk->sk_type) {
468 case SOCK_DGRAM:
469 new_transport = transport_dgram;
470 break;
471 case SOCK_STREAM:
472 case SOCK_SEQPACKET:
473 if (vsock_use_local_transport(remote_cid))
474 new_transport = transport_local;
475 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
476 (remote_flags & VMADDR_FLAG_TO_HOST))
477 new_transport = transport_g2h;
478 else
479 new_transport = transport_h2g;
480 break;
481 default:
482 return -ESOCKTNOSUPPORT;
483 }
484
485 if (vsk->transport) {
486 if (vsk->transport == new_transport)
487 return 0;
488
489 /* transport->release() must be called with sock lock acquired.
490 * This path can only be taken during vsock_connect(), where we
491 * have already held the sock lock. In the other cases, this
492 * function is called on a new socket which is not assigned to
493 * any transport.
494 */
495 vsk->transport->release(vsk);
496 vsock_deassign_transport(vsk);
497
498 /* transport's release() and destruct() can touch some socket
499 * state, since we are reassigning the socket to a new transport
500 * during vsock_connect(), let's reset these fields to have a
501 * clean state.
502 */
503 sock_reset_flag(sk, SOCK_DONE);
504 sk->sk_state = TCP_CLOSE;
505 vsk->peer_shutdown = 0;
506 }
507
508 /* We increase the module refcnt to prevent the transport unloading
509 * while there are open sockets assigned to it.
510 */
511 if (!new_transport || !try_module_get(new_transport->module))
512 return -ENODEV;
513
514 if (sk->sk_type == SOCK_SEQPACKET) {
515 if (!new_transport->seqpacket_allow ||
516 !new_transport->seqpacket_allow(remote_cid)) {
517 module_put(new_transport->module);
518 return -ESOCKTNOSUPPORT;
519 }
520 }
521
522 ret = new_transport->init(vsk, psk);
523 if (ret) {
524 module_put(new_transport->module);
525 return ret;
526 }
527
528 vsk->transport = new_transport;
529
530 return 0;
531 }
532 EXPORT_SYMBOL_GPL(vsock_assign_transport);
533
vsock_find_cid(unsigned int cid)534 bool vsock_find_cid(unsigned int cid)
535 {
536 if (transport_g2h && cid == transport_g2h->get_local_cid())
537 return true;
538
539 if (transport_h2g && cid == VMADDR_CID_HOST)
540 return true;
541
542 if (transport_local && cid == VMADDR_CID_LOCAL)
543 return true;
544
545 return false;
546 }
547 EXPORT_SYMBOL_GPL(vsock_find_cid);
548
vsock_dequeue_accept(struct sock * listener)549 static struct sock *vsock_dequeue_accept(struct sock *listener)
550 {
551 struct vsock_sock *vlistener;
552 struct vsock_sock *vconnected;
553
554 vlistener = vsock_sk(listener);
555
556 if (list_empty(&vlistener->accept_queue))
557 return NULL;
558
559 vconnected = list_entry(vlistener->accept_queue.next,
560 struct vsock_sock, accept_queue);
561
562 list_del_init(&vconnected->accept_queue);
563 sock_put(listener);
564 /* The caller will need a reference on the connected socket so we let
565 * it call sock_put().
566 */
567
568 return sk_vsock(vconnected);
569 }
570
vsock_is_accept_queue_empty(struct sock * sk)571 static bool vsock_is_accept_queue_empty(struct sock *sk)
572 {
573 struct vsock_sock *vsk = vsock_sk(sk);
574 return list_empty(&vsk->accept_queue);
575 }
576
vsock_is_pending(struct sock * sk)577 static bool vsock_is_pending(struct sock *sk)
578 {
579 struct vsock_sock *vsk = vsock_sk(sk);
580 return !list_empty(&vsk->pending_links);
581 }
582
vsock_send_shutdown(struct sock * sk,int mode)583 static int vsock_send_shutdown(struct sock *sk, int mode)
584 {
585 struct vsock_sock *vsk = vsock_sk(sk);
586
587 if (!vsk->transport)
588 return -ENODEV;
589
590 return vsk->transport->shutdown(vsk, mode);
591 }
592
vsock_pending_work(struct work_struct * work)593 static void vsock_pending_work(struct work_struct *work)
594 {
595 struct sock *sk;
596 struct sock *listener;
597 struct vsock_sock *vsk;
598 bool cleanup;
599
600 vsk = container_of(work, struct vsock_sock, pending_work.work);
601 sk = sk_vsock(vsk);
602 listener = vsk->listener;
603 cleanup = true;
604
605 lock_sock(listener);
606 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
607
608 if (vsock_is_pending(sk)) {
609 vsock_remove_pending(listener, sk);
610
611 sk_acceptq_removed(listener);
612 } else if (!vsk->rejected) {
613 /* We are not on the pending list and accept() did not reject
614 * us, so we must have been accepted by our user process. We
615 * just need to drop our references to the sockets and be on
616 * our way.
617 */
618 cleanup = false;
619 goto out;
620 }
621
622 /* We need to remove ourself from the global connected sockets list so
623 * incoming packets can't find this socket, and to reduce the reference
624 * count.
625 */
626 vsock_remove_connected(vsk);
627
628 sk->sk_state = TCP_CLOSE;
629
630 out:
631 release_sock(sk);
632 release_sock(listener);
633 if (cleanup)
634 sock_put(sk);
635
636 sock_put(sk);
637 sock_put(listener);
638 }
639
640 /**** SOCKET OPERATIONS ****/
641
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)642 static int __vsock_bind_connectible(struct vsock_sock *vsk,
643 struct sockaddr_vm *addr)
644 {
645 static u32 port;
646 struct sockaddr_vm new_addr;
647
648 if (!port)
649 port = get_random_u32_above(LAST_RESERVED_PORT);
650
651 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
652
653 if (addr->svm_port == VMADDR_PORT_ANY) {
654 bool found = false;
655 unsigned int i;
656
657 for (i = 0; i < MAX_PORT_RETRIES; i++) {
658 if (port <= LAST_RESERVED_PORT)
659 port = LAST_RESERVED_PORT + 1;
660
661 new_addr.svm_port = port++;
662
663 if (!__vsock_find_bound_socket(&new_addr)) {
664 found = true;
665 break;
666 }
667 }
668
669 if (!found)
670 return -EADDRNOTAVAIL;
671 } else {
672 /* If port is in reserved range, ensure caller
673 * has necessary privileges.
674 */
675 if (addr->svm_port <= LAST_RESERVED_PORT &&
676 !capable(CAP_NET_BIND_SERVICE)) {
677 return -EACCES;
678 }
679
680 if (__vsock_find_bound_socket(&new_addr))
681 return -EADDRINUSE;
682 }
683
684 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
685
686 /* Remove connection oriented sockets from the unbound list and add them
687 * to the hash table for easy lookup by its address. The unbound list
688 * is simply an extra entry at the end of the hash table, a trick used
689 * by AF_UNIX.
690 */
691 __vsock_remove_bound(vsk);
692 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
693
694 return 0;
695 }
696
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)697 static int __vsock_bind_dgram(struct vsock_sock *vsk,
698 struct sockaddr_vm *addr)
699 {
700 return vsk->transport->dgram_bind(vsk, addr);
701 }
702
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)703 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
704 {
705 struct vsock_sock *vsk = vsock_sk(sk);
706 int retval;
707
708 /* First ensure this socket isn't already bound. */
709 if (vsock_addr_bound(&vsk->local_addr))
710 return -EINVAL;
711
712 /* Now bind to the provided address or select appropriate values if
713 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
714 * like AF_INET prevents binding to a non-local IP address (in most
715 * cases), we only allow binding to a local CID.
716 */
717 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
718 return -EADDRNOTAVAIL;
719
720 switch (sk->sk_socket->type) {
721 case SOCK_STREAM:
722 case SOCK_SEQPACKET:
723 spin_lock_bh(&vsock_table_lock);
724 retval = __vsock_bind_connectible(vsk, addr);
725 spin_unlock_bh(&vsock_table_lock);
726 break;
727
728 case SOCK_DGRAM:
729 retval = __vsock_bind_dgram(vsk, addr);
730 break;
731
732 default:
733 retval = -EINVAL;
734 break;
735 }
736
737 return retval;
738 }
739
740 static void vsock_connect_timeout(struct work_struct *work);
741
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)742 static struct sock *__vsock_create(struct net *net,
743 struct socket *sock,
744 struct sock *parent,
745 gfp_t priority,
746 unsigned short type,
747 int kern)
748 {
749 struct sock *sk;
750 struct vsock_sock *psk;
751 struct vsock_sock *vsk;
752
753 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
754 if (!sk)
755 return NULL;
756
757 sock_init_data(sock, sk);
758
759 /* sk->sk_type is normally set in sock_init_data, but only if sock is
760 * non-NULL. We make sure that our sockets always have a type by
761 * setting it here if needed.
762 */
763 if (!sock)
764 sk->sk_type = type;
765
766 vsk = vsock_sk(sk);
767 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
768 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
769
770 sk->sk_destruct = vsock_sk_destruct;
771 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
772 sock_reset_flag(sk, SOCK_DONE);
773
774 INIT_LIST_HEAD(&vsk->bound_table);
775 INIT_LIST_HEAD(&vsk->connected_table);
776 vsk->listener = NULL;
777 INIT_LIST_HEAD(&vsk->pending_links);
778 INIT_LIST_HEAD(&vsk->accept_queue);
779 vsk->rejected = false;
780 vsk->sent_request = false;
781 vsk->ignore_connecting_rst = false;
782 vsk->peer_shutdown = 0;
783 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
784 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
785
786 psk = parent ? vsock_sk(parent) : NULL;
787 if (parent) {
788 vsk->trusted = psk->trusted;
789 vsk->owner = get_cred(psk->owner);
790 vsk->connect_timeout = psk->connect_timeout;
791 vsk->buffer_size = psk->buffer_size;
792 vsk->buffer_min_size = psk->buffer_min_size;
793 vsk->buffer_max_size = psk->buffer_max_size;
794 security_sk_clone(parent, sk);
795 } else {
796 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
797 vsk->owner = get_current_cred();
798 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
799 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
800 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
801 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
802 }
803
804 return sk;
805 }
806
sock_type_connectible(u16 type)807 static bool sock_type_connectible(u16 type)
808 {
809 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
810 }
811
__vsock_release(struct sock * sk,int level)812 static void __vsock_release(struct sock *sk, int level)
813 {
814 struct vsock_sock *vsk;
815 struct sock *pending;
816
817 vsk = vsock_sk(sk);
818 pending = NULL; /* Compiler warning. */
819
820 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
821 * version to avoid the warning "possible recursive locking
822 * detected". When "level" is 0, lock_sock_nested(sk, level)
823 * is the same as lock_sock(sk).
824 */
825 lock_sock_nested(sk, level);
826
827 /* Indicate to vsock_remove_sock() that the socket is being released and
828 * can be removed from the bound_table. Unlike transport reassignment
829 * case, where the socket must remain bound despite vsock_remove_sock()
830 * being called from the transport release() callback.
831 */
832 sock_set_flag(sk, SOCK_DEAD);
833
834 if (vsk->transport)
835 vsk->transport->release(vsk);
836 else if (sock_type_connectible(sk->sk_type))
837 vsock_remove_sock(vsk);
838
839 sock_orphan(sk);
840 sk->sk_shutdown = SHUTDOWN_MASK;
841
842 skb_queue_purge(&sk->sk_receive_queue);
843
844 /* Clean up any sockets that never were accepted. */
845 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
846 __vsock_release(pending, SINGLE_DEPTH_NESTING);
847 sock_put(pending);
848 }
849
850 release_sock(sk);
851 sock_put(sk);
852 }
853
vsock_sk_destruct(struct sock * sk)854 static void vsock_sk_destruct(struct sock *sk)
855 {
856 struct vsock_sock *vsk = vsock_sk(sk);
857
858 /* Flush MSG_ZEROCOPY leftovers. */
859 __skb_queue_purge(&sk->sk_error_queue);
860
861 vsock_deassign_transport(vsk);
862
863 /* When clearing these addresses, there's no need to set the family and
864 * possibly register the address family with the kernel.
865 */
866 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
867 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
868
869 put_cred(vsk->owner);
870 }
871
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)872 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
873 {
874 int err;
875
876 err = sock_queue_rcv_skb(sk, skb);
877 if (err)
878 kfree_skb(skb);
879
880 return err;
881 }
882
vsock_create_connected(struct sock * parent)883 struct sock *vsock_create_connected(struct sock *parent)
884 {
885 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
886 parent->sk_type, 0);
887 }
888 EXPORT_SYMBOL_GPL(vsock_create_connected);
889
vsock_stream_has_data(struct vsock_sock * vsk)890 s64 vsock_stream_has_data(struct vsock_sock *vsk)
891 {
892 if (WARN_ON(!vsk->transport))
893 return 0;
894
895 return vsk->transport->stream_has_data(vsk);
896 }
897 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
898
vsock_connectible_has_data(struct vsock_sock * vsk)899 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
900 {
901 struct sock *sk = sk_vsock(vsk);
902
903 if (WARN_ON(!vsk->transport))
904 return 0;
905
906 if (sk->sk_type == SOCK_SEQPACKET)
907 return vsk->transport->seqpacket_has_data(vsk);
908 else
909 return vsock_stream_has_data(vsk);
910 }
911 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
912
vsock_stream_has_space(struct vsock_sock * vsk)913 s64 vsock_stream_has_space(struct vsock_sock *vsk)
914 {
915 if (WARN_ON(!vsk->transport))
916 return 0;
917
918 return vsk->transport->stream_has_space(vsk);
919 }
920 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
921
vsock_data_ready(struct sock * sk)922 void vsock_data_ready(struct sock *sk)
923 {
924 struct vsock_sock *vsk = vsock_sk(sk);
925
926 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
927 sock_flag(sk, SOCK_DONE))
928 sk->sk_data_ready(sk);
929 }
930 EXPORT_SYMBOL_GPL(vsock_data_ready);
931
932 /* Dummy callback required by sockmap.
933 * See unconditional call of saved_close() in sock_map_close().
934 */
vsock_close(struct sock * sk,long timeout)935 static void vsock_close(struct sock *sk, long timeout)
936 {
937 }
938
vsock_release(struct socket * sock)939 static int vsock_release(struct socket *sock)
940 {
941 struct sock *sk = sock->sk;
942
943 if (!sk)
944 return 0;
945
946 sk->sk_prot->close(sk, 0);
947 __vsock_release(sk, 0);
948 sock->sk = NULL;
949 sock->state = SS_FREE;
950
951 return 0;
952 }
953
954 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)955 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
956 {
957 int err;
958 struct sock *sk;
959 struct sockaddr_vm *vm_addr;
960
961 sk = sock->sk;
962
963 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
964 return -EINVAL;
965
966 lock_sock(sk);
967 err = __vsock_bind(sk, vm_addr);
968 release_sock(sk);
969
970 return err;
971 }
972
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)973 static int vsock_getname(struct socket *sock,
974 struct sockaddr *addr, int peer)
975 {
976 int err;
977 struct sock *sk;
978 struct vsock_sock *vsk;
979 struct sockaddr_vm *vm_addr;
980
981 sk = sock->sk;
982 vsk = vsock_sk(sk);
983 err = 0;
984
985 lock_sock(sk);
986
987 if (peer) {
988 if (sock->state != SS_CONNECTED) {
989 err = -ENOTCONN;
990 goto out;
991 }
992 vm_addr = &vsk->remote_addr;
993 } else {
994 vm_addr = &vsk->local_addr;
995 }
996
997 if (!vm_addr) {
998 err = -EINVAL;
999 goto out;
1000 }
1001
1002 /* sys_getsockname() and sys_getpeername() pass us a
1003 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
1004 * that macro is defined in socket.c instead of .h, so we hardcode its
1005 * value here.
1006 */
1007 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1008 memcpy(addr, vm_addr, sizeof(*vm_addr));
1009 err = sizeof(*vm_addr);
1010
1011 out:
1012 release_sock(sk);
1013 return err;
1014 }
1015
vsock_shutdown(struct socket * sock,int mode)1016 static int vsock_shutdown(struct socket *sock, int mode)
1017 {
1018 int err;
1019 struct sock *sk;
1020
1021 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1022 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1023 * here like the other address families do. Note also that the
1024 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1025 * which is what we want.
1026 */
1027 mode++;
1028
1029 if ((mode & ~SHUTDOWN_MASK) || !mode)
1030 return -EINVAL;
1031
1032 /* If this is a connection oriented socket and it is not connected then
1033 * bail out immediately. If it is a DGRAM socket then we must first
1034 * kick the socket so that it wakes up from any sleeping calls, for
1035 * example recv(), and then afterwards return the error.
1036 */
1037
1038 sk = sock->sk;
1039
1040 lock_sock(sk);
1041 if (sock->state == SS_UNCONNECTED) {
1042 err = -ENOTCONN;
1043 if (sock_type_connectible(sk->sk_type))
1044 goto out;
1045 } else {
1046 sock->state = SS_DISCONNECTING;
1047 err = 0;
1048 }
1049
1050 /* Receive and send shutdowns are treated alike. */
1051 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1052 if (mode) {
1053 sk->sk_shutdown |= mode;
1054 sk->sk_state_change(sk);
1055
1056 if (sock_type_connectible(sk->sk_type)) {
1057 sock_reset_flag(sk, SOCK_DONE);
1058 vsock_send_shutdown(sk, mode);
1059 }
1060 }
1061
1062 out:
1063 release_sock(sk);
1064 return err;
1065 }
1066
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1067 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1068 poll_table *wait)
1069 {
1070 struct sock *sk;
1071 __poll_t mask;
1072 struct vsock_sock *vsk;
1073
1074 sk = sock->sk;
1075 vsk = vsock_sk(sk);
1076
1077 poll_wait(file, sk_sleep(sk), wait);
1078 mask = 0;
1079
1080 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1081 /* Signify that there has been an error on this socket. */
1082 mask |= EPOLLERR;
1083
1084 /* INET sockets treat local write shutdown and peer write shutdown as a
1085 * case of EPOLLHUP set.
1086 */
1087 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1088 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1089 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1090 mask |= EPOLLHUP;
1091 }
1092
1093 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1094 vsk->peer_shutdown & SEND_SHUTDOWN) {
1095 mask |= EPOLLRDHUP;
1096 }
1097
1098 if (sk_is_readable(sk))
1099 mask |= EPOLLIN | EPOLLRDNORM;
1100
1101 if (sock->type == SOCK_DGRAM) {
1102 /* For datagram sockets we can read if there is something in
1103 * the queue and write as long as the socket isn't shutdown for
1104 * sending.
1105 */
1106 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1107 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1108 mask |= EPOLLIN | EPOLLRDNORM;
1109 }
1110
1111 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1112 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1113
1114 } else if (sock_type_connectible(sk->sk_type)) {
1115 const struct vsock_transport *transport;
1116
1117 lock_sock(sk);
1118
1119 transport = vsk->transport;
1120
1121 /* Listening sockets that have connections in their accept
1122 * queue can be read.
1123 */
1124 if (sk->sk_state == TCP_LISTEN
1125 && !vsock_is_accept_queue_empty(sk))
1126 mask |= EPOLLIN | EPOLLRDNORM;
1127
1128 /* If there is something in the queue then we can read. */
1129 if (transport && transport->stream_is_active(vsk) &&
1130 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1131 bool data_ready_now = false;
1132 int target = sock_rcvlowat(sk, 0, INT_MAX);
1133 int ret = transport->notify_poll_in(
1134 vsk, target, &data_ready_now);
1135 if (ret < 0) {
1136 mask |= EPOLLERR;
1137 } else {
1138 if (data_ready_now)
1139 mask |= EPOLLIN | EPOLLRDNORM;
1140
1141 }
1142 }
1143
1144 /* Sockets whose connections have been closed, reset, or
1145 * terminated should also be considered read, and we check the
1146 * shutdown flag for that.
1147 */
1148 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1149 vsk->peer_shutdown & SEND_SHUTDOWN) {
1150 mask |= EPOLLIN | EPOLLRDNORM;
1151 }
1152
1153 /* Connected sockets that can produce data can be written. */
1154 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1155 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1156 bool space_avail_now = false;
1157 int ret = transport->notify_poll_out(
1158 vsk, 1, &space_avail_now);
1159 if (ret < 0) {
1160 mask |= EPOLLERR;
1161 } else {
1162 if (space_avail_now)
1163 /* Remove EPOLLWRBAND since INET
1164 * sockets are not setting it.
1165 */
1166 mask |= EPOLLOUT | EPOLLWRNORM;
1167
1168 }
1169 }
1170 }
1171
1172 /* Simulate INET socket poll behaviors, which sets
1173 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1174 * but local send is not shutdown.
1175 */
1176 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1177 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1178 mask |= EPOLLOUT | EPOLLWRNORM;
1179
1180 }
1181
1182 release_sock(sk);
1183 }
1184
1185 return mask;
1186 }
1187
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1188 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1189 {
1190 struct vsock_sock *vsk = vsock_sk(sk);
1191
1192 if (WARN_ON_ONCE(!vsk->transport))
1193 return -ENODEV;
1194
1195 return vsk->transport->read_skb(vsk, read_actor);
1196 }
1197
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1198 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1199 size_t len)
1200 {
1201 int err;
1202 struct sock *sk;
1203 struct vsock_sock *vsk;
1204 struct sockaddr_vm *remote_addr;
1205 const struct vsock_transport *transport;
1206
1207 if (msg->msg_flags & MSG_OOB)
1208 return -EOPNOTSUPP;
1209
1210 /* For now, MSG_DONTWAIT is always assumed... */
1211 err = 0;
1212 sk = sock->sk;
1213 vsk = vsock_sk(sk);
1214
1215 lock_sock(sk);
1216
1217 transport = vsk->transport;
1218
1219 err = vsock_auto_bind(vsk);
1220 if (err)
1221 goto out;
1222
1223
1224 /* If the provided message contains an address, use that. Otherwise
1225 * fall back on the socket's remote handle (if it has been connected).
1226 */
1227 if (msg->msg_name &&
1228 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1229 &remote_addr) == 0) {
1230 /* Ensure this address is of the right type and is a valid
1231 * destination.
1232 */
1233
1234 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1235 remote_addr->svm_cid = transport->get_local_cid();
1236
1237 if (!vsock_addr_bound(remote_addr)) {
1238 err = -EINVAL;
1239 goto out;
1240 }
1241 } else if (sock->state == SS_CONNECTED) {
1242 remote_addr = &vsk->remote_addr;
1243
1244 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1245 remote_addr->svm_cid = transport->get_local_cid();
1246
1247 /* XXX Should connect() or this function ensure remote_addr is
1248 * bound?
1249 */
1250 if (!vsock_addr_bound(&vsk->remote_addr)) {
1251 err = -EINVAL;
1252 goto out;
1253 }
1254 } else {
1255 err = -EINVAL;
1256 goto out;
1257 }
1258
1259 if (!transport->dgram_allow(remote_addr->svm_cid,
1260 remote_addr->svm_port)) {
1261 err = -EINVAL;
1262 goto out;
1263 }
1264
1265 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1266
1267 out:
1268 release_sock(sk);
1269 return err;
1270 }
1271
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1272 static int vsock_dgram_connect(struct socket *sock,
1273 struct sockaddr *addr, int addr_len, int flags)
1274 {
1275 int err;
1276 struct sock *sk;
1277 struct vsock_sock *vsk;
1278 struct sockaddr_vm *remote_addr;
1279
1280 sk = sock->sk;
1281 vsk = vsock_sk(sk);
1282
1283 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1284 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1285 lock_sock(sk);
1286 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1287 VMADDR_PORT_ANY);
1288 sock->state = SS_UNCONNECTED;
1289 release_sock(sk);
1290 return 0;
1291 } else if (err != 0)
1292 return -EINVAL;
1293
1294 lock_sock(sk);
1295
1296 err = vsock_auto_bind(vsk);
1297 if (err)
1298 goto out;
1299
1300 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1301 remote_addr->svm_port)) {
1302 err = -EINVAL;
1303 goto out;
1304 }
1305
1306 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1307 sock->state = SS_CONNECTED;
1308
1309 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1310 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1311 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1312 *
1313 * This doesn't seem to be abnormal state for datagram sockets, as the
1314 * same approach can be see in other datagram socket types as well
1315 * (such as unix sockets).
1316 */
1317 sk->sk_state = TCP_ESTABLISHED;
1318
1319 out:
1320 release_sock(sk);
1321 return err;
1322 }
1323
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1324 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1325 size_t len, int flags)
1326 {
1327 struct sock *sk = sock->sk;
1328 struct vsock_sock *vsk = vsock_sk(sk);
1329
1330 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1331 }
1332
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1333 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1334 size_t len, int flags)
1335 {
1336 #ifdef CONFIG_BPF_SYSCALL
1337 struct sock *sk = sock->sk;
1338 const struct proto *prot;
1339
1340 prot = READ_ONCE(sk->sk_prot);
1341 if (prot != &vsock_proto)
1342 return prot->recvmsg(sk, msg, len, flags, NULL);
1343 #endif
1344
1345 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1346 }
1347 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1348
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1349 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1350 int __user *arg)
1351 {
1352 struct sock *sk = sock->sk;
1353 struct vsock_sock *vsk;
1354 int ret;
1355
1356 vsk = vsock_sk(sk);
1357
1358 switch (cmd) {
1359 case SIOCOUTQ: {
1360 ssize_t n_bytes;
1361
1362 if (!vsk->transport || !vsk->transport->unsent_bytes) {
1363 ret = -EOPNOTSUPP;
1364 break;
1365 }
1366
1367 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1368 ret = -EINVAL;
1369 break;
1370 }
1371
1372 n_bytes = vsk->transport->unsent_bytes(vsk);
1373 if (n_bytes < 0) {
1374 ret = n_bytes;
1375 break;
1376 }
1377
1378 ret = put_user(n_bytes, arg);
1379 break;
1380 }
1381 default:
1382 ret = -ENOIOCTLCMD;
1383 }
1384
1385 return ret;
1386 }
1387
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1388 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1389 unsigned long arg)
1390 {
1391 int ret;
1392
1393 lock_sock(sock->sk);
1394 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1395 release_sock(sock->sk);
1396
1397 return ret;
1398 }
1399
1400 static const struct proto_ops vsock_dgram_ops = {
1401 .family = PF_VSOCK,
1402 .owner = THIS_MODULE,
1403 .release = vsock_release,
1404 .bind = vsock_bind,
1405 .connect = vsock_dgram_connect,
1406 .socketpair = sock_no_socketpair,
1407 .accept = sock_no_accept,
1408 .getname = vsock_getname,
1409 .poll = vsock_poll,
1410 .ioctl = vsock_ioctl,
1411 .listen = sock_no_listen,
1412 .shutdown = vsock_shutdown,
1413 .sendmsg = vsock_dgram_sendmsg,
1414 .recvmsg = vsock_dgram_recvmsg,
1415 .mmap = sock_no_mmap,
1416 .read_skb = vsock_read_skb,
1417 };
1418
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1419 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1420 {
1421 const struct vsock_transport *transport = vsk->transport;
1422
1423 if (!transport || !transport->cancel_pkt)
1424 return -EOPNOTSUPP;
1425
1426 return transport->cancel_pkt(vsk);
1427 }
1428
vsock_connect_timeout(struct work_struct * work)1429 static void vsock_connect_timeout(struct work_struct *work)
1430 {
1431 struct sock *sk;
1432 struct vsock_sock *vsk;
1433
1434 vsk = container_of(work, struct vsock_sock, connect_work.work);
1435 sk = sk_vsock(vsk);
1436
1437 lock_sock(sk);
1438 if (sk->sk_state == TCP_SYN_SENT &&
1439 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1440 sk->sk_state = TCP_CLOSE;
1441 sk->sk_socket->state = SS_UNCONNECTED;
1442 sk->sk_err = ETIMEDOUT;
1443 sk_error_report(sk);
1444 vsock_transport_cancel_pkt(vsk);
1445 }
1446 release_sock(sk);
1447
1448 sock_put(sk);
1449 }
1450
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1451 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1452 int addr_len, int flags)
1453 {
1454 int err;
1455 struct sock *sk;
1456 struct vsock_sock *vsk;
1457 const struct vsock_transport *transport;
1458 struct sockaddr_vm *remote_addr;
1459 long timeout;
1460 DEFINE_WAIT(wait);
1461
1462 err = 0;
1463 sk = sock->sk;
1464 vsk = vsock_sk(sk);
1465
1466 lock_sock(sk);
1467
1468 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1469 switch (sock->state) {
1470 case SS_CONNECTED:
1471 err = -EISCONN;
1472 goto out;
1473 case SS_DISCONNECTING:
1474 err = -EINVAL;
1475 goto out;
1476 case SS_CONNECTING:
1477 /* This continues on so we can move sock into the SS_CONNECTED
1478 * state once the connection has completed (at which point err
1479 * will be set to zero also). Otherwise, we will either wait
1480 * for the connection or return -EALREADY should this be a
1481 * non-blocking call.
1482 */
1483 err = -EALREADY;
1484 if (flags & O_NONBLOCK)
1485 goto out;
1486 break;
1487 default:
1488 if ((sk->sk_state == TCP_LISTEN) ||
1489 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1490 err = -EINVAL;
1491 goto out;
1492 }
1493
1494 /* Set the remote address that we are connecting to. */
1495 memcpy(&vsk->remote_addr, remote_addr,
1496 sizeof(vsk->remote_addr));
1497
1498 err = vsock_assign_transport(vsk, NULL);
1499 if (err)
1500 goto out;
1501
1502 transport = vsk->transport;
1503
1504 /* The hypervisor and well-known contexts do not have socket
1505 * endpoints.
1506 */
1507 if (!transport ||
1508 !transport->stream_allow(remote_addr->svm_cid,
1509 remote_addr->svm_port)) {
1510 err = -ENETUNREACH;
1511 goto out;
1512 }
1513
1514 if (vsock_msgzerocopy_allow(transport)) {
1515 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1516 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1517 /* If this option was set before 'connect()',
1518 * when transport was unknown, check that this
1519 * feature is supported here.
1520 */
1521 err = -EOPNOTSUPP;
1522 goto out;
1523 }
1524
1525 err = vsock_auto_bind(vsk);
1526 if (err)
1527 goto out;
1528
1529 sk->sk_state = TCP_SYN_SENT;
1530
1531 err = transport->connect(vsk);
1532 if (err < 0)
1533 goto out;
1534
1535 /* sk_err might have been set as a result of an earlier
1536 * (failed) connect attempt.
1537 */
1538 sk->sk_err = 0;
1539
1540 /* Mark sock as connecting and set the error code to in
1541 * progress in case this is a non-blocking connect.
1542 */
1543 sock->state = SS_CONNECTING;
1544 err = -EINPROGRESS;
1545 }
1546
1547 /* The receive path will handle all communication until we are able to
1548 * enter the connected state. Here we wait for the connection to be
1549 * completed or a notification of an error.
1550 */
1551 timeout = vsk->connect_timeout;
1552 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1553
1554 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1555 if (flags & O_NONBLOCK) {
1556 /* If we're not going to block, we schedule a timeout
1557 * function to generate a timeout on the connection
1558 * attempt, in case the peer doesn't respond in a
1559 * timely manner. We hold on to the socket until the
1560 * timeout fires.
1561 */
1562 sock_hold(sk);
1563
1564 /* If the timeout function is already scheduled,
1565 * reschedule it, then ungrab the socket refcount to
1566 * keep it balanced.
1567 */
1568 if (mod_delayed_work(system_wq, &vsk->connect_work,
1569 timeout))
1570 sock_put(sk);
1571
1572 /* Skip ahead to preserve error code set above. */
1573 goto out_wait;
1574 }
1575
1576 release_sock(sk);
1577 timeout = schedule_timeout(timeout);
1578 lock_sock(sk);
1579
1580 if (signal_pending(current)) {
1581 err = sock_intr_errno(timeout);
1582 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1583 sock->state = SS_UNCONNECTED;
1584 vsock_transport_cancel_pkt(vsk);
1585 vsock_remove_connected(vsk);
1586 goto out_wait;
1587 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1588 err = -ETIMEDOUT;
1589 sk->sk_state = TCP_CLOSE;
1590 sock->state = SS_UNCONNECTED;
1591 vsock_transport_cancel_pkt(vsk);
1592 goto out_wait;
1593 }
1594
1595 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1596 }
1597
1598 if (sk->sk_err) {
1599 err = -sk->sk_err;
1600 sk->sk_state = TCP_CLOSE;
1601 sock->state = SS_UNCONNECTED;
1602 } else {
1603 err = 0;
1604 }
1605
1606 out_wait:
1607 finish_wait(sk_sleep(sk), &wait);
1608 out:
1609 release_sock(sk);
1610 return err;
1611 }
1612
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1613 static int vsock_accept(struct socket *sock, struct socket *newsock,
1614 struct proto_accept_arg *arg)
1615 {
1616 struct sock *listener;
1617 int err;
1618 struct sock *connected;
1619 struct vsock_sock *vconnected;
1620 long timeout;
1621 DEFINE_WAIT(wait);
1622
1623 err = 0;
1624 listener = sock->sk;
1625
1626 lock_sock(listener);
1627
1628 if (!sock_type_connectible(sock->type)) {
1629 err = -EOPNOTSUPP;
1630 goto out;
1631 }
1632
1633 if (listener->sk_state != TCP_LISTEN) {
1634 err = -EINVAL;
1635 goto out;
1636 }
1637
1638 /* Wait for children sockets to appear; these are the new sockets
1639 * created upon connection establishment.
1640 */
1641 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1642 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1643
1644 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1645 listener->sk_err == 0) {
1646 release_sock(listener);
1647 timeout = schedule_timeout(timeout);
1648 finish_wait(sk_sleep(listener), &wait);
1649 lock_sock(listener);
1650
1651 if (signal_pending(current)) {
1652 err = sock_intr_errno(timeout);
1653 goto out;
1654 } else if (timeout == 0) {
1655 err = -EAGAIN;
1656 goto out;
1657 }
1658
1659 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1660 }
1661 finish_wait(sk_sleep(listener), &wait);
1662
1663 if (listener->sk_err)
1664 err = -listener->sk_err;
1665
1666 if (connected) {
1667 sk_acceptq_removed(listener);
1668
1669 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1670 vconnected = vsock_sk(connected);
1671
1672 /* If the listener socket has received an error, then we should
1673 * reject this socket and return. Note that we simply mark the
1674 * socket rejected, drop our reference, and let the cleanup
1675 * function handle the cleanup; the fact that we found it in
1676 * the listener's accept queue guarantees that the cleanup
1677 * function hasn't run yet.
1678 */
1679 if (err) {
1680 vconnected->rejected = true;
1681 } else {
1682 newsock->state = SS_CONNECTED;
1683 sock_graft(connected, newsock);
1684 if (vsock_msgzerocopy_allow(vconnected->transport))
1685 set_bit(SOCK_SUPPORT_ZC,
1686 &connected->sk_socket->flags);
1687 }
1688
1689 release_sock(connected);
1690 sock_put(connected);
1691 }
1692
1693 out:
1694 release_sock(listener);
1695 return err;
1696 }
1697
vsock_listen(struct socket * sock,int backlog)1698 static int vsock_listen(struct socket *sock, int backlog)
1699 {
1700 int err;
1701 struct sock *sk;
1702 struct vsock_sock *vsk;
1703
1704 sk = sock->sk;
1705
1706 lock_sock(sk);
1707
1708 if (!sock_type_connectible(sk->sk_type)) {
1709 err = -EOPNOTSUPP;
1710 goto out;
1711 }
1712
1713 if (sock->state != SS_UNCONNECTED) {
1714 err = -EINVAL;
1715 goto out;
1716 }
1717
1718 vsk = vsock_sk(sk);
1719
1720 if (!vsock_addr_bound(&vsk->local_addr)) {
1721 err = -EINVAL;
1722 goto out;
1723 }
1724
1725 sk->sk_max_ack_backlog = backlog;
1726 sk->sk_state = TCP_LISTEN;
1727
1728 err = 0;
1729
1730 out:
1731 release_sock(sk);
1732 return err;
1733 }
1734
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1735 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1736 const struct vsock_transport *transport,
1737 u64 val)
1738 {
1739 if (val > vsk->buffer_max_size)
1740 val = vsk->buffer_max_size;
1741
1742 if (val < vsk->buffer_min_size)
1743 val = vsk->buffer_min_size;
1744
1745 if (val != vsk->buffer_size &&
1746 transport && transport->notify_buffer_size)
1747 transport->notify_buffer_size(vsk, &val);
1748
1749 vsk->buffer_size = val;
1750 }
1751
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1752 static int vsock_connectible_setsockopt(struct socket *sock,
1753 int level,
1754 int optname,
1755 sockptr_t optval,
1756 unsigned int optlen)
1757 {
1758 int err;
1759 struct sock *sk;
1760 struct vsock_sock *vsk;
1761 const struct vsock_transport *transport;
1762 u64 val;
1763
1764 if (level != AF_VSOCK && level != SOL_SOCKET)
1765 return -ENOPROTOOPT;
1766
1767 #define COPY_IN(_v) \
1768 do { \
1769 if (optlen < sizeof(_v)) { \
1770 err = -EINVAL; \
1771 goto exit; \
1772 } \
1773 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1774 err = -EFAULT; \
1775 goto exit; \
1776 } \
1777 } while (0)
1778
1779 err = 0;
1780 sk = sock->sk;
1781 vsk = vsock_sk(sk);
1782
1783 lock_sock(sk);
1784
1785 transport = vsk->transport;
1786
1787 if (level == SOL_SOCKET) {
1788 int zerocopy;
1789
1790 if (optname != SO_ZEROCOPY) {
1791 release_sock(sk);
1792 return sock_setsockopt(sock, level, optname, optval, optlen);
1793 }
1794
1795 /* Use 'int' type here, because variable to
1796 * set this option usually has this type.
1797 */
1798 COPY_IN(zerocopy);
1799
1800 if (zerocopy < 0 || zerocopy > 1) {
1801 err = -EINVAL;
1802 goto exit;
1803 }
1804
1805 if (transport && !vsock_msgzerocopy_allow(transport)) {
1806 err = -EOPNOTSUPP;
1807 goto exit;
1808 }
1809
1810 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1811 goto exit;
1812 }
1813
1814 switch (optname) {
1815 case SO_VM_SOCKETS_BUFFER_SIZE:
1816 COPY_IN(val);
1817 vsock_update_buffer_size(vsk, transport, val);
1818 break;
1819
1820 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1821 COPY_IN(val);
1822 vsk->buffer_max_size = val;
1823 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1824 break;
1825
1826 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1827 COPY_IN(val);
1828 vsk->buffer_min_size = val;
1829 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1830 break;
1831
1832 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1833 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1834 struct __kernel_sock_timeval tv;
1835
1836 err = sock_copy_user_timeval(&tv, optval, optlen,
1837 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1838 if (err)
1839 break;
1840 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1841 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1842 vsk->connect_timeout = tv.tv_sec * HZ +
1843 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1844 if (vsk->connect_timeout == 0)
1845 vsk->connect_timeout =
1846 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1847
1848 } else {
1849 err = -ERANGE;
1850 }
1851 break;
1852 }
1853
1854 default:
1855 err = -ENOPROTOOPT;
1856 break;
1857 }
1858
1859 #undef COPY_IN
1860
1861 exit:
1862 release_sock(sk);
1863 return err;
1864 }
1865
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1866 static int vsock_connectible_getsockopt(struct socket *sock,
1867 int level, int optname,
1868 char __user *optval,
1869 int __user *optlen)
1870 {
1871 struct sock *sk = sock->sk;
1872 struct vsock_sock *vsk = vsock_sk(sk);
1873
1874 union {
1875 u64 val64;
1876 struct old_timeval32 tm32;
1877 struct __kernel_old_timeval tm;
1878 struct __kernel_sock_timeval stm;
1879 } v;
1880
1881 int lv = sizeof(v.val64);
1882 int len;
1883
1884 if (level != AF_VSOCK)
1885 return -ENOPROTOOPT;
1886
1887 if (get_user(len, optlen))
1888 return -EFAULT;
1889
1890 memset(&v, 0, sizeof(v));
1891
1892 switch (optname) {
1893 case SO_VM_SOCKETS_BUFFER_SIZE:
1894 v.val64 = vsk->buffer_size;
1895 break;
1896
1897 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1898 v.val64 = vsk->buffer_max_size;
1899 break;
1900
1901 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1902 v.val64 = vsk->buffer_min_size;
1903 break;
1904
1905 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1906 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1907 lv = sock_get_timeout(vsk->connect_timeout, &v,
1908 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1909 break;
1910
1911 default:
1912 return -ENOPROTOOPT;
1913 }
1914
1915 if (len < lv)
1916 return -EINVAL;
1917 if (len > lv)
1918 len = lv;
1919 if (copy_to_user(optval, &v, len))
1920 return -EFAULT;
1921
1922 if (put_user(len, optlen))
1923 return -EFAULT;
1924
1925 return 0;
1926 }
1927
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1928 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1929 size_t len)
1930 {
1931 struct sock *sk;
1932 struct vsock_sock *vsk;
1933 const struct vsock_transport *transport;
1934 ssize_t total_written;
1935 long timeout;
1936 int err;
1937 struct vsock_transport_send_notify_data send_data;
1938 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1939
1940 sk = sock->sk;
1941 vsk = vsock_sk(sk);
1942 total_written = 0;
1943 err = 0;
1944
1945 if (msg->msg_flags & MSG_OOB)
1946 return -EOPNOTSUPP;
1947
1948 lock_sock(sk);
1949
1950 transport = vsk->transport;
1951
1952 /* Callers should not provide a destination with connection oriented
1953 * sockets.
1954 */
1955 if (msg->msg_namelen) {
1956 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1957 goto out;
1958 }
1959
1960 /* Send data only if both sides are not shutdown in the direction. */
1961 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1962 vsk->peer_shutdown & RCV_SHUTDOWN) {
1963 err = -EPIPE;
1964 goto out;
1965 }
1966
1967 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1968 !vsock_addr_bound(&vsk->local_addr)) {
1969 err = -ENOTCONN;
1970 goto out;
1971 }
1972
1973 if (!vsock_addr_bound(&vsk->remote_addr)) {
1974 err = -EDESTADDRREQ;
1975 goto out;
1976 }
1977
1978 if (msg->msg_flags & MSG_ZEROCOPY &&
1979 !vsock_msgzerocopy_allow(transport)) {
1980 err = -EOPNOTSUPP;
1981 goto out;
1982 }
1983
1984 /* Wait for room in the produce queue to enqueue our user's data. */
1985 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1986
1987 err = transport->notify_send_init(vsk, &send_data);
1988 if (err < 0)
1989 goto out;
1990
1991 while (total_written < len) {
1992 ssize_t written;
1993
1994 add_wait_queue(sk_sleep(sk), &wait);
1995 while (vsock_stream_has_space(vsk) == 0 &&
1996 sk->sk_err == 0 &&
1997 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1998 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1999
2000 /* Don't wait for non-blocking sockets. */
2001 if (timeout == 0) {
2002 err = -EAGAIN;
2003 remove_wait_queue(sk_sleep(sk), &wait);
2004 goto out_err;
2005 }
2006
2007 err = transport->notify_send_pre_block(vsk, &send_data);
2008 if (err < 0) {
2009 remove_wait_queue(sk_sleep(sk), &wait);
2010 goto out_err;
2011 }
2012
2013 release_sock(sk);
2014 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2015 lock_sock(sk);
2016 if (signal_pending(current)) {
2017 err = sock_intr_errno(timeout);
2018 remove_wait_queue(sk_sleep(sk), &wait);
2019 goto out_err;
2020 } else if (timeout == 0) {
2021 err = -EAGAIN;
2022 remove_wait_queue(sk_sleep(sk), &wait);
2023 goto out_err;
2024 }
2025 }
2026 remove_wait_queue(sk_sleep(sk), &wait);
2027
2028 /* These checks occur both as part of and after the loop
2029 * conditional since we need to check before and after
2030 * sleeping.
2031 */
2032 if (sk->sk_err) {
2033 err = -sk->sk_err;
2034 goto out_err;
2035 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2036 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2037 err = -EPIPE;
2038 goto out_err;
2039 }
2040
2041 err = transport->notify_send_pre_enqueue(vsk, &send_data);
2042 if (err < 0)
2043 goto out_err;
2044
2045 /* Note that enqueue will only write as many bytes as are free
2046 * in the produce queue, so we don't need to ensure len is
2047 * smaller than the queue size. It is the caller's
2048 * responsibility to check how many bytes we were able to send.
2049 */
2050
2051 if (sk->sk_type == SOCK_SEQPACKET) {
2052 written = transport->seqpacket_enqueue(vsk,
2053 msg, len - total_written);
2054 } else {
2055 written = transport->stream_enqueue(vsk,
2056 msg, len - total_written);
2057 }
2058
2059 if (written < 0) {
2060 err = written;
2061 goto out_err;
2062 }
2063
2064 total_written += written;
2065
2066 err = transport->notify_send_post_enqueue(
2067 vsk, written, &send_data);
2068 if (err < 0)
2069 goto out_err;
2070
2071 }
2072
2073 out_err:
2074 if (total_written > 0) {
2075 /* Return number of written bytes only if:
2076 * 1) SOCK_STREAM socket.
2077 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2078 */
2079 if (sk->sk_type == SOCK_STREAM || total_written == len)
2080 err = total_written;
2081 }
2082 out:
2083 if (sk->sk_type == SOCK_STREAM)
2084 err = sk_stream_error(sk, msg->msg_flags, err);
2085
2086 release_sock(sk);
2087 return err;
2088 }
2089
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2090 static int vsock_connectible_wait_data(struct sock *sk,
2091 struct wait_queue_entry *wait,
2092 long timeout,
2093 struct vsock_transport_recv_notify_data *recv_data,
2094 size_t target)
2095 {
2096 const struct vsock_transport *transport;
2097 struct vsock_sock *vsk;
2098 s64 data;
2099 int err;
2100
2101 vsk = vsock_sk(sk);
2102 err = 0;
2103 transport = vsk->transport;
2104
2105 while (1) {
2106 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2107 data = vsock_connectible_has_data(vsk);
2108 if (data != 0)
2109 break;
2110
2111 if (sk->sk_err != 0 ||
2112 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2113 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2114 break;
2115 }
2116
2117 /* Don't wait for non-blocking sockets. */
2118 if (timeout == 0) {
2119 err = -EAGAIN;
2120 break;
2121 }
2122
2123 if (recv_data) {
2124 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2125 if (err < 0)
2126 break;
2127 }
2128
2129 release_sock(sk);
2130 timeout = schedule_timeout(timeout);
2131 lock_sock(sk);
2132
2133 if (signal_pending(current)) {
2134 err = sock_intr_errno(timeout);
2135 break;
2136 } else if (timeout == 0) {
2137 err = -EAGAIN;
2138 break;
2139 }
2140 }
2141
2142 finish_wait(sk_sleep(sk), wait);
2143
2144 if (err)
2145 return err;
2146
2147 /* Internal transport error when checking for available
2148 * data. XXX This should be changed to a connection
2149 * reset in a later change.
2150 */
2151 if (data < 0)
2152 return -ENOMEM;
2153
2154 return data;
2155 }
2156
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2157 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2158 size_t len, int flags)
2159 {
2160 struct vsock_transport_recv_notify_data recv_data;
2161 const struct vsock_transport *transport;
2162 struct vsock_sock *vsk;
2163 ssize_t copied;
2164 size_t target;
2165 long timeout;
2166 int err;
2167
2168 DEFINE_WAIT(wait);
2169
2170 vsk = vsock_sk(sk);
2171 transport = vsk->transport;
2172
2173 /* We must not copy less than target bytes into the user's buffer
2174 * before returning successfully, so we wait for the consume queue to
2175 * have that much data to consume before dequeueing. Note that this
2176 * makes it impossible to handle cases where target is greater than the
2177 * queue size.
2178 */
2179 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2180 if (target >= transport->stream_rcvhiwat(vsk)) {
2181 err = -ENOMEM;
2182 goto out;
2183 }
2184 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2185 copied = 0;
2186
2187 err = transport->notify_recv_init(vsk, target, &recv_data);
2188 if (err < 0)
2189 goto out;
2190
2191
2192 while (1) {
2193 ssize_t read;
2194
2195 err = vsock_connectible_wait_data(sk, &wait, timeout,
2196 &recv_data, target);
2197 if (err <= 0)
2198 break;
2199
2200 err = transport->notify_recv_pre_dequeue(vsk, target,
2201 &recv_data);
2202 if (err < 0)
2203 break;
2204
2205 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2206 if (read < 0) {
2207 err = read;
2208 break;
2209 }
2210
2211 copied += read;
2212
2213 err = transport->notify_recv_post_dequeue(vsk, target, read,
2214 !(flags & MSG_PEEK), &recv_data);
2215 if (err < 0)
2216 goto out;
2217
2218 if (read >= target || flags & MSG_PEEK)
2219 break;
2220
2221 target -= read;
2222 }
2223
2224 if (sk->sk_err)
2225 err = -sk->sk_err;
2226 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2227 err = 0;
2228
2229 if (copied > 0)
2230 err = copied;
2231
2232 out:
2233 return err;
2234 }
2235
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2236 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2237 size_t len, int flags)
2238 {
2239 const struct vsock_transport *transport;
2240 struct vsock_sock *vsk;
2241 ssize_t msg_len;
2242 long timeout;
2243 int err = 0;
2244 DEFINE_WAIT(wait);
2245
2246 vsk = vsock_sk(sk);
2247 transport = vsk->transport;
2248
2249 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2250
2251 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2252 if (err <= 0)
2253 goto out;
2254
2255 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2256
2257 if (msg_len < 0) {
2258 err = msg_len;
2259 goto out;
2260 }
2261
2262 if (sk->sk_err) {
2263 err = -sk->sk_err;
2264 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2265 err = 0;
2266 } else {
2267 /* User sets MSG_TRUNC, so return real length of
2268 * packet.
2269 */
2270 if (flags & MSG_TRUNC)
2271 err = msg_len;
2272 else
2273 err = len - msg_data_left(msg);
2274
2275 /* Always set MSG_TRUNC if real length of packet is
2276 * bigger than user's buffer.
2277 */
2278 if (msg_len > len)
2279 msg->msg_flags |= MSG_TRUNC;
2280 }
2281
2282 out:
2283 return err;
2284 }
2285
2286 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2287 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2288 int flags)
2289 {
2290 struct sock *sk;
2291 struct vsock_sock *vsk;
2292 const struct vsock_transport *transport;
2293 int err;
2294
2295 sk = sock->sk;
2296
2297 if (unlikely(flags & MSG_ERRQUEUE))
2298 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2299
2300 vsk = vsock_sk(sk);
2301 err = 0;
2302
2303 lock_sock(sk);
2304
2305 transport = vsk->transport;
2306
2307 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2308 /* Recvmsg is supposed to return 0 if a peer performs an
2309 * orderly shutdown. Differentiate between that case and when a
2310 * peer has not connected or a local shutdown occurred with the
2311 * SOCK_DONE flag.
2312 */
2313 if (sock_flag(sk, SOCK_DONE))
2314 err = 0;
2315 else
2316 err = -ENOTCONN;
2317
2318 goto out;
2319 }
2320
2321 if (flags & MSG_OOB) {
2322 err = -EOPNOTSUPP;
2323 goto out;
2324 }
2325
2326 /* We don't check peer_shutdown flag here since peer may actually shut
2327 * down, but there can be data in the queue that a local socket can
2328 * receive.
2329 */
2330 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2331 err = 0;
2332 goto out;
2333 }
2334
2335 /* It is valid on Linux to pass in a zero-length receive buffer. This
2336 * is not an error. We may as well bail out now.
2337 */
2338 if (!len) {
2339 err = 0;
2340 goto out;
2341 }
2342
2343 if (sk->sk_type == SOCK_STREAM)
2344 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2345 else
2346 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2347
2348 out:
2349 release_sock(sk);
2350 return err;
2351 }
2352
2353 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2354 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2355 int flags)
2356 {
2357 #ifdef CONFIG_BPF_SYSCALL
2358 struct sock *sk = sock->sk;
2359 const struct proto *prot;
2360
2361 prot = READ_ONCE(sk->sk_prot);
2362 if (prot != &vsock_proto)
2363 return prot->recvmsg(sk, msg, len, flags, NULL);
2364 #endif
2365
2366 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2367 }
2368 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2369
vsock_set_rcvlowat(struct sock * sk,int val)2370 static int vsock_set_rcvlowat(struct sock *sk, int val)
2371 {
2372 const struct vsock_transport *transport;
2373 struct vsock_sock *vsk;
2374
2375 vsk = vsock_sk(sk);
2376
2377 if (val > vsk->buffer_size)
2378 return -EINVAL;
2379
2380 transport = vsk->transport;
2381
2382 if (transport && transport->notify_set_rcvlowat) {
2383 int err;
2384
2385 err = transport->notify_set_rcvlowat(vsk, val);
2386 if (err)
2387 return err;
2388 }
2389
2390 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2391 return 0;
2392 }
2393
2394 static const struct proto_ops vsock_stream_ops = {
2395 .family = PF_VSOCK,
2396 .owner = THIS_MODULE,
2397 .release = vsock_release,
2398 .bind = vsock_bind,
2399 .connect = vsock_connect,
2400 .socketpair = sock_no_socketpair,
2401 .accept = vsock_accept,
2402 .getname = vsock_getname,
2403 .poll = vsock_poll,
2404 .ioctl = vsock_ioctl,
2405 .listen = vsock_listen,
2406 .shutdown = vsock_shutdown,
2407 .setsockopt = vsock_connectible_setsockopt,
2408 .getsockopt = vsock_connectible_getsockopt,
2409 .sendmsg = vsock_connectible_sendmsg,
2410 .recvmsg = vsock_connectible_recvmsg,
2411 .mmap = sock_no_mmap,
2412 .set_rcvlowat = vsock_set_rcvlowat,
2413 .read_skb = vsock_read_skb,
2414 };
2415
2416 static const struct proto_ops vsock_seqpacket_ops = {
2417 .family = PF_VSOCK,
2418 .owner = THIS_MODULE,
2419 .release = vsock_release,
2420 .bind = vsock_bind,
2421 .connect = vsock_connect,
2422 .socketpair = sock_no_socketpair,
2423 .accept = vsock_accept,
2424 .getname = vsock_getname,
2425 .poll = vsock_poll,
2426 .ioctl = vsock_ioctl,
2427 .listen = vsock_listen,
2428 .shutdown = vsock_shutdown,
2429 .setsockopt = vsock_connectible_setsockopt,
2430 .getsockopt = vsock_connectible_getsockopt,
2431 .sendmsg = vsock_connectible_sendmsg,
2432 .recvmsg = vsock_connectible_recvmsg,
2433 .mmap = sock_no_mmap,
2434 .read_skb = vsock_read_skb,
2435 };
2436
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2437 static int vsock_create(struct net *net, struct socket *sock,
2438 int protocol, int kern)
2439 {
2440 struct vsock_sock *vsk;
2441 struct sock *sk;
2442 int ret;
2443
2444 if (!sock)
2445 return -EINVAL;
2446
2447 if (protocol && protocol != PF_VSOCK)
2448 return -EPROTONOSUPPORT;
2449
2450 switch (sock->type) {
2451 case SOCK_DGRAM:
2452 sock->ops = &vsock_dgram_ops;
2453 break;
2454 case SOCK_STREAM:
2455 sock->ops = &vsock_stream_ops;
2456 break;
2457 case SOCK_SEQPACKET:
2458 sock->ops = &vsock_seqpacket_ops;
2459 break;
2460 default:
2461 return -ESOCKTNOSUPPORT;
2462 }
2463
2464 sock->state = SS_UNCONNECTED;
2465
2466 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2467 if (!sk)
2468 return -ENOMEM;
2469
2470 vsk = vsock_sk(sk);
2471
2472 if (sock->type == SOCK_DGRAM) {
2473 ret = vsock_assign_transport(vsk, NULL);
2474 if (ret < 0) {
2475 sock->sk = NULL;
2476 sock_put(sk);
2477 return ret;
2478 }
2479 }
2480
2481 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2482 * proto_ops, so there is no handler for custom logic.
2483 */
2484 if (sock_type_connectible(sock->type))
2485 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2486
2487 vsock_insert_unbound(vsk);
2488
2489 return 0;
2490 }
2491
2492 static const struct net_proto_family vsock_family_ops = {
2493 .family = AF_VSOCK,
2494 .create = vsock_create,
2495 .owner = THIS_MODULE,
2496 };
2497
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2498 static long vsock_dev_do_ioctl(struct file *filp,
2499 unsigned int cmd, void __user *ptr)
2500 {
2501 u32 __user *p = ptr;
2502 u32 cid = VMADDR_CID_ANY;
2503 int retval = 0;
2504
2505 switch (cmd) {
2506 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2507 /* To be compatible with the VMCI behavior, we prioritize the
2508 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2509 */
2510 if (transport_g2h)
2511 cid = transport_g2h->get_local_cid();
2512 else if (transport_h2g)
2513 cid = transport_h2g->get_local_cid();
2514
2515 if (put_user(cid, p) != 0)
2516 retval = -EFAULT;
2517 break;
2518
2519 default:
2520 retval = -ENOIOCTLCMD;
2521 }
2522
2523 return retval;
2524 }
2525
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2526 static long vsock_dev_ioctl(struct file *filp,
2527 unsigned int cmd, unsigned long arg)
2528 {
2529 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2530 }
2531
2532 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2533 static long vsock_dev_compat_ioctl(struct file *filp,
2534 unsigned int cmd, unsigned long arg)
2535 {
2536 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2537 }
2538 #endif
2539
2540 static const struct file_operations vsock_device_ops = {
2541 .owner = THIS_MODULE,
2542 .unlocked_ioctl = vsock_dev_ioctl,
2543 #ifdef CONFIG_COMPAT
2544 .compat_ioctl = vsock_dev_compat_ioctl,
2545 #endif
2546 .open = nonseekable_open,
2547 };
2548
2549 static struct miscdevice vsock_device = {
2550 .name = "vsock",
2551 .fops = &vsock_device_ops,
2552 };
2553
vsock_init(void)2554 static int __init vsock_init(void)
2555 {
2556 int err = 0;
2557
2558 vsock_init_tables();
2559
2560 vsock_proto.owner = THIS_MODULE;
2561 vsock_device.minor = MISC_DYNAMIC_MINOR;
2562 err = misc_register(&vsock_device);
2563 if (err) {
2564 pr_err("Failed to register misc device\n");
2565 goto err_reset_transport;
2566 }
2567
2568 err = proto_register(&vsock_proto, 1); /* we want our slab */
2569 if (err) {
2570 pr_err("Cannot register vsock protocol\n");
2571 goto err_deregister_misc;
2572 }
2573
2574 err = sock_register(&vsock_family_ops);
2575 if (err) {
2576 pr_err("could not register af_vsock (%d) address family: %d\n",
2577 AF_VSOCK, err);
2578 goto err_unregister_proto;
2579 }
2580
2581 vsock_bpf_build_proto();
2582
2583 return 0;
2584
2585 err_unregister_proto:
2586 proto_unregister(&vsock_proto);
2587 err_deregister_misc:
2588 misc_deregister(&vsock_device);
2589 err_reset_transport:
2590 return err;
2591 }
2592
vsock_exit(void)2593 static void __exit vsock_exit(void)
2594 {
2595 misc_deregister(&vsock_device);
2596 sock_unregister(AF_VSOCK);
2597 proto_unregister(&vsock_proto);
2598 }
2599
vsock_core_get_transport(struct vsock_sock * vsk)2600 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2601 {
2602 return vsk->transport;
2603 }
2604 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2605
vsock_core_register(const struct vsock_transport * t,int features)2606 int vsock_core_register(const struct vsock_transport *t, int features)
2607 {
2608 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2609 int err = mutex_lock_interruptible(&vsock_register_mutex);
2610
2611 if (err)
2612 return err;
2613
2614 t_h2g = transport_h2g;
2615 t_g2h = transport_g2h;
2616 t_dgram = transport_dgram;
2617 t_local = transport_local;
2618
2619 if (features & VSOCK_TRANSPORT_F_H2G) {
2620 if (t_h2g) {
2621 err = -EBUSY;
2622 goto err_busy;
2623 }
2624 t_h2g = t;
2625 }
2626
2627 if (features & VSOCK_TRANSPORT_F_G2H) {
2628 if (t_g2h) {
2629 err = -EBUSY;
2630 goto err_busy;
2631 }
2632 t_g2h = t;
2633 }
2634
2635 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2636 if (t_dgram) {
2637 err = -EBUSY;
2638 goto err_busy;
2639 }
2640 t_dgram = t;
2641 }
2642
2643 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2644 if (t_local) {
2645 err = -EBUSY;
2646 goto err_busy;
2647 }
2648 t_local = t;
2649 }
2650
2651 transport_h2g = t_h2g;
2652 transport_g2h = t_g2h;
2653 transport_dgram = t_dgram;
2654 transport_local = t_local;
2655
2656 err_busy:
2657 mutex_unlock(&vsock_register_mutex);
2658 return err;
2659 }
2660 EXPORT_SYMBOL_GPL(vsock_core_register);
2661
vsock_core_unregister(const struct vsock_transport * t)2662 void vsock_core_unregister(const struct vsock_transport *t)
2663 {
2664 mutex_lock(&vsock_register_mutex);
2665
2666 if (transport_h2g == t)
2667 transport_h2g = NULL;
2668
2669 if (transport_g2h == t)
2670 transport_g2h = NULL;
2671
2672 if (transport_dgram == t)
2673 transport_dgram = NULL;
2674
2675 if (transport_local == t)
2676 transport_local = NULL;
2677
2678 mutex_unlock(&vsock_register_mutex);
2679 }
2680 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2681
2682 module_init(vsock_init);
2683 module_exit(vsock_exit);
2684
2685 MODULE_AUTHOR("VMware, Inc.");
2686 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2687 MODULE_VERSION("1.0.2.0-k");
2688 MODULE_LICENSE("GPL v2");
2689